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We propose a novel possibility to detect a very distinctive signal with more than four muons
originating from pair-produced vector-like leptons decaying to a muon-philic Z0 boson. These new
particles are good candidates to explain the anomalies in the muon anomalous magnetic moment and
the b → sll processes. The doublet (singlet) vector-like leptons lighter than 1.3 (1.0) TeV are excluded
by the latest data at the LHC if BRðE → Z0μÞ ¼ 1. We also show that the excess in the signal region
with more than five leptons can be explained by this scenario if the vector-like lepton is a weak singlet,
with mass about 400 GeV and BRðE → Z0μÞ ¼ 0.25. The future prospects at the HL-LHC are
discussed.
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I. INTRODUCTION

The Large Hadron Collider (LHC) explores new
physics beyond the Standard Model (SM) at TeV-scale.
The SM has been established as the theory just above
the electroweak (EW) scale, particularly by the discov-
ery of the 125 GeV Higgs boson at the LHC [1,2].
Although most of the experiments are consistent with
the predictions of the SM, there are 2–3σ discrepancies
in the measurements of rare semileptonic B meson
decays [3–19], b → sll, and the 4.2σ discrepancy in
the anomalous magnetic moment of muon, Δaμ [20–42].
An interesting coincidence here is that both anomalies
are found in physics related to muons, and hence these
could be explained by the same origin. One way to
establish these discrepancies as evidence of new physics
is to increase the significance by reducing the uncer-
tainties in the experimental measurements and in the
predictions of the SM. Another way is by directly
discovering new particles at the LHC, which we pursue
in this paper.
It was shown in Refs. [43,44] that both anomalies in

b → sll and Δaμ are addressed by introducing vector-like
(VL) fermions and a Z0 boson associated with an additional

gauge symmetry Uð1Þ0.1 The former anomaly is explained
by Z0 exchange at the tree-level,2 while the latter is
explained by loop corrections involving the VL leptons
and the Z0 boson. In this paper, we point out the possibility
that pair productions of VL leptons provide very distinctive
signals with more than four muons. We shall discuss the
current limits from the recent ATLAS data [69] and future
prospects at the HL-LHC in a simplified model with a VL
lepton and Z0 boson. We also discuss the possible explan-
ation for the excess in the more than 5-lepton signal found
in Ref. [69].
The rest of this paper is organized as follows. The

simplified model is defined and then the relation to the
anomalies are discussed in Sec. II. In Sec. III, we discuss
limits from the high-multiplicity lepton signal at the LHC.
Section IV is devoted to summary. The model proposed in
Refs. [43,44] are reviewed in the Appendix as a UV
completion of the simplified model.

II. SIMPLIFIED MODEL

We shall consider the simplified model with a VL lepton
E, which is weak singletlike, E1, or doubletlike,
L ¼ ðE2; NÞ, where N is the SUð2ÞL partner of E2. The
Z0 boson couplings to the leptons are given by
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1See Refs. [45–50] for models with VL fermions and Uð1Þ0 for
the anomalies. The VL lepton explanation for Δaμ is studied in,
e.g., Refs. [51–57]. See also Ref. [58] for roles of VL leptons to
the EW-fit and the CKM matrix determination.

2The b → sll anomaly can be explained by loop corrections
involving VL families [59–68].
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where E ¼ E1 or E2 and the interactions with N in the second line are absent in the case of weak singlet VL lepton. We
assume that the off-diagonal couplings of the SM bosons to the SM and VL leptons are negligible, such that the dominant
decay modes of the VL leptons are the decays to a Z0 boson and SM lepton. In fact, this is achieved in the model proposed in
Refs. [43,44].
The loop corrections involving the VL leptons and the Z0 boson contribute to the anomalous magnetic moment of the

muon. The diagram is shown in the left panel of Fig. 1. It is known that the chiral-flip effect should be sizable to explain the
current discrepancy ofOð10−9Þwith the new particles above the EW scale. In models with VL leptons, the chiral-flip effects
may come from the nonzero VEV of the SM Higgs doublet. Hence the size of the loop correction is estimated as
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where κ is the Yukawa couping constant for H̃L̄REL. CΔaμ
is the factor from loop functions which is typically of
Oð0.1Þ, see Appendix for the explicit form in the example
model.
The Z0 boson couplings to muons, gLμμ and gRμμ, directly

relate to theWilson coefficients for the b → sll decay. The
diagram is shown in the right panel of Fig. 1. The effective
Hamiltonian is given by [70,71]

