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A growing number of weak and unsupervised machine learning approaches to anomaly detection are
being proposed to significantly extend the search program at the Large Hadron Collider (LHC) and
elsewhere. One of the prototypical examples for these methods is the search for resonant new physics,
where a bump hunt can be performed in an invariant mass spectrum after applying a classifier to enhance
the presence of a potential signal. A significant challenge to methods that rely entirely on data is that they
are susceptible to sculpting artificial bumps from the dependence of the machine learning classifier on the
invariant mass. We explore two solutions to this challenge by minimally incorporating simulation into the
learning. In particular, we study the robustness of simulation assisted likelihood-free anomaly detection to
correlations between the classifier and the invariant mass. Next, we propose a new approach that only uses
the simulation for decorrelation but uses the classification without labels approach for achieving signal
sensitivity. Both methods are compared using a full background fit analysis on simulated data from the
LHC Olympics and are robust to correlations in the data.
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I. INTRODUCTION

Despite compelling experimental (e.g., dark matter) and
theoretical (e.g., the hierarchy problem) evidence for new
phenomena at the electroweak scale, experiments at the
Large Hadron Collider (LHC) have not yet discovered any
physics beyond the Standard Model (BSM). There are major
search efforts across LHC experiments [1–7], where most
analyses target a particular class of BSM models. While this
work is well motivated and is continuing to improve in
sensitivity (in part due to machine learning [8–11]), there is
also a growing need for new search strategies capable of
discovery in unexpected scenarios.
A variety of automated anomaly detection techniques

using innovative machine learning methods are being
proposed to cover the unexpected [12–40]. An important
subset of these proposals targets resonant new physics,
where sideband methods can be used to estimate the
Standard Model background directly from data after
applying a classifier to enhance the presence of a potential

signal. A key challenge facing such methods is that the
machine learning classifiers must be relatively indepen-
dent from the resonant feature, for otherwise artificial
bumps can be formed. Many automated decorrelation
methods have been proposed to ensure that classifiers
are decorrelated from particular features by construction
[41–52], but they may not apply in all cases. In particular,
weakly supervised approaches that learn directly on the
signal region cannot be simply combined with a decorre-
lation scheme because such an approach could degrade the
performance in the presence of a signal. A localized signal
would manifest as a dependence between the resonant
feature and other features for classification, so forcing
independence could eliminate signal sensitivity.
In this paper, two weakly supervised approaches are

studied: classification without labels (CWOLA) [13–15,53]
and simulation assisted likelihood-free anomaly detection
(SALAD) [27]. CWOLA is a method that does not depend on
simulation and achieves signal sensitivity by comparing a
signal region with nearby sideband regions in the reso-
nance feature. As a result, CWOLA is particularly sensitive
to dependencies between the classification features and
the resonant feature. SALAD uses a reweighted simulation
to achieve signal sensitivity. Since it never directly uses
the sideband region, SALAD is expected to be more robust
than CWOLA to dependencies. In order to recover the
performance of CWOLA in the presence of signific
ant dependence between the classification features and
the resonant feature, a new method called simulati
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on-augmented CWOLA (SA-CWOLA) is introduced. The
SA-CWOLA approach augments the CWOLA loss function
to penalize the classifier for learning differences between
the signal region and the sideband region in simulation,
which is signal free by construction. All of these methods
will be investigated using the correlation test proposed
in Ref. [28].
This paper is organized as follows. Section II reviews the

SALAD and CWOLA methods and introduces the simulation-
augmented CWOLA search strategy. Furthermore, the side-
band analysis is set up in Sec. II. These methods are
illustrated with a Gaussian example in Sec. III, and a
physics example is presented in Sec. IV. The paper ends
with the conclusions and outlook in Sec. V.

