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We investigate the phase transition of the four-dimensional single-component ϕ4 theory on the lattice using
the tensor renormalization group method. We have examined the hopping parameter dependence of the bond
energy and the vacuum condensation of the scalar field hϕi at a finite quartic coupling λ on large volumes up
to V ¼ 10244 in order to detect the spontaneous breaking of the Z2 symmetry. Our results show that the
system undergoes the weak first-order phase transition at a certain critical value of the hopping parameter.
We also make a comparative study of the three-dimensional ϕ4 theory and find that the properties of the
phase transition are consistent with the universality class of the three-dimensional Ising model.
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I. INTRODUCTION

The issue of the triviality of the four-dimensional (4d) ϕ4

theory has been a theoretical concern among particle
physicists, because it is related to the scalar sector in the
standard model [1–13]. The single-component ϕ4 theory
becomes equivalent to the Ising model in the infinite limit
of the quartic coupling λ ¼ ∞ so that numerical studies of
the 4d Ising model have been performed as a nonpertur-
bative test of the triviality, assuming the universality
[14–20].1 So far, no Monte Carlo calculation has confirmed
the logarithmic correction to the mean-field exponents in
the scaling behavior of the specific heat, which is expected
from the perturbative renormalization group analysis [26].
Moreover, a detailed Monte Carlo study has found a serious
finite-volume effect due to nontrivial boundary effects in
the 4d Ising model [20].
Recently, the authors have investigated the phase

transition of the 4d Ising model with the higher-order
tensor renormalization group (HOTRG) algorithm [27].

The tensor renormalization group (TRG) method,2 which
contains the HOTRG algorithm, has several superior
features over the Monte Carlo method. (i) Since the
TRG provides a deterministic numerical method, it does
not have the sign problem encountered in stochastic
methods, including the standard Monte Carlo simulation,
as confirmed in various studies of quantum field theories
[32,35–41]. (ii) Its computational cost depends on the
system size only logarithmically. (iii) The computational
cost to simulate fermions is almost equivalent to that to
bosons because the TRG can directly manipulate the
Grassmann variables [32–34,42]. (iv) We can obtain the
partition function or the path-integral itself. Thanks to
the above feature (ii), we have been allowed to enlarge the
lattice volume up to V ¼ 10244, which is essentially
identified as the thermodynamic limit, and found finite
jumps for the internal energy and the magnetization as
functions of temperature in the 4d Ising model [27]. These
are characteristic features of the first-order phase transition.
Having shown that the 4d Ising model undergoes the weak
first-order phase transition, our interest turns to the order of
the phase transition in the 4d single-component ϕ4 theory,
which has the globalZ2 symmetry as with the Ising model.3

In this paper, we investigate the phase transition of the 4d
single-component ϕ4 theory with the quartic coupling λ and
the hopping parameter κ, employing the anisotropic TRG
(ATRG) algorithm [30], which was proposed to reduce the
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1In the standard model, we need to consider the ϕ4 interaction
as a part of a combined Higgs-Yukawa sector, whose non-
perturbative aspects were investigated with the lattice simulations
[21,22]. Also there are some recent studies to discuss the triviality
of OðNÞϕ4 theory with the higher-loop beta function [23–25].

2In this paper, the TRG method or the TRG approach refers to
not only the original numerical algorithm proposed by Levin and
Nave [28] but also its extensions [29–34].

3The scenario of the weak first-order phase transition in the
Ising model or the ϕ4 theory has been discussed phenomeno-
logically in some recent studies [43–46].
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computational cost of the TRG method. The ATRG has
been successfully applied to analyze the 4d complex ϕ4

theory at the finite density with parallel computation [41].
Our main purpose is to determine the order of the phase
transition by examining the κ dependence of the bond
energy and the vacuum condensation of the scalar field hϕi
around the critical value of κc for the fixed λ, the latter of
which is an order parameter of the phase transition caused
by the spontaneous Z2 symmetry breaking. We study the
model with a single choice of λ ¼ 40, which is a finite-λ
generalization of the Ising model study performed in
Ref. [27], corresponding to λ ¼ ∞. The choice of λ ¼ 40
may also be helpful to avoid the weak coupling region
affected by the Gaussian fixed point at λ ¼ 0. For com-
parison, we also make the same analysis of the 3d single-
component ϕ4 theory at λ ¼ 40, which is believed to
belong to the universality class of the 3d Ising model.
We discuss the differences between the results of the 3d
and 4d cases.
This paper is organized as follows. In Sec. II we explain

the formulation of the lattice ϕ4 theory and the ATRG
algorithm. We present numerical results for the 4d and 3d
cases in Sec. III and discuss the properties of the phase
transition. Section IV is devoted to summary and outlook.

