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We show how to compute electromagnetic polarizabilities of charged hadrons using four-point functions
in lattice QCD. The low-energy behavior of Compton scattering amplitude is matched to matrix elements of
current-current correlation functions on the lattice. Working in momentum space, formulas for electric
polarizability (αE) and magnetic polarizability (βM) are derived for both charged pion and proton. Lattice
four-point correlation functions are constructed from quark and gluon fields to be used in Monte Carlo
simulations. The content of the functions is assessed in detail, and specific prescriptions are given to isolate
the polarizabilities. The connected quark-line diagrams can be done today as a small lattice project. The
disconnected diagrams are more challenging but are within reach of dedicated resources for medium to
large lattice projects. We also draw attention to the potential of four-point functions as a multipurpose tool
for hadron structure.
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I. INTRODUCTION

Electromagnetic polarizabilities are important properties
that shed light on the internal structure of hadrons. The
quarks respond to probing electromagnetic fields, revealing
the charge and current distributions inside the hadron.
There is an active community in nuclear physics partaking
in this endeavor. Experimentally, polarizabilities are pri-
marily studied by low-energy Compton scattering. On the
theoretical side, a variety of methods have been employed
to describe the physics involved, from phenomenological
models [1,2], to chiral perturbation theory (ChPT) [3–5] or
chiral effective field theory (EFT) [6,7], to lattice QCD.
Reviews of the experimental status can be also found in
Refs. [3,7].
Understanding electromagnetic polarizabilities has been

a long-term goal of lattice QCD. The challenge lies in the
need to apply both QCD and QED principles. The standard
tool to compute polarizabilities is the background field
method which has been widely used [8–26]. Methods
to study higher-order polarizabilities have also been pro-
posed [27–30] in this approach. Although such calculations
are relatively straightforward, requiring only two-point

functions, there are a number of unique challenges.
First, since weak fields are needed, the energy shift
involved is very small relative to the mass of the hadron
(on the order of one part in a million depending on field
strength). This challenge has been successfully overcome
by relying on statistical correlations with or without the
field. Second, there is the issue of discontinuities across the
boundaries when applying a uniform field on a periodic
lattice. This has been largely resolved by using quantized
values for the fields. Third and more importantly, a charged
hadron accelerates in an electric field and exhibits Landau
levels in a magnetic field. Such motions are unrelated to
polarizability and must be isolated from the deformation
due to quark and gluon dynamics inside the hadron. For this
reason, most calculations have focused on neutral hadrons.
Since the standard plateau technique of extracting energy
from the large-time behavior of the two-point correlator
fails for charged hadrons, special techniques are needed to
filter out the collective motion of the system in order to
extract polarizabilities [14,31–33].
In this work, we examine the use of four-point functions to

extract polarizabilities. As we shall see, the method is ideally
suited to charged hadrons; there is no background field to
speak of. Furthermore, the method directly mimics the
Compton scattering process on the lattice. Although four-
point correlation functions have been applied to various
aspects of hadron structure [34–39], not too much attention
has been paid to its potential application for polarizabilities.
The only work we are aware of are two attempts 25 years
ago, one based in position space [40] and one in momentum
space [41]. Here, wewant to take a fresh look at the problem.
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In Sec. II, we outline the methodology using electric
polarizability of a charged pion as an example, then extend
it to magnetic polarizability. In Sec. III, we derive new
formulas for both electric and magnetic polarizabilities
of the proton. In Sec. IV, we detail how to measure the
polarizabilities by constructing QCD four-point correlators
on the lattice and describe methods to isolate them.
Concluding remarks are in Sec. V.

II. CHARGED PION

The pion is the simplest hadronic system to demonstrate
the methodology. First, we briefly review the essential steps
to connect electric polarizability to lattice matrix elements
of four-point functions. Then, we extend the method to
derive the formula for magnetic polarizability.

A. Electric polarizability

For this part, we follow closely the notations and
conventions of Ref. [41]. The central object is the time-
ordered Compton scattering tensor defined by the four-
point correlation function,1

Tμν ¼ i
Z

d4xeik2·xðπðp2ÞjTjμðxÞjνð0Þjπðp1ÞÞ; ð1Þ

where the electromagnetic current density is

jμ ¼ quūγμuþ qdd̄γμd; ð2Þ

built from up and down quark fields (qu ¼ 2=3,
qd ¼ −1=3). The function is represented in Fig. 1. We
work with a special kinematical setup called a zero-
momentum Breit frame given by

p1 ¼ ðm; 0⃗Þ;
k1 ¼ ð0; k⃗Þ; k2 ¼ ð0; k⃗Þ; k⃗ ¼ kẑ; k ≪ m;

p2 ¼ −k2 þ k1 þ p1 ¼ ðm; 0⃗Þ: ð3Þ

Essentially, it can be regarded as forward double virtual
Compton scattering. This is different from the real Compton
scattering in experiments. They access the same low energy
constants including the polarizabilities.
On the phenomenological level, the process can be

described by an effective relativistic theory to expose its
physical content. The tensor can be parametrized to second
order in photon momentum by the general form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E12E2

p
Tμν ¼ −

Tμðp1 þ k1; p1ÞTνðp2; p2 þ k2Þ
ðp1 þ k1Þ2 −m2

−
Tμðp2; p2 − k1ÞTνðp1 − k2; p1Þ

ðp1 − k2Þ2 −m2
þ 2gμν

þ Aðk21gμν − k1μk1ν þ k22gμν − k2μk2νÞ
þ Bðk1 · k2gμν − k2μk1νÞ
þ Cðk1 · k2QμQν þQ · k1Q · k2gμν

−Q · k2Qμk1ν −Q · k1Qνk2μÞ; ð4Þ

where Q ¼ p1 þ p2 and A, B, C are constants to be
characterized.2 We use a noncovariant normalization

X
n

Z
d3p
ð2πÞ3 jnðpÞihnðpÞj ¼ 1; ð5Þ

which is why the square root factor is in front of Tμν. The
pion electromagnetic vertex with momentum transfer
q ¼ p0 − p is written as

Tμðp0; pÞ ¼ ðp0
μ þ pμÞFπðq2Þ þ qμ

p02 − p2

q2
ð1 − Fπðq2ÞÞ:

ð6Þ

It satisfies qμTμðp0;pÞ¼p02−p2 for off-shell pions, which
is needed for the Ward-Takahashi identity. The pion form
factor to 4th order in momentum is given by

Fπðq2Þ ¼ 1þ hr2i
6

q2 þ hr4i
120

q4; ð7Þ

where hr2i is the squared charge radius, and q2 ¼ −q⃗2 < 0
is spacelike momentum transfer squared. The form in
Eq. (4) can be entirely motivated by general principles
of Lorentz invariance, gauge invariance, current conserva-
tion, time-reversal symmetry, and crossing symmetry [3].