II. METHODS

For a set of features ðm; xÞ ∈ Rnþ1, let f∶Rn → ½0; 1� be
parametrized by a neural network. The observable m is
special, for it is the resonance feature that should be
relatively independent from fðxÞ. The signal region (SR)
is defined by an interval in m and the sidebands (SB) are
neighboring intervals.
All neural networks are implemented in KERAS [54] with

the TENSORFLOW backend [55] and are optimized with
ADAM [56]. Each network is composed of three hidden
layers with 64 nodes each and uses the rectified linear unit
activation function. The sigmoid function is used after the
last layer. Training proceeds for 20 epochs with a batch size
of 200. All other parameters use the KERAS and ADAM

defaults. None of the parameters are optimized; it is likely
that improved performance can be achieved with an in-situ
optimization based on a validation set.

A. Simulation assisted likelihood-free anomaly
detection (SALAD)

The SALAD network [27] is optimized using the follow-
ing loss:

LSALAD½f� ¼ −
X

i∈SR;data
logðfðxiÞÞ

−
X

i∈SR;sim:

wðxi; mÞ logð1 − fðxiÞÞ; ð2:1Þ

where wðxi; mÞ ¼ gðxi; mÞ=ð1 − gðxi; mÞÞ is a set of
weights using the classification for tuning and reweighting
(DCTR) [57] method. The function g is a parametrized
classifier [58,59] trained to distinguish data and simulation
in the sideband:

L½g� ¼ −
X

i∈SB;data
logðgðxi; mÞÞ

−
X

i∈SB;sim:

logð1 − gðxi; mÞÞ: ð2:2Þ

The above neural networks are optimized with binary cross
entropy, but one could use other functions as well, such as
the mean-squared error. Intuitively, the idea of SALAD is to
train a classifier to distinguish data and simulation in the
SR. However, there may be significant differences between
the background in the data and the background simulation,
so a reweighting function is learned in the sidebands that
makes the simulation look more like the background in
the data.

B. Simulation-augmented classification without
labels (CWoLa)

The idea of CWOLA [53] is to construct two mixed
samples of data that are each composed of two classes.
Using CWOLA for resonant anomaly detection [13,14], one
can construct the mixed samples using the SR and SB. In
the absence of signal, the SR and SB should be statistically
identical and therefore the CWOLA classifier does not learn
anything useful. However, if there is a signal, then it can
detect the presence of a difference between the SR and SB.
In practice, there are small differences between the SR and
SB because there are dependencies betweenm and x and so
CWOLA will only be able to find signals that introduce a
bigger difference than already present in the background.
The CWOLA anomaly detection strategy was recently used
in a low-dimensional application by the ATLAS experi-
ment [15].
We propose a modification of the usual CWOLA loss

function in order to construct a simulation-augmented
CWOLA classifier,

LSA-CWola½f� ¼ −
X

i∈SR;data
logðfðxiÞÞ −

X

i∈SB;data
logð1 − fðxiÞÞ

− λ

� X

i∈SR;sim:

logð1 − fðxiÞÞ þ
X

i∈SB;sim:

logðfðxiÞÞ
�
; ð2:3Þ

where λ > 0 is a hyperparameter. The limit λ → 0 is the
usual CWOLA approach, and for λ > 0 the classifier is
penalized if it tags the signal region in simulation as signal-

like and the sideband region in simulation as unlike the
signal. This is equivalent, in the limit λ≲ 1, to penalizing
the classifier for being able to distinguish the SR from the
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SB in the (background-only) simulation.1 In order to help
the learning process, the upper and lower sidebands are
given the same total weight as each other and together, the
same weight as the SR.
Another way of implementing Eq. (2.3) is to reverse the

order of the second term and its sign, i.e., it is a standard SR
(label 1) versus SB (label 0) classifier in simulation, but
with an overall minus sign to penalize classifier perfor-
mance. This has similar properties to Eq. (2.3), but is
numerically unstable as λ → 1 due to a near cancellation of
the constraint on the background.

