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Modern advances in algorithms for lattice QCD calculations have steadily driven down the resources
required to generate gauge field ensembles and calculate quark propagators, such that, in cases relevant to
nuclear physics, performing quark contractions to assemble correlation functions from propagators has
become the dominant cost. This work explores a propagator sparsening algorithm for forming correlation
functions describing multihadron systems, such as light nuclei, with reduced computational cost. The
algorithm constructs correlation functions from sparsened propagators defined on a coarsened lattice
geometry, where the sparsened propagators are obtained from propagators computed on the full lattice. This
algorithm is used to study the low-energy QCD ground-state spectrum using a single Wilson-clover lattice
ensemble with mπ ≈ 800 MeV. It is found that the extracted ground state masses and binding energies, as
well as their statistical uncertainties, are consistent when determined from correlation functions constructed
from sparsened and full propagators. In addition, while evidence of modified couplings to excited states is
observed in sparsened correlation functions, it is demonstrated that these effects can be removed, if desired,
with an inexpensive modification to the sparsened estimator.
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I. INTRODUCTION

Lattice quantum chromodynamics (QCD) provides an
ab-initio method for predicting the low-lying spectrum,
structure, and reactions of hadrons and nuclei from the
dynamics of their constituent quarks and gluons. In practice,
this is a computationally demanding task, and requires the
use of state-of-the-art supercomputers, as well as the devel-
opment of increasingly sophisticated numerical algorithms
[1]. Continued progress, especially toward understanding the
properties of increasingly heavy nuclei, will require further
advances in both hardware and algorithms [2–39].
A prototypical lattice QCD calculation proceeds in three

stages. First, Monte Carlo importance sampling techniques
are applied to the QCD path integral, generating a Markov
chain of representative configurations of the gauge field.
This ensemble generation is an expensive task that is
often undertaken as a community effort [1], with the same
gauge field configurations shared between many physics
calculations. In the second phase, the lattice Dirac operator
is repeatedly inverted for each gauge field configuration
to determine quark propagators nonperturbatively. Finally,

these quark propagators are contracted together to form
correlation functions describing the physics of particular
states of interest. The effects of the lattice regularization on
physical observables, as well as the effects of potential
mistunings in the bare input quark masses, can be system-
atically removed by repeating this procedure to generate a
series of simulations with different lattice spacings, sim-
ulation volumes, and masses. One can then perform
controlled interpolations and extrapolations to the infinite
volume, continuum, physical quark mass limit, to provide
QCD predictions which can be directly compared to
experimental results where they exist, or to make predic-
tions for quantities that cannot be accessed experimentally.
Generating gauge field ensembles and quark propagators

is common to lattice calculations of many different physical
quantities, and has historically dominated the cost of these
calculations. As a result, improving the efficiency of
algorithms used for gauge field generation, such as hybrid
Monte Carlo (HMC) [40], as well as the sparse matrix
inverters needed to compute quark propagators, has been a
major focus of algorithmic research and software develop-
ment. Multigrid algorithms [41–50], which exploit the local
coherence of QCD by inverting a cheaper approximation to
the Dirac operator defined on a coarsened lattice, have been
particularly successful in accelerating gauge field gener-
ation and propagator inversions in recent years, leading to
Oð10 − 100Þ fold improvements in the efficiencies of these
tasks. Similar ideas have also found success as a technique
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for reducing the memory footprint of eigenvectors of the
lattice Dirac operator [51]. As a result of these advances,
the cost of the contraction stage of lattice QCD calculations
targeting nuclei has become relatively more expensive, and
has, in some cases, become the dominant cost of the entire
calculation.1 New efforts to address this situation and
improve the efficiency of contractions are needed.
This work investigates the feasibility of an algorithm

exploiting local coherence to reduce the numerical cost
of computing correlation functions of single hadrons and
light nuclei, based on sparsening. Section II begins by
discussing a simple prescription for sparsening, and details
the construction of multihadron correlation functions such
as those that describe the properties of light nuclei.
Section III A examines the impact of sparsening on
hadronic correlation functions, demonstrating that the
ground-state energies extracted from these correlation
functions are unaltered within the statistical resolution of
this calculation, and Sec. III B introduces an improved
estimator for controlling modifications of the couplings to
excited states introduced by sparsening. Finally, Sec. III C
examines the impact of sparsening on the ground states of
light nuclei.

