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Partial quenching allows one to consider correlation functions and amplitudes that do not arise in the
corresponding unquenched theory. For example, physical s-wave pion scattering can be decomposed into
I ¼ 0 and 2 amplitudes, while, in a partially-quenched extension, the larger symmetry group implies that
there are more than two independent scattering amplitudes. It has been proposed that the finite-volume
quantization condition of Lüscher holds for the correlation functions associated with each of the two-
particle amplitudes that arise in partially-quenched theories. Using partially-quenched chiral perturbation
theory, we show that this proposal fails for those correlation functions for which the corresponding one-
loop amplitudes do not satisfy s-wave unitarity. For partially-quenched amplitudes that, while being
unphysical, do satisfy one-loop s-wave unitarity, we argue that the proposal is plausible. Implications for
previous work are discussed.
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I. INTRODUCTION

Simulations of lattice QCD (LQCD) and related theories
naturally separate into the generation of gauge fields and
the calculation of quark propagators on these gauge fields.
This separation allows one the freedom to “partially
quench,” which in broadest terms means treating valence
and sea quarks differently. This can be done by using
different valence- and sea-quark masses or, as we consider
here, by keeping valence- and sea-quark masses the same
but considering correlation functions—combinations of
quark propagators—that cannot arise in QCD. In either
case, one obtains extra information about the underlying
theory. The important questions are then whether that
information is useful, e.g., for extracting physical quan-
tities, and, if so, how the desired output is extracted.
There are many proposals for the extraction of additional

information using partially-quenched (PQ) theories, several
of which have been applied in practice. Most involve the
use of partially-quenched chiral perturbation theory
(PQχPT), which was developed in Ref. [1]. For reviews
see Refs. [2,3]. One usage is to aid the chiral extrapolation/
interpolation to the physical point using a range of valence
quark masses [4], and this has been widely applied in

practice. Another example, closely related to the discussion
below, is the proposal of Ref. [5] to separately calculate
contributions to πþπþ correlators with and without quark
exchange, so as to determine the lattice-spacing-dependent
low-energy coefficients (LECs) of “WilsonχPT” (i.e., χPT
applied to Wilson fermions). One can also use PQχPT to
estimate quark-disconnected diagrams from more easily
calculated correlators, e.g., in the hadronic vacuum polari-
zation contribution to muonic g − 2 [6], or in pion scatter-
ing [7]. We also note the use of partially quenched theories
to study the spectral density of the Dirac operator [8–11]
and its relation to random matrix theories [12].
This paper considers the proposals of Refs. [13,14],

which concern, respectively, ππ and Kπ scattering in QCD.
These works consider PQ extensions of QCD containing
additional valence quarks (and corresponding ghost quarks)
such that the flavor symmetry group extends from SUð2Þ to
SUð4j2Þ for ππ scattering, and from SUð3Þ to SUð4j1Þ for
Kπ scattering.1 Within these extensions the scattering
amplitudes of pions and kaons (composed of either sea
or valence quarks) can be decomposed into irreducible
representations (irreps) of the quark flavor symmetry
group, which is SUð4Þ in both cases. This group is larger
than the symmetry group of the unquenched sea quarks,
which is SUð2Þ and SUð3Þ, respectively, for the two cases.
This implies that the number of irreps, and associated
independent amplitudes, is larger in the PQ theory than in
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the unquenched theory. For example, for s-wave ππ
scattering, there are four independent amplitudes in the
quark sector of the PQ theory, corresponding to the
symmetric product of two adjoints in SUð4Þ [15],

ð15 × 15Þsym ¼ 1þ 15þ 20þ 84; ð1Þ

whereas for unquenched pions in QCD the decomposition
contains only two amplitudes, those with isospin 0 and 2.
The physical I ¼ 2 amplitude is equivalent to the 84, while
the I ¼ 0 amplitude is equivalent to that obtained from an
operator that is a linear combination of the 1 with elements
of the 15, 20, and 84.2 The remaining independent
amplitudes, which we take to be those in the 15 and 20
irreps, are artifacts of the PQ theory, and correspond to
linear combinations of Wick contractions that are not
present in the unquenched theory.
We focus in this paper on nonsinglet irreps of the quark

flavor group, as this simplifies the calculations and yet
allows us to make our main points. We make some brief
comments on the singlet irrep in the conclusions.
A central claim of Refs. [13,14] is the following: for each

of the PQ amplitudes, the corresponding PQ two-particle
correlation function determines a spectrum of energies that
can be related to the scattering amplitude using the two-
particle quantization condition of Lüscher [16,17]. We
stress that this claim consists of two parts: the first that
the correlation function can be used to extract a spectrum of
states in the usual way, and the second that the resulting
spectrum can be analyzed using the two-particle quantiza-
tion condition. To make these statements concrete, consider
the r ¼ 15 irrep in PQ pion scattering, and let Or be an
operator with these quantum numbers. The first part of the
claim is that

