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We revisit the experimental and theoretical status of B → ρlν̄ and B → ωlν̄ decays. We perform a
combined fit of averaged spectra from Belle and BABAR measurements with prior light-cone sum rule
calculations in order to obtain more precise predictions over the full q2 range. The extracted values of jVubj
from these combined fits exhibit smaller uncertainty compared to previous extractions from B → ρlν̄ and
B → ωlν̄ decays, and the central values are found to be smaller than values extracted from B → πlν̄ or
inclusive measurements. We use our fit results to obtain more precise predictions in and beyond the
Standard Model for the lepton universality ratios RðρÞ and RðωÞ, as well as several angular observables that
are sensitive to the full q2 distribution, such as the longitudinal polarization of the vector meson, the τ
polarization, and its forward-backward asymmetry.
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I. INTRODUCTION

Semileptonic decays offer a clean laboratory to search for
physical phenomena beyond those predicted by the Standard
Model (SM) of particle physics. Intriguingly, semitauonic
transitions involving charmed final states—i.e., b → cτν̄
decays—show a persistent lepton flavor universality viola-
tion (LFUV) anomaly at the 3σ level [1] or higher when
various decay modes are combined; see Ref. [2] for a recent
review. As pointed out by, e.g., Refs. [3–5], semitauonic
transitions involving charmless hadronic final states offer an
intriguing independent probe of LFUV anomalies. In par-
ticular, exploring b → uτν̄ decays can be a sensitive probe of
the flavor structure of new physics (NP) mediators (if any)
responsible for the b → cτν̄ LFUVanomalies. For instance,
if the same NP were present in b → u semitauonic decays as
in b → c semitauonic decays, one would naively expect
LFUV deviations from the SM in the former to be enhanced
by jVcbj2=jVubj2 ∼ 102 compared to the ∼10%–20% LFUV
excess rates seen in b → cτν̄.
In 2015, Belle published the first search for B → πτν̄

using single-prong hadronic and leptonic τ decays [6].
Their measured upper limit of the branching fraction can
be translated into a C.L. for the ratio of semitauonic and
light-lepton modes [3], i.e., the lepton universality ratio

RðπÞ ¼ ΓðB → πτν̄Þ
ΓðB → πlν̄Þ ¼ 1.05� 0.51; ð1Þ

with l ¼ e or μ. The measured value is compatible
with the SM predictions RðπÞSM ¼ 0.641� 0.016 [3] or
0.688� 0.014 [5]. It is expected that Belle II will discover
this decay, and then push its measured precision to the
5%–6% level with the anticipated full dataset [2].
In this paper, we explore B → ρτν̄ and B → ωτν̄ tran-

sitions (collectively denoted B → Vτν̄). Measurements of
B → Vτν̄ decays feature several advantages over B → πτν̄
in terms of their potential sensitivity to NP effects,
including an increased branching fraction with respect to
the pion final state, and a larger set of angular observables
from the subsequent ρ → ππ and ω → πππ decays that
may probe NP effects arising in the polarization of the ρ
and ω. The Belle II experiment has started recording its
first collision data: Large and clean datasets of these final
states will soon be available to probe the full differential
information in these decays. In addition, LHCb has
established itself as a source of precise measurements of
semileptonic processes. With its sizeable datasets, it is
conceivable that its first measurements of b → uτν̄ tran-
sitions will appear in the near future, with Bþ → ρ0τþν̄ and
Λb → pτν̄ being likely candidates.
To produce reliable B → Vτν̄ predictions for both the

SM and NP, in this paper we reanalyze the available
experimental measurements of the differential decay
rates in q2 for B → ρlν̄ and B → ωlν̄ published by
BABAR [7,8] and Belle [9]. Newly averaged spectra are
obtained, following the prescription utilized by HFLAV
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for B → πlν̄ [1] (for a different approach, see Ref [10]).
These spectra are then fitted simultaneously with light-cone
sum rule (LCSR) predictions from Ref. [11]. This generates
improved fit results for its particular parametrization of
the SM and NP form factors, which we refer to as the
Bharucha-Straub-Zwicky (BSZ) parametrization hereafter.
Our combination of LCSR and experimental information
extends the applicability of fits to the BSZ parametrization
to the full q2 range. This not only allows for more reliable
predictions of observables that are sensitive to integrations
over the full phase space, but also for the use of the entire q2

range to determine jVubj, instead of only the low q2 region.
We thus redetermine the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVubj and compare it to the values
from Refs. [1,5], which were determined from exclusive
B → πlν̄, and to the recent result from inclusive b → ulν̄
decays [12] using the theoretical calculations of
Refs. [13–18].
Using our combined fit results, we provide improved SM

predictions for the lepton universality ratio RðVÞ and
several angular observables, such as the longitudinal
polarization of the vector meson, the τ polarization, and
its forward-backward asymmetry. [In doing so, we also
provide the explicit construction of the ω longitudinal
polarization in terms of the B → ðω → πππÞτν̄ five-body
differential rate.] We further briefly explore the potential to
search for NP effects in B → ρτν̄ and B → ωτν̄ transitions.
For a selection of prior studies of NP effects in B → ρlν̄,
see Refs. [19–22]. Just as for the charmed final states,
forward-folded model-independent approaches that exploit
the full differential information to fit directly to the NP
Wilson coefficients may be required to avoid biases in NP
interpretations of unfolded observables such as RðVÞ [23]
should an anomaly be seen. Such model-independent
Wilson coefficient fits can naturally be applied to charmless
final states in order to constrain the NP model space in a
model-independent manner.
This paper is organized as follows. Section II introduces

the relevant theoretical foundations and conventions used to
describe b → ulν̄ decays (l ¼ e, μ, or τ). This includes the
explicit construction of the B → V form factors as well as
their parametrization with respect to LCSR results [11],
along with expressions for the B → Vlν̄ differential decay
rates. Expressions for the B → ðρ → ππÞlν̄ and B → ðω →
πππÞlν̄ NP amplitudes and differential rates are provided in
the Appendix. In Sec. III, we derive an averaged q2 spectrum
combining experimental results from both BABAR and Belle,
and Sec. IV proceeds to discuss our combined experimental
plus LCSR fit to determine the form factors. In Sec. V, we
present improved SM predictions for various observables,
followed by a brief discussion of NP effects.

II. B → Vlν̄ IN THE SM AND BEYOND

The effective SM Lagrangian describing semileptonic
b → u transitions arises from the four-Fermi interaction

LSM
eff ¼ −4GFffiffiffi

2
p VubðūγμPLbÞðl̄γμPLνÞ þ H:c:; ð2Þ

in which Vub is the CKM matrix element, the chiral
projectors PR;L ¼ ð1� γ5Þ=2, and the Fermi constant
G−1

F ¼ 8m2
W=ð

ffiffiffi
2

p
g22Þ, with mW the W mass and g2 the

electroweak SUð2ÞL coupling constant. Throughout this
paper, we denote the light leptons by l ¼ e or μ, while
l ¼ e, μ, or τ. Diagrammatically, the parton level b → ulν̄
decay amplitude in the SM is given by

ð3Þ

The quarks are dressed into different hadrons that partici-
pate in various exclusive decay modes. In particular, we
focus on B → Vlν̄ decays, with vector meson V ¼ ρ or ω.
Anticipating a discussion of new physics later on, a

generalized version of the Lagrangian including arbitrary
NP contributions to b → uτν̄ can be written as

Leff ¼ LSM
eff −

cXY
Λ2
eff

ðūΓXbÞðτ̄ΓYνÞ þ H:c: ð4Þ

Here, ΓXðYÞ is any Dirac matrix and cXY is the correspond-
ing NP Wilson coefficient defined at scale μ ∼mb. (We
assume that NP only affects the b → uτν̄ decays and not the
light-lepton modes.) In Eq. (4) we have normalized the NP
Wilson coefficients with respect to the SM current, such
that the effective scale Λeff ¼½4GF=

ffiffiffi
2

p
Vub�−1=2≃2.7TeV.

Our choice of basis for ΓX is the set of chiral scalar,
vector, and tensor currents. That is, ΓX ¼ PR;L, γμPR;L, and
σμνPR;L, respectively. Assuming only SM left-handed
neutrinos, the lepton current is always left handed, and
the tensor quark current may only be left handed. We write
the five remaining Wilson coefficients as cXY ¼ cSR, cSL,
cVR, cVL, and cT .