II. METHODOLOGY

Naively, the quark contractions required to form corre-
lation functions describing many-body systems require
prohibitively large computational resources in general,
since the number of quark contractions grows exponentially
with the number of quark fields. A number of lattice QCD
collaborations have instead used more efficient “baryon
block” algorithms [3,19,52–55], which have enabled first-
principles calculations of the spectra and matrix elements of
light nuclei, for example in Refs. [2–39]. These algorithms
work by first constructing partially-contracted “blocks”
from quark propagators S:

Ba1;a2;a3
b ðp⃗; t; x0Þ ¼

X
x⃗

eip⃗·x⃗
XNBðbÞ

k¼1

w̃ðc1;c2;c3Þ;k
b

×
X
i1;i2;i3

ϵi1;i2;i3Sa1ci1 ðx; x0ÞS
a2
ci2
ðx; x0Þ

× Sa3ci3 ðx; x0Þ; ð1Þ

describing the propagation from x0 ¼ ðx⃗0; t0Þ to x ¼ ðx⃗; tÞ
of a baryon with quantum numbers b and momentum p⃗.
Here ai and ci are combined spin-color-flavor indices, and,

in many cases, particular choices of the weights w̃ða1;a2;a3Þ;k
b

corresponding to interpolating operators with the correct
transformation properties to project onto the wave func-
tions of many-body states of interest are known [52].
Expressing the contractions for multi-hadron nuclear cor-
relation functions in terms of nucleon-level blocks can
often significantly reduce the computational cost by
improving the projection onto the state of interest, espe-
cially if the blocks are stored and reused between different
calculations [4,5].
The dominant cost of assembling the baryon blocks

defined by Eq. (1) is associated with the Fourier transforms
(FTs) used to project onto states with definite momenta.
These FTs are a natural target of a multigrid-type algorithm,
since spatially blocking the lattice by a factor of N reduces
the number of modes by a factor ofN3. The local coherence
of QCD implies that blocked and unblocked calculations
should result in the same values of low-energy hadronic
observables, up to uncertainties from statistical sampling
and discretization effects, provided thatNa≲m−1

π , where a
is the lattice spacing and mπ is the mass of the lightest
hadronic state (pion). In this work, a particularly simple
spatial blocking procedure for quark propagators is
explored: the lattice is blocked uniformly in all spatial
directions, and the value of the propagator evaluated on the
first site of each block is used to define sparsened
propagators on the coarsened lattice. While in principle
one could imagine exploring more sophisticated blocking
procedures—such as a renormalization-group-based block
average, or a projection onto the coarsened lattice defined
by blocked low-mode eigenvectors of the Dirac operator—
such a study is left for future work.
In the following sections, we distinguish between full

correlation functions constructed from quark propagators
defined on the full lattice

Cfullðp⃗; t; x⃗0; t0Þ ¼ h0j
X
x⃗∈Λ3

eip⃗·x⃗Oðx⃗; tÞO†ðx⃗0; t0Þj0i

Λ3 ¼ fðn1; n2; n3Þj0 ≤ ni < Lg ð2Þ

and sparsened correlation functions

Csparseðp⃗; t; x⃗0; t0Þ ¼ h0j
X

x⃗∈Λ̃3ðNÞ
eip⃗·x⃗Oðx⃗; tÞO†ðx⃗0; t0Þj0i

Λ̃3ðNÞ ¼ fðñ1; ñ2; ñ3Þj0 ≤ ñi < L; ñi ≡ 0 ðmod NÞg
ð3Þ

constructed from sparsened propagators defined on a
coarsened sublattice Λ̃3ðNÞ ⊂ Λ3, as described above, with
O† and O appropriate creation and annihilation operators
for the state of interest, and x⃗0 ∈ Λ̃3ðNÞ. One expects that
blocking the lattice at a scale comparable to the pion
Compton wavelength should preserve long-distance QCD

1Computing two-point functions describing the five-nucleon
system for the ensemble used in this work is observed to be
approximately ten times as expensive as generating the necessary
propagators, for example. The exact balance is not particularly
meaningful since it is highly dependent on the specific details of
the calculation and implementation.
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physics, since the pion is the lightest state in the QCD
spectrum, suggesting N ≈ ðamπ=2Þ−1 as a reasonable
heuristic choice of the sparsening factor. In Ref. [56],
for example, it has been demonstrated that the nucleon
correlation function approximately factorizes as