Heff ¼ −
4GFffiffiffi

2
p αe

4π
VtbV�

tsðC9O9 þ C10O10Þ; ð3Þ

where

O9 ≔ ½s̄γμPLb�½μ̄γμμ�; O10 ≔ ½s̄γμPLb�½μ̄γμγ5μ�: ð4Þ

The coefficients in this model are given by [43,44]
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where gLsb is the Z0 couplings to s̄b in the left-current. The
value of C9 is estimated as

jC9j ∼ 0.87 ×

�
mZ0

500 GeV

�
2
�

gLsb
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��
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0.5

�
: ð7Þ

Note that the Z0 couplings to quarks are tiny to explain the
b → sll anomaly, while those to muons are large so that
Δaμ is explained when gL;Rμμ ∼ gL;RμE , which is true in the
sample model. This feature ensures that the Z0 mass of
Oð100 GeVÞ is not excluded by the dilepton resonance
search at the LHC [72].3 Although the flavor violating
coupling with the quarks gLsb is tiny, the flavor conserving

FIG. 1. Diagrams contribute to Δaμ (left) and the b → sll decay (right).

3See Refs. [73,74] for general discussions for Z0 boson
responsible for b → sll.
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couplings, e.g., gLss or gLbb, can be sizable depending on a
model, and thus the lower limit on the Z0 boson can be
much tighter. In other words, the Z0 boson search provides a
powerful tool to discriminate models for the anomalies. In
the sample model shown in Appendix, however, the
fiducial cross section can be less than Oð1 fbÞ which is
much below the current limit as shown in Fig. 4
in Ref. [44].
In the Z0 boson explanation, the ratio of the coefficients

are given by

C10

C9

¼ gRμμ − gLμμ
gRμμ þ gLμμ

: ð8Þ

The recent analyses [75–77] including the measurement
of RK based on the full run-2 data at the LHCb [19]4 favor
C9-only, C10-only and C9 ¼ −C10 scenarios among the one
dimensional analyses, which correspond to gRμμ ¼ gLμμ,
gRμμ ¼ −gLμμ and gRμμ ¼ 0, respectively. Among these three
cases, the explanation by C9 ¼ −C10 is not preferred to
explain the Δaμ anomaly because Δaμ ∝ gLμμgRμμ, see
Eq. (2). From this observation, we shall consider the case
with jgLμμj ¼ jgRμμj which predicts

BRðZ0 → μμÞ ≔ ΓðZ0 → μμÞ
ΓðZ0 → ννÞ þ ΓðZ0 → μμÞ

≃
jgLμμj2 þ jgRμμj2
2jgLμμj2 þ jgRμμj2

¼ 2

3
: ð9Þ

Here, we assume gLμμ ¼ gLνν as expected from the SUð2ÞL
symmetry and the Z0 boson decay to quarks are negligible
as expected from Eq. (7). Studies for jgLμμj ≠ jgRμμj, as
preferred by the two dimensional analyses on ðC9; C10Þ
plane, are interesting but are beyond the scope of this paper.

III. LHC SIGNALS

In this paper, we study signals from pair produced VL
leptons decaying to the second generation leptons and the

Z0 boson. This can be realized when the VL leptons are
heavier than the Z0 boson. If the Z0 boson is heavier, the VL
lepton may decay to a SM boson and a lepton. The limits
for VL leptons in such a case are studied in Refs. [95–101].
It is also possible that the VL lepton decays to a new boson,
such as the physical mode of the Uð1Þ0 breaking scalar.
Thus we treat the branching fraction of E=N → Z0μ=ν
as a free-parameter. We further assume BRðN → Z0νÞ ¼
BRðE → Z0μÞ for simplicity. Figure 2 shows the relevant
processes which can generate signals for more than four
muons.5 Only the left process is relevant for the singlet-
like case.
We recast the limits obtained in Refs. [69,104]. The

former searches for signals with more than four leptons,
and the latter searches for signals with exactly two leptons
with large missing transverse energy, Emiss

T . We have gen-
erated events using MadGraph5_2_8_2 [105] based on a UFO

[106] model file generated with FeynRules_2_3_43 [105,107].
The events are showered with PYTHIA8 [108] and then run
through the fast detector simulator DELPHES3.4.2 [108]. We
used the default ATLAS card for the detector simulation,
but the threshold on pT for the muon efficiency formula is
changed to 5 GeV from 10 GeV since muons with pT >
5 GeV are counted as signal muons in Ref. [69].
We recast the experimental limits on the signal regions

without Z boson, b-jet and hadronic τ defined in Ref. [69].6

These are named SROloose
bveto, SROtight

bveto and SR5L. The
requirements for the events, in addition to the b-jet veto
and hadronic τ-veto, common in the signal regions are as
follows. To meet the trigger thresholds, pT of the leading
muon, ordered by pT, must be larger than 27 GeV, or pT’s
of the leading and next-to leading muons are required to be
larger than (15,15) GeVor (23,9) GeV. If an opposite-sign
(OS) muon pair whose invariant mass mOS is less than
4 GeV or 8.4 < mOS < 10.4 GeV, both leptons are dis-
carded. If two muons are found in ΔR < 0.6 and one of
them has pT < 30 GeV, both leptons are discarded. The
first (second) Z candidate is found from a pair of OS muons

FIG. 2. Processes can produce more than four muons. The signal of more than four muons is produced if either of the Z0 boson decays
to a pair of muons from the charged VL lepton pair production (left), while both have to decay to muons in the other processes (middle
and right) involving the VL neutrino.