hOrðτÞO†
rð0Þi ¼

X∞
n¼0

cne−Enτ; ð2Þ

where the expectation value is in the underlying PQ theory,
τ is Euclidean time, the coefficients cn are real and positive,
and the energies En are real and bounded below. For
convenience we order them E0 ≤ E1 ≤ E2, etc. The second
part of the claim is that we can insert the resulting energies
En into Lüscher’s quantization condition and correctly
obtain the scattering amplitude in the corresponding irrep.
We know that this procedure is valid for the 84 irrep, as it
corresponds to a physical correlation function in QCD. The
issue is whether it remains valid for the irreps available only
in the PQ theory.

If correct, this proposal is quite powerful, as, combined
with PQχPT, it allows the determination of results from
types of contractions that are difficult to calculate numeri-
cally from those that are simpler to evaluate [7,13,14,18]. It
is, however, prima facie surprising, since both the existence
of a normal spectral decomposition and the derivation of
the two-particle quantization condition rely on unitarity,
which the PQ theory violates [1,19].
In this work we introduce a necessary (but not sufficient)

criterion for whether this proposal holds in a given PQ
irrep. We apply it in detail to ππ scattering, which allows us
to develop alternative criteria for when the proposal will
fail. We then apply these criteria to other systems.
The remainder of this paper is organized as follows.

Section II describes the setup within PQχPT that we use to
formulate our initial criterion. Section III presents the
results of the application of this criterion to ππ scattering.
Section IV interprets these results using quark-line dia-
grams, presents two alternative versions of the criterion,
and discusses the extent to which our necessary criterion is
actually sufficient. Section V discusses a few applications
of our criteria and describes their implications for previous
work. Finally, Sec. VI presents some closing comments.

II. THEORETICAL SETUP

We follow closely the methodology of Ref. [5], although
here we work in the continuum. We introduce two valence
quarks in addition to the physical up and down quark, as
well as two ghost quarks, with all quarks and ghost quarks
having a common mass m. Thus the graded flavor
symmetry group is SUð4j2Þ.3 This is the same theoretical
setup as used in Refs. [7,13]. We label the quark fields qi,
i ¼ 1–4, with q1 ¼ u and q2 ¼ d being thought of as the
sea quarks, although this choice is purely conventional
given the exact SUð4Þ quark flavor symmetry. The two
ghost quarks are labeled q̃5 and q̃6. Using this collection of
fields we can write down the PQQCD functional integral in
Euclidean space as described in Ref. [1].
The long-distance properties of this theory are described

by PQχPT. The degrees of freedom of this effective theory
are the pseudo-Goldstone (PG) boson and fermion fields,
which are collected into the following straceless4 6 × 6
matrix [1,20],

2The linear combination is 1
5
1þ 1

2
15þ 1

4
20þ 1

20
84, as can be

seen by considering the quark contractions. That this leads to a
physical amplitude is not immediately clear from the group
theory, but follows from the fact that operators living entirely in
the unquenched sector are free from PQ artifacts.

3Superficially, this differs from the setup in Ref. [5], where
four valence quarks and corresponding ghost quarks were
introduced, leading to an SUð6j4Þ flavor symmetry. For the
purposes of our calculations, however, the difference is trivial:
both calculations build the required operators out of four
degenerate quark fields, leading to identical quark-level contrac-
tions and χPT results. The additional valence quarks were
introduced in Ref. [5] in order to calculate a different quantity,
as described in Appendix B of that work.

4We use “straceless” as a shorthand for having a vanishing
supertrace, and we refer to the latter as “strace” or “str.”
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Π¼ 1ffiffiffi
2

p

0
BBBBBBBBBBBB@

1ffiffi
2

p π0þ 1
2
η4þ 1

2
ϕ1 π12 π13 π14 ω15 ω16

π21 − 1ffiffi
2

p π0þ 1
2
η4þ 1

2
ϕ1 π23 π24 ω25 ω26

π31 π32
1ffiffi
2

p π00− 1
2
η4þ 1

2
ϕ1 π34 ω35 ω36

π41 π42 π43 − 1ffiffi
2

p π00− 1
2
η4þ 1

2
ϕ1 ω45 ω46

ω51 ω52 ω53 ω54
1ffiffi
2

p ϕ0þϕ1 ϕ56

ω61 ω62 ω63 ω64 ϕ65 − 1ffiffi
2

p ϕ0þϕ1

1
CCCCCCCCCCCCA
:

ð3Þ

Here π0 is the usual neutral pion field (in isosymmetric
QCD), with π00 being the corresponding valence field, while
η4 is the four flavor generalization of the η meson in QCD.
The 15 fields in the quark sector of Π fill out the SUð4Þ
adjoint irrep of PG bosons (PGBs). The ωij are PG fermion
(PGF) fields corresponding to quark-ghost combinations,
while the ϕ0, ϕij, and ϕ1 are PG ghost bosons (with
propagators having an unphysical overall sign).
We will only need the leading order (LO) chiral

