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It is shown numerically, in a chiral U(1) gauge Higgs theory in which the left and right-handed fermion
components have opposite U(1) charges, that the spectrum of gauge and Higgs fields surrounding a static
fermion contains both a ground state and at least one stable excited state. To bypass the difficulties
associated with dynamical fermions in a lattice chiral gauge theory we consider only static fermion sources
in a quenched approximation, at fixed lattice spacing and couplings, and with a lattice action along the lines
suggested long ago by Smit and Swift.
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I. INTRODUCTION

Suppose, in a confining gauge theory with only very
massive quarks, we place a static quark and antiquark some
large distance apart. Gauss’s law, or equivalently the gauge
invariance of physical states, requires that the quark-
antiquark pair is associated with a surrounding color
electric field, and for a confining gauge theory this is a
flux tube state. But like any quantum system, the flux tube
has a ground state and also a spectrum of excited states, and
this spectrum has in fact been observed, in SU(3) pure
gauge theory in D ¼ 4 dimensions, via lattice Monte Carlo
simulations [1,2]. This leads to a natural question: is there
also a nontrivial spectrum for a static fermion-antifermion
pair in a nonconfining gauge Higgs theory? By “nontrivial”
we mean a spectrum containing stable localized excited
states, excitations which are distinct from just the ground
state plus some number of propagating bosons in the
asymptotic particle spectrum of the theory.
Recent work in both SU(3) gauge Higgs theory [3] and

in the Abelian Higgs model [4] indicates that the answer to
this question is affirmative, at least in some range of
couplings in the Higgs phase.1 However, as far as we
know, neither SU(3) gauge Higgs theory nor the relativistic
Abelian Higgs model describes any system in the real
world. The gauge Higgs theory relevant to particle physics

is a chiral gauge theory, with gauge group SUð2Þ × Uð1Þ.
We would like to know whether the quarks and leptons in
the electroweak sector of the Standard Model have some
spectrum of previously unsuspected2 excitations, which,
being invisible in perturbation theory, would have to be
nonperturbative in nature.
A nonperturbative treatment of a chiral gauge Higgs

theory calls for a lattice formulation and there is, up to now,
no entirely satisfactory formulation with a non-Abelian
gauge group. Even the Abelian version, due to Lüscher [7],
is very challenging to simulate numerically. To make
progress despite these limitations requires some simplifi-
cations. I will work with static fermionic sources in a
quenched approximation, with a lattice fermion action
proposed long ago by Smit [8] and Swift [9]. I work at
fixed lattice spacing and couplings, and do not attempt to
take the continuum limit (where the fermions decouple
from the gauge field in the Smit-Swift model [10]). Even
static fermions propagating only in the time direction have
doublers, and we rely on a gauge-invariant Wilson mass
term to push up their masses by some finite amount ofOð1Þ
in lattice units.
The aim of this article is to find out whether fermion

excitations in gauge Higgs theories, found in Refs. [3,4],
may also be found in chiral gauge theories, where the right
and left handed fermion components are in different
representations of the gauge group. Of course our ultimate
goal is to examine this question in the Standard Model, but
we feel that the electroweak sector of Standard Model is too
ambitious as a starting point, even with the simplifications
already mentioned. This in part because of the complexity
of the fermion sector and the presence of light fermions,
and also in part because of the existence of a masslessPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The use of the word “phase” in this connection is deliberate;
we contend that there is a meaningful distinction between the
confinement and Higgs phases even when the Higgs field is in the
fundamental representation. See Ref. [5], which is entirely
devoted to this issue.

2An exception is the speculation that particle generations
might be quantum excitations of a single generation, cf. [6].
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vector boson in the spectrum, which poses some additional
technical complications. To gain some experience with the
possible excitations of static fermions in a chiral gauge
theory, and to address the nature of physical states of
massive particles in such a theory, we consider instead the
simplest case: static chiral fermion sources coupled to a
U(1) gauge Higgs theory, where the left and right-handed

components have opposite q ¼ �1 units of the elementary
charge, and the Higgs field carries a single unit of the
elementary charge.

II. THE MODEL

We begin from the lattice action

S ¼ −β
X
x

X
μ<ν

Re½UμðxÞUνðxþ μ̂ÞU�
μðxþ ν̂ÞU�

νðxÞ� − γ
X
x

X
μ

Re½ϕ�ðxÞUμðxÞϕðxþ μ̂Þ�

þM
X
x

½ψ̄LðxÞφðxÞψRðxÞ þ ψ̄RðxÞφ�ðxÞψLðxÞ�

−
1

2

X
x

X
μ

½ψ̄RðxÞ; ψ̄LðxÞ�DμþðxÞ
�
ψLðxþ μ̂Þ
ψRðxþ μ̂Þ

�
−
1

2

X
x

X
μ

½ψ̄RðxÞ; ψ̄LðxÞ�Dμ−ðxÞ
�
ψLðx − μ̂Þ
ψRðx − μ̂Þ

�
; ð1Þ

where we impose a unimodular constraint jϕðxÞj ¼ 1 on the Higgs field, defining a double-charged field φðxÞ≡ ϕ2ðxÞ, and

DμþðxÞ ¼
� 1
2
r½φ�ðxÞUμðxÞ þ U�

μðxÞφ�ðxþ μ̂Þ� −ηRμU�
μðxÞ

−ηLμUμðxÞ 1
2
r½φðxÞU�

μðxÞ þ UμðxÞφðxþ μ̂Þ�

�

Dμ−ðxÞ ¼
� 1
2
r½φ�ðxÞU�

μðx − μ̂Þ þUμðx − μ̂Þφ�ðx − μ̂Þ� ηRμUμðx − μ̂Þ
ηLμU�

μðx − μ̂Þ 1
2
r½φðxÞUμðx − μ̂Þ þU�

μðx − μ̂Þφðx − μ̂Þ�

�
: ð2Þ

Here we have defined

ηRk ¼ −ηLk ¼ −iσk ðk ¼ 1; 2; 3Þ
ηR4 ¼ ηL4 ¼ 12; ð3Þ

with Pauli matrices σk.
The diagonal entries in the Dμ� matrices are one version

of the Wilson mass term, generalized to a chiral gauge
theory. It is not the only possibility, there are actually
infinite possibilities, and one choice which is a little closer
to the original Smit-Swift proposal is to replace the
diagonal entries in Dμ�ðxÞ by