hCNðtÞi ≈ heRNðtÞiheiθN ðtÞi ∼ ½ðe−mπ t=2Þðe−ðmN=3−mπ=2ÞtÞ�3;
ð4Þ

where RNðtÞ and θNðtÞ denote the magnitude and phase of
the nucleon two-point function, respectively. An analogous
factorization is expected to hold for other hadronic states.
In the context of this work, we have numerically studied the
magnitude of correlations in hadronic two-point functions
as the spatial locations of the quark propagators used to
compute these two-point functions are varied, and find
results that are consistent with ðamπ=2Þ−1 as the relevant
scale; the interested reader is referred to Ref. [57] for
additional detail.
Ultimately, the effect of sparsening, as it has been

implemented in this work, is to modify the structure of
the interpolating operator used at the sink. Since any choice
of interpolating operator with the correct quantum numbers
is equally valid for probing a given state in the lattice
theory, this implementation of sparsening is guaranteed to
preserve the values of physical observables, such as the
finite volume energy spectrum, but can, however, modify
the relative overlaps onto the ground and excited states in a
particular channel. In the approach explored in this work,
sparsening is expected to modify couplings to excited states
at short Euclidean time separations, since Eq. (3) can be
understood as an incomplete momentum projection over a
subset of the allowed lattice modes. The degree to which
the couplings to excited states are modified by sparsening,
as well as the degree to which it impacts the statistical
uncertainties of observables such as hadron energies, are
empirical questions that are explored in the next section.
More generally, one could consider a hybrid correlator

interpolating between the full and sparsened correlators as
described above:

C̃ðp⃗; tÞ ¼ 1

Nsparse

X
x0∈Λsparse

Csparseðp⃗; t; x0Þ

þ 1

NΔ

X
x0
0
∈ΛΔ

ðCfullðp⃗; t; x00Þ − Csparseðp⃗; t; x00ÞÞ:

ð5Þ

For this construction to be useful in practice, one must be
able to determine this modified estimator precisely at low
cost. The proposed idea—similar in spirit to the all-mode
averaging technique introduced in Ref. [58], or the cor-
rection term for masterfield calculations introduced in
Ref. [59]—is to compute the inexpensive, sparsened

correlation functions by averaging over Nsparse independent
propagator source locations x0 ∈ Λsparse, as well as the full
correlation functions by averaging over a smaller subset of
NΔ propagator source locations with ΛΔ ⊂ Λsparse. One can
then form the estimator of Eq. (5), where the second term
interpolates between Eq. (3) ðNΔ ¼ 0Þ and Eq. (2)
ðNΔ ¼ NsparseÞ. This can reduce the additional excited
state contamination while still leading to significant cost
reductions in practice, provided the observed differences
can be effectively removed when NΔ ≪ Nsparse.

III. RESULTS

Results are reported for the low-energy QCD spectrum
computed on a single 323 × 48 lattice ensemble with the
Wilson-clover fermion action [60] and Lüscher-Weisz
gauge action [61]. This ensemble was generated using
three degenerate flavors of quarks with masses tuned to the
strange quark mass, leading tomπ ≈ 806 MeV, and a lattice
spacing a ≈ 0.145 fm determined by ϒ spectroscopy [9].
Throughout, lattice momenta p⃗ are specified in terms of
the dimensionless wave number n⃗, where p⃗ ¼ 2πn⃗=L and
L ¼ 32 is the spatial extent of the lattice. The correlation
functions described in this work are computed from
Gaussian-smeared propagators constructed using 30 iter-
ations of APE smearing [62] at the source and sink with
radius ρ ¼ 4.35 in lattice units, and sparsened according
to the procedure described in Sec. II. Further details can be
found in Ref. [9]. The distribution of source positions
throughout the spacetime volume is varied depending on
the quantity being studied: in Sec. III A all source locations
with jx⃗0j=a ≤ 12, where the components of x⃗0 are multiples
of 4 and t0=a ¼ 12, are included, while in Sec. III C, the

TABLE I. Coefficients of determination ðR2Þ, slopes, and
intercepts for linear regressions of source location-averaged
sparse two-point correlator data against source location-averaged
full two-point correlator data. The corresponding data sets and
fitted models are plotted in Fig. 1.