4See Refs. [78–94] for the analyses before the Moriond 2021.

5We used TikZ-FeynHand to draw these figures [102,103].
6We recast the analysis such that light leptons, (e, μ), in

Ref. [69], for our simple model these are just muons.
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whose mOS is the (second) closest to the Z boson mass
mZ ¼ 91.2 GeV. A pair is identified as a Z boson if
mOS ∈ ½81.2; 101.2� GeV. Further, the event is considered
to have a Z boson if any system of μþμ−μ� or μþμ−μþμ−
has invariant mass in [81.1, 101.2] GeV. In the signal
regions SROloose

bveto and SRO
tight
bveto, there must be more than four

muons after the selections above, and the event must not
have any combinations of muons which is identified as a Z
boson. Further, the effective mass of the eventmeff , defined
as the scalar sum of Emiss

T , pT of signal leptons and pT of
the jets with pT > 40 GeV, is required to be larger than 600
(1250) GeV in the SROloose

bveto (SROtight
bveto). In the SR5L, the

requirement is simply the lepton number to be larger than
five, and no further selection applied.
We also study the limits from the SUSY slepton search

[104] which requires exactly two leptons and large Emiss
T .

The most relevant signal region for our scenario is with
same flavor (SF) two leptons without any jet. There must be
exactly two OSSF leptons, both with pT > 25 GeV. Events
are rejected if there are more muons with pT > 10 GeV
and jηj < 2.7 or the two leading leptons are not opposite
sign. The missing energy Emiss

T and invariant mass of two
leptons mOS must be larger than 110 GeV and 121.2 GeV,
respectively. The stransverse mass mT2 [109,110] is
required to be larger than 160 GeV.7 We name this signal
region as SR2L.
The number of observed events, fitted SM backgrounds

and 95%C.L. upper bounds on the signal events in the signal
regions are shown in Table I. We see that there is an excess
over the SM background in SR5L for which the local
significance is 1.9σ. Figure 3 shows the production cross
sections of VL leptons at

ffiffiffi
s

p ¼ 13 TeV and 14 TeV calcu-
lated by MadGraph5. We calculated the probability of how
many events pass the cuts in each signal region from the VL
lepton pair production at

ffiffiffi
s

p ¼ 13 TeVby generating 25000
(50000) events at each point on the ðmE;mZ0 Þ plane for the
singletlike (doubletlike) VL leptons.

A. Current limits

Figures 4 and 5 show upper bounds on BRðE → Z0μÞ
in the signal regions, where the signal cross section is

proportional to the branching fraction squared. In the gray
region, mZ0 > mE and hence the decay E → Z0μ is kine-
matically forbidden. The white region is not excluded by
the current data even if BRðE → Z0μÞ ¼ 1.
For the doubletlike VL lepton, we see that SROtight

bveto gives
the strongest bound if BRðE → Z0μÞ≳ 0.2, because of
fewer backgrounds satisfying the tighter meff cut. The
current limit is about 1350 GeV if BRðE → Z0μÞ ¼ 1. If the
branching fraction is smaller, then SROloose

bveto gives the
stronger bound, since the cut by meff > 1250 GeV of
the SROtight

bveto is too tight for mE2
≲ 600 GeV. The limit

from SR5L is weaker because of the excess and that from
SR2L is also weaker due to the larger backgrounds. Note
that the limits do not change much as the mass difference
between the Z0 boson and VL lepton decreases since the
signal muons can originate from Z0 decays.
For the singletlike VL lepton, the strongest bound

of about 1000 GeV is again from the SROtight
bveto if

BRðE → Z0μÞ ¼ 1. The SROtight
bveto is not sensitive to the

cases when BRðE → Z0μÞ ≲ 0.3. The difference comes
from smaller production cross section of the singletlike
case. The SROloose

bveto gives the strongest constraint for smaller
branching fractions. The limits from SR5L and SR2L are
not shown, since the limits are much weaker than those
from SROtight

bveto and SROloose
bveto for the same reason as the

doubletlike case. In particular, SR2L gives no bounds for
the singletlike case.