II. FORMULATION AND NUMERICAL
ALGORITHM

We use the following popular action for the d-dimensional
single-component ϕ4 theory on a lattice Γ:

S½ϕ�¼
X

n∈Γ

�
−κ

Xd

ν¼1

ðϕnϕnþν̂þϕnϕn−ν̂Þþϕ2
nþλðϕ2

n−1Þ2
�
;

ð1Þ

where ν̂ is the unit vector of the ν-direction. This formu-
lation, which is explicit about the relation to the Ising model,
is equivalent to the more conventional expression

S½φ� ¼
X

n∈Γ

�
1

2

Xd

ν¼1

ðφnþν̂ − φnÞ2 þ
1

2
m2

0φ
2
n þ

g0
4!

φ4
n

�
ð2Þ

with

φn ¼
ffiffiffiffiffi
2κ

p
ϕn; ð3Þ

m2
0 ¼

1 − 2λ

κ
− 2d; ð4Þ

g0 ¼
6λ

κ2
: ð5Þ

The partition function is defined by

Z ¼
Z

Dϕ e−S½ϕ� ð6Þ

using the action of Eq. (1) with the path integral measure

Z
Dϕ ¼

Y

n∈Γ

Z
∞

−∞
dϕn: ð7Þ

We express the partition function as a tensor network in the
similar way to Ref. [41]. The continuous variables ϕn are
discretized by the K-point Gauss-Hermite quadrature rule as

Z
∞

−∞
dϕne−ϕ

2
nfðϕnÞ ≃

XK

αn¼1

ωαnfðϕαnÞ; ð8Þ

where ϕα and ωα are the αth node and its weight. The
partition function is thus discretized as

ZðKÞ ¼
X

fαg

Y

n;ν

Mαnαnþν̂
; ð9Þ

where

Mαnαnþν̂
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωαnωαnþν̂
2d
p

exp

�
2κϕαnϕαnþν

−
λ

2d
ðϕ2

αn − 1Þ2

−
λ

2d
ðϕ2

αnþν̂
− 1Þ2

�
: ð10Þ

Each matrix M is approximated by the singular value
decomposition (SVD) with a bond dimension D as

Mαβ ≃
XD

k¼1

UαkσkVβk; ð11Þ

where σk is the kth singular value sorted in the descending
order, andU, V are the orthogonal matrices composed of the
singular vectors. One finally obtains a tensor network
representation for ZðKÞ as

ZðKÞ ¼
X

fi1;…;idg

Y

n∈Γ
Tn;i1���idi01���i0d ; ð12Þ

where

Tn;i1���idi01���i0d ¼
XK

α¼1

Yd

ν¼1

ffiffiffiffiffiffiffiffiffiffiffi
σiνσi0ν

p
UαiνVαi0ν ; ð13Þ

with the shorthand notations such as iν ¼ iν;n and
i0ν ¼ iν;n−ν̂.
In this study, we employ the parallelized d-dimensional

ATRG algorithm developed in Refs. [41,47]. We keep the
bond dimension D fixed throughout the ATRG procedure.
For the swapping bond parts explained in Refs. [30,48], the
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randomized SVD is applied with the choice of p ¼ 2D and
q ¼ 2D, where p is the oversampling parameter and q is
the numbers of QR decomposition.