FIG. 1. Pictorial representation of the four-point function in
Eq. (1) for πþ (for protons imagine two u and one d quark lines).
Time flows from right to left, and the four-momentum con-
servation is p2 þ k2 ¼ k1 þ p1.

1We use round brackets ð� � � j � � �Þ to denote continuum matrix
elements, and angle brackets h� � � j � � �i to denote lattice matrix
elements.

2We use a Minkowski metric gμν ¼ diagð1;−1;−1;−1Þ.
For example, the relativistic energy-momentum relation for
4-momentum pμ ¼ ðE; p⃗Þ is p2 ¼ pμgμνpν ¼ E2 − p⃗2 ¼ m2.
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In fact, current conservation (kμ1Tμν ¼ kν2Tμν ¼ 0) immedi-
ately leads to A being related to charge radius by
A ¼ hr2i=3. The first three terms in Eq. (4) are the Born
contributions to scattering from the pion, and the remaining
three are contact terms. To make contact with polarizabil-
ities, we need to take the nonrelativistic limit of the
Compton scattering amplitude αϵμ1Tμνϵ

ν�
2 where ϵ1 and

ϵ2 are the initial and final photon polarization 4-vectors.
We use a unit system in which the fine structure constant
α ¼ e2 ≃ 1=137 where the unit charge e has been pulled
from Eq. (2). For the purpose of a nonrelativistic limit, we
have the freedom to choose the following kinematics: The
initial pion is at rest in the lab frame; photons have spatial
polarization unit vectors. Then, the relativistic Compton
scattering amplitude can be reduced to the standard form, to
quadratic order in photon energy and momentum,

αϵμ1Tμνϵ
ν�
2 ¼ ϵ̂1 · ϵ̂�2

�
−
α

m

�
1þ hr2i

6
ðk21 þ k22Þ

�
þ αEω1ω2

�

þ βMðϵ̂1 × k⃗1Þ · ðϵ̂�2 × k⃗2Þ; ð8Þ

where the α=m term is the Thomson limit corresponding to
the gμν term, the hr2i corresponds to the A term, and the αE
and βM terms come from B and C, which are related to the
polarizabilities by

αE ≡ −α
�

B
2m

þ 2mC

�
;

βM ≡ α
B
2m

: ð9Þ

So B is a proxy for magnetic polarizability, and C is the
sum of electric and magnetic polarizabilities. All three
parameters in Eq. (4) are now identified with physical
meanings.
For electric polarizability, we work with the μ ¼ ν ¼ 0

component of Eq. (4). Under the special kinematics in
Eq. (3), it can be written to order k⃗2 in the form,

T00ðk⃗Þ ¼
4mπ

k⃗2
þ
�

1

mπ
−
4

3
mπhr2i

�

þ
�
−
hr2i
3mπ

þ 1

9
mπhr2i2 þ

1

15
mπhr4i þ

απE
α

�
k⃗2

≡ TBorn
00 ðk⃗Þ þ απE

α
k⃗2; ð10Þ

where we separate the Born contribution from the con-
tact term.
The next step is to relate the polarizabilities to lattice

matrix elements. To this end, we need to convert from
continuum to a lattice of isotropic spacing a with Ns ¼
Nx × Ny × Nz number of spatial sites by the following
correspondence:

jnðpÞÞ → V1=2jnðpÞi;
jμðxÞ →

ZV

a3
jLμ ðxÞ;Z

d4x → a4
Z

∞

−∞
dt
X
x⃗

; ð11Þ

where V ¼ Nsa3, and the superscript L denotes they are
lattice versions of the continuum entities. We are still in
Minkowski spacetime. We keep the time continuous
but dimensionless for convenience in the following dis-
cussion. The renormalization factor ZV for the lattice
current jLμ ¼ ðρL; j⃗LÞ can be taken to be unity if conserved
currents are used on the lattice. Equation (1) becomes

Tμν ¼ iNsa
Z

dt
X
x⃗

eik2·xhπðp2ÞjTjLμ ðxÞjLν ð0Þjπðp1Þi:

ð12Þ

On the lattice, there is a contribution to this function when
p1 ¼ p2, called a vacuum expectation value (or VEV), that
must be subtracted out. The reason is we are interested in
differences relative to the vacuum, not the vacuum itself.
Formally, this is enforced by requiring normal ordering
instead of time ordering in Eq. (12),

∶jLμ ðxÞjLν ð0Þ ≔ TjLμ ðxÞjLν ð0Þ − h0jTjLμ ðxÞjLν ð0Þj0i: ð13Þ

For electric polarizability, the relevant component is T00

which amounts to the overlap of charge densities. By
inserting a complete set of intermediate states, making use
of translation invariance of the lattice current, and integrat-
ing over time, we arrive at the subtracted correlator,3

T00 ¼ 2N2
s

X
n

jhπð0⃗ÞjρLð0Þjnðq⃗Þij2
En −mπ

− 2N2
s

X
n

jh0jρLð0Þjnðq⃗Þij2
En

≡ Telas
00 þ T inel

00 ; ð14Þ

where the elastic part (n ¼ π) is separated from the inelastic
part as

Telas
00 ≡ 2N2

s
jhπð0⃗ÞjρLð0Þjπðq⃗ij2

Eπ −mπ
: ð15Þ

The matrix element,

3In this work, we use k⃗ to denote continuum momentum and q⃗
lattice momentum with the same physical unit. When we match
the two forms, we set k⃗ ¼ q⃗ and express the result in terms of q⃗.
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hπð0⃗ÞjρLð0ÞjπðqÞi ¼ 1

Ns

Eπ þmπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eπ2mπ

p Fπðq2Þ; ð16Þ

is related to the pion form factor Fπ given in Eq. (7).
Evaluating Telas

00 to order q⃗2, it takes the form

Telas
00 ðq⃗Þ ¼ 4mπ

q⃗2
þ
�

1

mπ
−
4

3
mπhr2i

�

þ
�
−
hr2i
3mπ

þ 1

9
mπhr2i2 þ

1

15
mπhr4i

�
q⃗2: ð17Þ

The final step is to match the effective lattice T00 given
in Eq. (14) with the same component in the continuum
given in Eq. (10) under the same kinematics and to the
same order,

Telas
00 ðq⃗Þ þ T inel

00 ðq⃗Þ ¼ TBorn
00 ðq⃗Þ þ αE

α
q⃗2: ð18Þ

It turns out the Born term TBorn
00 in the continuum cancels

exactly the elastic term Telas
00 on the lattice. So the matching

produces

T inel
00 ðq⃗Þ ¼ αE

α
q⃗2 ð19Þ

or a formula for charged pion electric polarizability on
the lattice,

απE ¼ α

q⃗21
½T00ðq⃗1Þ − Telas

00 ðq⃗1Þ�; ð20Þ

where q⃗1 emphasizes that the formula is valid for the
smallest nonzero spatial momentum on the lattice. The
physical unit checks out to be a3 (fm3) since q⃗21 has the unit
of a−2 and T00 has the unit of a (or 1=mπ). We discuss how
to measure it on the lattice in a later section. For now, it
suffices to say that charged pion’s αE can be positive or
negative in a relativistic quantum field theory, since it is the
difference of two positive-definite quantities as indicated
in Eq. (14).