C. Bump hunt analysis

In addition to quantifying performance with receiver
operating characteristic (ROC) curves, it is also useful to
emulate a proper background estimation based on a bump
hunt. A histogram of the mjj spectrum, possibly after
applying a threshold on one of the classifiers described
above, is fit to the following parametric function

dσ
dmjj

¼ p0ð1 − xÞp1

xpxþp3 logðxÞ ; ð2:4Þ

where x ¼ mjj=
ffiffiffi
s

p
and pi are fit parameters. This function

has a long history and has also been recently used by the
ATLAS and CMS Collaborations (see, e.g., [60,61]).
Alternative nonparametric functions are also possible (such
as Gaussian processes [62]), but these are not needed for
the demonstration considered here. The SR is masked
during the fit and then a p-value of the observed data is
computed in the usual way. In particular, a test statistic is
formed from the profile likelihood ratio

λ0 ¼
maxθpðnjμ ¼ 0; θÞ
maxμ;θpðnjμ; θÞ

; ð2:5Þ

where n is the number of observed events in the SR and θ is
a nuisance parameter from the sideband fit

pðnjμ; θÞ ¼ Poissonðnjbþ θ þ μÞe−θ2=2σ2 ; ð2:6Þ

where b and σ are the number of events and the uncertainty
from the sideband fit, respectively. The test statistic itself is
q0 ¼ −2 logðλ0Þ when the extracted signal strength,
ðμ; θÞ ¼ argmaxμ0;θ0pðnjμ0; θ0Þ, is μ > 0 and 0 otherwise.
Asymptotic formulae from Wald and Wilks then give the
significance Z ¼ ffiffiffiffiffi

q0
p

[63–65].
In practice, one would scan the signal region across the

mjj spectrum. In this analysis, we will focus on a single
region with or without the signal injected. The signal region
is defined by mjj ∈ ½3.3; 3.7� TeV and the sideband for
CWOLA training is defined by mjj ∈ ½3.1; 3.3� ∪ ½3.7; 3.9�
TeV. Long sidebands extended by 300 GeV in either
direction are used to train the SALAD reweighting function.
The background fit is performed between 2.6 and 5 TeV
using 30 equally spaced bins.

III. GAUSSIAN EXAMPLE

To demonstrate the behavior of the methods in a
controlled context, we generated a simple dataset of events
drawn from two-dimensional Gaussian distributions
N ðμ; σÞ. The “data” in the SR and SB was drawn from
distributions with mean and covariance matrix

μSR ¼ ð0; 0Þ; μSB ¼ ð1; 0Þ;

ΣSR ¼ ΣSB ¼
�
1 0

0 1

�
: ð3:1Þ

Signal events had mean and covariance

FIG. 1. The Gaussian distributions generated to test the classification methods. Left: The first feature x0. Right: The second feature x1.

1One could also use the SALAD-reweighted background sim-
ulation. In practice, we found little difference between using and
not using the weights as the data/sim differences were a
subleading correction to the mass dependence. However, this
may be more useful in other applications. We thank Jesse Thaler
for this interesting idea.
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μ ¼ ð1.5; 1.5Þ; Σ ¼
�
0.5 0

0 0.5

�
: ð3:2Þ

In order to simulate a slightly imperfect background
simulation, “simulation” events had mean and covariance

μSR ¼ ð0.1;−0.1Þ; μSB ¼ ð1.05; 0Þ;

ΣSR ¼ ΣSB ¼
�
1 0

0 1

�
: ð3:3Þ

Plots of these distributions are provided in Fig. 1. By design,
the signal events are much more sidebandlike than signal-
region-like; this simulates a strong correlation between a
resonant feature and the classification features.
To establish performance bounds, fully supervised clas-

sifiers were trained to distinguish between signal and data
events using both available features and using only the
second feature (x1). This second feature has the same
probability density in the SR and SB. For every other test,
500 signal events were injected into signal region samples
of 50000 background events, corresponding to a signifi-
cance of about 2σ. Each classifier was trained for 20
epochs; for nonsupervised methods, 20 classifiers were
trained, and their performance is exhibited in the mean and
standard deviation.
The results are displayed in Fig. 2. The solid purple line

corresponds to the SALAD classifier, while the solid orange
line corresponds to the SA-CWOLA classifier with hyper-
parameter λ ¼ 1. The dashed red line is standard CWOLA.
The solid green line corresponds to the fully supervised
classifier, while the dashed green line corresponds to the
supervised classifier trained only on the second feature, x1.