Lagrangian for this theory, which is given in Euclidean
space by

LLO ¼ f2

4
strð∂μΣ†∂μΣÞ −

mB0f2

2
strðΣ† þ ΣÞ; ð4Þ

where f and B0 are the usual LO LECs, with the former
defined in the small f convention, and

Σ ¼ expð2iΠ=fÞ: ð5Þ

The masses of all the PGBs and PGFs are given, at LO, by

M2
π ¼ 2B0m: ð6Þ

We note also that, because all the quarks and ghost quarks
are degenerate, the PG propagators all contain only single
poles, with no double-pole contributions [4,20].
The relation of the pion fields in χPT to operators in the

underlying theory can be worked out using the spurion
method. The resulting correspondence is given for j; k ¼
1–4 by (see e.g., Ref. [5]) q̄jγ5qkðxÞ ¼ cðΣ − Σ†Þkj, with c a
known constant that will cancel in the ratios considered
below. Choosing j ≠ k for simplicity, the right-hand side of
this relation is proportional to πkj, up to chiral corrections
proportional to π2=f2. As discussed in Sec. C.1 of Ref. [5],
these correction terms lead to subleading contributions to the
correlation functions that lie beyond the accuracy that we
consider. Thus we effectively have the correspondence
πkj ∼ q̄jγ5qk, and, similarly, π0 ∼ 1ffiffi

2
p ðq̄1γ5q1 − q̄2γ5q2Þ

and η4 ∼ 1
2
ðq̄1γ5q1 þ q̄2γ5q2 − q̄3γ5q3 − q̄4γ5q4Þ, with

a common constant of proportionality. Using this

correspondence, the definitions given below apply both in
the underlying theory, PQQCD, and in the effective theory,
PQχPT, andwewillmove between these two representations
as needed.
The quantities that we calculate are finite-volume corre-

lation functions involving operators coupling to pairs of
PGB fields. These are built from fields having zero spatial
momentum, e.g.,

π̃12ðτÞ ¼
Z
L
d3xπ12ðx; τÞ; ð7Þ

where the subscript L indicates that the integral is over a
cubic box of side L. We assume periodic boundary
conditions (PBC) in spatial directions on the PGBs and
PGFs, which follow if the quark fields satisfy PBC, as it is
standard in LQCD simulations. We take the Euclidean time
extent to be infinite. We then construct two-PGB operators
by forming linear combinations of the building blocks

π̃ijðτÞπ̃klðτÞ; ð8Þ

chosen to have definite flavor quantum numbers. Explicit
examples of such operators are given in the following
section.
In a physical, unitary theory, we can describe the proper-

ties of these operators as follows. In the absence of
interactions, such operators would simply couple to two
pions at rest. In the presence of interactions, however, they
couple to all states with vanishing total three-momentum,
P ¼ 0, that have the same flavor as the operator. In particular,
these operators couple to the lightest two-PGB state of the
chosen flavor. We refer to this as the threshold state, with
energy E0. Of particular interest is the energy shift
δE0 ¼ E0 − 2Mπ, for this is given by the threshold expan-
sion of the Lüscher quantization condition [16]

δE0 ¼ −
Ath

4M2
πL3

�
1þ c1

Ath

16πMπL
þOðL−2Þ

�
: ð9Þ
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HereAth is the scattering amplitude at threshold in the flavor
channel under consideration, which is related to the scatter-
ing length a0 by

5

Ath ¼ 16πMπa0; ð10Þ

while c1 ≈ −2.84 is a known geometric constant. We stress
that both Ath and a0 are infinite-volume quantities. Higher-
order terms in 1=L in Eq. (9) are known, but will not be
needed here. There are also (in general unknown) corrections
to Eq. (9) that are exponentially suppressed in MπL. In our
theoretical calculation these can always be made arbitrarily
small, compared to the power-law dependence that we
control, by taking L large enough, and henceforth we ignore
them.
To obtain δE0 from finite-volume correlators, it is

convenient to use ratios of the two-PGB correlator to the
square of single-particle correlators. LetOrðτÞ denote (as in
the Introduction) a two-PGB operator transforming in the
flavor irrep r. Then we consider

RrðτÞ ¼
hOrðτÞO†

rð0Þi
hπ̃12ðτÞπ̃21ð0Þi2

; ð11Þ

where the choice of flavor of the single-PGB correlator in
the denominator is arbitrary, because all such correlators
fall asymptotically as expð−MπjτjÞ, due to the SUð4Þ flavor
symmetry. For a physical theory, the ratio behaves at large
jτj as