B. Magnetic polarizability

Magnetic polarizability proceeds in a similar fashion,
except we consider the spatial component T11 (T22 gives
the same result). Under the same kinematics given in
Eq. (3), this component from the general form in Eq. (4)
reads

2mπT11 ¼ −2þ 2hr2i
3

k⃗2 þ Bk⃗2 ð21Þ

or

T11 ¼ −
1

mπ
þ k⃗2

�hr2i
3

þ βM
α

�
: ð22Þ

On the other hand, from the lattice four-point function in
Eq. (12), we have

T11 ¼ iNsa
Z

∞

−∞
dt
X
x⃗

eik2·xhπðp2ÞjTjL1 ðxÞjL1 ð0Þjπðp1Þi:

ð23Þ

Here, we examine its context in more detail. Similar steps
were used in the electric case [41]. The first thing to do is to
apply the same zero-momentum Breit frame kinematics.
Then, we insert a complete set of intermediate states in
between the currents,

X
n;p⃗n;s

jnðp⃗n; sÞihnðp⃗n; sÞj ¼ 1; ð24Þ

where s is the spin label for the intermediate state. The
translation invariance of jL1 ðxÞ gives

jL1 ðxÞ ¼ eipπ ·xjL1 ð0Þe−ipn·x

¼ eimπ tajL1 ð0Þe−iðEnat−p⃗n·x⃗Þ; ð25Þ

where the second step makes explicit the result of acting on
the zero-momentum state on the left and the on-shell
intermediate state on the right. The spatial sum can be
collapsed with the delta function (k⃗2 ¼ q⃗),

X
x⃗

eið−q⃗þp⃗nÞ·x⃗ ¼ δq⃗;p⃗n
Ns: ð26Þ

The time integral gives

Z
∞

−∞
dt eiaðmπ−EnÞt ¼ 2

iaðEn −mπÞ
: ð27Þ

These steps, together with VEV subtraction, lead to

T11ðq⃗Þ ¼ 2N2
s

X
n;s

jhπð0⃗ÞjjL1 ð0Þjnðs; q⃗ij2
En −mπ

− 2N2
s

X
n;s

jh0jjL1 ð0Þjnðs; q⃗ij2
En

: ð28Þ

Note that the elastic piece (n ¼ π) in the sum vanishes
under the special kinematics,

hπð0⃗ÞjjL1 ð0Þjπðq⃗; sÞi ¼ 0: ð29Þ

The reason is that the matrix element is proportional to
ð0⃗þ q⃗Þ1 in 1-direction but momentum q⃗ is in 3-direction.
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For the inelastic contributions, the types of intermediate
state contributing are vector or axial vector mesons [41].
There is no need to analyze the matrix elements explicitly
as done in Ref. [41] for the electric case. We only need to
know that the inelastic part can be characterized up to order
q⃗2 by the form

T11ðq⃗Þ≡ T11ð0⃗Þ þ q⃗2K11; ð30Þ

with T11ð0⃗Þ and K11 related to physical parameters and
determined on the lattice. Note that we deliberately use
the full amplitude label T11 instead of T inel

11 since the elastic
part is zero.
Matching the full amplitude on the lattice in Eq. (22)

with the continuum version in Eq. (30), we obtain two
relations,

−
1

mπ
¼ T11ð0Þ; ð31Þ

hr2i
3mπ

þ βM
α

¼ K11: ð32Þ

The first relation is a sum rule at zero momentum. The
second leads to a formula for charged pion magnetic
polarizability,

βπM ¼ α

�
−
hr2i
3mπ

þ T11ðq⃗1Þ − T11ð0Þ
q⃗21

�
; ð33Þ

where q⃗1 is the lowest momentum on the lattice. Compared
to charged pion electric polarizability απE in Eq. (20), we see
that instead of subtracting the elastic contribution, we
subtract the zero-momentum inelastic contribution in the
magnetic polarizability. In other words, there is no zero-
momentum contribution in απE and no elastic contribution
in βπM.
The zero-momentum sum rule in Eq. (31) warrants more

discussion. Isolating it from Eq. (28), this term reads

T11ð0⃗Þ ¼ 2N2
s

X
n;s

jhπð0⃗ÞjjL1 ð0Þjnðs; 0⃗ij2
mn −mπ

− 2N2
s

X
n;s

jh0jjL1 ð0Þjnðs; 0⃗ij2
mn

: ð34Þ

It plays the role of an inelastic subtraction in the determi-
nation of βπM. The first term represents the inelastic
contribution and is positive definite, whereas the second
term represents the VEV contribution and is negative
definite. The fact that they sum to a negative value
(T11ð0⃗Þ ¼ −1=mπ) signifies that the VEV associated con-
tributions dominate at zero momentum. In the valence
approximation, defined as dropping all disconnected loops

which include diagrams (d), (e), and (f) in Fig. 3 below and
the VEVs associated with them, we expect Tval

11 ð0Þ > 0

since the only contribution left is from the first term in
Eq. (34). In a full calculation, we do expect T11ð0⃗Þ < 0, and
the sum rule can be used as a guide on the sign of T11ð0⃗Þ.
We do not expect however to use it to determine the mass.

III. PROTON

As the simplest nucleus, a proton’s polarizabilties are of
fundamental importance to our understanding of structure
of matter. They are more precisely measured than a charged
pion’s polarizabilties in Compton scattering experiments on
hydrogen targets. Theoretically, chiral perturbation theory
is well established on the proton. The four-point function
lattice QCD approach considered here offers a much-
needed addition to the effort. The formalism parallels that
for a charged pion but is more complicated mainly due to a
proton’s spin-1=2 structure. We first consider electric
polarizability in sufficient detail, then build it out to
magnetic polarizability.