1

The hadronic matrix elements arising in exclusive
B → V transitions can be generically written as

hVðpVÞjūΓbjB̄ðpBÞi ¼ cV
X
i

T Γ
i F

Γ
i ðq2Þ; ð5Þ

1In contexts that one considers also right-handed neutrinos,
an alternative (slightly abused) notation is cXY ¼ SqXlY , VqXlY ,
TqXlY , where the S, V, T denote the Lorentz structure of the quark
and lepton currents, and X, Y ¼ L, R instead denotes the chirality
of the b quark or charged lepton, respectively. This is the notation
used in, e.g., the HAMMER library [23,24]. The explicit corre-
spondence between the two choices is cSR ¼ SqRlL, cSL ¼ SqLlL,
cVR ¼ VqRlL, cVL ¼ VqLlL, and cT ¼ TqLlL.
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where q ¼ pB − pV . The Clebsch-Gordan coefficient takes
the value cV ¼ 1=

ffiffiffi
2

p
for the neutral unflavored meson final

states V ¼ ρ0 and ω0, while cV ¼ 1 for ρ�. For each current
ūΓb, the T Γ

i denote a basis of the allowed amplitudes—
tensors of the involved 4-momenta and polarizations—
while FΓ

i are their corresponding form factors. In B → V
transitions there are a total of eight possible independent
amplitudes, and hence eight form factors. As in Ref. [11],
we choose the basis fAP; V; A0; A1; A12; T1; T2; T23g
defined explicitly via2

hVjūγ5bjB̄i ¼ cVAPε
� · q; ð6aÞ

hVjūγμbjB̄i ¼ icVVϵμνρσε�νðpB þ pVÞρqσ
mB þmV

; ð6bÞ

hVjūγμγ5bjB̄i ¼ cV

�
A1ðmB þmVÞε�μ

− A2

ðpB þ pVÞμε� · q
mB þmV

þ ε� · qqμ

q2
½A2ðmB −mVÞ

− A1ðmB þmVÞ þ 2mVA0�
�
; ð6cÞ

hVjūσμνbjB̄i ¼ −cVϵμνρσ
�
T1ε

�
ρðpB þ pVÞσ

− ðT2 þ T1Þ
m2

B −m2
V

q2
ε�ρqσ

þ ðpB þ pVÞρqσ
ε� · q
q2

�
ðT1 þ T2Þ

þ T3

q2

m2
B −m2

V

��
; ð6dÞ

with the additional redefinitions with respect to A12

and T23,

4jpV j2m2
BA2 ¼ A1ðm2

B −m2
V − q2ÞðmB þmVÞ2

− 16A12mBm2
VðmB þmVÞ; ð7aÞ

4jpV j2m2
BT3 ¼ T2ðm2

B þ 3m2
V − q2Þðm2

B −m2
VÞ

− 8T23mBm2
VðmB −mVÞ: ð7bÞ

Here, mB (mV) is the mass of the B (vector) meson, and
jpV j denotes the vector meson 3-momentum in the B rest
frame,

jpV j ¼ mV

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
;

¼
ffiffiffiffiffiffiffiffiffiffiffi
λðq2Þ

q
=ð2mBÞ; w ¼ m2

B þm2
V − q2

2mBmV
ð8Þ

in which the Källen function λðq2Þ ¼ ½ðmB þmVÞ2 − q2�
½ðmB −mVÞ2 − q2�. Note, hVjūbjB̄i ¼ 0 by angular
momentum and parity conservation. The identity σμνγ5 ≡
−ði=2Þεμνρσσρσ corresponding to Tr½γμγνγσγργ5�¼þ4iεμνρσ

allows one to write down the matrix element for the axial-
tensor current hVjūσμνγ5bjB̄i from the tensor (6d). This is
the standard Lorentz sign convention in the B → D�
literature. One may instead choose the sign conventions
such that σμνγ5 ≡þði=2Þεμνρσσρσ corresponding to the
more common Tr½γμγνγσγργ5� ¼ −4iεμνρσ. In this case,
the sign of the vector and tensor currents in Eqs. (6b)
and (6d) also changes.
The construction of the form factor basis in Eqs. (6)

assumes the vector meson V may be treated as an on-shell
state. While a good assumption for the narrow ω0, this is a
poorer assumption for the relatively broad ρ; cf. Ref. [25].
For instance, once subsequent ρ → ππ decays are consid-
ered, longitudinal modes may generate important contri-
butions naively ∼ð1 − p2

V=m
2
VÞ ∼ ΓV=mV ; recent analyses

of B → ππ form factors suggest finite-width corrections
could be as large as 20% [26]. In a sufficiently narrow
range of p2

V near the ρ pole, such effects are always
subleading, albeit at the expense of a smaller branching
ratio. Such finite-width effects, however, are typically not
considered in experimental analyses, which instead simu-
late such processes using the narrow-width approximation
with a finite-width Γρ, and permit the ππ invariant mass to
fall within a relatively broad range, jmππ −mρj≲ Γρ [7] or
2Γρ [9]. Additionally, interference effects with nonresonant
B → ππlν̄l production are neglected. We shall therefore do
the same here, fixing the end point of the q2 range to (be
close to) the usual ðmB −mρÞ2, and neglecting the impact
of nonresonant B → ππlν̄l production on the predicted
rates: The impact of such contributions in light leptons was
recently measured for the first time in Ref. [27], which
reported the full sum of resonant and nonresonant semi-
leptonic dipion final states, i.e., the sum of ρ, higher
resonant states, as well as nonresonant ππ contributions.
We note that our final result for jVubj from B → ρlν [see
Eq. (24) below] using data that assumes a narrow-width
approximation is in excellent agreement with that from the
decay to the much narrower ω.
In Appendix A, we provide the explicit forms of the

B → Vlν̄ helicity amplitudes for all SM and NP couplings,
as well as the amplitudes and full differential rates once
subsequent ρ → ππ or ω → πππ decays are included. For
the purposes of our fit below, it is enough to present here
just the SM amplitudes and differential rate for B → Vlν̄.
NP effects are discussed further in Sec. V. In the standard

2It is perhaps unfortunate that the notation for the vector form
factor V ¼ Vðq2Þ is identical to the notation for the vector meson,
V. Whether the vector meson or the vector form factor is meant
will always be clear from context.
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helicity basis, the B → Vlν̄ helicity amplitudes take the
form (up to an overall unphysical phase; see Appendix A)

H�ðq2Þ ¼
2mBjpV jVðq2Þ

mB þmV
� ðmB þmVÞA1ðq2Þ; ð9aÞ

H0ðq2Þ ¼ 8mBmVA12ðq2Þ=
ffiffiffiffiffi
q2

q
; ð9bÞ

Hsðq2Þ ¼ 2mBjpV jA0ðq2Þ=
ffiffiffiffiffi
q2

q
: ð9cÞ

The SM differential rate is then given by

dΓ
dq2

¼ G2
FjVubj2c2V
96π3

jpV j
q2

m2
B

�
1 −

m2
l

q2

�
2

×

��
1þ m2

l

2q2

�
ðH2þðq2Þ þH2

−ðq2Þ þH2
0ðq2ÞÞ

þ 3m2
l

2q2
H2

sðq2Þ
�
: ð10Þ

In line with the approach of the B → πlν̄ analysis of
Ref. [1], the electroweak correction [28] for semileptonic
decays ηEW ¼ 1þ ðα=πÞ logðmZ=mBÞ ≈ 1.0066 is not
included in the rate. This correction can always be applied
post facto using the transformation jVubj → jVubjηEW.
Additional long-distance QED corrections may further affect
the determined value of jVubj. These corrections have been
estimated to be small using a scalar QED approximation
with some model assumptions [29] (see also Ref. [30]). In
the massless lepton limit, the scalar helicity amplitude Hs,
and hence A0, does not contribute, reducing the SM form
factors to three. The “zero mass approximation”—neglecting
the electron or muonmass—is used in Secs. III and IV below
to obtain fits for V, A1, and A12.
The form factors themselves are hadronic functions

that cannot be determined with perturbative methods, since
they incorporate nonperturbative QCD effects. However,
one may exploit dispersion relations plus analyticity
and unitarity bounds to parametrize them in a model-
independent manner. Similar to the Boyd-Grinstein-Lebed
parametrization for B → Dð�Þ [31,32], the Bourrely-
Caprini-Lellouch (BCL) parametrization [33] exploits a
dispersive approach to express the (originally B → π) form
factors as a power expansion with respect to the conformal
parameter