�
rϕ�ðxÞϕ�ðx� μ̂Þ

rϕðxÞϕðx� μ̂Þ

�
: ð4Þ

We will investigate these two possibilities at r ¼ 1, denot-
ing the Wilson mass term in (2) by WM1 and the second
possibility in (4) as WM2. The r ¼ 0 case, with no Wilson
term, will also be considered for comparison.
In the continuum a theory of this sort is of course

anomalous, and one would have to add additional fermion
fields with an opposite assignment of L-R charges to cancel
the chiral anomaly. However, for the present we are
interested only in static fermions, there are no fermion
loops contributing to an effective action, and the quenched
approximation to this model is understood, as already
noted.

In a massive free fermion theory, the mass term

mψ̄ψ ¼ mðψ̄RψL þ ψ̄LψRÞ ð5Þ

can be viewed as an interaction vertex which converts a
right-handed fermion to a left-handed fermion, and vice
versa. As a result, the physical state corresponding to a
massive free fermion is a superposition of the right and left-
handed states. This is the type of state created in a free field
theory by the usual particle/antiparticle creation operators
a†sðpÞ; b†sðpÞ. With a lattice cutoff and fields with masses
much greater than the inverse lattice spacing we consider,
motivated by the usual free field form, the local operators

a†sðxÞ ¼ ψ̄LsðxÞ þ ψ̄RsðxÞ
asðxÞ ¼ ψLsðxÞ þ ψRsðxÞ
b†sðxÞ ¼ ð−1Þ3−sðψL;3−sðxÞ − ψR;3−sðxÞÞ
bsðxÞ ¼ ð−1Þ3−sðψ̄L;3−sðxÞ − ψ̄R;3−sðxÞÞ; ð6Þ

where s ¼ 1, 2 is a spin index for the a, b operators, and a
Dirac index for the two-component ψL, ψR fields. Because
static particles propagate only in the time direction we will
only be concerned with the μ ¼ 0 component of the Dμ�
operators, and there are no spin flip terms. We can therefore
arbitrarily choose a≡ a1; b≡ b2, and drop the s-indices
from here on.
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The operators shown in Eqs. (6), in a chiral gauge theory,
do not transform covariantly under the U(1) gauge trans-
formations gðxÞ ¼ expðiθðxÞÞ, which transform fields
according to

ψLðxÞ → gðxÞψLðxÞ; ψRðxÞ → g�ðxÞψRðxÞ
ψ̄LðxÞ → g�ðxÞψ̄LðxÞ; ψ̄RðxÞ → gðxÞψ̄RðxÞ
ϕðxÞ → gðxÞϕðxÞ; φðxÞ → g2ðxÞφðxÞ

UμðxÞ → gðxÞUμðxÞg�ðxþ μ̂Þ: ð7Þ

If we again view the local “mass” term in the action

SM ¼ M
X
x

½ψ̄LðxÞφðxÞψRðxÞ þ ψ̄RðxÞφ�ðxÞψLðxÞ� ð8Þ

as a vertex between, e.g., a right-handed fermion and a
composite left-handed fermionþ Higgs state of the same
U(1) charge, then we may construct q ¼ �1 massive
fermions from a combination of the corresponding local
operators,

ã†ðxÞ ¼ ψ̄LðxÞφðxÞ þ ψ̄RðxÞ
ãðxÞ ¼ ψLðxÞφ�ðxÞ þ ψRðxÞ
b̃†ðxÞ ¼ −ψLðxÞφ�ðxÞ þ ψRðxÞ
b̃ðxÞ ¼ −ψ̄LðxÞφðxÞ þ ψ̄RðxÞ: ð9Þ

In the same way one can construct operators transforming
covariantly with opposite charge, by combining the right
instead of left-handed fermion operators with the squared
Higgs field.

III. PSEUDOMATTER OPERATORS

The next step is to create physical states by combining
the covariant fermionic operators (9) with covariant matter
(i.e., Higgs) and pseudomatter operators to form gauge
invariant operators which act on the ground state of the
gauge Higgs theory. A “pseudomatter” operator [11] is an
operator which transforms under infinitesimal gauge trans-
formations like a matter field (usually in the fundamental
representation of the gauge group), but which is con-
structed entirely from the gauge field. We begin with a
simple and well-known example from continuum electro-
dynamics in an infinite volume, due originally to Dirac
[12]. This is the operator

ρðx;AÞ ¼ exp

�
−i

e
4π

Z
d3zAiðzÞ

∂
∂zi

1

jx − zj
�
: ð10Þ

Let us consider gauge transformations gðxÞ ¼ exp½iθðxÞ�,
and we separate out the zero mode θðxÞ ¼ θ0 þ θ̃ðxÞ. It is
easy to verify that under such transformations

ρðx; g ∘AÞ ¼ eiθ̃ðxÞρðx;AÞ: ð11Þ

Therefore ρ transforms like a matter field under all
infinitesimal gauge transformations, but not under a global
U(1) transformation. We can use this operator to construct
physical states containing a single static charge in an
infinite volume, e.g.,

jΨxi ¼ a†ðxÞρðx;AÞjΨ0i; ð12Þ

where a† is the creation operator in (6). Due to its
invariance under infinitesimal transformations, this state
satisfies the Gauss Law constraint, and hence qualifies as a
physical state. It is, in fact, an exact energy eigenstate of
free quantum electrodynamics with a static source.
We note again that while the operator ã†ðxÞρðx;AÞ is