B. Explanation for the excess in SR5L

Figure 6 shows the upper bound on the number of signal
events in the SR5L allowed by the limits from the other
signal regions. The background colors represent maximum
values of BRðE → Z0μÞ. Since the limits from the four

TABLE I. The number of events observed (data), fitted SM
backgrounds (SM) and 95% C.L. upper bound on the number of
signal events ðS95Þ in the signal regions [69,104].

SROloose
bveto SROtight

bveto
SR5L SR2L

data 11 1 21 37
SM 11.5þ2.9

−2.2 3.5þ2.0
−2.2 12.4� 2.3 37.3� 3.0

S95 9.79 3.87 17.88 14.3

FIG. 3. Pair-production cross section of VL leptons at
ffiffiffi
s

p ¼ 13
and 14 TeV. The productions of VL neutrinos are included in the
doublet case.

7We used the code provided by Ref. [111] to calculate the
stransverse mass.
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lepton signal regions are severe, the branching fraction
should be so small that the limits from SROtight

bveto and
SROloose

bveto are relaxed by the fewer events passing the meff

cut. The excess is explained on the solid green line when
the SM background is at the central value shown in Table. I.
The yellow band corresponds to the uncertainty of the
background estimation. The singletlike VL lepton can more
easily explain the excess. The limits from SROtight

bveto and
SROloose

bveto are much stronger for the doubletlike case, since

the production cross section is larger and there are fewer
muon signals originating from the VL neutrino production.
The left panel of Fig. 7 shows the Emiss

T distribution after
the selection of SR5L at the benchmark point with
mZ0 ¼ 390 GeV, mE1

¼ 400 GeV and BRðE1 → Z0μÞ ¼
0.25. The SM contributions are represented by yellow bars
and the black dots (bars) show the data (its error bar), which
are read from Fig. 8 of Ref. [69]. We see that the Emiss

T dis-
tribution is well described by our scenario. The benchmark

FIG. 4. Limits on BRðE → Z0μÞ for the doubletlike VL lepton.
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point in our example model which realizes these masses
and branching fractions and is also consistent with the
muon anomalies at the same time is shown Appendix A 3.
The right panel of Fig. 7 shows the meff distribution after
the selection of the number of muons to be larger than
four. The values of the bars are normalized such that the
sum of all the bins is unity. The green bars are for the
same benchmark point as the left panel, and the red
hatched bars are for another benchmark point with

mZ0 ¼ 400 GeV and mE1
¼ 1000 GeV. We see that the

peak of the distribution in meff is about 2mE1
, and hence

the strong constraint from SROtight
bveto, which requires

meff > 1250 GeV, is avoided and the tightest bound of
BRðE → Z0μÞ ≲ 0.25 is from SROloose

bveto.
We emphasize that this model can only explain the SR5L

excess by muons. Thus the SR5L excess cannot be
explained, in this scenario, if it includes signals with

FIG. 5. Limits on BRðE → Z0μÞ for the singletlike VL lepton.

FIG. 6. Maximum values of the number of signal events in SR5L consistent with the limits of SROloose
bveto and SRO

tight
bveto for the doubletlike

(singletlike) VL lepton in the left (right) panel. Background colors are the BRðE → Z0μÞ.
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electrons. The limits from the data would be significantly
tightened if lepton flavors are specified in the signal
regions. Thus the information of lepton flavor is crucial
to test this model with a muon-philic Z0 and VL leptons.
The excess with electrons, might be explained by VL

leptons decaying to Z or W boson, where the SM bosons
decay leptonically. If mZ0 > mE1

which is the opposite case
to our scenario, the VL lepton will decay to a SM boson,
including the Higgs boson. In addition, electrons may come
from the decays of the heavier VL leptons, such as
E2 → E1Z. We note that the roughly degenerate mass of
the VL leptons are favored to explain the sizable Δaμ in the
model [44]. These possibilities are interesting, but beyond
the scope of this paper.

C. Future prospects

We shall discuss the discovery and exclusion potential at
the HL-LHC with 3 ab−1 data. We consider the two signal
regions, SROtight

bveto and SR5L and propose two more new
signal regions, SRZp and SR5L0.
We rescale the backgrounds to SROtight

bveto and SR5L by
simply multiplying the ratio of integrated luminosity,
3000=139. For the signal events, we use the same efficiency
times acceptance factor as those used in the analyses for the
current limits. These are then multiplied by the integrated
luminosity and the production cross section at

ffiffiffi
s

p ¼
14 TeV shown in Fig. 3 to calculate the number of signal
events.
We define the two new signal regions, named SRZp and