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð11Þ

Here the pair production threshold tþ ¼ ðmB þmVÞ2
and the z origin is determined by the optimized choice
t0 ¼ ðmB þmVÞð ffiffiffiffiffiffiffi

mB
p − ffiffiffiffiffiffiffi

mV
p Þ2 that minimizes the range

of jzj to be ≤ 0.10. (BCL further applies a constraint on the

gradient of the B → π vector form factor at z ¼ −1.) Naive
regularization of the 1=q2 terms in Eqs. (6c) and (6d)
implies the kinematic relations at q2 ¼ 0,

A0ð0Þ ¼
8mBmVA12ð0Þ

m2
B −m2

V
; T1ð0Þ ¼ T2ð0Þ: ð12Þ

The BSZ parametrization [11] modifies the BCL para-
metrization by reorganizing the power expansion in z as a
“simplified series expansion” about q2 ¼ 0 in order to
straightforwardly impose these relations at zeroth order.
That is, the form factors are expanded as

Fiðq2Þ ¼ Piðq2Þ
X
k

αikðzðq2Þ − zð0ÞÞk: ð13Þ

Just as for BCL, for each current a single subthreshold
resonance is assumed at q2 ¼ m2

R, such that the (inverse)
Blaschke factor Piðq2Þ ¼ ð1 − q2=m2

RÞ−1. As allowed by
angular momentum and parity, these resonances are explic-
itly for each of the form factors

AP; A0∶ R ¼ B; mB ≃ 5.279 GeV;

V; T1∶ R ¼ B�; mB� ≃ 5.325 GeV;

A1;12; T2;23∶ R ¼ B1; mB1
≃ 5.724 GeV

coupling to JP ¼ 0−, 1−, and 1þ partial waves, respec-
tively. Finally, the quark equations of motion may be used
to relate the pseudoscalar form factor AP to A0 via

AP ¼ −
2mV

mb þmu
A0: ð14Þ

Here, mb;u are formally scheme-dependent quantities. The
BSZ parametrization [11] uses the pole mass scheme, with
explicitly mb ≃ 4.8 GeV, and the much lighter u quark
mass is neglected. We use the same scheme.
Because of the unstable nature of the ρ and ω mesons,

lattice QCD (LQCD) predictions are challenging, and so far
have not yet provided predictions with controlled system-
atic uncertainties that may be used in fits with data [34].
One may instead exploit LCSR [35–38] predictions for
these transitions [11,26,39,40], which are typically appli-
cable in the low q2 regime, q2 ≲OðmbΛQCDÞ ∼ 14 GeV.
In particular, we make use of the LCSR fit results for the
BSZ parameters [11] comprising a fit to quadratic order
in zðq2Þ − zð0Þ. These results are shown in Table I. (For
b → s transitions, Ref. [11] also quotes combined fits of
LCSR predictions with LQCD results, which are available
for those decays.)
Importantly, the LCSR themselves generate correlated

predictions between SM and NP form factors. Thus, fitting
these predictions in combination with measurements of the
q2 spectra for B → Vlν, in which only SM contributions
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are assumed, nonetheless allows for predictions of
improved precision for both the SM and NP B → V form
factors. We proceed to perform such fits in Sec. IV.

III. BELLE AND BABAR SPECTRUM AVERAGES

As a first step of our study, we generate averaged q2

spectra from the measurements performed by the Belle
and BABAR experiments [7–9]. To do this, we note the
B → ρlν̄ measurements of Belle and BABAR have a
compatible binning, which allows one to straightforwardly
create an averaged differential spectrum. We define a χ2

function of the form

χ2ðx̄Þ ¼
X

m∈fBelle;BABARg
ΔyTmC−1

m Δym;

Δym ¼

0
BBB@

..

.

xmi −
PNi

j>Ni−1
x̄j

..

.

1
CCCA; ð15Þ

where Cm is the covariance of the measurement and xmi is
the measured differential rate in bin i multiplied by the
corresponding bin width. Further, x̄ denotes the averaged
spectrum and ðNi−1; Ni� the range of averaged bins used to

map to the ith measured bin. The binning of the averaged
spectrum is chosen to match the most granular spectrum.
The averaged spectrum is shown in black in Fig. 1 and
tabulated in Table II.
For the average of the B → ωlν̄ measurements from

Belle and BABAR, we again chose the binning of the most
granular spectrum, in this case BABAR’s. However the
experimental spectra do not have a compatible binning in
terms of matching bin boundaries. In order to incorporate
the Belle data and create an averaged spectrum, the LCSR
fit results [11] are used to create a model with which to split
the second and fifth bin of the chosen binning shown in
black in Fig. 1. To match the average bin onto a meas-
urement without matching bin edges, the average bin x̄i,
i ¼ 2 or 5 is split into two parts delimited by the lower bin
edge, the q2 value where the bin is split, and the upper bin
edge. We label the two parts of the split bin as “left” and
“right,” respectively, in the following and define

FIG. 1. The averaged q2 spectrum of the measurements listed in
the text for the ρ (top) and ω (bottom) final state on top of the
latest Belle and BABAR measurements. The isospin transforma-
tion is applied to the B0 → ρ−lþν measurements. In the bottom
figure, we also show the model (green band) which was used to
split the bins in the averaging procedure.

TABLE I. LCSR prediction for the BSZ parameters in semi-
leptonic B→ρ and B→ω transitions. The full correlation matrices
are given in [11]. Note, αA0

0 and αT2

0 are fixed with respect to αA12
0

and αT1

0 , respectively, by the relations at q2 ¼ 0 (12).

Parameter B → ρ B → ω

αA0

1
−0.83� 0.20 −0.83� 0.30

αA0

2
1.33� 1.05 1.42� 1.25

αA1

0
0.26� 0.03 0.24� 0.03

αA1

1
0.39� 0.14 0.34� 0.24

αA1

2
0.16� 0.41 0.09� 0.57

αA12

0
0.30� 0.03 0.27� 0.04

αA12

1
0.76� 0.20 0.66� 0.26

αA12

2
0.46� 0.76 0.28� 0.98

αV0 0.33� 0.03 0.30� 0.04
αV1 −0.86� 0.18 −0.83� 0.29
αV2 1.80� 0.97 1.72� 1.24

αT1

0
0.27� 0.03 0.25� 0.03

αT1

1
−0.74� 0.14 −0.72� 0.22

αT1

2
1.45� 0.77 1.41� 1.01

αT2

1
0.47� 0.13 0.41� 0.23

αT2

2
0.58� 0.46 0.46� 0.57

αT23

0
0.75� 0.08 0.68� 0.09

αT23

1
1.90� 0.43 1.65� 0.62

αT23

2
2.93� 1.81 2.47� 2.19
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x̄i;left ¼ Ii;left=Iið1þ θiεi;leftÞ;
x̄i;right ¼ Ii;right=Iið1 − θiεi;rightÞ; ð16Þ

where Ii;left (Ii;right) is the integral of the model function on
the support of the left (right) part of the split bin, the sum
Ii ¼ Ii;left þ Ii;right is the integral over the entire bin, εi;left
(εi;right) the uncertainty of the integration given by the
model uncertainty, and θi the nuisance parameter for the
model dependence. We point out that the averaged spec-
trum does not depend on jVubj, as jVubj cancels in the ratios
Ii;left=Ii (Ii;right=Ii). The averaged spectrum is shown in
black in Fig. 1 and tabulated in Table II. The result is almost
independent of the nuisance parameters, as can be seen in

the correlation matrix of the fit. The averaged total branching
ratios, defined as the sum over the spectrum, are given in
Table III.We find a slight discrepancywith previous averages,
which can be explained by the averaging procedure.

IV. COMBINED DATA AND THEORY FIT

We now fit the LCSR results in Table I combined with
the averaged spectra in Sec. III over the whole q2 region,
thereby generating new predictions for the BSZ parameters
beyond the q2 ≲ 14 GeV2 regime of validity for the LCSR
results. To this end, we define a χ2 function of the form

χ2ðjVubj; cÞ ¼ ΔcTC−1
LCSRΔcþ ΔyTC−1

SpectrumΔy;

Δc ¼ cLCSR − c;

Δy ¼ ySpectrum − ΔΓðVub; cÞ=Δq2: ð17Þ

Here, c denotes the vector of BSZ parameters and y is the
binned differential decay rate. Note that jVubj is included
in the χ2 function and fitted simultaneously with the BSZ
expansion coefficients. We minimize the χ2 function using
sequential least squares programming: The result of the fit
is tabulated in Tables IV, VIII, and IX. The differential rates
for the leptonic and tauonic mode for both decays using our
fitted coefficients are shown in Fig. 2.
We perform several cross-checks of our final fit. First,

instead of a combined fit using the averaged spectrum

TABLE II. Averaged spectra. For the corresponding correlation
matrices, see Tables VI and VII.