invariant under local gauge transformations, it still trans-
forms under global U(1) transformations. This is the hall-
mark of an operator which can create a physical state
associated with a definite isolated charge, given that the
system is in a phase such that the ground state is itself an
eigenstate of zero charge. In the case of ordinary electro-
dynamics, such charged states do not exist in a finite periodic
volume, and this is associated with the fact that the Poisson
equation cannot be solved for a point source in a periodic
volume. Intuitively, it is impossible to place a single charge
in a periodic volume because there is nowhere for the electric
field lines to end. Generalization of (12) to a finite periodic
volume requires at least two opposite charges, and this will
be relevant to our efforts below. In a gauge Higgs theory
there is also the option of combining a†, b† operators with a
Higgs field to create states which are not only gauge
invariant, but also charge neutral, and this is the option that
was pointed out long ago, in the context of the Standard
Model, by Fröhlich, Morcio and Strocchi [13] and ‘t Hooft
[14] (see also Maas et al. [15]). A single charge neutral state
can, in fact, exist in a periodic volume in any phase, but the
use of pseudomatter operators expands the class of quantum
states that can be used to describe physical fermions in a
gauge theory, and in fact such operators are required to
describe energy eigenstates even in ordinary QED.
The operator (10) is only a special case of pseudomatter

operators associated with a choice of physical gauge (i.e., a
gauge free of propagating ghosts). Let gFðx;AÞ be a gauge
transformation, in either an Abelian or non-Abelian gauge
theory in either the continuum or the lattice, which takes the
gauge field into some physical gauge satisfying a condition
FðAÞ ¼ 0, which can be imposed independently on each
time slice. One may readily verify that under an arbitrary
infinitesimal gauge transformation gðxÞ,

gFðx; g ∘AÞ ¼ gFðx; AÞg†ðxÞ; ð13Þ

and therefore g†Fðx; AÞ qualifies as a pseudomatter field. It
is also not hard to check that gCðx;AÞ ¼ ρ†ðx; AÞ is
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precisely the gauge transformation, in ordinary electrody-
namics, which takes the gauge field AμðxÞ to Coulomb
gauge. The gauge transformation to axial gauge, accom-
plished by Wilson lines

gaxialðx; y; z;AÞ ¼ P exp

�
ie
Z

z

∞
dz0A3ðx; y; z0Þ

�
; ð14Þ

is another example, again satisfying (13). Of course not all
gauge choices are conditions on the gauge field alone. In
unitary gauge in particular the condition is ϕðxÞ ¼ 1, and

gunitaryðx;ϕÞ ¼ ϕ�ðxÞ: ð15Þ
In this case the transformation to the gauge is actually a
matter, rather than a pseudomatter field.
In previous work [3,4] we have found it useful to

employ, for the construction of physical states containing
static charges, a type of pseudomatter operator originally
introduced by Vink and Wiese [16] in an effort to devise a
gauge (the “Laplacian” gauge) free of Gribov ambiguities.3

On the lattice these operators are the eigenstates ζnðx;UÞ of
the covariant lattice Laplacian operator

ð−DiDiÞxyζnðy;UÞ ¼ κnζnðx;UÞ; ð16Þ

where

ð−DiDiÞxy ¼
X3
k¼1

½2δxy −UkðxÞδy;xþk̂ − U†
kðx − k̂Þδy;x−k̂�;

ð17Þ
defined at fixed time on a D ¼ 4 dimensional periodic
lattice.4 Like ρðx;AÞ, the ζnðx;UÞ transform covariantly
like charge q ¼ 1 matter fields, under infinitesimal gauge
transformations, but are invariant under global U(1)
transformations.
We then consider constructing a set of N ¼ 2nev þ 1

physical fermion-antifermion states using the first nev
Laplacian eigenstates with lowest κn as follows (no sum
over i):

ΦiðR;ψ ; ψ̄ ; UÞ ¼ fã†ðxÞξ�i ðx;UÞgfb̃†ðyÞξiðy;UÞgΨ0ðUÞ;
ð18Þ

where Ψ0ðUÞ is the ground state of the pure gauge theory,
and where

ξiðx;UÞ ¼

8>><
>>:

ζiðx;UÞ i ≤ nev
φðxÞζ�i−nevðx;UÞ nev þ 1 ≤ i ≤ 2nev

ϕðxÞ i¼ 2nev þ 1

: ð19Þ

The pseudomatter fields with index nev < i ≤ 2nev allow
for the possibility mentioned below (9), that the ã; b̃
operators could have be chosen to transform with the
opposite charge. All fermionic expectation values are
computed in the local measure

Dψ̄RDψ̄LDψRDψLe−SM ; ð20Þ

where SM was defined in (8). In this measure

hψLðxÞψ̄RðyÞi ¼
1

M
δxyφðxÞ

hψRðxÞψ̄LðyÞi ¼
1

M
δxyφ

�ðxÞ: ð21Þ

The bra state corresponding to (18)

hΦij ¼ hΨ0ðUÞjfb̃ðyÞξ�i ðy;UÞgfãðxÞξiðx;UÞg ð22Þ

is obtained by the replacements

ã†ðxÞξ�i ðx;UÞ → ãðxÞξiðx;UÞ
b̃†ðyÞξiðy;UÞ → b̃ðyÞξ�i ðy;UÞ: ð23Þ

While these replacements might seem obvious from the
point of view of canonical quantization, they are a little less
obvious in the Euclidean formulation, where ψ̄L;R and ψL;R
are independent variables. Nevertheless, one can check that
this is what is required in order that states have positive
norms in the measure (20). Likewise, it is necessary that
ã; b̃ in the ket go over to −ã†;−b̃† in the bra. In more
generality, the correspondence required by positivity in the
measure (20), between operators in the ket and operators in
the bra is

ket bra

ψ̄R → φ�ψL

ψ̄L → φψR

ψR → −ψ̄Lφ

ψL → −ψ̄Rφ
�:

ð24Þ

One might ask what is wrong, in a nonconfining theory,
with a state containing a single charge, e.g.,

Φsingle
i ðRÞ ¼ ã†ðxÞζ�i ðx;UÞΨ0: ð25Þ

The answer is that a state of this sort does not propagate,
i.e.,

3An application of this gauge, which was intended to define a
gluon mass in non-Abelian gauge theories and which has certain
points of similarity to our constructions, is found in Philipsen
[17].