SR5L0. In the SRZp, at least four muons are required and
the Z-veto is applied. Then, two Z0 candidates are chosen

from any OS pair of muons, where the reference Z0 mass,
mref

Z0 , is set at 500 GeV, in the same manner as the Z
candidates. The (next-to) leading Z0 candidate, mOS is the
(second) closest to mref

Z0 , must satisfy jmOS −mref
Z0 j < 100

(250) GeV. We take relatively large range for the selection,
because we do not know the Z0 mass. The sensitivity can be
improved by requiring strict range for jmOS −mref

Z0 j and
scan over mref

Z0 in the analysis, as in the Z0 searches
[72,112]. In the SR5L0, more than 5 muons are required.
Then, the Z-veto for any OS pair of muons and meff >
1000 GeV cuts are applied. In these two signal regions, we
assume that there are 10 SM background events per 3 ab−1

data. This may be a conservative assumption, since the cut
is very tight and not so many background events will
survive, c.f. the rescaled backgrounds in SROtight

bveto and
SR5L are 76.6 and 272, respectively.
We quantify the future discovery and exclusion limits by

the p-values proposed in Ref. [113],

pdisc ¼
γðsþ b; bÞ
Γðsþ bÞ ; pexcl ¼

Γðbþ 1; sþ bÞ
Γðbþ 1Þ ; ð10Þ

where s and b are the number of signals and backgrounds.
ΓðzÞ, γða; zÞ and Γða; zÞ are the ordinary, lower incomplete
and upper complete Gamma functions. The discovery
(exclusion) limit corresponds to pdisc < 2.867 × 10−7

(pexcl < 0.05) where the significance is > 5 (> 1.645).
Here, we do not consider uncertainties in the signals and
backgrounds for simplicity.
The future prospects at the HL-LHC for the doublet-

like and the singletlike VL leptons are shown in Fig. 8

FIG. 7. Histograms of Emiss
T (left) and meff (right). In the left panel, ðmZ0 ; mE1

Þ ¼ ð390; 400Þ GeV and BRðE → Z0μÞ ¼ 0.25. In the
right panel, the values are normalized such that the total of the bins is unity.
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and 9, respectively. The background colors are the
exclusion limits (pexcl < 0.05) for the branching fraction
BRðE → Z0μÞ. The white lines show the discovery poten-
tial for a given branching fraction as labeled on the lines
(pdisc < 2.867 × 10−7). Assuming BRðE → Z0μÞ ¼ 1, the
doubletlike (singletlike) VL lepton will be discovered up
to mE ≲ 1.5 (1.15) TeV by SROtight

bveto. The limits from
SR5L are weaker. The SRZp may cover a wider

parameter range than that of SROtight
bveto at mZ0 ∼

500 GeV even if we set the relatively large range for
jmOS −mref

Z0 j. The SR5L0 may also cover a wider param-
eter range independent of the Z0 mass, based on our
assumption of the background. It is interesting that the
entire parameter range with BRðE → Z0μÞ ∼ 0.25, which
can explain the excess in SR5L, can be discovered in
SR5L, SRZp and SR5L0.

FIG. 8. Future prospects of the upper bound on BRðE → Z0μÞ for the doubletlike VL lepton at the HL-LHC.
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IV. DISCUSSIONS

In this paper, we study the signal with more than four
muons originating from the pair-production of VL leptons
decaying to a Z0 boson which couples to muons and/or
muon neutrinos. These particles may provide a way to
resolve the tensions in the b → sll decays and Δaμ. The
current limits can reach about 1 TeV when the VL lepton
decays to the Z0 boson exclusively owing to the very low
backgrounds. We showed that the excess in the signal
region with five leptons or more may be explained in our
model if the excess is given only by muons. A benchmark
point in our example model is given in Appendix A 3 which
simultaneously explains the muon anomalies as well as the
excess in SR5L. If the excess is not only muons, then the

cascade decay of the heavier VL lepton might be a nice
candidate to explain the excess with electrons and muons in
this kind of model. The information of lepton flavor is
crucial to test these new physics models which explain the
muon anomalies.
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Note added.—While finalizing this manuscript, the new
experimental data of the muon anomalous magnetic
moment was announced from the FNAL. The discrepancy
from the SM prediction reaches to 4.2σ [22]. Models with
VL leptons and a Z0 boson coupling to muons nicely
explains the discrepancy ofΔaμ, as well as the anomalies in
b → sll. These new particles could be confirmed by the
LHC as discussed in this paper.