A. Electric polarizability

We start with a general proton Compton tensor para-
metrized to second order in photon momentum,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E12E2

p
Tμν ¼ TBorn

μν þ Bðk1 · k2gμν − k2μk1νÞ
þ Cðk1 · k2QμQν þQ · k1Q · k2gμν

−Q · k2Qμk1ν −Q · k1Qνk2μÞ; ð35Þ

where Q ¼ p1 þ p2. For the Born term, we take from
Ref. [42],

TBorn
μν ¼ Bμνðp2; k2; s2jp1; k1; s1Þ

m2
p − s

þ Bνμðp2;−k1; s2jp1;−k2; s1Þ
m2

p − u
; ð36Þ

where the function is (note a factor of 1=2 difference
between our definition and Ref. [42])

Bμνðp2; k2; s2jp1; k1; s1Þ
¼ ūðp2; s2ÞΓμð−k2Þð=PþmpÞΓνðk1Þuðp1; s1Þ: ð37Þ

Here, P ¼ p2 þ k2 ¼ p1 þ k1 is the standard 4-momentum
conservation for Compton scattering. There is no A term
here because the proton Born terms obey current conser-
vation, unlike the pion case in Eq. (4). A nonrelativistic
reduction of Eq. (35) has the same form as Eq. (8) for the
pion, except for the noncontact hr2i term, with the same B
and C relations to polarizabilities as in Eq. (9).
The Born amplitude has virtual (or off-shell) intermedi-

ate hadronic states in the s and u channels, whereas on the

TOWARDS CHARGED HADRON POLARIZABILITIES FROM FOUR- … PHYS. REV. D 104, 034506 (2021)

034506-5



lattice we have real (or on-shell) intermediate states. This
will produce a difference with the elastic contribution to be
discussed later. The vertex function is defined by

ΓμðkÞ ¼ γμF1 þ
iF2

2mp
σμλkλ; ð38Þ

where summation over λ is implied. Specializing to our
kinematics in Eq. (3), we have

s ¼ ðp1 þ k1Þ2 ¼ m2
p − k⃗2;

u ¼ ðp1 − k2Þ2 ¼ m2
p − k⃗2: ð39Þ

We consider an unpolarized Born expression given by

2mpTBorn
μν ¼ 1

2

X
s1;s2

1

k⃗2

�
ūð0⃗;s2Þ

�
γμF1−

iF2

2mp
σμλkλ2

�

× ð=p1þ=k1þmpÞ
�
γμF1þ

iF2

2mp
σμλkλ1

�
uð0⃗;s1Þ

þ ūð0⃗;s2Þ
�
γνF1þ

iF2

2mp
σνλkλ1

�

× ð=p1−=k2þmpÞ
�
γνF1−

iF2

2mp
σνλkλ2

�
uð0⃗;s1Þ

�
:

ð40Þ

The zero-momentum spinors are given by

uð0⃗;1Þ¼ ffiffiffiffiffiffiffiffiffi
2mp

p
0
BBB@
1

0

0

0

1
CCCA; uð0⃗;2Þ¼ ffiffiffiffiffiffiffiffiffi

2mp

p
0
BBB@
0

1

0

0

1
CCCA; ð41Þ

using our normalization, and ū≡ u†γ0. For gamma matri-
ces, we use the standard Dirac basis,

γ0 ¼
�
I 0

0 −I

�
; γi ¼

�
0 σi

−σi 0

�
;

γμγν þ γνγμ ¼ 2 diagf1;−1;−1;−1g;
σμν ¼

i
2
ðγμγν − γνγμÞ: ð42Þ

Next, we need to express this amplitude as a series in k⃗2.
To this end, we choose to expand the Sachs form factors
first. Since the Born term has a 1=k⃗2 pole, we need the
expansion to order k⃗4,

GEðk⃗2Þ ¼ 1 −
hr2Ei
6

k⃗2 þ hr4Ei
120

k⃗4 þ � � �

GMðk⃗2Þ ¼ ð1þ κÞ
�
1 −

hr2Mi
6

k⃗2 þ hr4Mi
120

k⃗4 þ � � �
�
; ð43Þ

where κ is the anomalous magnetic moment, and rE;M is the
electric (magnetic) charge radius of the proton. This is
the standard definition that gives charge conservation
GEð0Þ ¼ 1 and magnetic moment (or g-factor) GMð0Þ ¼
1þ κ at zero-momentum transfer. The squared charge radii
are defined as

hr2E;Mi≡ −
6

GE;Mð0Þ
dGE;Mðk⃗2Þ

dk⃗2

����
k⃗2¼0

: ð44Þ

The Dirac form factors then take the forms

F1 ¼
GE þ τGM

1þ τ

¼ 1þ 1

12

�
3κ

m2
p
− 2hr2Ei

�
k⃗2 þ 5hr2Ei þm2

phr4Ei
120m2

p
k⃗4

−
m2

phr2Mi þ κð3þm2
phr2MiÞ

24m4
p

k⃗4 þ � � � ; ð45Þ

F2 ¼
GM −GE

1þ τ

¼ κ þ 1

12

�
−
3κ

m2
p
þ 2hr2Ei − 2ð1þ κÞhr2Mi

�
k⃗2

−
5hr2Ei þm2

phr4Ei
120m2

p
k⃗4

þ 15κ þm2
pð1þ κÞð5hr2Mi þm2

phr4MiÞ
120m4

p
k⃗4 þ � � � ;

ð46Þ

where we needed to expand the on-shell τ to k⃗4 power,

τ≡ kμkμ
4m2

p
¼ E −mp

2mp
≈

k⃗2

4m2
p
−

k⃗4

16m4
p
þ � � � ; ð47Þ

due to the pole term in TBorn
μν .

The discussion so far is general. For electric polari-
zability, we need to work with the μ ¼ ν ¼ 0 component,
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2mpTBorn
00 ¼ 1

4m

X
s1;s2

1

k⃗2

�
ūð0⃗;s2Þ

�
γ0F1−

iF2

2mp
σ03k

�

×ðγ0mpþγ3kþmpÞ
�
γ0F1þ

iF2

2mp
σ03k

�
uð0⃗;s1Þ

þ ūð0⃗;s2Þ
�
γ0F1þ

iF2

2mp
σ03k

�
ðγ0mp−γ3kþmpÞ

×

�
γ1F1−

iF2

2mp
σ03k

�
uð0⃗;s1Þ

�
; ð48Þ

where k refers to the spatial momentum in the z-direction,
k⃗ ¼ kẑ. Evaluating this expression, we find that the
diagonal spin terms s1 ¼ s2 ¼ 1 or 2 give the same results,
whereas the off-diagonal terms vanish. The final result is

TBorn
00 ðk⃗Þ ¼ 4mp

k⃗2
−
4

3
hr2Eimp

þ
�
−
ð2þ κÞκ
4m3

p
þmp

45
ð5hr2Ei2 þ 3hr4EiÞ

�
k⃗2 þ � � � :