4These eigenstates are computed numerically via the Arnoldi
algorithm, as implemented in the ARPACK software package
(https://www.caam.rice.edu/software/ARPACK/).
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hΦsingle
i ðRÞjT jΦsingle

i ðRÞi ¼ 0: ð26Þ

The reason for this is that the Laplacian eigenstates ζiðx; UÞ
contain, apart from their space variation, a global,
x-independent but field-dependent phase factor expðiγi½U�Þ
which depends on U on a time-slice. The left-hand side of
(26) vanishes due to wild oscillations of this phase factor.
The existence of this global phase factor was recognized
already in the original work of Vink andWiese [16]. For the
same reason, a state of the form

ΦijðRÞ ¼ fã†ðxÞζ�i ðx;UÞgfb̃†ðyÞζjðy;UÞgΨ0ðUÞ ð27Þ

with i ≠ j will also not propagate. Only for i ¼ j do the
global phase factors cancel out on a time slice. So we will
restrict the calculation to a set of states of the form (18).
The states indicated in (18) are of two types. For the

statesΦi for 1 ≤ i ≤ 2nev, gauge invariance is implemented
by attaching pseudomatter operators, in this case Laplacian
eigenstates which depend only the gauge field, to the
fermion/antifermion creation operators a†, b†. The last
state, Φ2nevþ1, is different, in that gauge invariance is
achieved by neutralizing the fermion charges with a
Higgs field, thereby creating two neutral objects at sites
x, y. For the pseudomatter states, one might ask why we
avoid the simpler, and computationally much cheaper
alternative of connecting a†, b† with Wilson lines of
various shapes, as is common in QCD spectrum calcu-
lations. The answer is that Wilson lines are not the best
choice in the Higgs or massless phases. There are two
possible constructions. First, one could construct states
with a short Wilson line connecting each fermion to a
nearby Higgs, and Φ2nevþ1 is precisely a state of that kind.
Second, one could construct states in which, e.g., an on-
axis fermion-antifermion pair is connected by a Wilson
line. It is not hard to see that the energy expectation value of
such states rises linearly with fermion separation, even in
the massless and Higgs phases. In canonical formulation in
temporal gauge one simply observes that the E2 operator,
acting on the line, gives a contribution proportional to the
length of the line, regardless of the vacuum state. What
distinguishes the Higgs phase from the confinement phase
is precisely the fact that in the Higgs phase one can
construct fermion-antifermion states, using pseudomatter
fields which depend on the gauge field alone, whose energy
does not increase linearly with separation. In fact this is
the difference between the separation-of-charge (Sc) con-
finement found in the confinement phase, and color
(C) confinement found in the Higgs phase, as discussed
at length in [5]. Of course almost any state will eventually
evolve to the ground state in Euclidean time, including
Wilson line states. But if we want to find low-lying excited
states of the fermion-antifermion system in the Higgs
phase, along the lines suggested here, it is of course best
to start with a basis of states that may have a substantial

overlap with low-lying energy eigenstates, and which do
not start off with an energy expectation value rising linearly
with fermion separation.

IV. SEARCHING FOR EXCITED STATES

The problem of finding the first excited state of the
fermion-antifermion system is simplified by the fact that, in
this particular model, at couplings β ¼ 3.0, γ ¼ 1.0, one of
the states in the subspace spanned by the fΦiðRÞg at each R
turns out to be very nearly an exact energy eigenstate (or,
more precisely, an eigenstate of the transfer matrix). This
means that states which are constructed to be orthogonal to
this state will all be dominated, after a sufficient interval of
evolution in Euclidean time, by the first excited state.
Let τ ¼ e−H be the transfer matrix, where H, which is

formally just the logarithm of τ, would be the Hamiltonian
operator in the continuous time limit, and let T ¼ e−ðH−E0Þ
be the transfer matrix divided by its highest eigenvalue
e−E0 , where E0 is the ground state energy of the vacuum in
the absence of static sources. From here on, in a slight
departure from normal terminology, I will refer to the
rescaled operator T as simply the “transfer matrix,” since it
is the matrix elements of this rescaled operator which we
actually compute numerically.
We restrict attention to the Hilbert space containing a

static fermion-antifermion pair a distance R apart. The
nonorthogonal states fjΦiig, defined in the last section,
span a tiny N ¼ 2nev þ 1 dimensional subspace of this
Hilbert space, with a matrix of overlaps denoted

½O�ijðRÞ ¼ hΦiðRÞjΦjðRÞi: ð28Þ

We also define

½T T �ijðRÞ ¼ hΦiðRÞjT T jΦjðRÞi; ð29Þ

where T refers to a number of time steps in Euclidean time.
Both [O] and ½T T � are finite N × N matrices, and we are
interested in diagonalizing the operator T T (transfer matrix
to the power T) in the small subspace of Hilbert space
spanned by the nonorthogonal states fjΦiig. This is
achieved, at each R, T, by solving the generalized eigen-
value problem

½T T �ðRÞυðnÞðR; TÞ ¼ λnðR; TÞ½O�ðRÞυðnÞðR; TÞ: ð30Þ

We then have a set of N ¼ 2nev þ 1 orthogonal states

ΨnðR; TÞ ¼
XN
i¼1

υðnÞi ðR; TÞΦiðR; TÞ; ð31Þ

with the property that

hΨmðR; TÞjT T jΨnðR; TÞi ¼ λnðR; TÞδnm; ð32Þ
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despite the fact that in general the ΨnðR; TÞ are not
eigenstates of the transfer matrix in the full Hilbert space.
Let fΩαðRÞg denote the exact eigenstates of the transfer
matrix, with eigenvalues exp½−Eα� in the Hilbert space
containing the two static charges. Then we have

T T ¼
X
α

jΩαihΩαje−EαT ð33Þ

and

λnðR; TÞ≡ hΨnðR; TÞjT T jΨnðR; TÞi
¼

X
α

jhΨnjΩαij2e−EαT

¼
X
α

anαðR; TÞe−EαT: ð34Þ

Now at large T, taking Ω1ðRÞ to be the ground state of the
system containing the two static fermions, this matrix
element would seem to converge to