B → ρlν̄

q2 bin ΔΓ=Δq2 × 106

[0, 2] 1.54� 0.62
[2, 4] 2.11� 0.60
[4, 6] 2.68� 0.65
[6, 8] 3.22� 0.67
[8, 10] 2.40� 0.56
[10, 12] 3.34� 0.65
[12, 14] 3.35� 0.65
[14, 16] 3.27� 0.63
[16, 18] 2.66� 0.57
[18, 20] 2.22� 0.52
[20, 22] 0.35� 0.32

B → ωlν̄

q2 bin ΔΓ=Δq2 × 106

[0, 4] 1.51� 0.46
[4, 8] 1.82� 0.35
[8, 10] 2.95� 0.56
[10, 12] 3.44� 0.59
[12, 21] 2.22� 0.40

Nuisance parameters

θ2 −0.01� 1.00
θ5 0.00� 1.00

TABLE III. Averaged total branching ratio with τBþ ¼ 1.638 ×
10−12 s and the total rate given by the sum over the bins of the
averaged spectra. The discrepancy between our result and the
PDG arises because of the method of averaging. The PDG
averages the directly measured branching ratios, whereas we
average the provided unfolded spectra.

Decay Branching ratio (×10−4)

Our result PDG

Bþ → ρ0lν 1.35� 0.12 1.58� 0.11
Bþ → ωlν 1.14� 0.13 1.19� 0.09

TABLE IV. Fit result for jVubj and the BCL expansion
coefficients. The corresponding correlation matrices can be found
in Tables VIII and IX.

Parameter B → ρ B → ω

jVubj 2.96� 0.29 2.99� 0.35
αA0

1
−0.86� 0.19 −0.94� 0.28

αA0

2
1.43� 1.02 1.78� 1.20

αA1

0
0.26� 0.03 0.24� 0.03

αA1

1
0.38� 0.13 0.30� 0.22

αA1

2
0.16� 0.41 0.00� 0.55

αA12

0
0.29� 0.03 0.25� 0.04

αA12

1
0.72� 0.17 0.54� 0.24

αA12

2
0.37� 0.70 −0.03� 0.96

αV0 0.33� 0.03 0.31� 0.04
αV1 −0.87� 0.18 −0.89� 0.27
αV2 1.88� 0.94 1.81� 1.19

αT1

0
0.27� 0.03 0.25� 0.03

αT1

1
−0.75� 0.14 −0.76� 0.21

αT1

2
1.51� 0.76 1.50� 0.96

αT2

1
0.46� 0.13 0.37� 0.21

αT2

2
0.59� 0.46 0.38� 0.55

αT23

0
0.74� 0.07 0.65� 0.09

αT23

1
1.83� 0.40 1.40� 0.58

αT23

2
2.88� 1.79 2.03� 2.18
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described in Sec. III, we performed the fit with the individual
spectra provided by the experiments. Second, the impact of
the tensor form factors via their correlations to the nontensor
form factors was studied by fitting only the (SM) parameters
contributing to the light-lepton final state. Third, we sampled
the form factors at different q2 ¼ 0; 7; 14 GeV2 from a
multidimensional Gaussian distribution, with mean and
covariance set by the LCSR results and incorporated these
into the χ2 function. For each of these three cross-checks,
no significant differences with respect to our combined fit
results were found. This provides good evidence that our
treatment of the form factors in the fit does not bias the result.
The fit results for both final states are shown in Fig. 2.
We find that the extracted jVubj is consistently smaller in

comparison to the extraction from B → πlν̄ decays. Our
extracted values for jVubj are compatible with the extractions
in Ref. [11], but yield lower uncertainties, becausewe extract
jVubj from a combination of experiments and LCSR results
over the full q2 range instead of individually for the Belle
and BABAR experiments with different q2max cutoffs. As a
cross-check, we have repeated the fit with different cutoffs of
the measured q2 spectrum. The results of these fits are shown

in Fig. 3. We consistently find central values for jVubj from
B → ρlν̄, and B → ωlν̄ below the value for jVubj extracted
from B → πlν̄. The stable jVubj extraction for increasing q2

cutoffs indicates that the extrapolation of the form factors
into the high q2 region is reliable. We also perform the fits to
extract jVubj for each experiment separately due to the large
discrepancy in the measured B → ρlν̄ spectra between Belle
and BABAR. The results of these individual fits are sum-
marized in Fig. 4. We find that for the ρ channel, the
measurements of Belle and BABAR exhibit a slight tension.

V. PREDICTIONS IN THE STANDARD MODEL
AND BEYOND

Using our combined fit, in Table V we provide SM
predictions for the lepton universality ratios RðρÞ and RðωÞ
defined as usual as

FIG. 2. The differential decay rates for the leptonic and tauonic
mode with our fit result for the BSZ coefficients for B → ρlν̄ (top)
and B → ωlν̄ (bottom).

FIG. 3. The extracted jVubj values from B → ρlν̄ and B → ωlν̄
for different cutoffs q2max of the respective q2 spectrum in the fit.
The stable extraction of Vub for increasing q2 cutoffs indicates
that the extrapolation into the high q2 region works.

FIG. 4. The extracted jVubj values from B → ρlν̄ and B → ωlν̄
for the fits to the individual experiments, and our averaged
spectra. The B → ρlν̄ measurements of Belle and BABAR exhibit
a slight tension.
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RðVÞ ¼ ΓðB → Vτν̄Þ
ΓðB → Vlν̄Þ : ð18Þ

The combined fit improves the prediction for these observ-
ables over using the LCSR fit results alone by 24% and
13%, respectively. It is further interesting to consider phase
space constrained lepton universality ratios, as pointed out
by Refs. [41,42],

R̃ðVÞ ¼
R t−
m2

τ
dq2½dΓðB → Vτν̄Þ=dq2�R t−

m2
τ
dq2½dΓðB → Vlν̄Þ=dq2� ; ð19Þ

i.e., restricting the light-lepton mode to m2
τ ≤ q2 ≤

ðmB −mVÞ2 ≡ t−, such that the phase space suppression
of the τ mode is lifted. In R̃ðVÞ, the correlation is increased
between the nominator and denominator, and thus a
larger cancellation of uncertainties is possible, but a small
dependence on the actual shape of the light-lepton differ-
ential rate is introduced by the cutoff at m2

τ . R̃ðVÞ is
insensitive to the low q2 ≤ m2

τ ≃ 3.16 GeV2 regime, reduc-
ing its sensitivity to data in the nominal regime of validity
of the light-cone expansion q2 ≲ 14 GeV2. However,
we see in Table V that the LCSR predictions for R̃ðρÞ
and R̃ðωÞ are in good agreement with the combined fit,
suggesting that the experimental data do not pull the
(extrapolation of the) LCSR fit results significantly in
the higher q2 regime.
We also calculate SM predictions for several angular

observables, utilizing our combined fit result for the form
factors. First, we consider the vector meson longitudinal
polarization fraction

FL;lðVÞ ¼
Γλ¼0ðB → Vlν̄Þ
ΓðB → Vlν̄Þ ; ð20Þ

with λ the helicity of the vector meson V ¼ ρ, ω. As an
aside, in the B → ðρ → ππÞlν̄ decay, it is well known that
the longitudinal polarization of the ρ arises in the differ-
ential rate with respect to the pion polar helicity angle,
as in Eq. (A10). One may derive a similar result for the ω
longitudinal polarization in B → ðω → πππÞlν̄ via the
Dalitz-type analysis provided in Appendix A yielding

1

Γ
dΓ

d cosθþ
¼ 3

8
½½1−FLðωÞ�ð1þ cos2θþÞþ 2FLðωÞsin2θþ�;

ð21Þ

in which the θþ helicity angle defines the angle between the
πþ momentum and the Bmomentum pB in the ω rest frame.
Second, we calculate the τ polarization (see, e.g., [2])

PτðVÞ ¼
ΓþðB → Vτν̄Þ − Γ−ðB → Vτν̄Þ
ΓþðB → Vτν̄Þ þ Γ−ðB → Vτν̄Þ ; ð22Þ

in which the � subscript labels the τ helicity, as well as the
forward-backward asymmetry