III. NUMERICAL RESULTS

A. 4d case

The partition function of Eq. (12) is evaluated using the
ATRG algorithm on lattices with the volume V ¼ L4

(L ¼ 2m;m ∈ N) employing the periodic boundary con-
ditions for all the space-time directions. As explained in the
previous section, there are two important algorithmic
parameters. One is the number of nodes K in the Gauss-
Hermite quadrature method to discretize the scalar field.
The other is the bond dimension D. We check the
convergence behavior of the free energy as a function of
K and D by defining the following quantities:

δK¼
����
lnZðK;D¼50Þ− lnZðK¼2000;D¼50Þ

lnZðK¼2000;D¼50Þ
���� ð14Þ

and

δD ¼
����
lnZðK ¼ 2000; DÞ − lnZðK ¼ 2000; D ¼ 50Þ

lnZðK ¼ 2000; D ¼ 50Þ
����:

ð15Þ

Figure 1 shows the K dependence of δK with D ¼ 50 on
V ¼ 10244 at κ ¼ 0.0763059 and 0.0765000, which are
in the symmetric and broken symmetry phases. Note that
κ ¼ 0.0763059 is close to the transition point κc, as we will
see below. We observe that δK decreases monotonically
as a function of K and reaches the order of 10−7 around
K ¼ 1500. This shows that the Gauss-Hermite quadrature
method is not affected by whether the system is in the
symmetric or broken symmetry phase. We also plot the D
dependence of δD in Fig. 2, which shows the fluctuation of
free energy is suppressed as δD ≈ 10−5 up toD ¼ 50. Since
the double-well potential in the ϕ4 theory becomes sharper

for larger λ, we take a large number of K to achieve good
convergence for δK. In the following, numerical results at
λ ¼ 40 are presented for K ¼ 2000 and D ¼ 50 which are
large enough in this study.
The phase transition point κc is determined by following

the method employed in the Ising case [27]. Suppose we

have obtained a coarse-grained tensor TðmÞ
i1i2i3i4i01i

0
2
i0
3
i0
4
after the

m times of coarse-graining. Defining a D ×D matrix as

AðmÞ
i4i04

¼
X

i1;i2;i3

TðmÞ
i1i2i3i4i1i2i3i04

; ð16Þ

we calculate

XðmÞ ¼ ðTrAðmÞÞ2
TrðAðmÞÞ2 : ð17Þ

This quantity, introduced in Ref. [49], possibly counts
the number of the largest singular value of AðmÞ. Therefore,
it is expected that XðmÞ ¼ 1 holds for the symmetric phase
and XðmÞ ¼ 2 for the broken symmetry phase. We may
distinguish both phases by observing the plateau of XðmÞ
after sufficient coarse-graining iterations.
In order to check the applicability of the above method to

determine the value of κc, we calculate κc at λ ¼ 5 and
compare it with the previous results obtained by various
methods including the Monte Carlo simulation [50]. Since
we have found that the convergence of the free energy with
respect to the bond dimension at λ ¼ 5 becomes slightly
slower than that at λ ¼ 40, we have taken D ¼ 55 (and
K ¼ 2000) to evaluate κc at λ ¼ 5. Up to D ¼ 55, the
relative error for the free energy is suppressed to Oð10−5Þ.
Figure 3 shows the m dependence of the value of XðmÞ

at κ ¼ 0.089225 and 0.089300, whose difference Δκ ¼
7.5 × 10−5 is the finest resolution across the transition
point. We find XðmÞ ¼ 1 for m≳ 30 at κ ¼ 0.089225 and
XðmÞ ¼ 2 for m≳ 25 at κ ¼ 0.089300. Based on this
observation, we determine the critical kappa κc ¼
0.0892625ð375Þ on the 10244 lattice, whose error bar is

0 500 1000 1500 2000
K

10
-8

10
-6

10
-4

10
-2

10
0

δ K
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κ = 0.0765000

FIG. 1. Convergence behavior of free energy with δK of
Eq. (14) at κ ¼ 0.0763059 and 0.0765000 as a function of K
on V ¼ 10244.
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FIG. 2. Same as Fig. 1 for δD of Eq. (15).
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provided by the resolution of κ. In Fig. 4 we find that
our result is comparable to the Monte Carlo result κc ¼
0.08893ð20Þ in Ref. [50]. Slight deviation from the
Monte Carlo result may be attributed to the finite size
effect: our result is obtained on the 10244 lattice, while the
previous one is on the 324 lattice.
Having confirmed the validity of the method using XðmÞ,