APPENDIX: REVIEW OF VECTOR-LIKE
Uð1Þ0 MODEL

In this Appendix, we review the model proposed in
Refs. [43,44] as an example of a UV completion of the
simplified model. The matter contents of our model is given
by Table II. The SUð2ÞL doublets are defined as

lL ¼ ðνL; μLÞ; H ¼ ðH0; H−Þ;
LL ¼ ðN0

L; E
0
LÞ; L̄R ¼ ð−Ē0

R; N̄
0
RÞ: ðA1Þ

We only consider muons, and assume that the couplings
with the other leptons are negligible for simplicity. The
masses of VL states and Yukawa interactions are given by

L ⊃ −mLL̄RLL −mEĒREL þ yμμ̄RlLH þ κ0ĒRLLH

− κL̄RH̃EL þ λLΦL̄RlL − λEΦμ̄REL þ H:c:; ðA2Þ

where H̃ ≔ iσ2H� ¼ ðH�
−;−H�

0Þ. The SUð2ÞL indices are
contracted via iσ2. After the symmetry breaking by vH ≔
hH0i and vΦ ≔ hΦi, the mass matrix for the leptons are
given by

ēRMeeL ≔ ð μ̄R ĒR Ē0
R Þ

×

0
B@

yμvH 0 λEvΦ
0 κ0vH mE

λLvΦ mL κvH

1
CA
0
B@

μL

E0
L

EL

1
CA; ðA3Þ

n̄RMnnL ≔ N̄0
Rð λLvΦ mL Þ

�
νL

N0
L

�
: ðA4Þ

The mass basis is defined as

êL ≔ U†
LeL; êR ≔ U†

ReR; n̂L ≔ V†
LnL; n̂R ≔ nR;

ðA5Þ

where unitary matrices diagonalize the mass matrices as

U†
RMeUL ¼ diagðmμ; mE2

; mE1
Þ; MnVL ¼ ð 0 mN Þ;

ðA6Þ

where E1 (E2) is the singletlike (doubletlike) VL lepton.8

The nonzero mass of the SM neutrino will be explained by
introducing the right-handed counterparts, but these are
irrelevant for the present discussion.
We define the Dirac fermions as

e ≔ ðμ; E2; E1Þ; n ≔ ðν; NÞ; ðA7Þ

where

½e�i ≔ ð½êL�i; ½êR�iÞ; ν ≔ ð½n̂L�1; 0Þ; N ≔ ð½n̂L�2; N0
RÞ;
ðA8Þ

with i ¼ 1, 2, 3.

1. Interactions

The gauge interactions with the Z0 boson in the mass
basis are defined as

LV ¼ Z0
μ

X
f¼e;n

f̄ γμðgZ0
fL
PL þ gZ

0
fR
PRÞf; ðA9Þ

where the coupling matrices are given by

gZ
0

eL ¼ g0U†
LQ

0
eUL; gZ

0
eR ¼ g0U†

RQ
0
eUR;

gZ
0

nL
¼ g0V†

LQ
0
nVL; gZ

0
nR

¼ g0Q0
n: ðA10Þ

PL (PR) are the chiral projections onto the left- (right-)
handed fermions. g0 is the gauge coupling constant
for Uð1Þ0.
We expand the neutral scalar fields as

H0 ¼ vH þ 1ffiffiffi
2

p ðhþ iahÞ; Φ ¼ vΦ þ 1ffiffiffi
2

p ðχ þ iaχÞ;

ðA11Þ

where h and χ are the physical real scalar fields, while the
pseudoscalar components ah and aχ are absorbed by the Z
and Z0 bosons, respectively. The Yukawa interactions are
given by

−LY ¼ 1ffiffiffi
2

p
X
S¼h;χ

X
f¼e;n

Sf̄YS
fPLf þ H:c:; ðA12Þ

where

TABLE II. Matter contents. Electric charge of fermion f is
Qf ¼ T3

f þ Yf=2.

lL μ̄R H LL ĒR L̄R EL Z0 Φ

SUð2ÞL 2 1 2 2 1 2 1 1 1
Uð1ÞY −1 2 −1 −1 2 1 −2 0 0
Uð1Þ0 0 0 0 −1 1 1 −1 0 −1

8We restrict cases whichmE1
≪ mE2

ormE1
≫ mE2

, so we can
always identify the VL lepton is singletlike or doubletlike.
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Yh
e ¼ U†

R

0
B@

yμ 0 0

0 κ0 0

0 0 κ

1
CAUL; Yχ

e ¼ U†
R

0
B@

0 0 λE

0 0 0

λL 0 0

1
CAUL; Yh

n ¼ 02×2; Yχ
n ¼

�
0 0

λL 0

�
VL: ðA13Þ

Let us define the approximate masses of the VL leptons as

ML ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

L þ λ2Lv
2
Φ

q
; ME ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

E þ λ2Ev
2
Φ

q
: ðA14Þ

Assuming κvH ≪ jML −MEj, the diagonalization matrices for the charged lepton mass matrix are given by