RrðτÞ ¼ Zre−δE0;rjτj þ excited-state contributions; ð12Þ

where δE0;r is the threshold energy shift in the given flavor
irrep and Zr is a positive real constant. In an analytic
calculation, the contribution from excited states can be
separated by hand, since they have a distinctive exponential
falloff, with δEi ∝ 1=L2 asymptotically. The first part of
our criterion is then to check that what remains after
excited-state contributions have been dropped is an expo-
nential. More precisely, we test that the ratio contains the
first three terms in the expansion,

RrðτÞ ¼ Zr

�
1 − jτjδE0;r þ

τ2

2
ðδE0;rÞ2

�
þ � � � ; ð13Þ

where the ellipsis represents higher-order terms in τ as well
as the excited-state contributions.
The second part of our criterion tests whether the

threshold expansion, Eq. (9), holds to first nontrivial order
in 1=L. It turns out that one can test this, as well as Eq. (13),
by carrying out a next-to-leading-order (NLO) calculation
of the correlator ratio in χPT. To see how this works, we

need several results that follow from the similar calculation
carried out in Ref. [5]. The relevant diagrams are those
shown in Fig. 1. Figure 1(a) gives the leading, τ-indepen-
dent term in the exponential in Eq. (13), and one can choose
the normalization of Or such that Zr ¼ 1 at this stage.
Figure 1(b) leads to a term linear in jτj, in which
δE0;r ¼ −ALO

th;r=ð4M2
πL3Þ, which is the form expected at

this order from combining Eqs. (9) and (13). This result will
hold for all irreps r, since the diagrams contributing to the
finite-volume correlator and the scattering amplitude are
essentially the same. Figure 1(b) also leads to corrections to
Zr that are proportional to 1=ðf2MπL3Þ.
The key diagram for our test is that of Fig. 1(c). In

particular, for a physical theory, it leads both to the τ2 term
in Eq. (13) with the LO form for the energy shift,
δE0;r ¼ −ALO

th;r=ð4M2
πL3Þ, and to the first 1=L4 correction

linear in jτj, i.e.,

δE0;r ⊃ −c1
ðALO

th;rÞ2
64πM3

πL4
: ð14Þ

It is these contributions that will turn out to have the wrong
form for some irreps in the PQ theory.
Figure 1(c) also contributes to the leading 1=L3 part of

the coefficient of jτj. Together with diagrams containing
NLO vertices, as well as self-energy diagrams, this leads to
the expected form of the linear term at this order [5]:

RrðτÞ ⊃ jτj A
NLO
th;r

4M2
πL3

; ð15Þ

where ANLO
th;r is the complete threshold amplitude through

NLO. As at LO, this result holds for all irreps r, because the
diagrams that contribute to the jτj=L3 term are the same as
those leading to infinite-volume scattering. The only
difference is that the former involve momentum sums,
while the latter contain integrals, but the difference can be
shown to be subleading, behaving as jτj=L4, and leads to
the c1 term in Eq. (14) [5]. As stressed in Ref. [5], the result
that the coefficient of jτj=L3 gives the scattering amplitude
is a finite volume version of the Lehman-Symanzik-
Zimmermann reduction theorem.

(a) (b) (c)

FIG. 1. PQχPT diagrams contributing to RrðτÞ, Eq. (11). Time
runs horizontally. Solid lines are propagators of PGBs and PGFs,
and filled circles represent vertices obtained from the expansion
of LLO, Eq. (4). These are the diagrams needed to implement the
test discussed in the text.

5Here we are using the normalization appropriate for distin-
guishable particles.
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Pulling all this together, we now state our criterion for
whether a particular PQ channel can be treated as if it were
physical.

C1: In order for a channel to be described by the two-
particle quantization condition, one must find the
following result6 if one calculates the diagrams of
Fig. 1:

RrðτÞ ¼ 1þjτ̃j
�
ALO

th;rþ c1
ðALO

th;rÞ2
16πMπL

�
þ τ̃2

2
ðALO

th;rÞ2þ� � � ;

ð16Þ

where

τ̃ ¼ τ

4M2
πL3

; ð17Þ

and the ellipsis indicates terms of higher order in jτ̃j and
1=L, NLO contributions to Ath;r in the jτ̃j term, as well
as excited state contributions.

In other words, we can focus on the terms that lead to
factors of ALO

th;r, with a full NLO calculation of this
amplitude not required. Evaluating Fig. 1(b) gives the
result for ALO

th;r, while Fig. 1(c) gives the c1 and τ2 terms,
which must have the dependence onALO

th;r given in Eq. (16).
We also note that one can check the calculation of Fig. 1(b)
by evaluating the amplitude ALO

th;r directly in infinite
volume.
Passing this test is necessary in order that a channel can

be treated as physical, but it is clearly not sufficient, since
higher order terms in τ and in the threshold expansion of
Eq. (9) are not checked. In addition, the test considers only
the threshold state, while a complete test would also
consider excited states. Possible generalizations are dis-
cussed below in Sec. IV.