ð49Þ

Including the contact interaction term, the full amplitude in
the continuum takes the form

T00ðk⃗Þ ¼ TBorn
00 ðk⃗Þ þ k⃗2

αpE
α
: ð50Þ

On the other hand, we consider the unpolarized four-
point function of the proton in lattice regularization,

Tμν ¼ iNsa
1

2

X
s1;s2

Z
∞

−∞
dt
X
x⃗

eik2·x

× hp2; s2j½TjLμ ðxÞjLν ð0Þ− h0jTjLμ ðxÞjLν ð0Þj0i�jp1; s1i;
ð51Þ

where the VEV subtraction is included. After inserting a
complete set of intermediate states,

X
N;p⃗N;sN

jðEN; p⃗NÞ; sNihðEN; p⃗NÞ; sN j ¼ 1; ð52Þ

and specializing to the zero-momentum Breit frame,
we have

Tμν ¼ N2
s

X
N;s1;s2;sN

1

EN −mp
hðmp; 0⃗Þ; s2jjLμ jðEN; q⃗Þ; sNÞi

× hðEN; q⃗Þ; sNÞjjLν jðmp; 0⃗Þ; s1i

− N2
s

X
N;s1;s2;sN

1

EN
h0jjLμ ð0ÞjðEN; q⃗Þ; sNÞi

× hðEN; q⃗Þ; sNÞjjLν ð0Þj0i: ð53Þ

Due to the vector nature of the electromagnetic current, the
only intermediate states that can contribute are spin-1=2
and spin-3=2 states. We separate off the elastic part
(N ¼ proton),

Telas
μν ≡ N2

s

X
s1;s2;sp

1

Ep −mp
hðmp; 0⃗Þ; s2jjLμ jðEp; q⃗Þ; spÞi

× hðEp; q⃗Þ; spÞjjLν jðmp; 0⃗Þ; s1i: ð54Þ

The remaining inelastic part will be related to polarizabil-
ities. The connection between the lattice and continuum
matrix elements is

hp0; s0jjLμ ð0Þjp; si ¼
1

Ns

ðp0; s0jjμð0Þjp; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep2Ep0

p : ð55Þ

Using the continuum definition of form factors (q ¼ p0 − p),

ðp0; s0jjμjp; sÞ ¼ ūðp0; s0Þ
�
γμF1 þ

iF2

2mp
σμλqλ

�
uðp; sÞ;

ð56Þ

the elastic part can be written as

Telas
μν ¼

X
s1;s2

1

4mpEpðEp −mpÞ

× ūð0⃗; s2Þ
�
γμF1 −

iF2

2mp
σμλqλ

�
ð=qþmpÞ

×

�
γνF1 þ

iF2

2mp
σνλqλ

�
uð0⃗; s2Þ; ð57Þ

where we have used the spin sum,

X
s

uðp; sÞūðp; sÞ ¼ =pþmp: ð58Þ

For electric polarizability, we are interested in the
μ ¼ ν ¼ 0 component of Eq. (57),

Telas
00 ¼

X
s1;s2

1

4mpEpðEp −mpÞ

× ūð0⃗; s2Þ
�
γ0F1 −

iF2

2mp
σ03q

�
ðγ0Ep þ γ3qþmpÞ

×

�
γ0F1 þ

iF2

2mp
σ03q

�
uð0⃗; s2Þ; ð59Þ

where q refers to the spatial momentum in the z-direction
q⃗ ¼ qẑ. It evaluates to order q⃗2 as,
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Telas
00 ðq⃗Þ¼4mp

q⃗2
−
4

3
hr2Eimp

þ
�

1

4m3
p
þ 1

45
ð5hr2Ei2þ3hr4EiÞ

�
q⃗2þ��� : ð60Þ

Matching the lattice and continuum forms and sub-
tracting off the elastic contribution, we have

T00ðq⃗Þ − Telas
00 ðq⃗Þ ¼ TBorn

00 ðq⃗Þ − Telas
00 ðq⃗Þ þ q⃗2

αpE
α
: ð61Þ

Many terms cancel between TBorn
00 and Telas

00 , leaving the
difference,

T00ðq⃗Þ − Telas
00 ðq⃗Þ ¼ −

ð1þ κÞ2
4m3

p
q⃗2 þ αpE

α
q⃗2; ð62Þ

from which we arrive at a final formula for proton electric
polarizability,

αpE ¼ α

�ð1þ κÞ2
4m3

p
þ T00ðq⃗1Þ − Telas

00 ðq⃗1Þ
q⃗21

�
: ð63Þ

Here, we emphasize that the expression must be evaluated
using the smallest nonzero momentum q⃗1 on the lattice.
Compared to charged pion electric polarizability απE in
Eq. (20), proton αpE has an extra term that has its magnetic
moment and mass. In this sense, the proton’s electric and
magnetic properties are coupled. Both mp and κ have to be
measured at the same time as T00 in order to extract αpE.

B. Magnetic polarizability

For the Compton amplitude in the continuum, we start
with the μ ¼ ν ¼ 1 component of Eq. (40) (22 component
gives the same result),

2mpTBorn
11 ¼ 1

2k⃗2
X
s1;s2

�
ūð0⃗;s2Þ

�
γ1F1−

iF2

2mp
σ13k

�

×ðγ0mpþγ3kþmpÞ
�
γ1F1þ

iF2

2mp
σ13k

�
uð0⃗;s1Þ

þ ūð0⃗;s2Þ
�
γ1F1þ

iF2

2mp
σ13k

�
ðγ0mp−γ3kþmpÞ

×

�
γ1F1−

iF2

2mp
σ13k

�
uð0⃗;s1Þ

�
: ð64Þ

It evaluates to

TBorn
11 ðk⃗Þ ¼ κð2þ κÞ

mp
þ k⃗2

�
−

κ

2m3
p
þ hr2Ei
3mp

−
hr2Mi
3mp

ð1þ κÞ2
�
:

ð65Þ

Including the contact interaction term, the full amplitude in
the continuum becomes

T11ðk⃗Þ ¼ TBorn
11 ðk⃗Þ þ k⃗2

βpE
α
: ð66Þ

On the lattice, we start with the μ ¼ ν ¼ 1 component of
Eq. (57),

Telas
11 ¼

X
s1;s2

1

4mpEpðEp −mpÞ

× ūð0⃗; s2Þ
�
γ1F1 −

iF2

2mp
σ13q

�
ðγ0Ep þ γ3qþmpÞ

×

�
γ1F1 þ

iF2

2mp
σ13q

�
uð0⃗; s2Þ: ð67Þ

It evaluates to

Telas
11 ðq⃗Þ ¼ ð1þ κÞ2

mp
þ q⃗2

�
−
ð1þ κÞ
2m3

p
−
hr2Mi
3mp

ð1þ κÞ2
�
:

ð68Þ

We see that unlike a charged pion, there is an elastic
contribution for the proton magnetic case.
The inelastic 11 component in Eq. (53) can be formally

characterized as a constant plus a linear term in q⃗2,

T inel
11 ðq⃗Þ≡ T inel

11 ð0⃗Þ þ q⃗2K11; ð69Þ

with T inel
11 ð0⃗Þ and K11 to be matched with physical param-

eters. The difference between the Born term in the
continuum and the elastic term on the lattice is

TBorn
11 − Telas

11 ¼ −
1

mp
þ q⃗2

�
1

2m3
p
þ hr2Ei
3mp

�
; ð70Þ

where the κ terms in the zero-momentum part cancel, as
well as the magnetic charge radius terms in the q⃗2 part.
By matching the full T11 in the continuum and on the

lattice, we have

Telas
11 ðq⃗Þ þ T inel

11 ð0⃗Þ þ q⃗2K11 ¼ TBorn
11 ðq⃗Þ þ q⃗2

βpM
α

: ð71Þ

Using Eq. (70), we obtain two relations,

T inel
11 ð0⃗Þ ¼ −

1

mp
; ð72Þ

K11 ¼
1

2m3
p
þ hr2Ei
3mp

þ βpM
α

: ð73Þ
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We see the same sum rule in the first relation as Eq. (31) for
charged pion. The second relation produces an expression
for proton magnetic polarizability on the lattice,

βpM ¼ α

�
−

1

2m3
p
−
hr2Ei
3mp

þ T inel
11 ðq⃗1Þ − T inel

11 ð0⃗Þ
q⃗21

�
; ð74Þ

where we have used Eq. (69) for K11.
It turns out there is no elastic part to the zero-momentum

amplitude T11ð0⃗Þ. There is a subtlety here. If we do the
analytic time integral first, then set q⃗ ¼ 0, we get Telas

11 ð0⃗Þ ¼
ð1þ κÞ2=mp from Eq. (68). However, if we first set q⃗ ¼ 0,

the integrand itself vanishes, so Tclas
11 ð0⃗Þ ¼ 0. This is the

way it is done on the lattice in a numerical sense as we see
in Eq. (86). So we can drop the reference to the inelastic
part T inel

11 ð0⃗Þ → T11ð0⃗Þ. Using the full amplitude T11

defined in Eq. (53), we write the final lattice formula for
proton magnetic polarizability as

βpM ¼ α

�
−

1

2m3
p
−
hr2Ei
3mp

þ T11ðq⃗1Þ− Telas
11 ðq⃗1Þ− T11ð0⃗Þ
q⃗21

�
:

ð75Þ

Compared to charged pion magnetic polarizability βπM in
Eq. (33), proton βpM has two extra terms: a mass contri-
bution and an elastic contribution. Both terms, along with
the rE term, must be measured at the same time as T11 in
order to extract βpM.

IV. LATTICE MEASUREMENT

Having obtained polarizability formulas in Eqs. (20) and
(33) for a charged pion, and Eqs. (63) and (75) for a proton,
we now discuss how to measure them in lattice QCD. First,
we need to match the kinematics used in deriving the
expressions, i.e., with hadrons at rest and photons having
spacelike momentum in the z-direction,4

p1 ¼ ðmh; 0⃗Þ;
q1 ¼ ð0; qẑÞ; q2 ¼ ð0;−qẑÞ; q ≪ mh;

p2 ¼ q2 þ q1 þ p1 ¼ ðmh; 0⃗Þ; ð76Þ

as illustrated in Fig. 2. It is the same kinematics as in Eq. (3)
but expressed differently to match what is being done on
the lattice. One may think of Fig. 2 as having “internal”
photons, whereas Fig. 1 as having “external” photons.
We construct the four-point current-current correlation

function,

Pμνðx⃗2; x⃗1; t2; t1Þ

≡
P

x⃗3;x⃗0h0jψ†ðx3Þ∶jLμ ðx2ÞjLν ðx1Þ∶ψðx0Þj0iP
x⃗3;x⃗0h0jψ†ðx3Þψðx0Þj0i

; ð77Þ

where the two-point function is for normalization, ψ the
interpolating field of the hadron, and normal ordering is
used to include the VEV contribution. In the case of a
proton, sum over final spin and average over initial spin are
assumed for unpolarized measurement. The spatial sums
over x⃗3 and x⃗0 project to zero momentum at the sources
which are located at fixed times t3 and t0. Time flows from
right to left t3 > t1;2 > t0, and t1;2 indicates the two
possibilities of time ordering. Zero-momentum sources
can be realized by wall sources without gauge fixing
[36,43]. The formula is now in discrete Euclidean space-
time, but we keep the Euclidean time axis continuous.
Here, the current is the lattice version of Eq. (2), preferably
the conserved current positioned as symmetrically as
possible about the sources. When the times are well
separated (defined by the time limits t3 ≫ t1;2 ≫ t0), the
correlator is dominated by the ground state,

Pμνðx⃗2; x⃗1;t2;t1Þ→ hhð0⃗Þj∶jLμ ðx2ÞjLν ðx1Þ∶jhð0⃗Þi
¼hhð0⃗ÞjTjLμ ðrÞjLν ð0Þjhð0⃗Þi−h0jTjLμ ðrÞjLν ð0Þj0i; ð78Þ

where translation invariance has been used to shift the
bilinear to r ¼ x2 − x1 and 0. To implement the special
kinematics in Fig. 2, we consider the Fourier transform,

Qμνðq⃗; t2; t1Þ≡ Ns

X
r⃗

e−iq⃗·r⃗Pμνðx⃗2; x⃗1; t2; t1Þ; ð79Þ

where q⃗ is lattice momentum, and r⃗ ¼ x⃗2 − x⃗1 is the
relative distance between the current insertions. The need
for Fourier transform is natural in the sense that the
polarizability formulas are derived in momentum space.
In this work, we only consider the diagonal components
(μ ¼ ν) of Qμνðq⃗; t2; t1Þ. Assuming the time separation
t ¼ t2 − t1 > 0 and inserting a complete set of intermediate

FIG. 2. Zero-momentum Breit frame in Eq. (76) used in
extracting charged pion polarizabilities from four-point functions
on the lattice (for proton imagine three quark lines). Time flows
from right to left and the four-momentum conservation is
expressed as p2 ¼ q2 þ q1 þ p1.