AFB;lðVÞ ¼
Γ½0;1�ðB → Vlν̄Þ − Γ½−1;0�ðB → Vlν̄Þ
Γ½0;1�ðB → Vlν̄Þ þ Γ½−1;0�ðB → Vlν̄Þ ; ð23Þ

in which ΓL ¼ R
L d cos θl½dΓ=d cos θl�. The predicted cen-

tral values and uncertainties for these observables are
shown in Table V. Using the fitted form factors improves
the prediction for these angular observables over using the
LCSR fit results alone by up to 21%.
We may further use our combined fit to examine the

effects of NP operators defined in Eq. (4) on B → Vτν̄
decays. (These effects are the same for either ρ or ω—both
are vector mesons—up to small differences from their
slightly different masses and their disparate decay modes.)
As an example, in Fig. 5 we show the variation in RðρÞ for
the leptoquark simplified model R2 [43,44]. In this model,
a heavy TeV-scale leptoquark mediator induces nonzero
cSL and cT NP Wilson coefficients constrained such that
cSL ≃ 8cT once Fierz relations and RG evolution effects are
included. Over the range of NP couplings considered, RðρÞ
varies by almost a factor of 2.
In Fig. 6 for the benchmark choice cSL ¼ 8cT ¼ 1, we

show the effects on the differential distributions in missing
mass squared M2

miss and the electron momentum pe from
the τ decay compared to the SM. These spectra are
generated using the HAMMER library [23,24] to reweight
a sample of 5 × 104 events generated with EVTGEN R01-07-00

[45]. We have imposed a common experimental threshold
that the lepton momentum be greater than 300 MeV, but
otherwise we do not consider reconstruction effects. At the

TABLE V. Predictions for the tauonic-to-leptonic ratios RðVÞ,
R̃ðVÞ, the longitudinal fractions FL, the τ polarization, and the
forward-backward asymmetries using the LCSR predictions and
our combined fit results for the BSZ parameters.

LCSR [11] Fit Improvement

RðρÞ 0.532� 0.011 0.535� 0.009 24%
R̃ðρÞ 0.605� 0.007 0.606� 0.007 4%
FL;lðρÞ 0.512� 0.068 0.498� 0.058 15%
FL;τðρÞ 0.496� 0.062 0.482� 0.052 16%
PτðρÞ 0.543� 0.025 0.552� 0.020 21%
AFB;lðρÞ −6.641� 0.769 −6.773� 0.644 16%
AFB;τðρÞ −2.023� 0.705 −2.214� 0.615 13%
RðωÞ 0.534� 0.018 0.543� 0.015 13%
R̃ðωÞ 0.606� 0.012 0.610� 0.011 5%
FL;lðωÞ 0.501� 0.071 0.472� 0.067 6%
FL;τðωÞ 0.486� 0.069 0.465� 0.065 5%
PτðωÞ 0.545� 0.029 0.554� 0.028 2%
AFB;lðωÞ −6.604� 0.868 −7.015� 0.852 2%
AFB;τðωÞ −2.102� 0.849 −2.455� 0.834 2%
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benchmark point, the R2 couplings generate deviations of
approximately 5%–10% compared with the SM distribu-
tions. Just as for the analyses of b → cτν̄ decays, using
the full differential information is expected to provide
greater sensitivity to NP effects than considering deviations
in RðVÞ [or RðπÞ] alone. Moreover, once high-precision
measurements for these decays are available, self-
consistent analyses, using, e.g., reweighting tools, may
be required to avoid biases in NP interpretations of future
anomalous RðVÞ measurements (if any) [23].

Finally, it is perhaps also instructive to characterize the
interplay between RðVÞ and RðπÞ: Unlike for B → Dð�Þ,
there are no heavy quark symmetry relations between the
vector and pseudoscalar meson decay modes. To this end,
in Fig. 7 we show the allowed regions in the RðρÞ–RðπÞ
plane, for each of the (complex) couplings cSR, cSL, cVR,
and cT . For the RðπÞ NP predictions, we use the LCSR fit
of Ref. [46]. However, we note the SM prediction there-
from is RðπÞSM ¼ 0.75� 0.02, which is quite different
from the SM prediction from the combination of LQCD
calculations and experimental data RðπÞSM ¼ 0.641�
0.016 [3]. (A more recent analysis using LCSR inputs
yields 0.688� 0.014 [5], which is still in some tension.)
For this reason, in Fig. 6 we plot RðρÞ=RðρÞSM and
RðπÞ=RðπÞSM, assuming that any LCSR pulls on RðπÞ
approximately factor out of these normalized ratios. The
allowed regions for each NP coupling are broadly similar to
those in the RðDÞ–RðD�Þ plane (see, e.g., Refs. [47,48]).

VI. SUMMARY AND CONCLUSIONS

Using our generated averages of the B → ρlν̄ and
B → ωlν̄ differential spectra measured by the Belle and
BABAR experiments, we performed a combined fit with
LCSR results to obtain improved predictions for the B → V
form factors, for V ¼ ρ or ω, over the full q2 range.
With our combined fit results, we extracted jVubj from

the averaged spectra in both decay modes,

jVubjB→ρlν̄ ¼ ð2.96� 0.29Þ × 10−3;

jVubjB→ωlν̄ ¼ ð2.99� 0.35Þ × 10−3; ð24Þ

finding jVubj consistently below other inclusive and exclu-
sive extractions and with smaller uncertainty compared to

FIG. 6. The B → ρτν̄τ distribution in the missing mass squared
M2

miss variable (left) and the lepton momentum in the B rest frame
(right) without reconstruction effects, for the R2 leptoquark
model benchmark point cSL ¼ 8cT ¼ 1, and the individual
currents at the benchmark points cSL ¼ 1 and cT ¼ 0.125. The
differential distributions are normalized with respect to the SM
rate and include a cut on the electron momentum in the lab frame
pe > 300 MeV. In the lower panels, we show the ratio of the
shapes of differential distributions, with all distributions normal-
ized to unity.

FIG. 7. Allowed regions in the RðρÞ=RðρÞSM versus
RðπÞ=RðπÞSM plane, for each of the (complex) NP couplings
cSR, cSL, cVR, and cT combined with the SM contribution. The
coupling cVL simply rescales the SM, and therefore spans only a
straight line contour.

FIG. 5. The impact on the lepton universality ratio RðρÞ for the
leptoquark model R2, with Wilson coefficients cSL ≃ 8cT . Addi-
tionally, the individual contributing NP currents to R2 are shown.
The highlighted NP points correspond to the benchmark points
for Fig. 6.
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previous extractions such as in [11]. We further used our
combined fit to calculate the following set of observables in
the SM: the lepton universality rations RðVÞ, the longi-
tudinal polarization fractions FL;lðVÞ, the τ polarization
PτðVÞ, and the forward-backward asymmetry AFB;lðVÞ.
For these observables, we saw improved precision in the
predictions by up to 24% compared to using the LCSR
results alone. In addition, we briefly investigated the impact
of new physics contributions on RðVÞ in the B → V
transitions for all four-Fermi NP operators, as well as
examining the impacts on differential rates for a benchmark
example using the leptoquark model R2.
We look forward to future lattice QCD predictions

near zero recoil and beyond, which can provide additional
constraints on this combined fit in the high q2 regime. We
also look forward to new measurements of differential
spectra for B → Vlν̄ from Belle II and LHCb. These
measurements might help to resolve the tension seen in
the B → ρlν̄ spectra from Belle and BABAR, and to
investigate the consistently smaller values of jVubj
extracted from both channels.
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APPENDIX A: AMPLITUDES AND
DIFFERENTIAL RATES

We write explicit expressions for the b̄ → ū amplitudes
rather than b → u, defining the basis of NP operators to be