State t=a R2 Slope Intercept

π 4 0.82 0.95(2) 2.2ð0.8Þ × 10−8

8 0.85 0.97(2) 1.1ð0.6Þ × 10−9

12 0.86 0.98(2) 5.8ð6.5Þ × 10−11

ρ 4 0.85 0.98(2) 6.0ð4.9Þ × 10−9

8 0.86 1.00(1) −0.2ð1.8Þ × 10−10

12 0.85 1.01(2) −3.2ð8.7Þ × 10−12

N 4 0.52 0.97(3) 6.3ð8.6Þ × 10−13

8 0.45 0.98(6) 0.6ð1.1Þ × 10−14

12 0.41 1.09(8) −1.2ð1.3Þ × 10−16

Δ 4 0.45 0.92(4) 9.6ð4.9Þ × 10−12

8 0.41 0.95(5) 3.3ð2.8Þ × 10−14

12 0.44 1.06(7) −1.1ð2.1Þ × 10−16
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source locations are randomly distributed throughout the
four-dimensional spacetime volume. In all cases measure-
ments were performed on 900 independent gauge field
configurations, and the lattice has been blocked by a
factor of N ¼ 4 lattice units in the spatial directions to
define sparsened propagators and correlation functions.
This blocking is chosen to be consistent with the expected
scale of spatial correlations in hadronic two-point func-
tions, ðamπ=2Þ−1 ≈ 3.4, in the lattice units of the ensemble
used for this study. In physical units the blocking factor,
N≈0.58 fm, and propagator smearing radius, ρ ≈ 0.63 fm,
are comparable.

A. Sparsened hadronic correlation functions

The viability of the proposed sparsening algorithm as a
cost reduction technique for lattice QCD calculations
depends primarily on the degree to which it preserves
the precision with which matrix elements and the low-
energy spectrum of QCD can be extracted, as well as the
speedup of computing quark contractions that it enables.
While the blocking described in the preceding paragraph
was designed to preserve long-distance physics, the incom-
plete momentum projection implied by Eq. (3) effectively
alters the lattice interpolating operator at the sink, and
therefore alters the overlap onto the different hadronic

FIG. 1. Scatter plots of source location-averaged sparse two-point correlator data against source location-averaged full two-point
correlator data, as well as the corresponding linear regression, for the pion (first row), ρmeson (second row), nucleon (third row), and Δ
baryon (fourth row), with fixed Euclidean time separations of 4 (left column), 8 (middle column), and 12 (right column) lattice units.
The parameters of each regression are summarized in Table I.
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states in the QCD spectrum. This section explores the
practical ramifications of modifying the sink structure by
comparing results extracted from the pion, ρ meson,
nucleon, and Δ baryon two-point functions computed using
either full or sparsened propagators and for all lattice
momenta with jn⃗j ≤ ffiffiffi

5
p

. While sparsening offers no sig-
nificant calculational speedup for correlation functions
describing single hadrons, these are the simplest and most
statistically precise quantities available to study in lattice
QCD, and thus a natural starting point to examine the impact
of sparsening. Similar studies of more complicated matrix
elements involving these states are deferred to future work.

1. Consistency of full and sparsened two-point
correlation functions

To understand correlations between measurements,
linear regressions of the sparsened two-point correlation
functions, Eq. (3), against the corresponding full two-point
correlation functions, Eq. (2), are computed and summa-
rized in Table I and Fig. 1. For each gauge field

configuration used in the calculation, the source loca-
tion-averaged sparse data is plotted against the source
location-averaged full data for a fixed choice of the
Euclidean time separation. This procedure is repeated for
sink times t=a ∈ f4; 8; 12g, where the range is chosen to
overlap with both the short-time, excited state-dominated
regime as well as the late-time, ground state-dominated
regime observed in the effective mass plots shown in Fig. 2.
Results are shown for hadrons at rest; similar correlations
are observed for hadrons with non-zero momenta, which
were studied for all states with jn⃗j ≤ ffiffiffi

5
p

.
The full and sparsened data sets are observed to be

statistically consistent, as evidenced by regression inter-
cepts which are consistent with zero and regression slopes
which are consistent with unity. The degree to which the
full data can be described by a linear function of the sparse
data is summarized by the coefficient of determination

R2 ¼ 1 −
P

αðyα − fαÞ2P
αðyα − ȳÞ2 ; ð6Þ

FIG. 2. Effective energies, Eq. (7), of the pion (upper left), ρ meson (upper right), nucleon (lower left), and Δ baryon (lower right),
with lattice momenta jn⃗j2 ∈ f0; 2; 4g. Light circles denote data computed from full two-point correlation functions [Eq. (2)], whereas
dark triangles denote data computed from sparsened two-point correlation functions [Eq. (3)]. The sparsened data has been slightly
shifted along the time axis for clarity.
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where yα and ȳ are the full correlation function computed
on a gauge field configuration indexed by α and the
ensemble average, respectively, and fα is a linear function
of the corresponding sparse correlation function. The
extreme limits R2 ¼ 0 and R2 ¼ 1 correspond to no
relationship and a perfect linear relationship, respectively.
Somewhat larger R2 values are observed for the mesons
than for the baryons—this is expected since the baryon
signals are contaminated with more statistical noise.