4For a general discussion, we use h to represent either a
charged pion or proton.
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states, the expression in the same time limits develops the
time dependence,

Qμμðq⃗; tÞ ¼ N2
s

X
n

jhhð0⃗ÞjjLμ ð0Þjnðq⃗Þij2e−aðEn−mhÞt

− N2
s

X
n

jh0jjLμ ð0Þjnðq⃗Þij2e−aEnt: ð80Þ

The elastic contribution (n ¼ h) in the expression can be
separately defined,

Qelas
μμ ðq⃗; tÞ≡ N2

s jhhð0⃗ÞjjLμ ð0Þjhðq⃗Þij2e−aðEh−mhÞt: ð81Þ
We see that the elastic piece in the four-point function has
information on the form factors of the hadron through the
amplitude and can be isolated at large time separations of
the currents.
Charged pion electric polarizability in Eq. (20) is

measured on the lattice by

απE ¼ 2αa
q⃗21

Z
∞

0

dt½Q00ðq⃗1; tÞ −Qelas
00 ðq⃗1; tÞ�: ð82Þ

A few comments are in order. First, απE has the physical
unit of a3 (fm3) since 1=q⃗21 scales like a

2, and Q00 and t are
dimensionless by definition. Second, the above discussion
suggests that we expect exponential time fall-off in both
Q00ðq⃗1; tÞ andQelas

00 ðq⃗1; tÞ. The polarizability coefficient απE
is proportional to the difference in the areas under these two
curves. It is this difference that determines the sign of απE.
Third, on a finite lattice, the time integrals do not really
extend to ∞ but are limited to the available time slices
between the two insertions. In practice, one should check if
the largest time separation is enough to establish the elastic
limit. Fourth, Eq. (82) can be regarded as the numerical
derivative of the time integral with respect to q⃗21, evaluated
at q⃗21 ¼ 0, with error on the order of q⃗21. So the smaller the
momentum is the better the prediction is. This is the reason
the smallest nonzero momentum q⃗1 on the lattice should be
used. Equivalent directions for q⃗1 can be used to improve
the signal-to-noise ratio. Fifth, we emphasize the impor-
tance of working in momentum space to extract polar-
izabilities from four-point functions. In position space,
once would deal with the quantity RðtÞ ¼ P

r⃗ r⃗
2Pμνðr⃗; tÞ

which does not project to small momentum on the
lattice [44] and can lead to erroneous results.
Charged pion magnetic polarizability in Eq. (33) is

measured on the lattice by

βπM ¼ α

�
−
hr2Ei
3mπ

þ 2a
q⃗21

Z
∞

0

dt½Q11ðq⃗1; tÞ −Q11ð0⃗; tÞ�
	
;

ð83Þ
where Q11ðq⃗1; tÞ is the 11 component of Eq. (80).
Unlike the electric case where the elastic contribution is
subtracted in the time integral, the magnetic case has

the zero-momentum inelastic contribution subtracted.
The expression contains the electric charge radius rE
contribution which has to be added to the time integral.
This makes the extraction of βπM more complicated than απE.
Fortunately, the four-point function Q00ðq⃗1; tÞ already
contains information on the form factor in its elastic limit
[45,46]. It is just a matter of performing a separate analysis
on the same correlators at large time separation of the
two currents to extract the charge radius. The complication
can be regarded as a blessing in disguise: it offers an
alternative to the standard three-point function method
for the form factors. The sign of βπM is dictated by the
relative magnitudes of the charge radius terms and the time
integral term which can be both positive or negative (see
discussion below).
We now turn to the proton. The electric polarizability in

Eq. (63) can be measured on the lattice by

αpE ¼ α

�ð1þ κÞ2
4m2

p
þ 2a

q⃗21

Z
∞

0

dt½Q00ðq⃗1; tÞ −Qelas
00 ðq⃗1; tÞ�

	
;

ð84Þ

and the magnetic polarizability in Eq. (75) by

βpM ¼ α

�
−

1

2m3
p
−
hr2Ei
3mp

þ 2a
q⃗21

Z
∞

0

dt½Q11ðq⃗1; tÞ −Qelas
11 ðq⃗1; tÞ −Q11ð0⃗; tÞ�

	
:

ð85Þ

Most of the above-mentioned arguments for a charged pion
apply also to the proton. The difference is they additionally
involve the proton mass (mp) and its anomalous magnetic
moment (κ). Both need to be measured along with the
time integral on the same lattice. The mass can be readily
obtained from the two-point function which is already used
in Eq. (77) for normalization. An excellent signal is
expected for the mass measurement since well-separated
zero-momentum sources are used. Although only the Q00

component is needed for the time integral for αpE, the elastic
part of the Q11 component is required for the anomalous
magnetic moment term in αpE,

Qelas
11 ðq⃗1; tÞ!

t≫1

ð1þ κÞ2
4m2

p
q⃗21e

−aðEp−mpÞt: ð86Þ

Since the Q11 component is needed anyway in the calcu-
lation of βpM, the two measurements complement each other.
The same is true of the charge radius term in βpM which can
be accessed through the unpolarized elastic part of Q11,

Qelas
00 ðq⃗1;tÞ!

t≫1

�
1−

q⃗21
12m2

p
ð3þ4m2

phr2EiÞ
�
e−aðEp−mpÞt: ð87Þ
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The close coupling between the electric and magnetic
properties suggests that it is most efficient to measure the
two polarizabilities together, with associated mass, charge
radius, and magnetic moment in the same simulation. In
practice, this should be done on a configuration by con-
figuration basis to maintain correlations.
Next, we discuss how to evaluate Eq. (77) and its Fourier

transform Eq. (79) at the quark level. Wick contractions of
quark-antiquark pairs in the unsubtracted part lead to
topologically distinct quark-line diagrams shown in
Fig. 3. Diagrams (a), (b), and (c) are connected. Diagram
(d) has a loop that is disconnected from the hadron but
connected between the two currents. Diagram (e) has one
disconnected loop (also known as all-to-all propagator), and
diagram (f) has two such loops. Furthermore, diagrams (d),
(e), and (f) must have associated VEV subtracted. However,
if conserved lattice current density is used, there is no need
for subtraction in diagram (e) since the VEV vanishes in the
configuration average [47].
According to Eq. (2), the full hadron polarizabilities can

be broken down to contributions from various quark flavor
current-current correlations. Assuming isospin symmetry
in u and d quarks, we have

απE ¼ 5

9
αuuE þ 4

9
αud̄E ;

βπM ¼ 5

9
βuuM þ 4

9
βud̄M ; ð88Þ

for a charged pion and

αpE ¼ 4

9
αuuE þ 1

9
αddE −

4

9
αudE ;