λnðR; TÞ → an1ðR; TÞe−E1ðRÞT; ð35Þ

and in this way (assuming that an1ðR; TÞ converges to a
constant), we could determine only the ground state energy
E1ðRÞ from a logarithmic plot of λnðR; TÞ at large T.
But this assumes that all the an1 are nonzero. Suppose
instead that

Ψ1ðR; TÞ ≈Ω1ðR; TÞ; an1 ≈ δn1: ð36Þ

Then

λnðR; TÞ → an2ðR; TÞe−E2ðRÞT for n ≠ 1: ð37Þ

If the approximate equality in (36) is close enough to an
exact equality, then we may in principle extract the ground
state energy E1 from λ1ðR; TÞ, and the energy of the first

excited state from the large Euclidean time behavior of any
of the λn>1ðR; TÞ.
It must be noted in passing that the connection between

energy and Euclidean time evolution depends on the
positivity of the transfer matrix. To the author’s knowledge
this positivity has never been proven for the Smit-Swift
model, or for other attempts to put chiral gauge theories on
the lattice. That is an important question of principle, but
we will ignore it for now. It does not come up in the results
to be presented next.

V. THE CALCULATION

In order to carry out the search for excited states as
described in Sec. IV, we need to compute numerically the
matrices shown in (28), (29), and then solve the generalized
eigenvalue problem (30). Expressed as Euclidean vacuum
expectation values, these matrices are

½T T �ji¼hb̃ðy; tþTÞξ�jðy; tþT;UÞãðx; tþTÞξjðx; tþT;UÞ
× ã†ðx; tÞξ�i ðx; t;UÞb̃†ðy; tÞξiðy; t;UÞi; ð38Þ

and

½O�ji ¼ hb̃ðy; tÞξ�jðy; t;UÞãðx; tÞξjðx; t;UÞ
× ã†ðx; tÞξ�i ðx; t;UÞb̃†ðy; tÞξiðy; t;UÞi: ð39Þ

We expand in a Taylor series the terms in e−S involving
Dμ� and integrate over fermion fields in the measure (20),
keeping only terms at leading order in the hopping
expansion and discarding, since we work only in the
quenched approximation, all fermion loops. We define

q0−ji ðx; tÞ ¼ 2ξiðx; t;UÞξ�jðx; t;UÞ
q0þji ðx; tÞ ¼ 2ξ�i ðx; t;UÞξjðx; t;UÞ; ð40Þ

and

QþT
ji ðx; tÞ ¼ ½ξiðx; tÞ;−φ�ðx; tÞξiðx; tÞ�D4þðx; tÞ

�YT−1
τ¼1

Fðx; tþ τÞD4þðx; tþ τÞ
��φðx; tþ TÞξ�jðx; tþ TÞ

−ξ�jðx; tþ TÞ
�

Q−T
ji ðx; tÞ ¼ ½ξjðx; tþ TÞ;φ�ðx; tþ TÞξjðx; tþ TÞ�½D4−ðx; tþ TÞ

�YT−1
τ¼1

Fðx; tþ T − τÞD4−ðx; tþ T − τÞ
��

φðx; tÞξ�i ðx; tÞ
ξ�i ðx; tÞ

�
;

ð41Þ

where

FðxÞ ¼ diag½φðxÞ;φ�ðxÞ�: ð42Þ

Then the overlap matrix is

½O�jiðRÞ ¼ hΦjjΦii ¼ hq0−ji ðx; tÞq0þji ðy; tÞi; ð43Þ

and to leading order in 1=M (i.e., the leading term in the
hopping parameter expansion)
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½T T �jiðRÞ ¼ hΦjjT T jΦii ð44Þ

¼hQþT
ji ðx; tÞQ−T

ji ðy; tÞ: ð45Þ

These are vacuum expectation values of operators which
depend only on the gauge and scalar field variables,
obtained from numerical simulation of U(1) gauge Higgs
theory. From those expectation values we obtain λnðR; TÞ
by the method described in Section IV.
It should be noted that in (43), (45) we have dropped

powers of the hopping parameter 1=M2. When included,
these simply add a constant of 2M to the energy of the static
fermion-antifermion pair, in each energy eigenstate.

VI. RESULTS

Dropping the fermionic terms, which in the quenched
version do not affect the thermodynamics, the action in (1)
is simply the Abelian Higgs model with a Higgs field of
unit charge, and this is a theory which has been studied
extensively over the years, both with and without a
unimodular constraint, e.g., in [18–23]. The first step,
before computing excitation energies, is to map out the
phase diagram of the Abelian Higgs model, and this phase
diagram of that theory was approximately determined long
ago via lattice Monte Carlo by Ranft et al. [18], on lattices
that were tiny and by numerical methods that were a little
primitive by today’s standards. A more accurate determi-
nation is shown in Fig. 1. The transition line between the
massless and Higgs phases is associated with a “kink” in a
plot of the link action hRe½ϕ�ðxÞUiðxÞϕðxþ îÞ�i vs γ at
fixed β, as observed previously in the Abelian Higgs model
with a double-charged q ¼ 2 Higgs field [24]. The remain-
ing transition lines were determined from the peaks of
lattice volume dependent link and plaquette susceptibil-
ities.5 I would mention here that although the confinement
and Higgs regions are not entirely separated by a thermo-
dynamic transition, they are in fact different phases,
characterized by different types of confinement (“separa-
tion-of-charge” and color confinement, respectively), and
distinguished by the spontaneous breaking of global center
symmetry, as detected by an order parameter analogous to
the Edwards-Anderson order parameter for a spin glass. For
a detailed discussion of this point, cf. [5], where the
transition line is computed for the SU(2) gauge Higgs
model. For the q ¼ 1 Abelian Higgs model with a Higgs
field of unit charge, the transition line separating the
confinement and spin glass (i.e., Higgs) phases has not
yet been determined.
We look for excitations in the spectrum of static fermions

at two points in phase diagram. The first, at β ¼ 3.0;
γ ¼ 1.0 is deep in the Higgs phase. The second, at