2. Effective energies

Figure 2 depicts the effective energy function

aEeffðtÞ ¼
8<
:

cosh−1
h
Cðt−1ÞþCðtþ1Þ

2CðtÞ
i
; mesons

sinh−1
h
Cðt−1Þ−Cðtþ1Þ

2CðtÞ
i
; baryons

ð7Þ

of hadrons with lattice momenta jn⃗j ∈ f0; ffiffiffi
2

p
; 2g. At large

Euclidean time separations, t=a ≫ 1, the effective mass
asymptotically approaches the energy of the ground state
with the quantum numbers of the interpolating operator
from which it is constructed. It is observed that the full and

sparsened effective energies reach consistent plateaux for
t=a≳ 8—in particular, both the asymptotic value of the
effective energy, and the range of Euclidean times over
which the effective energy signal exhibits a stable plateau,
are consistent—suggesting that the proposed sparsening
preserves the energy and signal quality arising from the
ground state contribution.
At small Euclidean time separations t=a≲ 6, the

effective mass is contaminated by contributions from
higher energy excited states, which are exponentially
suppressed in t. In this regime, there are statistically
significant deviations between the full and sparsened
results; this deviation is further emphasized in Fig. 3,
which shows the correlated ratio of the full and sparsened
effective mass signals. From Figs. 2 and 3, it is possible
to infer a few effects of sparsening on the coupling to
the excited state spectrum of QCD: first, that excited state
contamination is more prominent in the sparsened sig-
nals, as evidenced by the larger deviations from the
asymptotic ground state plateau at early times in Fig. 2,
and second, that these deviations are also more prominent
when projecting onto states with higher lattice momenta,
as observed in Fig. 3.

FIG. 3. Correlated ratios of the full and sparsened effective energy signals for the pion (upper left), ρ meson (upper right), nucleon
(lower left), and Δ baryon (lower right), with lattice momenta jn⃗j2 ∈ f0; 2; 4g.
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3. Ground state energy extraction

Ground state energies can be extracted from two-point
correlation functions by determining the parameters β⃗
minimizing

χ2ðβ⃗Þ ¼
X
ti∈Tfit

X
tj∈Tfit

ðCðp⃗; tiÞ − fðti; β⃗ÞÞðΣ−1Þij

× ðCðp⃗; tjÞ − fðtj; β⃗ÞÞ; ð8Þ

where

Σij ¼ hðCαðp⃗; tiÞ − Cðp⃗; tiÞÞðCαðp⃗; tjÞ − Cðp⃗; tjÞÞiα ð9Þ

is the covariance matrix describing correlations between
time slices, Cαðp⃗; tÞ is the full or sparsened two-point
function computed on a fixed gauge field configuration
indexed by α and averaged over all source locations, and

fðt; β⃗Þ is an appropriate fit ansatz. In this notation Tfit
denotes the range of time separations included in the fit,
h� � �iα denotes an ensemble average across measurements
on independent gauge field configurations, and Cðp⃗; tÞ ¼
hCαðp⃗; tÞiα. For simplicity, Tfit is chosen to lie inside the
asymptotic plateau regions exhibited in Fig. 2, where the
correlation function is saturated by the ground state con-
tribution, and the ansätze are simple, single-exponential
forms, with

fðt;Zsrc; Zsnk; EÞ ¼
8<
:

ZsrcZ�
snk

2E ðe−Et þ e−EðT−tÞÞ; mesons
ZsrcZ�

snk
2E e−Et; baryons

ð10Þ

where T=a ¼ 48 is the temporal extent of the lattice. The
results of these fits are summarized in Table II: it is

TABLE II. Summary of fits to extract the ground state energies of the pion, ρ meson, nucleon, and Δ baryon. Tfit
denotes the range of Euclidean times included in the fit in lattice units, jn⃗j is the wave number describing the total
momentum carried by the hadron, aE is the extracted ground state energy, χ2=dof is obtained by minimizing Eq. (8),
and κðΣÞ denotes the condition number of the covariance matrix [Eq. (9)]. The first set of fit results (middle three
columns) are from fits to full correlation functions [Eq. (2)], while the second set of fit results (rightmost three
columns) are from fits to sparsened correlation functions [Eq. (3)]. The statistical uncertainties of fitted quantities are
computed using the jackknife resampling technique.