III. PQχPT CALCULATION OF ππ
CORRELATORS

We perform the test described in the previous section for
the 20 and 15 irreps, which are the two that are absent in the
unquenched theory. For comparison we also include the 84
irrep. Examples of two-pion operators transforming in
these irreps are

O84 ¼
1ffiffiffi
2

p ðπ̃12π̃34 þ π̃14π̃32Þ; ð18Þ

O20 ¼
1ffiffiffi
2

p ðπ̃12π̃34 − π̃14π̃32Þ; ð19Þ

O15 ¼
1ffiffiffi
3

p ðπ̃13π̃32 þ π̃14π̃42 þ π̃12η̃4Þ: ð20Þ

The normalization factors are chosen as described in the
previous section, i.e., such that the leading term in Rτ is
unity. In the notation of Ref. [13] these three irreps are
labeled α, β, and γ, respectively. The LO threshold
amplitudes for these irreps can be read off from the results
for scattering lengths given in Ref. [13] (noting that the
scattering length in that work is defined with opposite sign
to ours), yielding

ALO
th;84 ¼ −

M2
π

f2
; ALO

th;20 ¼
M2

π

f2
; ALO

th;15 ¼
7

2

M2
π

f2
:

ð21Þ
The implementation of the criterion C1 for the 84 and 20

irreps can be done by combining results from Ref. [5]. In
the notation of that work

R84=20ðτÞ ¼ RDðτÞ � RSðτÞ; ð22Þ

where RD involves the double-loop (or “direct” or D for
short) Wick contraction in the numerator of the ratio, while
RS involves the single loop (“S”) contraction, which are
shown in Figs. 2(a) and 2(b), respectively. In Refs. [7,13],
the latter contraction is labeled C for crossed. The results
forDðτÞ and SðτÞ at NLO in PQχPT are given in Eqs. (104)
and (105) of Ref. [5], including the effect of discretization
errors for Wilson-like fermions. Setting all LECs associated
with discretization errors to zero, and choosing τ > 0 as in
Ref. [5], the results read

RDðτÞ ¼ 1þ τ̃Dþ
�
M2

π

f2

�
2
�
τ̃

c1
16πMπL

þ τ̃2

2

�
þ�� � ; ð23Þ

RSðτÞ ¼ τ̃S þ � � � : ð24Þ

Here D and S are the NLO PQ threshold amplitudes
associated with the D and S contractions, and are given in
Eqs. (106) and (107), respectively, of Ref. [5]. We only
need their LO contributions, which are

DLO ¼ 0; SLO ¼ −
M2

π

f2
: ð25Þ

Finally, we form the combinations given in Eq. (22),
obtaining (again for τ > 0)

R84=20ðτÞ¼1þ τ̃ðD�SÞþ
�
M2

π

f2

�
2
�
τ̃

c1
16πMπL

þ τ̃2

2

�
þ��� :

ð26Þ
Since ðD� SÞLO ¼∓ M2

π=f2, we see that the results for
both irreps satisfy the criterion C1, i.e., Eq. (16) with the

6Here we are assuming the above-described normalization
choice for Or.
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LO amplitudes given in Eq. (21).7 This is as expected for
the physical r ¼ 84 channel, while, for the r ¼ 20 channel,
it supports the proposal of Ref. [13] that one can apply the
quantization condition to this unphysical channel.
Now we turn to the 15 irrep, for which a new calculation

is needed. In terms of valence quark Wick contractions, one
needs not only D and S contractions but also the “rec-
tangle” or R contraction shown in Fig. 2(c). We find, using
O15 from Eq. (20), that

R15ðτÞ ¼ RDðτÞ −
1

2
RSðτÞ þ 3RRðτÞ; ð27Þ

in agreement with Ref. [13]. Evaluating the diagrams in
Fig. 1, we obtain (with τ̃ > 0)

R15ðτÞ ¼ 1þ τ̃
7M2

π

2f2
þ
�
49

4
− 6 −

3

4

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

11=2

�
M2

π

f2

�
2

×

�
τ̃

c1
16πMπL

þ τ̃2

2

�
þ � � � ; ð28Þ

where the ellipsis has the same meaning as in Eq. (16). The
calculation leading to Eq. (28) is straightforward, as the c1τ̃
and τ̃2 terms essentially pick out contributions that are part
of the square of the tree-level threshold amplitude. The only
subtlety is keeping track of which two-particle intermediate
states contribute, and of cancellations between contribu-
tions involving PG bosons and fermions. We have broken
down the contribution to the final term in Eq. (28) into that
from the following intermediate states: π13π32, π14π42, and
π12η4 [leading to the unquenched result 49=4 ¼ ð7=2Þ2],
ω15ω52 and ω16ω62 (leading to the −6), and π12ϕ1 (leading
to the −3=4). We have obtained these results using both the
straceless form of Π given in Eq. (3) and an approach in
which one projects out the stracefull part by introducing a
Φ2