The dashed black line corresponds to a classifier which
randomly assigns values to inputs.
The solid red line labeled “Optimal CWOLA” displays the

results of a classifier that was trained to distinguish a mixed
sample of signal region data and signal events from a pure
sample of signal region data events. It is optimal in the
sense that the only difference between the two datasets is
the presence of signal in one of them; the only way for the
classifier to minimize its loss is to learn to tag signal events.
In principle, no weakly supervised classifier should be able
to outperform the optimal CWOLA classifier.
The dashed blue line labeled “Data vs. Sim.” presents the

results of a classifier trained to distinguish the mixed
sample of signal region data and signal events from a pure
sample of signal region simulation events. Since the
simulation is statistically similar, but not identical, to the
data, the performance is slightly worse than that of optimal
CWOLA. In the x0 observable, the simulated background is
signal-like while, in the x1 observable, the simulated
background is background-like. This is why the perfor-
mance of the “Data vs Sim.” is good at low signal efficiency
and poor at high signal efficiency. This curve can be made
arbitrarily bad by shifting the means and variances of the
background simulation toward the signal values.
A couple of observations are worth mentioning. First,

while the strong similarity between the sideband region and
the signal causes CWOLA to consistently antitag the signal,
the SA-CWOLA classifier is able to recover significant signal
tagging ability. Additional tests showed that varying the
SA-CWOLA hyperparameter λ had a large impact on perfor-
mance; in some cases, for high values of λ, SA-CWOLA was
able to surpass the signal tagging performance of the x1-only
supervised classifier. The trade-off is that higher values of λ
make it more likely that the classifier will antitag signal
region background events while tagging sideband back-
ground events as signal-like, thereby carving a large deficit
in the signal region during a bump hunt. In our case, setting
λ ¼ 1 balances the competing priorities of the classifier,
though this may not be desirable in other applications. Note
also that, in this example, the SALAD classifier performs
strictly better than the SA-CWOLA classifier. This is not
always true, as will be seen in Sec. IVB.

IV. PHYSICS EXAMPLE

A. Simulation

The simulations used for this study were produced for the
LHC Olympics 2020 community challenge [66]. In particu-
lar, the background process is composed of generic dijet
events with a requirement for at least one such jet with
pT > 1.3 TeV. Signal events are W0 → XY for mW0 ¼
3.5 TeV and hypothetical particles X and Y of mass 500
and 100 GeV, each decaying into pairs of quarks. Due to the
mass hierarchy between the W0 boson and its decay
products, the final state is characterized by two large-radius

FIG. 2. ROC curves for anomaly detection methods described
in the text. Better performance is to the upper right. With the
exception of the supervised classifiers, the solid/dashed lines
correspond to the mean performance of 20 classifiers; the shaded
bands display the standard deviation in performance. The SA-
CWOLA hyperparameter was set to λ ¼ 1.
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jets with two-prong substructure. The background and signal
are simulated using PYTHIA8 [67,68] and an alternative
background sample is simulated using HERWIG++ [69]. A
detector simulation is performed with Delphes 3.4.1 [70–72]
using the default CMS detector card. Particle flow objects
are the input to jet clustering, implemented using FastJet