SM∶ 2
ffiffiffi
2

p
V�
ubGF½b̄γμPLu�½ν̄γμPLl�; ðA1aÞ

Vector∶ 2
ffiffiffi
2

p
V�
ubGF½b̄ðαVLγμPL þ αVRγ

μPRÞu�
× ½ν̄ðβVLγμPL þ βVRγμPRÞl�; ðA1bÞ

Scalar∶ − 2
ffiffiffi
2

p
V�
ubGF½b̄ðαSLPL þ αSRPRÞu�

× ½ν̄ðβSLPR þ βSRPLÞl�; ðA1cÞ

Tensor∶ − 2
ffiffiffi
2

p
V�
ubGF½ðb̄αTRσμνPRuÞðν̄βTLσμνPRlÞ

þ ðb̄αTLσμνPLuÞðν̄βTRσμνPLlÞ�; ðA1dÞ

with l ¼ e, μ, τ. The subscript of the β coupling denotes the
ν chirality and the subscript of the α coupling is that of the u
quark. Operators for the CP conjugate b → u processes
follow by Hermitian conjugation. The correspondence

between the α, β coefficients and the basis typically chosen,
e.g., for b → c or b → u operators can be found in
Ref. [49]. With respect to the notation in Eq. (4),

c�SR ¼ −αSLβSL; c�SL ¼ −αSRβSL;

c�VR ¼ αVRβ
V
L; c�VL ¼ αVRβ

V
L;

c�T ¼ −αTRβTL: ðA2Þ

The B → Vlν̄ decay has three external quantum num-
bers: λV ¼ �; 0, sl ¼ 1, 2, and sν ¼ �, which are the
vector meson and massive lepton spin and neutrino helicity,
respectively. (We label the sl spin by “1” and “2,” rather
than “−” and “þ,” to match the conventions of Ref. [48]
for massive spinors on internal lines.) Helicity angles are
similarly defined with respect to the b̄ → ū process;
definitions for the conjugate process follow simply by
replacing all particles with their antiparticles. The azimu-
thal helicity angle ϕl of the pl–kν̄ plane defined in the lν̄
center-of-mass frame is unphysical in the pure B → Vlν̄
decay. See Fig. 8. The single physical polar helicity angle θl
defines the orientation of pl in the lepton center-of-mass
reference frame, with respect to −pB.
For compact expression of the amplitudes, it is further

convenient to define

q̂2 ¼ q2=m2
B; rl ¼ ml=mB;

rV ¼ mV=mB; jp̄V j ¼ jpV j=mB; ðA3Þ

in which the spatial momentum jpV j ¼ mV

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
is the

momentum of the vector meson in the B rest frame.

FIG. 8. Definition of the helicity angles in the lepton system ρ
and ω rest frames. In the case of the ρ0 → πþπ− (ρ� → π�π0)
decay, the helicity angles θπ and ϕπ are defined with respect to
the πþ (π�).
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We remove an overall prefactor 2cVGFV�
ubm

2
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2 − r2l

q
from the amplitudes, in which the coefficient cV ¼ 1=

ffiffiffi
2

p
for the neutral unflavored mesons final states ρ0 and
ω0, while cV ¼ 1 for ρ�. Thus, the B → Vlν̄ full
differential rate

d2Γ
dq2d cosθl

¼ c2VG
2
FjVubj2m3

B

64π3
jp̄V j

ðq̂2 − r2l Þ2
q̂2

X
λV ;sl;sν

jAλVslsν j2

ðA4Þ

and the b̄ → ūlν amplitudes are correspondingly

A−1 ¼ sin θl

�
−
Vð1þ ðαVL þ αVRÞβVLÞjp̄V jrlffiffiffiffiffi

q̂2
p

ð1þ rVÞ

−
A1ð1þ ðαVL − αVRÞβVLÞrlð1þ rVÞ

2
ffiffiffiffiffi
q̂2

p

þ 2αTRβ
T
L½T2 þ 2T1jp̄V j − T2r2V �ffiffiffiffiffi

q̂2
p

�
; ðA5aÞ

A−2 ¼ cos2
θl
2

�
−
2Vð1þ ðαVL þ αVRÞβVLÞjp̄V j

1þ rV
− A1ð1þ ðαVL − αVRÞβVLÞð1þ rVÞ

þ 4αTRβ
T
Lrl½T2 þ 2T1jp̄V j − T2r2V �

q̂2

�
; ðA5bÞ

A−1 ¼ sin2
θl
2

�
2VðαVL þ αVRÞβVRjp̄V j

1þ rV
þ A1ðαVL − αVRÞβVRð1þ rVÞ

þ 4αTLβ
T
Rrl½T2 − 2T1jp̄V j − T2r2V �

q̂2

�
; ðA5cÞ

A−2 ¼ sin θl

�
VðαVL þ αVRÞβVRjp̄V jrlffiffiffiffiffi

q̂2
p

ð1þ rVÞ

þ A1ðαVL − αVRÞβVRrlð1þ rVÞ
2

ffiffiffiffiffi
q̂2

p

þ 2αTLβ
T
R½T2 − 2T1jp̄V j − T2r2V �ffiffiffiffiffi

q̂2
p

�
; ðA5dÞ

A01 ¼
�
APð−αSL þ αSRÞβSLjp̄V jffiffiffi

2
p

rV

−
ffiffiffi
2

p ð1þ ðαVL − αVRÞβVLÞrlðA0jp̄V j − 4A12rV cos θlÞ
q̂2

−
8

ffiffiffi
2

p
T23α

T
Rβ

T
LrV cos θl

1þ rV

�
; ðA5eÞ

A02− ¼ sin θl

�
−
4

ffiffiffi
2

p
A12ð1þ ðαVL − αVRÞβVLÞrVffiffiffiffiffi

q̂2
p

þ 8
ffiffiffi
2

p
T23α

T
Rβ

T
LrlrVffiffiffiffiffi

q̂2
p

ð1þ rVÞ

�
; ðA5fÞ

A01 ¼ sin θl

�
4

ffiffiffi
2

p
A12ð−αVL þ αVRÞβVRrVffiffiffiffiffi

q̂2
p

−
8

ffiffiffi
2

p
T23α

T
Lβ

T
RrlrVffiffiffiffiffi

q̂2
p

ð1þ rVÞ

�
; ðA5gÞ

A02þ ¼
�
APðαSL − αSRÞβSRjp̄V jffiffiffi

2
p

rV

þ
ffiffiffi
2

p ðαVL − αVRÞβVRrlðA0jp̄V j − 4A12rV cos θlÞ
q̂2

−
8

ffiffiffi
2

p
T23α

T
Lβ

T
RrV cos θl

1þ rV

�
; ðA5hÞ

Aþ1 ¼ sin θl

�
Vð1þ ðαVL þ αVRÞβVLÞjp̄V jrlffiffiffiffiffi

q̂2
p

ð1þ rVÞ

−
A1ð1þ ðαVL − αVRÞβVLÞrlð1þ rVÞ

2
ffiffiffiffiffi
q̂2

p

þ 2αTRβ
T
L½T2 − 2T1jp̄V j − T2r2V �ffiffiffiffiffi

q̂2
p

�
; ðA5iÞ

Aþ2 ¼ sin2
θl
2

�
−
2Vð1þ ðαVL þ αVRÞβVLÞjp̄V j

1þ rV
þ A1ð1þ ðαVL − αVRÞβVLÞð1þ rVÞ

þ 4αTRβ
T
Lrl½2T1jp̄V j þ T2½r2V − 1��

q̂2

�
; ðA5jÞ

Aþ1þ ¼ cos2
θl
2

�
2VðαVL þ αVRÞβVRjp̄V j

1þ rV
þ A1ð−αVL þ αVRÞβVRð1þ rVÞ

−
4αTLβ

T
Rrl½T2 þ 2T1jp̄V j − T2r2V �

q̂2

�
: ðA5kÞ

As done in Refs. [48–50], in Eqs. (A5) we have adopted
spinor conventions such that unphysical ϕl phase is
removed from the b̄ → ūlν amplitude, transferring it to
the subsequent τ or V vector meson decays to generate
physical phase combinations therein. In particular, if
subsequent V → X1…Xn decays are included, one may
further define helicity angles ϕij with respect to the Xi–Xj

plane, such that the twist angle ϕl − ϕij becomes a physical
phase in the V → X1…Xn amplitude. Similarly, τ → hν
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decays, for h any final state system, feature a helicity angle
ϕh defined by the h–ν plane, such that ϕl − ϕh becomes
physical in the τ decay amplitude. With respect to the
explicit amplitudes AλVslsν in Eqs. (A5), this phase trans-
ference amounts to requiring the inclusion of an additional
spinor phase function in the subsequent τ and V decay
amplitudes: hlslsν and hVλV , respectively, that modify the
usual phase convention of the τ or V helicity basis. These
two functions are defined exhaustively via hl11 ¼ hl�22 ¼ 1,
hl12 ¼ hl�21 ¼ eiϕl , and hVλV ¼ e−iλVϕl .
To incorporate subsequent ρ → 2π or ω → 3π decays,

the full differential rate can be written as

dΓ ¼ G2
FjVubj2c2Vm3

B

128π4
jp̄V j

ðq̂2 − r2l Þ2
q̂2

×
X
sl;sν

jAslsν j2dq2dΩldPSV; ðA6Þ

in which dPSV is the phase space measure of the V decay,
and the amplitude for B → ðρ → 2πÞlν̄ or B → ðω → 3πÞlν̄
decomposes in the narrow-width approximation as

Aslsν ¼
X
λV

AλVslsνA
V
λVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mVΓV
p : ðA7Þ

The ρ → ππ strong decay is generated via the chiral
interaction gρρμ½πð∂μπÞ − ð∂μπÞπ�. In the ρ0 → πþπ−