Full Sparse

State Tfit n⃗ aE χ2=dof κðΣÞ aE χ2=dof κðΣÞ
π [7, 18] (0,0,0) 0.59477(30) 1.30(71) 3.83 × 106 0.59471(30) 1.39(74) 2.56 × 106

(1,0,0) 0.62505(36) 1.31(72) 3.50 × 108 0.62500(35) 1.76(80) 4.58 × 107

(1,1,0) 0.65368(38) 1.32(72) 4.95 × 108 0.65368(36) 1.90(84) 8.83 × 107

(1,1,1) 0.68102(41) 1.38(74) 6.60 × 108 0.68086(38) 1.06(63) 1.58 × 108

(2,0,0) 0.70648(44) 1.21(69) 7.92 × 108 0.70651(42) 1.43(72) 1.70 × 108

(2,1,0) 0.73169(48) 1.36(74) 9.83 × 108 0.73225(44) 1.28(69) 2.19 × 108

ρ [7, 18] (0,0,0) 0.80795(55) 0.51(45) 5.37 × 107 0.80805(54) 0.58(48) 3.81 × 107

(1,0,0) 0.82954(56) 0.52(46) 7.10 × 107 0.82972(55) 0.57(48) 5.28 × 107

(1,1,0) 0.85050(59) 0.46(43) 8.41 × 107 0.85066(57) 0.77(55) 6.12 × 107

(1,1,1) 0.87087(61) 0.40(40) 9.31 × 107 0.87110(59) 0.48(44) 7.28 × 107

(2,0,0) 0.89025(63) 0.39(40) 1.00 × 108 0.89103(62) 0.71(53) 7.33 × 107

(2,1,0) 0.90952(66) 0.38(39) 1.07 × 108 0.91029(65) 0.50(45) 7.89 × 107

N [10, 17] (0,0,0) 1.2039(20) 0.65(65) 5.08 × 107 1.2054(13) 0.68(67) 3.18 × 107

(1,0,0) 1.2183(20) 0.64(65) 5.49 × 107 1.2195(14) 0.59(62) 3.23 × 107

(1,1,0) 1.2326(21) 0.62(64) 5.84 × 107 1.2342(14) 0.19(36) 3.46 × 107

(1,1,1) 1.2467(22) 0.57(61) 6.11 × 107 1.2486(15) 0.51(58) 3.98 × 107

(2,0,0) 1.2604(23) 0.58(62) 6.08 × 107 1.2629(16) 0.36(49) 3.77 × 107

(2,1,0) 1.2742(24) 0.50(58) 6.22 × 107 1.2763(16) 0.68(67) 3.85 × 107

Δ [7, 13] (0,0,0) 1.3329(26) 1.17(97) 6.04 × 106 1.3342(17) 1.5(1.1) 4.35 × 106

(1,0,0) 1.3461(26) 1.10(94) 6.55 × 106 1.3477(17) 2.0(1.3) 4.89 × 106

(1,1,0) 1.3591(26) 1.04(91) 7.03 × 106 1.3609(17) 1.16(96) 5.36 × 106

(1,1,1) 1.3720(27) 0.98(89) 7.46 × 106 1.3740(18) 1.3(1.0) 5.53 × 106

(2,0,0) 1.3846(27) 0.88(84) 7.81 × 106 1.3874(18) 0.66(73) 5.76 × 106

(2,1,0) 1.3972(28) 0.83(82) 8.15 × 106 1.4001(19) 0.94(87) 6.04 × 106
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observed for all hadron species and momenta that the
extracted ground state energies are consistent—both in
terms of the central values and statistical uncertainties—
whether the fits are performed to full or sparsened corre-
lation functions.

B. Excited states in sparsened correlation functions

In the preceding subsections, it was observed that while
sparsening can modify the couplings to excited states in the
early Euclidean time regime of lattice two-point correlators,
this had no statistically significant effect on the extraction
of ground-state hadron energies. It is conceivable, however,
that in other calculations which are more sensitive to short-
distance effects—for example, spectroscopic calculations
using a large, variational basis of interpolating operators to
extract ground and excited state energies—modified cou-
plings to higher energy states may be more of a concern,
especially if the couplings are enhanced or if couplings to
additional excited states not present in the full correlation
functions are induced. One way to systematically control
this is to modify the form of the sparsened estimator for the

two-point correlation function according to Eq. (5): in this
expression the parameter NΔ interpolates between the full
correlation function and the sparsened correlation function
in the limits NΔ ¼ 0 and NΔ ¼ Nsparse, respectively.
Figure 4 shows the ratio of the full two-point correlator