[73,74] and the anti-kt algorithm [75] and using R ¼ 1.0
for the radius parameter. In what follows, PYTHIA will play
the role of “data” and the HERWIG sample will be used as the
“simulation.” There are one million events for both back-
ground samples, corresponding to an integrated luminosity
of about 100 fb−1. In order to simplify the analysis, the
dataset is divided in half for training and testing. More
complicated procedures based on k-folding to use the entire
dataset for both training and testing are also possible, but are
not considered here [13,14].
Both the CWOLA and SALAD methods have been dem-

onstrated on the unmodified LHC Olympics dataset.
Following Ref. [28], the dependence between the jet
masses and mjj is artificially strengthened by adding in
a linear relationship between mj and mjj. In particular, we

redefine mji ↦ mji þ αimjj for α1 ¼ 0.1 and α2 ¼ 0.2. As
shown in Ref. [28], shifts like this are sufficient to reduce
the efficacy of the unmodified CWOLA method.
In addition to the dijet invariant mass, four features are

used for the anomaly detection: the invariant mass of the
lighter jet, the mass difference of the leading two jets, and the
τ21 [76,77] of the leading two jets. The N-subjettiness τ21
quantifies the extent to which a jet is characterized by two
subjets or one subjet. Histograms of the four input features
for the background are shown in Fig. 3. The signal jet masses
are localized at theX and Y masses (shifted by αmW0 ) and the
τ21 are shifted to lower values, indicating two-prongness. In
addition to presenting the data and simulation histograms,
Fig. 3 also shows the reweighted background simulation
using parametrized weights learned from a long sideband.
While the machine-learning-based bump hunt is nearly

model independent, the choice of features does introduce
some model dependence. In particular, the four selected
features provide sensitivity to a broad class of models
that have jets with particular masses and/or two-prong
substructure.

FIG. 3. Left: The jet mass and τ21 of the jet with a smaller mass. Right: The difference between the heavier and lighter jet masses and
τ21 of the heavier jet. In addition to showing the data, simulation, and signal, the histogram labeled “Sim:þ DCTR” is the simulation
with weights derived from one of twenty parametrized reweighting functions trained on long sidebands used by the SALAD method.
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B. Sensitivity

As a benchmark, 1000 signal events corresponding to a
fitted significance of about 2σ is injected into the data for
training. For evaluation, the entire signal sample (except
for the small number of injected events) is used. Figure 4
shows the performance of various configurations. The
fully supervised classifier uses a high statistics signal and
background samples in the SR with full label information.
Since the data are not labeled, this is not achievable in
practice. An additional analysis of supervised classifiers
trained on every individual feature in the dataset is
provided in the Appendix (Fig. 10) to show that all four
features are important for achieving signal sensitivity. A
fully unsupervised classifier using an autoencoder is also
provided for comparison. The encoder and decoder have
one hidden layer each, with 64 nodes/layer. The latent
space has two dimensions. These parameters were chosen
to approximately match the number of parameters of the
other methods. Deeper networks were found to have
worse performance. The autoencoder was trained on pure
background in the signal region (an idealized setup) using
the mean-squared error loss (MSE). The per-event MSE is
used as an anomaly score for Fig. 4. In agreement with
Ref. [35,78], the unsupervised approach is not effective
for the signal studied in this paper.
A solid red line in Fig. 4 labeled “Optimal CWOLA”

corresponds to a classifier trained using two mixed sam-
ples, one composed of pure background in the single region
and the other composed of mostly background (indepen-
dent from the first sample) in the SR with the 1000 signal
events. The Optimal CWOLA line is far below the fully
supervised classifier because the neural network needs to
identify a small difference between the mixed samples over
the natural statistical fluctuations in both sets. The actual

CWOLA method is shown with a dotted red line. By
construction, there is a significant difference between the
phase space of the SR and SB and so the classifier is unable
to identify the signal. At low efficiency, the CWOLA

classifier actually antitags because the SR-SB differences
are such that the signal is more SB-like then SR-like.
Despite this drop in performance, the simulation aug-
menting modification (solid orange) with λ ¼ 1 nearly
recovers the full performance of Optimal CWOLA.
For comparison, a classifier trained using simulation