(ρ− → π−π0) decay, we denote the momentum of the πþ

(π−) in the ρ0 (ρ−) rest frame by p�þ (p�−), with magnitude
jp�

πj. In our phase conventions, the ρ → ππ amplitude is
then

Aρ
� ¼ −gρ

ffiffiffi
2

p
jp�

πje�iðϕπ−ϕlÞ sin θπ; ðA8aÞ

Aρ
0 ¼ 2gρjp�

πj cos θπ; ðA8bÞ

in which the helicity angles θπ and ϕπ define the orientation
of p�þ (p�−) with respect toþpB in the ρ0 (ρ−) rest frame. See
Fig. 8. Note that the physical twist angle ϕπ − ϕl appears.
Combining Eq. (A7) with Eqs. (A5) and (A8) yields the

full amplitude expressions, from which square matrix
elements follow immediately. The phase space measure
of the ρ → ππ decay is trivially

dPSρ ¼
jp�

πj
16π2mρ

dΩπ; ðA9Þ

over which integration of the square amplitudes is straight-
forward. [One finds Γ½ρ → ππ� ¼ g2ρjp�

πj3=ð2πm2
ρÞ.] From

Eqs. (A8), one may also immediately derive the differential
decay in the cascade B → ðρ → ππÞlν,

1

Γ
dΓ

d cos θπ
¼ 3

2

�
½1 − FLðρÞ�

sin2θπ
2

þ FLðρÞcos2θπ
�
;

ðA10Þ

in which FLðρÞ is the longitudinal polarization (20).
The ω → πþπ−π0 strong decay is generated via the

interaction gωεμνρσωμ∂νπ∂ρπ∂σπ. For the ω → πþπ−π0

decay, we denote the momenta of the π� in the ω rest
frame by p��, with magnitude jp�

�j, respectively. In our
phase conventions, the ω → πþπ−π0 decay amplitude is
then

Aω
� ¼ gωmωjp�þjjp�

−jffiffiffi
2

p ½e�iðϕ�−ϕlÞ cos θ∓ sin θ�

− e�iðϕ∓−ϕlÞ cos θ� sin θ∓�; ðA11aÞ

Aω
0 ¼ igωmωjp�þjjp�

−j sinðϕþ − ϕ−Þ sin θþ sin θ−: ðA11bÞ

Here the helicity angles θ� and ϕ� define the orientation of
p� with respect toþpB in the ω rest frame. See Fig. 8. Note
that two physical twist angles ϕ� − ϕl appear.
Combining Eq. (A7) with Eqs. (A5) and (A11) yields

the full amplitude expressions. However, for the ω → 3π
decay, the orientations of p�� cannot be chosen freely
simultaneously because pω − pþ − p− ¼ p0 is constrained
to be on the π0 mass shell. That is, one cannot simply
integrate the square amplitude arising from Eq. (A11) over
dΩþdΩ−, because the integration limits become nontrivial.
Natural coordinates for integration of the πþπ−π0 phase

space may instead be constructed by defining relative polar
coordinates θþ− and ϕþ−, e.g., for the π− with respect to
the πþ, in the usual spirit of a Dalitz-style analysis. In
particular, we choose coordinates as shown in Fig. 9, such
that the ẑ axis aligns with p�þ and the ŷ axis lies in the
x-y plane, at −ϕþ from the y axis. The latter defines the

FIG. 9. Definition of the relative helicity angles θþ− and ϕþ−
with respect to the hatted coordinate system shown in red, in the
ω rest frame. The ẑ axis aligns with p�þ; the ŷ axis lies in the x-y
plane at −ϕþ from the y axis. The latter defines the orientation of
the azimuthal angle ϕþ− of p�− around p�þ. The polar angle θþ− is
simply the angle between p�þ and p�−.
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azimuthal angle ϕþ− of p�− around p�þ, while θþ− is the
angle between p�þ and p�−. Because dΩþdΩ− ¼ dΩþdΩþ−,
the phase space measure becomes

dPSω ¼ dE�þdE�
−

8ð2πÞ5 dΩþdϕþ−; ðA12Þ

with the mass-shell constraint

2jp�þjjp�
−j cos θþ− ¼ m2

ω þ 2m2þ −m2
0

− 2mωðE�þ þ E�
−Þ þ 2E�þE�

−; ðA13Þ

in which E�
� are the energies of the π� in the ω rest frame,

andmþ and m0 are the π� and π0 masses, respectively. The
integration domain of dE�þdE�

− is nontrivial. However,
defining s ¼ ðpþ þ p−Þ2 and E� ¼ E�þ � E�

−, the measure
can be further rewritten

dPSω ¼ dsdE−

32mωð2πÞ5
dΩþdϕþ−; ðA14Þ

in which the ordered integration domain 4m2þ ≤ s ≤ ðmω −
m0Þ2 and −E−

maxðsÞ ≤ E− ≤ E−
maxðsÞ with

EþðsÞ ¼ m2
ω −m2

0 þ s
2mω

;

E−
maxðsÞ ¼ ½ðs − 4m2þÞðEþðsÞ2=s − 1Þ�1=2: ðA15Þ

In these polar coordinates, the ω → πþπ−π0 helicity
amplitudes become

Aω
� ¼ ∓ gωmωjp�þjjp�

−jffiffiffi
2

p e�iðϕþ−ϕlÞ

× ½cosϕþ− � i cos θþ sinϕþ−� sin θþ−; ðA16aÞ
Aω
0 ¼ −igωmωjp�þjjp�

−j sinðϕþ−Þ sin θþ sin θþ−: ðA16bÞ

Noting further from Eq. (A13),

jp�þj2jp�
−j2sin2θþ− ¼ s

4
½E−

maxðsÞ2 − ðE−Þ2�; ðA17Þ

integration of the square of the amplitudes over dPSω is
now straightforward. [One finds Γ½ω → 3π� ≃ 1.94 × 8=
ð6π3Þg2ωm7

ω.] One may also immediately derive the differ-
ential decay in the cascade B → ðω → πππÞlν̄,
1

Γ
dΓ

dcosθþ
¼3

8
½½1−FLðωÞ�ð1þcos2θþÞþ2FLðωÞsin2θþ�

ðA18Þ
in which FLðωÞ is the longitudinal polarization of the ω.

APPENDIX B: CORRELATIONS

We give the postfit correlation matrices for the spectrum
average discussed in Sec. III in Tables VI and VII.
The postfit correlation matrices for the form factor fits
discussed in Sec. IV are provided in Tables VIII and IX.

TABLE VI. Correlation matrix of the averaged B → ρlν̄ spectrum.

[0, 2] [2, 4] [4, 6] [6, 8] [8, 10] [10, 12] [12, 14] [14, 16] [16, 18] [18, 20] [20, 22]

[0, 2] 1.00 −0.30 0.03 0.01 0.09 0.09 0.09 0.09 0.08 0.08 0.02
[2, 4] −0.30 1.00 −0.03 0.09 0.11 0.12 0.12 0.12 0.11 0.10 0.02
[4, 6] 0.03 −0.03 1.00 −0.18 0.13 0.13 0.15 0.14 0.13 0.12 0.03
[6, 8] 0.01 0.09 −0.18 1.00 0.06 0.18 0.18 0.18 0.16 0.14 0.04
[8, 10] 0.09 0.11 0.13 0.06 1.00 −0.21 0.05 0.04 0.12 0.10 0.03
[10, 12] 0.09 0.12 0.13 0.18 −0.21 1.00 −0.00 0.07 0.15 0.13 0.04
[12, 14] 0.09 0.12 0.15 0.18 0.05 −0.00 1.00 −0.16 0.14 0.12 0.04
[14, 16] 0.09 0.12 0.14 0.18 0.04 0.07 −0.16 1.00 0.10 0.14 0.05
[16, 18] 0.08 0.11 0.13 0.16 0.12 0.15 0.14 0.10 1.00 −0.27 −0.11
[18, 20] 0.08 0.10 0.12 0.14 0.10 0.13 0.12 0.14 −0.27 1.00 −0.13
[20, 22] 0.02 0.02 0.03 0.04 0.03 0.04 0.04 0.05 −0.11 −0.13 1.00

TABLE VII. Correlation matrix of the averaged B → ωlν̄ spectrum.