βpM ¼ 4

9
βuuM þ 1

9
βddM −

4

9
βudM ; ð89Þ

for a proton. Specifically, the quark flavor labels uu, dd,
ud, and ud̄ refer to contributions in Eqs. (80) and (81)
without the charge factors which have been pulled out in
Eqs. (88) and (89). Under the same isospin symmetry, πþ
and π− have identical polarizabilities. These decomposi-
tions, together with the diagrams in Fig. 3, provide a
physical picture of how polarizabilities arise from quark-
gluon dynamics of QCD.
Computationally, the different flavor diagram (a) for a

charged pion is the easiest to simulate. The pion sources
can be fixed at the two time ends, and the quark lines are
“sewn” together. For the proton, there are more flavor
permutations to consider since a proton has two u quark
lines and one d quark line. For example, one current
coupling to the first u quark and the other to the second u
quark is considered a “different flavor” diagram. This
diagram requires both x1 and x2 to vary. At each relative
time separation, the Fourier transform involves double
spatial sums over the entire lattice that have the form

fðq⃗Þ ¼
X
r⃗

e−iq⃗·r⃗
X
x⃗

f1ðr⃗þ x⃗Þf2ðx⃗Þ: ð90Þ

The x⃗ sum can be sped up by using fast Fourier transform
algorithms [46].
In diagrams (b) and (c), the currents couple to the same

quark line, and a sequential source technique (SST) is
necessary. One approach is to fix the time position of the
two hadron fields and the initial source. In Ref. [48], for
example, both the final pion and the initial current source
were put in as sources. For diagram (b), the final pion and
the initial current are put in as separate SST sources on the
initial pion quark line. For the Z-graph, both the final pion
and the initial source are put in as two consecutive SST
sources on the initial quark lines. In order to enhance the
signal, a technique called Fourier reinforcement [48] can be
applied to reduce the associated statistical errors. This
technique smears over the initial current source in two
spatial directions, leaving one direction unrestricted. This
reinforces the signal but restricts the Fourier transform to
the remaining direction.
In diagram (d), both currents couple to the same sea

quark loop. The loop originates together with diagram (f) as

FIG. 3. Quark-line diagrams of a four-point function contrib-
uting to polarizabilities of a meson: (a) different flavor, (b) same
flavor, (c) same flavor Z-graph, (d) single-flavor double-current
loop, (e) single disconnected loop, (f) double disconnected loops.
In each diagram, flavor permutations are assumed as well as
gluon lines that connect the quark lines. The zero-momentum
hadron interpolating fields are represented by vertical bars (wall
sources). For a baryon, imagine three quark lines between the
sources instead of two.
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the disconnected part of the current-current correlation but
can be evaluated relatively easily using two-point quark
propagators. The only complication is that it has a VEV that
needs to be subtracted before the loop is correlated with the
hadron propagator. This diagram is expected to produce the
strongest signal from the sea quarks. It will give us the first
glimpse into sea-quark contributions to polarizabilities and
form factors from four-point functions.
Diagram (e) comes from the connected part of the

current-current correlation with one current still connected
to the hadron propagator and the other disconnected. In
diagram (f), not only are the two currents disconnected
from each other, but their loops are also disconnected from
the hadron propagator. Diagram (f) is expected to produce
the weakest signal, and it is also the most challenging to
simulate. Diagram (e) does not have a VEV in the
configuration average, but diagram (f) does. All-to-all
quark propagators have been encountered in other studies
of hadron structure. One can draw on lattice noise methods
such as Refs. [49–52] to extract a signal.

V. CONCLUSION

Computing polarizability of charged hadrons has been a
challenge for lattice QCD due to the acceleration and
Landau levels in the background field method. In this work,
we lay out a program for the use of four-point correlation
functions as an alternative, by revitalizing an earlier study
on electric polarizability of charged pions and expanding
the formalism to include magnetic polarizability and the
proton. The approach bears a close resemblance to the
Compton scattering process with a transparent physical
picture and conceptual clarity.
We detailed how to construct lattice correlators and

methods to isolate the polarizabilities. In the case of απE,
there are no technical hurdles on the connected contribu-
tions, as demonstrated by the signals in Refs. [41,48] even
with relatively primitive lattices by today’s standards. In the
case of βπM, the charge radius and mass need to be measured
on the same lattice in addition to the time integral, but the
information is already present in the elastic limit for απE.
This is an added advantage of the current approach: the
elastic limit of four-point correlation functions also offers
an alternative to form factors from the traditional three-
point functions. For the proton, αpE and βpM are more
complicated; both have extra terms that involve mass,
charge radius, or magnetic moment. But αpE and βpM
complement each other; the four-point function for αpE
has information on the extra term(s) in the four-point
function for βpM and vice versa. For this reason, it is best
to simulate αhE and βhM together, completing all relevant
measurements (mass from two-point function, charge
radius, and magnetic moment from elastic limit of four-
point functions Q00 and Q11, and time integrals) on a

configuration before moving to the next one to maintain
correlations in the parameters.
Here, we want to point out an important issue in the

calculation of polarizabilities in lattice QCD, that is, sea-
quark contributions. In the background field method,
charging the sea quarks is a systematic uncertainty to be
removed in almost all the existing calculations. The
challenge lies in the fact that generating a separate
Monte Carlo ensemble to compute the correlator in the
presence of a background field would ruin the correlations
relied upon for extracting a small mass shift. As a work-
around, perturbative reweighting has been proposed as a
method of creating two ensembles which have different
sea-quark actions yet are correlated [11,12]. Such calcu-
lations are expensive and fermion action dependent. In the
four-point function approach, on the other hand, sea-quark
charging is avoided. Sea-quark effects are automatically
included by the self-contraction of current-coupled quark
loops in diagrams (d), (e), and (f) in Fig. 3. One can work
with any existing dynamical configurations without modi-
fication. Moreover, the strangeness contribution can be
straightforwardly studied by adding a s-quark component
to the current in Eq. (2).
Finally, four-point function techniques are also useful

for hadron structure function calculations leading to parton
distribution functions. The same Compton meson and
(unpolarized) baryon quark-line diagrams are evaluated,
except now at high momentum transfer. For example,
Ref. [34] used a nonzero momentum Breit frame to
evaluate the Fourier transformed j0ðx⃗; tÞj0ð0Þ and
j1ðx⃗; tÞj1ð0Þ proton correlation functions, which are the
same ones necessary for electric and magnetic polariz-
ability. The key to this evaluation is the implementation of
the inverse Laplace transform [53], such as the Bayesian
reconstruction method employed in Ref. [34]. Using this
technique, useful comparisons on proposed continuum
forms can be examined.
With the availability of state-of-the-art dynamical

ensembles, more powerful computers, and efficient algo-
rithms, we believe the time has come to directly tackle the
four-point functions to extract polarizabilities in lattice
QCD simulations.
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