UL ∼

0
B@

cL sL −δLsL
−sL cL −δLcL
0 δL 1

1
CAþOðδ2LÞ; UR ∼

0
B@

cR sRδR sR
−sR cRδR cR
0 1 −δR

1
CAþOðδ2RÞ; ðA15Þ

where

cL ≔
mL

ML
; sL ≔

λLvΦ
ML

; δL ≔
κvHML

M2
L −M2

E
; ðA16Þ

cR ≔
mE

ME
; sR ≔

λEvΦ
ME

; δR ≔
κvHME

M2
L −M2

E
: ðA17Þ

The diagonalized mass matrix is given by

U†
RMeUL ¼

0
B@

ðyμcLcR þ κ0sLsRÞvH OðmμÞ 0

0 ML þOðκvHδL;RÞ 0

OðmμÞ OðκvHδ2L;RÞ ME þOðκvHδL;RÞ

1
CAþOðmμδL;RÞ; ðA18Þ

where we assume yμvH; κ0vH ≲mμ to explain the muon mass without fine-tuning.
The Z0 couplings in the mass basis are approximately given by

gZ
0

eL ¼ −g0

0
B@

s2L −cLsL cLsLδL
−cLsL c2L s2LδL
cLsLδL s2LδL 1

1
CAþOðδ2LÞ; ðA19Þ

gZ
0

eR ¼ −g0

0
B@

s2R −cRsRδR −cRsR
−cRsRδR 1 −s2RδR
−cRsR −s2RδR c2R

1
CAþOðδ2RÞ: ðA20Þ

Hence, the effective couplings defined in Eq. (1) are given by

 
gLμμ gLμE

gLμE gLEE

!
∼ −g0

 
s2L −sLcL

−sLcL c2L

!
;

 
gRμμ gRμE

gRμE gREE

!
∼ −g0

 
s2R −cRsRδR

−cRsRδR 1

!
; ðA21Þ

in the doubletlike case, and these are given by

 
gLμμ gLμE

gLμE gLEE

!
∼ −g0

 
s2L cLsLδL

cLsLδL 1

!
;

 
gRμμ gRμE

gRμE gREE

!
∼ −g0

 
s2R −cRsR

−cRsR c2R

!
; ðA22Þ

in the singletlike case.
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The Yukawa couplings with χ are given by

Yχ
e ∼

0
B@

0 λEcRδL λEcR
λLcL λLsL λEsRδR − λLsLδL

−λLcLδR λEsRδL − λLsLδR λEsR

1
CA; Yχ

n ∼ λL

 
0 0

cL sL

!
; ðA23Þ

where the coupling of χ with μμ is as small as mμ=mE.
The couplings to the SM bosons are the SM-like up
to Oðmμ=mEÞ.

2. Muon anomalies

The Z0 and χ boson contribution to Δaμ is given
by [53,114]

Δaμ ∼
mμκvH
64π2v2Φ

s2Ls2RCLR; ðA24Þ

with

CLR ≔
ffiffiffiffiffiffiffiffiffiffi
xLxE

p GZðxLÞ −GZðxEÞ
xL − xE

þ 1

2

ffiffiffiffiffiffiffiffiffiffi
yLyR

p yLGSðyLÞ − yRGSðyRÞ
yL − yR

; ðA25Þ

where xL ≔ M2
L=m

2
Z0 , xE ≔ M2

E=m
2
Z0 , yL ≔ M2

L=m
2
χ and

yE ≔ M2
E=m

2
χ . Here, m2

Z0 ¼ 2g02v2Φ is used. The loop
functions are given by

GZðxÞ ≔
x3 þ 3x − 6x lnðxÞ − 4

2ð1 − xÞ3 ;

GSðyÞ ≔
y2 − 4yþ 2 lnðyÞ þ 3

ð1 − yÞ3 : ðA26Þ

The contribution from the scalar χ is included since it is
sizable unless mχ is very heavy which requires very large
quartic couplings.
For the b → sμμ anomaly, the Wilson coefficients are

given by

C9 ∼ −
ffiffiffi
2

p

4GF

4π

αe

1

VtbV�
ts

1

4v2Φ
ðs2R þ s2LÞϵQe

ϵQ3
; ðA27Þ

C10 ∼ −
ffiffiffi
2

p

4GF

4π

αe

1

VtbV�
ts

1

4v2Φ
ðs2R − s2LÞϵQe

ϵQ3
; ðA28Þ

where the Z0 boson couplings to the SM doublet quarks are
parametrized as

½gZ0
dL
�
ij
∼ ½gZ0

uL �ij ∼ −g0ϵQi
ϵQj

: ðA29Þ

ϵQi
is the similar quantity as sL ≔ λLvΦ=mL and originates

from the mixing between the SM and VL quarks, but we

now consider the couplings with the second and third
generation quarks and these are typically small in contrast
to that for muon.
From Eq. (A24),