we determine κc at λ ¼ 40withD ¼ 50 andK ¼ 2000. The
result is κc ¼ 0.076305975ð25Þ on the 10244 lattice, whose
error bar is provided by the resolution of κ. In Fig. 5 we
check the 1=λ dependence of κc toward the Ising limit,
where the result at λ ¼ 100 is obtained in the same way as
the λ ¼ 40 case with D ¼ 50 and K ¼ 2000. We observe
that the value of κc seems monotonically approaching that
in the Ising case. The error bars are provided by the
resolution of κ but they are all within symbols.
We now turn to the investigation of the phase transition

with the bond energy defined by

Eb ¼ −
1

2

∂
∂κ

lnZ
V

ð18Þ

and the vacuum condensation of the scalar field hϕi. Both
quantities are evaluated with the impure tensor method.
Figure 6 plots the bond energy as a function of κ on the
10244 lattice. The resolution of κ becomes finer toward the
transition point and the finest one is Δκ ¼ 5.0 × 10−8

around the transition point. The phase transition point is
consistent with κc (gray band) determined by XðmÞ. Inset
graph in Fig. 6 shows an emergence of a finite gap with
mutual crossings of curves for different volumes, m ≥ 23,
around κc. These are characteristic features of the first-order
phase transition as discussed in Ref. [52]. As the gap,
we obtain

ΔEb ¼ 0.001318ð3Þ; ð19Þ

by the linear extrapolation toward the transition point both
from the symmetric and broken symmetry phases. In this
extrapolation, we have used data points in [0.07630560,
0.07630595] for the symmetric phase and [0.0763060,
0.0763064] for the broken symmetry one. Note that we do
not extrapolate ΔEb to the D → ∞ limit in this paper
because a systematic study of the D dependence demands
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m
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X
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)

κ = 0.089225
κ = 0.089300

FIG. 3. History of XðmÞ as a function of the coarse-graining step
m at κ ¼ 0.089225 (circle) and 0.089300 (diamond).
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FIG. 4. Comparison of κc at λ ¼ 5 obtained by various
methods. All numerical values except for the ATRG result are
taken from Table III in Ref. [50]. For details on the dynamical or
effective mean field theory, see Ref. [50]. For Kikuchi’s method,
see Ref. [51].
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FIG. 6. Bond energy as a function of κ on V ¼ 10244. Inset
graph shows it for various lattice sizes and gray band denotes κc
estimated by XðmÞ of Eq. (17).
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enormous computational cost and the theoretical formula
for the extrapolation is not known so far. The value of ΔEb
becomes smaller than the latent heat ΔE ¼ 0.0034ð5Þ
found in the Ising case with the HOTRG [27].
Another quantity to detect the phase transition is the

vacuum condensation of the scalar field hϕi, which is the
order parameter of spontaneous breaking of the Z2 sym-
metry. We calculate hϕi by introducing the external fields
of h ¼ 1.0 × 10−10 and 2.0 × 10−10 at each κ. After taking
the infinite volume limit, we extrapolate the value of hϕi at
h ¼ 0. Figure 7 shows the κ dependence of hϕih¼0. The
resolution of κ is the same as that in Fig. 6. We find that the
value of κc, where the vacuum condensation sets in, is
consistent with both estimates by XðmÞ and the bond energy.
A finite jump in hϕih¼0 at κc is another indication of the
first-order phase transition. We find

Δhϕih¼0 ¼ 0.0105ð9Þ; ð20Þ

as the value of finite jump, where we have used data points
in [0.07630560, 0.07630595] for the symmetric phase and
[0.0763060, 0.0763064] for the broken symmetry one,
as in the case with the bond energy, to extrapolate linearly
the values of hϕih¼0 toward the transition point. Note that
this quantity is estimated as 0.037(2) in the Ising case with
the HOTRG [27].

B. 3d case

The 2d single-component lattice ϕ4 theory is believed to
belong to the same universality class as the 2d Ising model.
The previous TRG analysis, which was carried out by two
of the authors and collaborators, supports this ansatz [53].
Although the 3d case should undergo the second-order
phase transition belonging to the universality class of the 3d
Ising model, the direct check with the TRG method has not
been performed so far. Here it must be instructive to repeat

the same TRG calculation for the 3d case and compare the
results between the 3d and 4d cases at λ ¼ 40.
We first show the convergence behavior of the free

energy as a function of K and D by defining the relative
error in the following way:

δK¼
����
lnZðK;D¼90Þ− lnZðK¼2000;D¼90Þ

lnZðK¼2000;D¼90Þ
���� ð21Þ

and

δD ¼
����
lnZðK ¼ 2000; DÞ − lnZðK ¼ 2000; D ¼ 90Þ

lnZðK ¼ 2000; D ¼ 90Þ
����:

ð22Þ

The K dependence of δK with D ¼ 90 on V ¼ 40963 at
κ ¼ 0.112859 and 0.112920 in Fig. 8. κ ¼ 0.112859 is
near the transition point in the symmetric phase, while
κ ¼ 0.112920 is in the broken symmetric phase. We
observe a monotonic decrease of δK as a function of K,
which is quite similar to the 4d case. Figure 9 shows the D
dependence of δD, where δD reaches the order of 10−5 up to
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FIG. 7. Vacuum condensation hϕih¼0 as a function of κ on
V ¼ 10244. Gray band in inset graph shows κc estimated by XðmÞ
of Eq. (17).
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FIG. 9. Same as Fig. 8 for δD of Eq. (22).
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FIG. 8. Convergence behavior of 3d free energy with δK of
Eq. (21) at κ ¼ 0.112859 and 0.112920 as a function of
K on V ¼ 40963.
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D ¼ 90. Notice that the achieved order of δD is similar
with the 4d case. In the following, we present the results at
λ ¼ 40 for K ¼ 2000 and D ¼ 90.
Now let us discuss the results of the bond energy and the

vacuum condensation of the scalar field hϕi, which are
calculated with the impure tensor method as in the 4d case.
We plot the bond energy as a function of κ on the 40963

lattice in Fig. 10, where the gray band with 0.11285890 ≤
κ ≤ 0.11285905 in the inset indicates the location of the
phase transition point determined by XðmÞ. Note that in the
3d case, XðmÞ is also given in the same way as Eq. (17),
defining the three-dimensional counterpart of Eq. (16). The
value of the bond energy evaluated at κ ¼ 0.11285900 is
located within this gray band. This is due to the situation
that XðmÞ at κ ¼ 0.11285900 does not show any clear
plateau at XðmÞ ¼ 1 or 2. We observe that the bond energy
on all the volumes smoothly varies as a function of κ
without generating any gap. In addition, we find no mutual
crossing of curves for different volumes around the phase
transition point: The curve of the bond energy monoton-
ically approaches that on the largest volume of 40963.
These behaviors, which are in clear contrast to the 4d case,
are characteristics of the second-order phase transition as
discussed in Ref. [52].
In Fig. 11, we show the κ dependence of hϕih¼0, which is

calculated in the same way as in the 4d case. The resolution
of κ is the same as that in Fig. 10. In order to determine the
transition point κc and extract the critical exponent β, we
make a fit of hϕih¼0 on 40963 lattice, which is essentially
in the thermodynamic limit, employing the function of
Aðκ − κcÞβ over the range of κ∈ ½0.11285900;0.11300000�
in the broken symmetry phase. The fit results are A ¼
3.7ð9Þ, κc ¼ 0.112859ð6Þ and β ¼ 0.32ð2Þ. The value of β
is consistent with recent estimates of β ≈ 0.3295 and
0.3264 for 3d Ising model with the HOTRG algorithm

[29] and the Monte Carlo method [54], respectively.
Numerical results for the bond energy and hϕih¼0 show
consistency with the second-order phase transition in the
universality class of the 3d Ising model.

IV. SUMMARY AND OUTLOOK

We have investigated the phase transition of the 4d
single-component ϕ4 theory at λ ¼ 40 employing the bond
energy and the vacuum condensation of the scalar field.
Both quantities show finite jumps at the transition point on
the extremely large lattice of V ¼ 10244, corresponding to
the thermodynamic limit, and they indicate the weak first-
order phase transition as found in the Ising limit [27]. This
means that the single-component lattice ϕ4 theory does not
have a continuum limit. In the current ATRG calculation,
the resulting latent heat ΔEb and the gap Δhϕi are smaller
than those in the Ising case obtained by the HOTRG with
D ¼ 13. As a next step, it would be interesting to inves-
tigate the phase transition of the O(4)-symmetric ϕ4 theory,
which is more relevant to the SU(2) Higgs model.
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