β ¼ 3.0; γ ¼ 0.5, while still in the Higgs phase, is some-
what closer to the massless to Higgs phase transition at
β¼3.0, γ ¼ 0.32. We will find some qualitative differences
in these two cases but do not attempt, in this article,
a systematic study of the situation throughout the
Higgs phase.
In this work the number of Laplacian eigenstates is

nev ¼ 4, so there are nine states Φ1−9ðRÞ at each fermion-
antifermion separation R.
The mass gap of the theory in the Higgs phase is

extracted from correlators of gauge invariant operators

AiðxÞ ¼ Im½ϕ�ðxÞUiðxÞϕðxþ îÞ�; ð46Þ

which can be recognized as the lattice 4-vector potential
AiðxÞ in unitary gauge. We construct the zero-momentum
operator

Aiðk ¼ 0; tÞ ¼ 1

L3

X
x

Aiðx; tÞ; ð47Þ

and the correlator6

GðTÞ ¼ 1

3

X3
i¼1

hAiðk ¼ 0; tÞAiðk ¼ 0; tþ TÞi: ð48Þ

The operator (46) has been used previously to obtain the
photon mass, notably by Lewis and Woloshyn [23], who
also obtained some intriguing evidence of further excita-
tions of the massive photon. For our purposes, however, it
is the ground state mass of the vector boson which is
decisive, as far as the stability of the first excited state of the
fermion-antifermion pair is concerned. Of course if the
unimodular constraint on the Higgs field is replaced by a
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FIG. 1. Phase diagram of the q ¼ 1 Abelian Higgs model.

5I am grateful to Kazue Matsuyama for supplying me with the
data for this figure.

6Suitably modified for time periodicity. Of course, since any
axis can be defined as the “time” axis, we make can make use of
both time translation symmetry and hypercubic symmetry on the
lattice to increase our statistics.
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Mexican hat potential there will also be a neutral Higgs
particle, whose mass has been computed in, e.g., [22], but
this mode is absent in the action of (1).
The results for GðTÞ vs T, obtained at β ¼ 3.0 and γ ¼

1.0 on a 164 lattice volume, are shown on a logarithmic plot
in Fig. 2. Fitting the data to a simple exponential falloff, the
photon mass in lattice units is determined to be mphoton ¼
0.530ð2Þ at γ ¼ 1.

A. Remarks

It may be helpful to make some general remarks before
proceeding to the numerical results. What will be seen in
those results is thatΨ1 is very close to an exact eigenstate of
the transfer matrix, and, by construction, the Ψn>1 are
orthogonal, or very nearly orthogonal, to Ψ1. The quali-
fication “nearly” comes from slight numerical inaccuracies
in the solution of the generalized eigenvalue problem,
which is carried out by standard Matlab software. TheΨn>1
are not eigenstates of the transfer matrix, at least not outside
the truncated space spanned by the Φi. However, because
of their (near) orthogonality toΨ1, which is an eigenstate in
the full Hilbert space, the evolution of the λn>1ðR; TÞ will
be dominated by energy eigenvalues of the full theory
which differ from E1, as explained in Sec. IV. At γ ¼ 1, Ψ1

is the ground state, and is essentially, for nev ¼ 4, the
(appropriately normalized) state Φ9. The situation is a little
different, as we will see, at γ ¼ 0.5, which is closer to the
massless phase.
Note that in the continuum limit of the Abelian Higgs

model the energies of static fermions would all be divergent
due to the usual perturbative self-energy effects. This is a
UV divergence which is not of much interest here. Our
focus is on the gap between the ground state of a fermion-
antifermion pair and the excited states, which is expected to
arise from dynamics at the length scale of the Higgs
mechanism. Although one could in principle study the

scaling of that gap in the continuum limit, there is not so
much motivation to do so. This is because, as already noted,
the continuum limit of the Smit-Swift model is not of much
interest, so far as chiral gauge theories are concerned.
The numerical results reported below were obtained on a

143 × 22 lattice volume, with data taken on 600 lattices.
These were obtained from 10 independent runs, with data
taken (after 2000 thermalization sweeps) on 60 lattices
separated by 200 update sweeps. Error bars are obtained as
the standard error of the mean derived from the ten separate
runs. In all cases we employ nev ¼ 4 Laplacian eigenstates.
In the Wilson mass terms WM1 (in (2)) and WM2 defined
in (4) we set r ¼ 1.
I have not attempted, in this exploratory investigation, to

examine volume dependence, since computation time in
these calculations increases dramatically with lattice vol-
ume. For that reason the possibility that some effect at
larger volumes would alter the conclusions cannot, at this
stage, be excluded.

B. Higgs phase at β= 3, γ = 1.0

1. Wilson term WM1

We begin with the fact that Ψ1 is a near-exact eigenstate
of the full transfer matrix. The justification is seen in a log
plot, Fig. 3(a), of λ1ðR; TÞ vs T, where R, in this example, is
R ¼ 4.243. There is nothing special about this particular
choice of R, and we have very similar plots at all R values,
but for the sake of comparison wewill stick to this choice in
all subsequent plots of λnðR; TÞ shown in this and the
following subsections. The data fits a straight line on a log
plot over the full range of Euclidean time, starting at T ¼ 1,
and extrapolates to 1.05 as T → 0. This can only be true if
Ψ1ðR; TÞ ≈Ω1ðRÞ for all T. The next obvious question is
whether this ground state is simply the neutral state
obtained by multiplying fermion operators by the scalar
field, a state which is independent of the pseudomatter
fields, and for nev ¼ 4 this is the stateΦ9. The answer to the
question is yes. One can easily compute the overlap, at any
R, of the ground state with the neutral state

f ¼ jhΦ9ðRÞjΨ1ðR; TÞij2
hΦ9ðRÞjΦ9ðRÞi

¼ 1

4

����
X9
i¼1

υð1Þi ½O�9i
����
2

; ð49Þ

where ½O�ij and υðnÞi were defined in Eqs. (28) and (30). The
result, at all R, T, is that the overlap is within 0.1% of unity.
This far into the Higgs phase, the ground state is created by
precisely the type of operator suggested long ago by
Fröhlich, Morcio and Strocchi [13] and by ‘t Hooft [14].
What is new, as we will now see, is that this is not the only
stable and localized quantum state of the system. In some
regions of the phase diagram it may not even be the
ground state.
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10-4