[Eq. (2)] to the modified sparse estimator C̃ [Eq. (5)] as a
function of NΔ, with t=a ¼ 3 held fixed. The full set of
source locations is used for Λsparse ðNsparse ¼ 123Þ, and, for
each value of NΔ, a random subset ΛΔ is drawn independ-
ently to compute the correction term.
While, in this study, a small choice of NΔ is sufficient to

remove the additional excited state contamination observed
in the sparsened correlation functions, this comes at the cost
of inflating the statistical error. As NΔ is increased the
correlated ratio asymptotically approaches a regime where
it is consistent with unity and no inflation of the statistical
uncertainty is observed. However, the reader should be
cautioned against inferring too much from the dependence
on NΔ in Fig. 4. In this study ΛΔ has been drawn from a
collection of closely spaced, and thus highly correlated,
propagators, with all sources on a single time slice. If the

FIG. 4. Correlated ratios of the full [Eq. (2)] and modified sparse [Eq. (5)] two-point correlators for the pion (upper left), ρ meson
(upper right), nucleon (lower left), and Δ baryon (lower right), as a function of NΔ. The Euclidean time separation in the two-point
correlators is held fixed at t=a ¼ 3.
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propagator source locations were instead distributed ran-
domly throughout the lattice, it is likely that the modified
estimator would converge more quickly in NΔ. Verifying
this conjecture is left for future work.

C. Sparsened nuclear correlation functions

While the results for single hadron correlation functions
described in the previous section are encouraging for the
use of the sparsening technique proposed in this work, the
necessary quark contractions are also inexpensive, and thus

there is no clear scenario where this technique might be
useful in practice. Computing correlation functions for
nuclear systems composed of multiple hadrons, however,
quickly becomes computationally challenging, and requires
the use of more sophisticated techniques such as the baryon
block algorithm [3,19,52–55] described in Sec. II. A typical
calculation involves constructing and combining many
such blocks for different choices of source and sink
smearings and locations, which is often the dominant cost
in the entire workflow. This is further compounded in
calculations which employ background field methods to

FIG. 5. Effective energies (left column), effective binding energies (middle column), and correlated ratios of full and sparsened
effective energies (right column), for the diproton (NN ð1S0Þ, first row), the deuteron (NN ð3S1Þ, second row), 3He (third row), and 4He
(fourth row). Light circles denote results computed from full two-point correlation functions [Eq. (2)], whereas dark triangles denote
results computed from sparsened two-point correlation functions [Eq. (3)]. The sparsened data has been shifted slightly along the time
axis for clarity.
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compute matrix elements involving current insertions, since
one must also compute blocks for multiple values of the
background field strength [29]. By drastically reducing the
cost of building baryon blocks, sparsening can either help
to reduce the overall computational cost of such calcu-
lations, or else enable the use of a much larger basis of
interpolating operators, smearings, and background fields
at fixed computational cost.
This section investigates the effects of sparsening on the

extraction of ground state energies of more complicated
bound states consisting of multiple nucleons, in analogy to
Sec. III A 3. The states considered include the 1S0 and 3S1
NN bound states2 (dinucleon and deuteron, respectively),
and the 3He and 4He isotopes of Helium, and have been
previously studied in Refs. [9,11,32]. Two classes of fits are
performed. In the first, the energies of these states are
extracted directly by fitting an exponential ansatz to the
Euclidean time dependence of the two-point correlation
function. In the second, the binding energies of each state
are instead extracted from an exponential fit to a suitable
correlated ratio: for a bound state of A nucleons the ratio
used is

RAðtÞ ¼
CAðtÞ

½CNðtÞ�A
∝t≫1

exp ð−ΔEtÞ; ð11Þ

where CAðtÞ is the multihadron two-point correlation
function, CNðtÞ is the single nucleon two-point correlation
function, and ΔE≡ EA − AEN is the binding energy. The
advantage of the ratio RAðtÞ is that it naturally accounts for
the strong correlations in the statistical fluctuations of
CAðtÞ and CNðtÞ, which must be taken into account to
properly determine the statistical uncertainty of ΔE. In
addition, tmust be chosen sufficiently large that both CAðtÞ
and CNðtÞ are ground state dominated.
Figure 5 depicts the effective masses, effective binding

energies—computed from Eqs. (7) and (11)—and corre-
lated ratios of the full and sparsened effective energy
signals, for the dinucleon, the deuteron, 3He, and 4He.
Consistent with the single hadron case, the multihadron
ground state plateaus agree within statistics between the full
and sparsened data, and the correlators exhibit percent-
scale deviations of the correlated ratios of full to sparse
from unity in the early time, excited-state dominated
regime. Likewise, in the summaries of fits to the ground
state energies and binding energies detailed in Tables III
and IV, respectively, there are again no observable discrep-
ancies between fits to the full data and fits to the sparsened
data, in terms of both the energies extracted and their
statistical uncertainties.