Δaμ ∼ 2.9 × 10−9 ×

�
1.0 TeV

vΦ

�
2
�

κ

1.0

��
s2Ls2R
1.0

��
CLR

0.1

�
:

ðA30Þ

For the b → sμμ anomaly,

C9 ∼ −0.62 ×
�
1.0 TeV

vΦ

�
2
�
s2L þ s2R

1

��
ϵQ2

ϵQ3

−0.002

�
: ðA31Þ

Assuming sL ¼ sR ¼ 1=
ffiffiffi
2

p
, i.e., λLvΦ ¼ mL and

λEvΦ ¼ mE, the quark mixing angles are given by

ϵQ2
ϵQ3

∼−0.003×
�

C9

−0.82

��
2.51× 10−9

Δaμ

��
κ

1.0

��
CLR

0.1

�
;

ðA32Þ

when the both anomalies are explained. With such small
couplings with quarks, Z0 boson is sufficiently suppressed
to be consistent with the constraints from the resonant
dilepton signal search at the LHC [72], unless ϵQ2

∼ 1 or
ϵQ3

∼ 1 to have large production cross section from ss̄ or
bb̄, respectively. In fact, the fiducial cross section of pp →
Z0 → μμ can be less than Oð1 fbÞ as shown in Fig. 4 in
Ref. [44]. We also showed that the flavor violating coupling
to bs is sufficiently small to be consistent with the mass
difference of the Bs meson, ΔMs, as well as the other
related flavor observables [44].

3. Benchmark

We show a benchmark scenario which explains the
anomalies in Δaμ and b → sll and the excess in SR5L
simultaneously. As discussed in the main text, singletlike
VL lepton is more suitable to explain the excess in SR5L.
We take9

9With these values, vΦ ¼ 1103 GeV which is sufficiently large
to evade the bound from the neutrino trident process [115–120].
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mZ0 ¼ 390 GeV; ML ¼ 1.1 TeV; ME ¼ 404 GeV; mχ ¼ 365 GeV;

sL ¼ sR ¼ 1=
ffiffiffi
2

p
; yμvH ¼ 2mμ; κ0 ¼ 0; κ ¼ −0.821; g0 ¼ 0.25: ðA33Þ

The VL lepton masses are 400 and 1111 GeV. The
correction to the anomalous magnetic moment of the muon
is Δaμ ¼ 2.51 × 10−9. sL ¼ sR realizes the C9-only sce-
nario, and C9 ∼ −0.81 is explained if ϵQ2

ϵQ3
∼ −0.0032.

The partial decay widths of the singlet VL lepton E1 are
approximately given by

ΓðE1 → Z0μÞ ∼ M3
E

64πv2Φ
c2Rs

2
Rð1 − zÞ2ð1þ 2zÞ; ðA34Þ

ΓðE1 → χμÞ ∼ M3
E

64πv2Φ
c2Rs

2
Rð1 − xÞ2; ðA35Þ

where z ≔ m2
Z0=M2

E and x ≔ m2
χ=M2

E. Hence the branching
fraction of E1, assuming no other decay modes, is approx-
imately given by

BRðE1 → Z0μÞ ∼ ð1 − zÞ2ð1þ 2zÞ
ð1 − zÞ2ð1þ 2zÞ þ ð1 − xÞ2 : ðA36Þ

At the benchmark point, BRðE1 → Z0μÞ ≃ 0.25. The χ
boson predominantly decays to VL fermions as far as these
are kinematically allowed. If this is not the case, it should
decay to a pair of SM leptons or quarks. For the lepton
coupling, as seen from Eq. (A23), the coupling to 2 muons
are strongly suppressed by the muon mass. Hence, the
dominant decay mode of χ may be to a pair of top quarks
due to the weaker suppression if mχ > 2mt which is true at
the benchmark point. In this case, the processes with χ

decays will not contribute to the SROtight
bveto and SROloose

bveto
due to the b-jet veto, and thus the results in the main text
will not be changed. If mχ < 2mt, χ decays to a pair of
bottom quarks, where the relevant Yukawa is estimated as
∼ϵQ3

mb=MQ ∼ 10−4 for ϵQ3
∼ 0.1 and MQ ∼ 4 TeV. This

would be comparable to the decay to a pair of muons which
the relevant Yukawa coupling is estimated as ∼mμ=ML ∼
10−4 for ML ∼ 1 TeV. Thus, there will be additional
contributions with six muons on top of the decays from
Z0 boson.
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