0 term [20].
Equation (28) is the main new result of this paper. It is

manifestly inconsistent with the form of Eq. (16), because
the coefficient of the τ̃2 and c1τ̃ contributions is not the

square of the LO threshold amplitude (which itself is
correctly determined from the coefficient of τ̃). Thus, the
r ¼ 15 channel fails our test: R15ðτÞ cannot be given by a
single exponential at long times, and the two-particle
quantization condition cannot be used.

IV. DIAGRAMMATIC INTERPRETATION AND
ALTERNATIVE CRITERIA

To gain more understanding of why the 15 irrep does not
satisfy our criterion, while the 20 does, we consider the
quark-line diagrams8 associated with the corresponding
contributions to Fig. 1(c). These are shown for the 15 irrep
in Fig. 3. The key observation is that, for r ¼ 20, only
diagrams of the type of Fig. 3(a) appear, with the four lines
having different flavors. This difference arises simply
because there can be no “annihilation” of quark flavors
for r ¼ 20, which is why the R-type Wick contraction,
Fig. 2(c), is not present. This absence implies that there is
no violation of unitarity in the s-channel in the one-loop
diagrams, and it is this form of unitarity (which we refer to
as s-channel unitarity) that the exponential time depend-
ence and the derivation of the quantization condition
depend on.
Conversely, for r ¼ 15, the appearance of s-channel

loops involving either ghost quarks [Fig. 3(d)] or neutral
PGBs with negative norms such as ϕ0 [Figs. 3(e) and 3(f)]
suggests that s-channel unitarity is violated. We emphasize,
however, that it is not sufficient to look at the diagrams
alone, as the s-channel-unitarity-violating contributions can
cancel. This indeed happens in the I ¼ 0 channel, for
which there are both R and V Wick contractions [Figs. 2(c)
and 2(d)], and thus PQ diagrams involving ghost quarks
and negative norm PGBs. Nevertheless, we know that these
unphysical contributions must cancel, as this channel is
physical.
Putting this together, the following diagrammatic version

of the criterion seems highly plausible:

C2: A channel that is not equivalent to a physical
correlator will not be described by the two-particle
quantization condition if intermediate ghost quarks

(a) D (b) S (d) V(c) R

FIG. 2. Types of Wick contraction that contribute to the two-pion correlators, RrðτÞ. Time runs horizontally. Solid lines represent
quark propagators, while the dashed box is a reminder that the correlators are evaluated in finite spatial volumes.

7This result in fact holds even if we keep all contributions from
the LO LECS associated with discretization errors. 8For more discussion of quark-line diagrams see Ref. [2].
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appear in (the quark-line diagrams of) s-channel two-
particle loops.

This criterion correctly selects the 15 irrep as the single
PQ nonsinglet ππ channel that is problematic. We have not
included negative norm PGBs in the statement of C2 as it
requires explicit calculations to determine whether they are
present, and we are aiming here for a simplified criterion.
We suspect, however, that nothing is lost by this omission,
since, in our experience, diagrams with intermediate ghost
quarks and negative norm PGBs come in tandem. C2 is
potentially stronger than our original criterion, C1, as it
applies away from threshold. We have, however, not found
a general proof of C2, since this requires knowing that the
total contribution from certain classes of quark-line dia-
grams does not cancel, and this can, in general, only be
determined by an explicit calculation, leading us back
to C1.
These diagrammatic considerations lead to another

version of the criterion. To explain this, we need to
distinguish between unitarity in the s, t, and u channels.
As noted above, we refer to the standard form of unitarity
for an amplitude T ðs; t; uÞ in the physical domain

(s ≥ 4M2
π and t, u ≤ 0) as s-channel unitarity. One can

also apply unitarity in the t channel by continuing the
amplitude to the appropriate kinematic domain, t ≥ 4M2

π

and u, s ≤ 0, and similarly for the u channel. An important
point to keep in mind is that PQ amplitudes can satisfy
unitarity in some channels but not in others. For example,
the amplitude A20 satisfies s-channel unitarity, but violates
t- and u-channel unitarity. This is illustrated in Fig. 4,
where examples of quark line diagrams contributing to
t-channel loops are shown. The presence of Figs. 4(b)
and 4(c) indicates the violation of t-channel unitarity.
Using this terminology, the third version of the cri-

terion is

C3: A channel is not described by the two-particle
quantization condition if the (infinite-volume) amplitude
Ar violates s-channel unitarity.