 0  1  2  3  4  5

G
(T

)

T

FIG. 2. The GðTÞ gauge field correlator vs T, where GðTÞ is
defined in (48). The correlator was computed for β ¼ 3, γ ¼ 1.0
on a 164 lattice volume. On this log plot, the photon mass m ¼
0.530ð2Þ is obtained from the slope of a straight-line fit to
the data.
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In Fig. 3(b) we display a plot of λ2ðR; TÞ, again at
R ¼ 4.243. The first five data points are fit fairly well by a
straight line on a log plot, which extrapolates to only a little
below 1.0 at T ¼ 0. So the data in this range seems to be
dominated by a single eigenstate of the transfer matrix, with
a slope corresponding to an energy E3 ¼ 1.064ð4Þ. But Ψ2

is not an exact eigenstate, and at higher T a small admixture
of the first excited state becomes dominant. The corre-
sponding energy is not so easy to extract from only the data
in the range T ≥ 6, and the precise value is rather sensitive
to the range of the fit. However, if we do make a fit to
the range T ¼ 6–10, the energy comes out to be, rather
imprecisely, E2 ¼ 0.49ð8Þ.
Fortunately, the first excitation energy E2 can be deter-

mined more accurately from λ3ðR; TÞ, as seen in Fig. 3(c),
same R as before. A fit to the data in the range T ¼ 4–10
yields E2 ¼ 0.45ð1Þ. Of course, as stated previously, the
energy of the first excited state could be determined in
principle from the large-T behavior of any λn>2. Figure 3(d)
shows a fit to λ4ðR; TÞ in the same T ¼ 4–10 range. The fit
is not as good, the error bar is larger, but the energy comes
out to be E2 ¼ 0.50ð6Þ, compatible with the value derived
from λ3. Generally the λ3ðR; TÞ values give a more accurate
estimate for E2 as compared to λ4ðR; TÞ, but there are a few
isolated exceptions at some separations R, in which the χ2

value of the fit to λ3 is much larger than the corresponding
fit for λ4, and in those few cases we use the latter fit.
The values for E1;2;3ðRÞ obtained by these methods are

shown in Fig. 4. The line denoted “one photon threshold” is
obtained by adding the photon mass of mph ¼ 0.530 in
lattice units to the ground state energy E1 ¼ 0.379. We see
that E3 is above this threshold, so it is probably best
understood as the ground state plus one photon. But the
energy E2 is well below that threshold. It means that a
ground stateþ one photon interpretation for this excited
state is untenable. E2 is the energy of a stable excited state.
It cannot decay to the ground state by photon emission.
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FIG. 3. λnðR; TÞ vs T for the WM1 nonlocal mass term, at R ¼
4.243 and γ ¼ 1.0. (a) The ground state energyE1 is derived from a
fit to λ1ðR; TÞ over the full range ofT (error bars are smaller than the
symbol size). (b) The energyE3 is extracted from a fit to λ2ðR; TÞ in
the range T ¼ 1–5. (c) The energy E2 is derived from a fit to
λ3ðR; TÞ in the range T ¼ 4–10. (d) Energies E2 can also be
extracted from a fit to λ4ðR; TÞ at large T, and these are consistent
with those derived from λ3, albeit with larger χ2 and error bars.
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FIG. 4. Energies E1, E2, E3 vs R at β ¼ 3, γ ¼ 1, shown
together with the one photon threshold. The Wilson mass
term is WM1.
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2. Wilson term WM2

The analysis of data obtained with an action containing
the Wilson term WM2 (4) is identical to the analysis
described in the previous subsection. The energies are
slightly different numerically, as would be expected away
from the continuum limit, but everything else is qualita-
tively the same. The energy eigenvalues are displayed in
Fig. 5. The first excited state, lying well below the one
photon threshold, is stable.

3. No Wilson term, r = 0

It is also interesting to set r ¼ 0, just to compare with the
previous results. Of coursewith r ¼ 0 this U(1) theory is not
chiral in any sense because of the doublers. There must now
be left and right-handed fermion components which are
degenerate in mass, and have the same Abelian charge. As
before, the ground state energy is easy to compute from
λ1ðR; TÞ, as seen in Fig. 6(a). However, there is an obstacle
to obtaining accurate estimates for the first excited states,
which is apparent in the data for λ2ðR; TÞ shown in Fig. 6(b),
where the straight line is only to guide the eye. Note that the
data in this figure seems to oscillate around some average
straight line.7 We can extract an excited state from the first
four data points [Fig. 6(c)], noting that the best fit extrap-
olates very close to 1 at T ¼ 0. The oscillations are some-
what less pronounced in λ4ðR; TÞ, as shown in Fig. 6(d), and
we can attempt a best fit through the last five data points,
ignoring the very large χ2 values and error bars that result.
The energies obtained by this procedure are shown in Fig. 7,
with the convention that the En are ordered by increasing
energy, whether or notE1 corresponds to λ1.What is striking
is that the lowest energies seem to lie below the energies
obtained from λ1, suggesting that the lowest energy state is
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FIG. 5. Same as Fig. 4, but for the WM2 Wilson term.
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FIG. 6. Data points for r ¼ 0 (naive fermions) at γ ¼ 1.0. As in
all previous plots, R ¼ 4.243. (a) λ1ðR; TÞ vs T. (b) λ2ðR; TÞ vs T.
The straight line is only to guide the eye. (c) λ2ðR; TÞ vs T with a
fit through the first four data points. (d) λ4ðR; TÞ vs T, with a fit to
the last five data points.

7Such oscillatory behavior in Euclidean time is known to be
characteristic for operators associated with staggered fermions,
and naive fermions are equivalent to a set of staggered fermions.
Perhaps this accounts for the oscillations seen here. I thank
Maarten Golterman for this remark.
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not simply the stateΦ9 obtained by neutralizing chargewith
the Higgs field. On the other hand, the error bars on these
lower energies are huge, as is the scatter in the data, and we
may question whether this result is even qualitatively
trustworthy. For this reason it is worth reexamining the
situation at a different point in the phase diagram.