directly is also presented in Fig. 4. The line labeled “Data
vs Sim.” directly trains a classifier to distinguish the data
and simulation in the SR without reweighting. Due to the
differences between the background in the data and the
simulated background, this classifier is not effective. In
fact, the signal is more like the background simulation than
the data background and so the classifier is worse than
random (it preferentially removes signal). The performance
is significantly improved by adding in the parametrized
reweighting, as advocated by Ref. [27]. With this reweight-
ing, the SALAD classifier is significantly better than random
and is comparable to SA-CWOLA. The Optimal CWOLA line
also serves as the upper bound in performance for SALAD

because it corresponds to the case where the background
simulation is statistically identical to the background in the
data. The means and standard deviations of these models
are provided in the Appendix (Fig. 11).
The SA-CWOLA method has one free parameter that must

be tuned. Figure 5 quantifies the performance of the SA-
CWOLA classifier as a function of λ. The performance of
SA-CWOLA is strong and relatively stable for 0.3 < λ < 0.6.
For λ≳ 0.2, the classifier is effectively blinded to
differences between the SR and SB as illustrated by the
orange lines in Fig. 5 approaching 0.5 in the left plot.

FIG. 4. An ROC curve (left) and significance improvement curve (right) for various anomaly detection methods described in the text.
Curves represent the mean of 20 model performances. The significance improvement is defined as the ratio of the signal efficiency to the
square root of the background efficiency. A significance improvement of 2 means that the initial significance would be amplified by
about a factor of 2 after employing the anomaly detection strategy. The supervised line is unachievable unless there is no mismodeling
and one designed a search for the specificW0 signal used in this paper. The curve labeled “Random” corresponds to equal efficiency for
signal and background.
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While the ROC and significance improvement curves are
effective for quantifying performance, they do not com-
municate the complete story because they ignore the impact
of background estimation. Figures 6 and 7 show the results
of the sideband fit and statistical test [see Sec. IIC]. To
improve stability, event output scores have been averaged
over five classifiers.2 The fit quality is excellent when
considering all bins (see Fig. 8), but there happens to be a

small local deficit in the SR. The right plot of Fig. 6
removes this effect by subtracting the fitted residuals in the
background-only case for each value of the Neural Network
(NN) background efficiency. The spectra after applying the
nominal CWoLa classifier cannot be fit to the same shape
and are thus not included—see Fig. 9.

V. CONCLUSIONS

This paper has investigated the impact of dependencies
between mjj and classification features for the resonant
anomaly detection methods SALAD and CWOLA. It has been
shown that while SALAD, because it does not compare
events across different bins in mjj, is relatively insensitive
to the energy scaling of classifier features and is therefore
naturally robust, CWOLA suffers both in classifier

FIG. 5. The area under the ROC curve (AUC) (left) and the significance improvement at 50% signal efficiency (right) using the SA-
CWOLA method for a scan in the hyperparameter λ introduced in Eq. (2.3). Each curve is an average over five classifiers, with the
standard deviation displayed in the shaded region. When λ ¼ 0, SA-CWOLA is the same as the original CWOLA method. For comparison,
the performance of the classifier for distinguishing between the signal and background is shown in blue and the performance for
distinguishing between the SR and SB is shown in orange. Ideally, the latter would have an AUC of 0.5.

FIG. 6. Fit excess with signal injected using the statistical procedure described in Sec. IIC. For each method, event output scores have
been averaged over five separate classifiers to improve stability. There is a small local deficit in the simulation. The left plot shows the
fitted excess without modifying the background while the right plot corrects for the initial deficit by subtracting the residuals of the
background-only fit before performing the signalþ background fit. In the latter case, the significances are still not S=

ffiffiffiffi
B

p
due to

the uncertainty from the sideband fit.