9

1

2

3

3

1

2

3
3

1

2

3
3

j

(b) (c)(a)

1

2

3
3

k

1

2

3
3

1

2
33

(e) (f)(d)

FIG. 3. Classes of quark-line diagrams contributing to Fig. 1(c) for the 15 irrep. The diagrams trace the flavor indices of the quarks and
antiquarks (or their ghost partners) in the PQχPT diagrams. Flavors are indicated by colors and numerical labels, with j ¼ 1–4 in (c) and
k ¼ 5–6 in (d). Dashed lines indicate ghost-quark flavors. In diagrams (e) and (f) the hairpin vertices implicitly contain an infinite sum of
intermediate loops of sea quarks (with the valence and ghost loops canceling).

1

2 4

j

3

1

2

3

k

4

1

2

3

4

(a) (b) (c)

FIG. 4. Examples of quark-line diagrams contributing to the t-channel loops for scattering in the 20 irrep. Notation as in Fig. 3.

9We stress that we are only considering energies below the first
inelastic threshold, e.g., below the four pion threshold for ππ
scattering. Above this, the two-particle quantization condition
itself breaks down and the question becomes moot.

APPLICABILITY OF THE TWO-PARTICLE QUANTIZATION … PHYS. REV. D 104, 034510 (2021)

034510-7



Again, this correctly picks out the 15 ππ irrep. The
simplest argument for C3 is that s-channel unitarity plays a
crucial role in the derivation of the two-particle quantiza-
tion condition, as is particularly clear from the derivation of
Ref. [21]. C3 is stronger than the original form, C1, as the
latter involves unitarity applied only infinitesimally above
threshold, while C3 applies for all energies up to the first
inelastic threshold.
To study C3 in χPT requires at least a NLO calculation,

since loops are required for the unitarity condition to have
nontrivial content. Indeed, from the NLO results for PQ ππ
amplitudes in Ref. [7], one can see that s-channel unitarity
is violated by ANLO

15 . In general, C3 is harder to implement
than C1, as it requires a more extensive calculation in χPT.
We end this section by discussing whether the criteria

that we have introduced are actually sufficient rather than
necessary. We suspect that this is the case, although to
demonstrate this would require an all-orders analysis in
χPT, which is beyond the scope of this work. The point is
that higher order terms in the exponential in τ, and in the
threshold expansion of the quantization condition, are built
up by a sequence of intermediate two-particle s-channel
loops, as is clear, respectively, from the calculations of
Ref. [5] and the derivation of Ref. [21]. The corresponding
quark-line diagrams for any irrep that passes the criteria
will only involve generalizations of Fig. 3(a), in which
quarks or antiquarks are repeatedly exchanged. In particu-
lar, there can be no annihilation diagrams at any order in
χPT. The unphysical contributions in t and u channels,
such as those in Fig. 4, will be present, but will appear in all
vertices, allowing exponentiation.

V. APPLICATIONS AND IMPLICATIONS FOR
PREVIOUS WORK

We first summarize our results for the ππ system. In the
PQ theory there are three flavor nonsinglet channels, of
which one (the 84) is equivalent to a physical channel (with
I ¼ 2), which thus automatically satisfies our criteria. Of
the unphysical channels, one satisfies our criteria (20),
while the other does not (15).
What are the implications for the application presented in

Ref. [13]? In that work, the quantization condition was first
applied to LQCD results in the 84 and 20 channels, and this
application is thus not affected by the problem noted here.
The results obtained were then used to predict the finite-
volume energy spectrum in the 15 and I ¼ 0 channels,
while our analysis shows that there is no well-defined
spectrum in the 15 channel.
We next turn to the Kπ system, which has been analyzed

in this context in Refs. [14,18]. Since there are now three
light quarks, the isospin symmetry generalizes from SUð2Þ
in the physical theory to SUð3Þ in the PQ version, which is
the light quark subgroup of the graded SUð4j1Þ symmetry.

This SUð3Þ is exact (assuming mu ¼ md), and should not
be confused with the approximate SUð3Þ in QCD involving
the strange quark. There are two physical channels, with
I ¼ 3=2 and 1=2, while there are three PQ channels,
corresponding to the SUð3Þ decomposition 8 × 3 ¼
15þ 6̄þ 3. These three channels are labeled α, β, and
γ, respectively, in Ref. [14]. Of these, only the 6̄ is
unphysical, with the 15 being equivalent to the physical
I ¼ 3=2 channel, and the 3 to that with I ¼ 1=2.
Applying the criterion C2 to the 6̄ channel, we find that it

passes our test, because it involves Wick contractions only
of types D and S, and is thus completely analogous to the
20 irrep for ππ scattering. Therefore, the numerical appli-
cation presented in Ref. [18], which uses the 15 and 6̄
channels, does not suffer from the problem described here.
The final example we consider involves two kaons, for