TABLE IV. Summary of fits to extract the binding energies, aΔE, of the dinucleon [NN ð1S0Þ], the deuteron
[NN ð3S1Þ], 3He, and 4He. The notation is otherwise the same as that of Table III.

Full Sparse

State Tfit aΔE χ2=dof κðΣÞ aΔE χ2=dof κðΣÞ
NN ð1S0Þ [7, 12] −0.0140ð18Þ 0.46(67) 8.85 × 101 −0.0138ð18Þ 0.53(72) 9.42 × 101

NN ð3S1Þ [7, 12] −0.0180ð17Þ 0.26(50) 8.78 × 101 −0.0180ð17Þ 0.29(53) 9.40 × 101

3He [7, 11] −0.0434ð72Þ 0.37(67) 6.08 × 101 −0.0431ð75Þ 0.44(74) 6.90 × 101

4He [6, 10] −0.055ð13Þ 0.36(49) 8.38 × 101 −0.054ð13Þ 0.55(67) 1.01 × 102

TABLE III. Summary of fits to extract the ground state energies of the dinucleon [NN ð1S0Þ], the deuteron
[NN ð3S1Þ], 3He, and 4He. Tfit denotes the range of Euclidean times included in the fit in lattice units, aE is the
extracted ground state energy, χ2=dof is obtained by minimizing Eq. (8), and κðΣÞ denotes the condition number of
the covariance matrix [Eq. (9)]. The first set of fit results (middle three columns) are from fits to full correlation
functions [Eq. (2)], while the second set of fit results (rightmost three columns) are from fits to sparsened correlation
functions [Eq. (3)]. The statistical uncertainties of fitted quantities are computed using the jackknife resampling
technique. These results are consistent with previous determinations of these quantities [9].

Full Sparse

State Tfit aE χ2=dof κðΣÞ aE χ2=dof κðΣÞ
NN ð1S0Þ [7, 14] 2.3961(25) 0.41(52) 8.84 × 1013 2.3961(25) 0.35(48) 8.65 × 1013

NN ð3S1Þ [7, 14] 2.3919(25) 0.61(65) 8.24 × 1013 2.3918(25) 0.53(60) 8.32 × 1013

3He [7, 12] 3.5726(83) 0.55(74) 6.88 × 1014 3.5726(84) 0.55(72) 6.84 × 1014

4He [7, 11] 4.769(29) 0.37(57) 7.85 × 1015 4.766(27) 0.57(72) 6.98 × 1015

2At the heavy, SUð3Þ-symmetric quark mass point used in
these calculations, the dinucleon state is observed to be bound
[9], unlike in nature.
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IV. CONCLUSIONS

This work has introduced an algorithm for reducing the
numerical resources required to compute multihadron
correlation functions in lattice QCD simulations, based
on sparsening. It has been demonstrated that a relatively
simple prescription for sparsening—uniformly blocking
the lattice in the spatial directions, and taking the value
of the propagator evaluated at the first site in each block to
define sparsened propagators and correlation functions—is
sufficient to preserve the ground state energies and uncer-
tainties extracted from a lattice QCD simulation. It has also
been noted that this sparsening procedure alters the
couplings to excited states observed at early Euclidean
times for single- and multihadron correlation functions;
however, a simple modification of the sparsified correlation
functions can efficiently remove these modified excited
state effects, if desired. Since sparsening differentially
distorts the UV components of correlation functions, it
is not surprising that it modifies the overlaps onto excited
states at early Euclidean times.
The sparsening techniques that are presented here enable

Oð10 − 100Þ fold speedups in the contraction stage of
lattice calculations of nuclear physics. This factor will
further increase as the continuum limit is approached, since
it is possible to block more aggressively as the scale of
the lattice cutoff grows in comparison to the scale of the
systems being studied. Future work will explore the
application of sparsening to more complicated observables,
such as three-point functions describing the gluonic struc-
ture of light nuclei [33].
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