2This was observed to be particularly important in the no-
signal case, where SALAD and SA-CWOLA sometimes minimize
their loss function by assigning the same score, near 0.5, to many
events. In one test of SA-CWOLA, for example, the classifier
assigned a value of 0.49911904 to 97.7% of events. High-
efficiency cuts on the neural network output would then remove
more events than desired.
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performance and in the context of a resonance search when
large dependencies are present. A new simulation-aug-
mented approach has been proposed to remedy these
challenges with the CWOLA method. This modification,
called SA-CWOLA, makes use of physics encoded in
simulations to automatically decorrelate classification
features from mjj. SA-CWOLA is shown to recover most
of the performance of CWOLA from the ideal case where
dependencies are ignored in the training. Both the SALAD

and SA-CWOLA methods are able to exploit the physical
priors of simulations without relying on simulations for
background predictions. Thus, in these methods back-
ground-only simulations provide a critical tool for miti-
gating the sensitivity of the classifiers on dependencies
between the resonant feature and the classifier features.
These weakly supervised methods are particularly

promising, but they are not the only recently-proposed
machine-learning-based anomaly detection methods. In
particular, unsupervised methods also have great potential.
The Anomaly Detection with Density Estimation (ANODE)

FIG. 8. A fit to the mjj distribution in the background-only case
with no selection on any neural networks. The 500 signal events
used for training is super-imposed for illustration. Vertical dashed
lines indicate the SR and SB regions used for training. A
Kolmogorov-Smirnov test using only bins outside of the SR
yields a p-value of 0.69.

FIG. 7. Fit excess without signal injected using the statistical procedure described in Sec. IIC. For each method, event output scores
have been averaged over five separate classifiers to improve stability. Without any signal injected, there is a small ð∼1σÞ deficit in the
simulation. The right plot shifts the curves so that the 100% efficiency point corresponds to 0σ.

FIG. 9. Histogramsofmjj for CWOLA (top) andSA-CWOLA (bottom) for various thresholds on the classifiers in the background-only case.
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[28] does not use simulation at all and has been shown to be
relatively robust to dependencies between the resonant
feature and the classifier features. Additionally, autoen-
coder (AE) methods have been combined with explicit
decorrelation to build in robustness to such dependencies
[18]. Since AEs do not use the presence of a signal to obtain
signal sensitivity, it is expected that decorrelation is not
useful for achieving signal sensitivity, only for estimating
the background. Preliminary studies in Ref. [35] (e.g.,
Fig. 2, top right) indicate that the corresponding AE
performance for signals similar to the ones probed in this
paper are worse than the weakly supervised techniques. It
will be interesting and important to perform a detailed and
robust comparison between weakly supervised and unsu-
pervised methods in the future.
Each of these unsupervised and semisupervised methods

have advantages and weaknesses and it is likely that
multiple approaches will be required to achieve broad
sensitivity to BSM physics. Therefore, it is critical to study
the sensitivity of each technique to dependencies and
propose modifications where possible to build robustness.
This paper is an important step in the decorrelation program
for automated anomaly detection with machine learning.
Tools like the ones proposed here may empower higher-
dimensional versions of the existing ATLAS search [15] as
well as other related searches by other experiments in the
near future.

CODE AND DATA

The code for this paper can be found at https://github
.com/bnachman/DCTRHunting and the simulated data are
available from the LHC Olympics [66].
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APPENDIX: ADDITIONAL LHC OLYMPICS
PERFORMANCE PLOTS

Here we present plots to give more information regarding
the classification performance discussed in Sec. IV.
Figure 10 shows the performances of fully supervised

classifiers trained on each input variable individually
(indicated by the blue and orange lines) and on the
combined set of inputs (indicated by the solid green line).
Additionally, the right plot shows the performance when
one variable is removed at a time. As expected, all
combined variables provide significantly more information
than any individual variable. Notable on this plot is that the
features which provide information on the leading jet, τJ22;1
and mJ2 −mJ1 , prove to be significantly better classifiers
than those related to the subleading jet.
Figure 11 shows the mean and standard deviation of the

models discussed in Sec. IV, over the course of 20 models.
Particularly notable is the small variation on the SA-CWOLA

method.

FIG. 10. ROC curves for fully supervised classifiers trained on the LHC Olympics dataset. Models trained only on the variable are
shown at left, and models trained excluding the indicated variable are shown at right.
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FIG. 11. Spread of models from Sec. IV, in mean and standard deviation.
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