which the PQ extension has not been previously analyzed.
For the KK system, the PQ extension involves treating the
two strange antiquarks as different, while the two light
quarks can both be physical. Thus the graded symmetry
group becomes SUð2Þ × SUð2j1Þ, where the SUð2Þ is
physical isospin. Thus PQ channels can be labeled by
physical isospin, I, as well as “strange isospin,” Is, with
both taking on the values 0 or 1. For s-wave scattering, the
overall symmetry implies that there are two allowed
channels, with ðI; IsÞ ¼ ð1; 1Þ or (0,0), which are, respec-
tively, symmetric and antisymmetric under quark (or
antiquark) exchange. Only the former is physical. Again,
the sole unphysical channel, (0,0), satisfies our criterion
C2, since only contractions of type D and S are allowed as
there is no annihilation in the s channel. Thus the
quantization condition could be applied to both channels.

VI. CONCLUSIONS

This paper has demonstrated that the violation of
unitarity in PQ theories at best restricts the application
of the two-particle quantization condition to a subset of the
unphysical two-particle channels. This has been demon-
strated using PQχPT, and our initial criteria C1 is stated
within this effective field theory (EFT) framework. In this
regard, we stress that the foundations of PQχPT as an
effective theory for PQQCD are almost as strong as for
QCD [19]. However, we have argued that C1 can be
replaced by simpler, diagrammatic extension of the cri-
terion, C2. This alternative version can be used irrespective
of the existence of an EFT.
What is perhaps most surprising is that there may be

unphysical two-particle channels in which the quantization
condition can be used, because the derivation of the latter
relies on unitarity, which is certainly violated in the PQ
theory. The key observation here is that what matters for the
derivation is that the corresponding scattering amplitude is
unitary in the s channel, while t- and u-channel unitarity is
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not required. Thus for channels where the amplitude
manifests its unphysicality only in the latter two channels,
the problem that we raise does not occur.
We stress that, strictly speaking, we have not demon-

strated this positive result, but rather only shown that one
possible problem does not arise. However, we think it likely
that one could extend the argument given here to all orders
in the EFT, and that, for channels that satisfy our simple
criteria, the use of the quantization condition is justified.
We also note that all is not lost in the channels that do not

satisfy our criteria. One can still calculate the correspond-
ing finite-volume correlators using PQχPT, fit the results of
a lattice simulation to the predicted form, and in this way
determine the parameters of the EFT. This is the approach
suggested in Ref. [5]. We stress, however, that our results
show that one cannot bypass the problem by determining
the energy shift solely from the term in the correlator ratio
that is linear in τ, and inserting the result into the two-
particle quantization condition, because the leading c1=L
correction in that condition does not hold in PQ channels
that do not satisfy our criteria.
Applying our criteria to the ππ and Kπ systems, we find

that the two previous applications which use results from
simulations of LQCD are in unphysical channels that are
not affected by the issue that we raise. Thus, the practical
impact of our observation is to limit certain future appli-
cations of the approach of Refs. [13,14].
One way of understanding our central result is that, in a

PQ theory, even if one starts with an operator that is
composed of sea and valence quarks alone, in general there
will be mixing with operators that include ghost quarks. In
the calculation of Sec. III, this mixing was with operators of
the form ω1kωk2 and π12ϕ1, both of which transform in the
same 15 irrep of the SUð4Þ quark flavor group. One might
hope that, by taking an appropriate linear combination of
these operators, one could find a channel for which one
could use the quantization condition. This amounts to

classifying operators under the full SUð4j2Þ group, a task
that we have not undertaken. We do not, however, expect
this approach to be fruitful, since intermediate states will
inevitably involve unphysical particles. For the same
reason, we expect that the SUð4Þ singlet channel, where
there can be mixing with several unphysical channels
(including ϕ2

0), cannot be analyzed using the quantization
condition.
A final comment concerns the foundational work of

Bernard and Golterman [19]. They construct the transfer
matrix of (latticized) PQQCD, showing that, while it is not
Hermitian, it has a bounded spectrum. The import is that
one expects correlation functions to still be given by a sum
of exponentials as in Eq. (2), except the coefficients cn need
not be positive. Furthermore, the energies En, while having
real parts that are bounded from below, could be complex,
although Ref. [19] argues that this is not the case for the
lightest excitations in PQχPT. Thus it could be that one can
develop a generalization of the two-particle quantization
condition that takes into account the possibility of negative
cn, and the concomitant cancellations. The lack of a simple
exponential falloff that we have found could then be due to
a cancellation between terms falling with similar exponents
but opposite coefficients. The failure of the standard
Lüscher threshold expansion could be due to the need to
use an extension of the two-particle formalism. We do not
know if such an approach will be fruitful, but it may be
worth considering.
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