C. Higgs phase at β= 3, γ = 0.5

The point in the phase diagram at β ¼ 3, γ ¼ 1 is very
deep in the Higgs phase. Although we do not attempt in this
paper to explore all regions of the Higgs phase, it is still of
interest to carry out this investigation at a point which is a
little closer to the massless-to-Higgs transition line. The
transition to the massless phase at β ¼ 3 occurs at γ ¼ 0.32,
and we will study a point a little above that transition point,
at γ ¼ 0.5. We recompute the photon mass in the pure
gauge Higgs system by the means described earlier,
arriving at mph ¼ 0.324ð7Þ in lattice units.

1. Wilson term WM1

Once again, the state Ψ1ðR; TÞ seems to be very close to
an exact eigenstate of the full transfer matrix, as is evident
from the plot of λ1ðR; TÞ shown in Fig. 8(a). In this case,
however, Ψ1 is not entirely the neutral stateΦ9. Instead, the
squared overlap (49) is f ≈ 0.89 (at all R, T), indicating a
non-negligible mixture with pseudomatter fields. Again
we extract energies from plots of λ4ðR; TÞ and λ2ðR; TÞ
[Figs. 8(b) and 8(c)]. But here we again find evidence that
the energy eigenvalues extracted from λ1ðR; TÞ are actually
not the ground state energies of the system at any R. The
energies derived from the large T behavior of λ4ðR; TÞ are
consistently a little below those values. There is a lot of
scatter in our estimate of those energies, but it is still an
improvement over what is seen Fig. 7. Changing the fitting
interval from T ¼ 7–10 to, e.g., T ¼ 6–9, affects those
estimates slightly, but the energies remain below the points
labeled E2. Despite the scatter in the data, it is clear that the
energy separations between E1ðRÞ and E2ðRÞ are in general

less than the photon mass, so the first excited state is again
stable.
One may ask how the energy derived from λ4 can be less

than that extracted from λ1. The answer is that the index n
refers to the magnitude of the λn in descending order, so that
by definition λ1 > λ4, but the energies are derived from the
slope of the λn in some range on a log plot. It can happen that
in some range of T the slope of λ4 on a log plot is larger (i.e.,
less negative) than that of λ1, despite the fact that λ1 > λ4,
and this is in fact clear from comparing Figs. 8(a) with 8(b).
Of course it must ultimately happen, asT increases, that data
with the less negative slopewill cross the data with the more
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FIG. 7. Energies for r ¼ 0, γ ¼ 1.0.
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FIG. 8. Data for the WM1 Wilson term at β ¼ 3.0, γ ¼ 0.5.
(a) λ1ðR; TÞ vs T. Energy E2 is extracted from this fit. (b) λ4ðR; TÞ
vs T. Energy E1 is extracted from this fit. (c) A higher energy E3

is extracted from a fit to the λ2ðR; TÞ data in the range T ¼ 5–10.
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negative slope, which would necessitate a relabeling of the
λn beyond the crossing point, but this is unnecessary in the
range of T that has been investigated.
I have also looked at the WM2 case, and in this case the

ground state still appears to be Ψ1. But the χ2 values, error

bars, and scatter for the energy of the first excited state are
very large, comparable to what is seen in Fig. 7, and, like
the data in that figure, must be regarded as untrustworthy.

2. No Wilson term, r = 0

The phenomenon seen in Figs. 7 and 9, where the ground
state energy seems to lie a little below the energy eigenvalue
deduced fromΨ1, is very evident in the r ¼ 0 case at γ ¼ 0.5.
This fact is already seen from the plot of λ1ðR; TÞ shown in
Fig. 10(a), where the deviation of the last few data points
from a straight line fit is an indication of the presence of a
state of lower energy than the energy extracted from the slope
of that line. We can derive both a lower and a higher energy
eigenvalue from fits to the large and small T data, respec-
tively, of λ2ðR; TÞ [Fig. 10(b)]. The oscillation seen for r ¼ 0
at γ ¼ 1 is still there, although it is much less pronounced
than in the data for λn>2. The three energy eigenvalues
determined from the λ1, λ2 data are shown in Fig. 11.We note
that the energy E1 can also be determined from the large-T
data of λ3 and λ4, and these values are consistent with the
ground state energy determined from λ2. Since the energy
eigenvaluesE2;3 exceedE1 þmph, they would be consistent
with a combination of ground stateþmassive photon or,
conceivably, a long-lived metastable state.

VII. CONCLUSIONS

U(1) chiral gauge Higgs theory does not seem to be of
much physical interest in its own right. The intention in this
article was to gain experience in applying the methods of
Refs. [3,4] for vectorlike theories, specifically SU(3) gauge
Higgs and the q ¼ 2Abelian Higgs model respectively, to a
simple gauge Higgs theory with static chiral fermions, and
no fermion loops. Even with nondynamical fermions, and
even with a simple U(1) gauge group, there are substantial
complications as compared to the vectorlike theories. But in
the end we find a similar result: there is at least one stable
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FIG. 9. Energies E1, E2, E3 vs R at β ¼ 3, γ ¼ 0.5, shown
together with the one photon threshold. The Wilson mass term is
WM1. Note that the energies derived from λ4 lie below the
energies from λ1.
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r ¼ 0 case with no Wilson mass term. Here again, the energies
extracted from fits to λ1 are not the ground state energies.

JEFF GREENSITE PHYS. REV. D 104, 034508 (2021)

034508-12



excitation in the Higgs phase of a static fermion-
antifermion pair, irrespective of pair separation.
Obviously the real question of interest is whether a result
of this kind will be found in the electroweak sector of the
Standard Model. Perhaps a more sophisticated approach to
lattice chiral fermions in the electroweak sector, e.g., [25],
could be applied. Such an approach, involving the lattice
overlap operator, would be numerically challenging even in
the quenched approximation (certainly by comparison to

what we have done so far), but perhaps the calculation is
feasible. I hope to return to this question in a subsequent
publication.
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