[0, 4] [4, 8] [8, 10] [10, 12] [12, 21] θ2 θ5

[0, 4] 1.00 −0.15 0.08 0.04 0.06 −0.01 0.00
[4, 8] −0.15 1.00 0.09 0.09 0.15 −0.01 −0.00
[8, 10] 0.08 0.09 1.00 −0.01 0.12 −0.00 −0.00
[10, 12] 0.04 0.09 −0.01 1.00 0.15 0.00 −0.00
[12, 21] 0.06 0.15 0.12 0.15 1.00 −0.00 −0.00
θ2 −0.01 −0.01 −0.00 0.00 −0.00 1.00 0.00
θ5 0.00 −0.00 −0.00 −0.00 −0.00 0.00 1.00
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TABLE IX. Correlation matrix for jVubj and the BSZ parameters to the averaged B → ωlν̄ spectrum and the LCSR data.

jVubj αA0

1 αA0

2 αA1

0 αA1

1 αA1

2 αA12

0 αA12

1 αA12

2
αV0 αV1 αV2 αT1

0 αT1

1 αT1

2 αT2

1 αT2

2 αT23

0 αT23

1 αT23

2

jVubj 1.00−0.22 0.08−0.48 0.04 0.04−0.80−0.28−0.20−0.46 0.06−0.04−0.43 0.06−0.05 0.05 0.05−0.61−0.24−0.19
αA0

1
−0.22 1.00−0.48 0.12 0.04 0.03 0.47 0.93 0.85 0.05 0.11 0.08 0.08 0.14 0.03 0.04 0.08 0.49 0.92 0.81

αA0

2
0.08−0.48 1.00 0.03 0.05 0.10−0.27−0.52−0.39 0.07−0.01 0.18−0.02−0.02 0.21 0.05 0.16−0.30−0.40−0.10

αA1

0
−0.48 0.12 0.03 1.00 0.61 0.46 0.24 0.05−0.10 0.94 0.60−0.46 0.93 0.61−0.48 0.61 0.45 0.26 0.21 0.13

αA1

1
0.04 0.04 0.05 0.61 1.00 0.84−0.08−0.02−0.24 0.59 0.97−0.51 0.58 0.97−0.55 0.99 0.81−0.02 0.12−0.05

αA1

2
0.04 0.03 0.10 0.46 0.84 1.00−0.07−0.00−0.13 0.41 0.87−0.16 0.40 0.86−0.22 0.84 0.95−0.02 0.09 0.01

αA12

0
−0.80 0.47−0.27 0.24−0.08−0.07 1.00 0.59 0.46 0.21−0.10 0.12 0.20−0.09 0.13−0.09−0.08 0.76 0.47 0.32

αA12

1
−0.28 0.93−0.52 0.05−0.02−0.00 0.59 1.00 0.89−0.01 0.06 0.05 0.02 0.08 0.01−0.02 0.01 0.51 0.89 0.75

αA12

2
−0.20 0.85−0.39−0.10−0.24−0.13 0.46 0.89 1.00−0.16−0.14 0.19−0.13−0.12 0.16−0.22−0.10 0.36 0.70 0.73

αV0 −0.46 0.05 0.07 0.94 0.59 0.41 0.21−0.01−0.16 1.00 0.61−0.52 0.93 0.59−0.50 0.60 0.41 0.21 0.14 0.07
αV1 0.06 0.11−0.01 0.60 0.97 0.87−0.10 0.06−0.14 0.61 1.00−0.52 0.59 0.99−0.56 0.98 0.85−0.03 0.18 0.01
αV2 −0.04 0.08 0.18−0.46−0.51−0.16 0.12 0.05 0.19−0.52−0.52 1.00−0.54−0.51 0.95−0.53−0.07 0.13 0.08 0.30

αT1

0
−0.43 0.08−0.02 0.93 0.58 0.40 0.20 0.02−0.13 0.93 0.59−0.54 1.00 0.62−0.60 0.61 0.39 0.21 0.15 0.04

αT1

1
0.06 0.14−0.02 0.61 0.97 0.86−0.09 0.08−0.12 0.59 0.99−0.51 0.62 1.00−0.58 0.99 0.85−0.02 0.21 0.03

αT1

2
−0.05 0.03 0.21−0.48−0.55−0.22 0.13 0.01 0.16−0.50−0.56 0.95−0.60−0.58 1.00−0.59−0.13 0.11 0.03 0.26

αT2

1
0.05 0.04 0.05 0.61 0.99 0.84−0.09−0.02−0.22 0.60 0.98−0.53 0.61 0.99−0.59 1.00 0.82−0.03 0.12−0.05

αT2

2
0.05 0.08 0.16 0.45 0.81 0.95−0.08 0.01−0.10 0.41 0.85−0.07 0.39 0.85−0.13 0.82 1.00−0.02 0.16 0.13

αT23

0
−0.61 0.49−0.30 0.26−0.02−0.02 0.76 0.51 0.36 0.21−0.03 0.13 0.21−0.02 0.11−0.03−0.02 1.00 0.53 0.32

αT23

1
−0.24 0.92−0.40 0.21 0.12 0.09 0.47 0.89 0.70 0.14 0.18 0.08 0.15 0.21 0.03 0.12 0.16 0.53 1.00 0.86

αT23

2
−0.19 0.81−0.10 0.13−0.05 0.01 0.32 0.75 0.73 0.07 0.01 0.30 0.04 0.03 0.26−0.05 0.13 0.32 0.86 1.00

TABLE VIII. Correlation matrix for jVubj and the BSZ parameters to the averaged B → ρlν̄ spectrum and the LCSR data.

jVubj αA0

1 αA0

2 αA1

0 αA1

1 αA1

2 αA12

0 αA12

1 αA12

2
αV0 αV1 αV2 αT1

0 αT1

1 αT1

2 αT2

1 αT2

2 αT23

0 αT23

1 αT23

2

jVubj 1.00−0.05−0.02−0.54 0.07 0.05−0.75−0.08 0.04 −0.53 0.09−0.02−0.50 0.10−0.03 0.08 0.07−0.55−0.11−0.01
αA0

1
−0.05 1.00−0.15 0.06 0.14 0.20 0.30 0.86 0.81 −0.03 0.22 0.16−0.04 0.24 0.12 0.15 0.27 0.26 0.86 0.73

αA0

2
−0.02−0.15 1.00 0.02 0.14 0.28−0.07−0.23−0.19 −0.02 0.06 0.57−0.17 0.06 0.56 0.11 0.44−0.03 0.07 0.40

αA1

0
−0.54 0.06 0.02 1.00 0.56 0.46 0.29 0.02−0.15 0.90 0.54−0.31 0.88 0.54−0.33 0.55 0.38 0.24 0.20 0.09

αA1

1
0.07 0.14 0.14 0.56 1.00 0.87−0.13 0.08−0.04 0.48 0.95−0.24 0.45 0.95−0.28 0.98 0.79−0.06 0.23 0.18

αA1

2
0.05 0.20 0.28 0.46 0.87 1.00−0.12 0.12 0.08 0.37 0.88 0.02 0.31 0.88−0.03 0.87 0.94−0.04 0.28 0.32

αA12

0
−0.75 0.30−0.07 0.29−0.13−0.12 1.00 0.44 0.26 0.28−0.15 0.06 0.26−0.15 0.07−0.13−0.14 0.69 0.32 0.12

αA12

1
−0.08 0.86−0.23 0.02 0.08 0.12 0.44 1.00 0.89 −0.05 0.19−0.06−0.02 0.21−0.09 0.09 0.11 0.25 0.80 0.59

αA12

2
0.04 0.81−0.19−0.15−0.04 0.08 0.26 0.89 1.00−0.234 0.09 0.04−0.19 0.11−0.00−0.01 0.10 0.08 0.60 0.57

αV0 −0.53−0.03−0.02 0.90 0.48 0.37 0.28−0.05−0.23 1.00 0.54−0.37 0.90 0.48−0.34 0.50 0.31 0.23 0.11−0.00
αV1 0.09 0.22 0.06 0.54 0.95 0.88−0.15 0.19 0.09 0.54 1.00−0.33 0.48 0.97−0.36 0.96 0.80−0.11 0.29 0.22
αV2 −0.02 0.16 0.57−0.31−0.24 0.02 0.06−0.06 0.04 −0.37−0.33 1.00−0.47−0.32 0.96−0.29 0.22 0.15 0.24 0.52

αT1

0
−0.50−0.04−0.17 0.88 0.45 0.31 0.26−0.02−0.19 0.90 0.48−0.47 1.00 0.51−0.53 0.50 0.23 0.20 0.07−0.10

αT1

1
0.10 0.24 0.06 0.54 0.95 0.88−0.15 0.21 0.11 0.48 0.97−0.32 0.51 1.00−0.39 0.98 0.82−0.10 0.31 0.24

αT1

2
−0.03 0.12 0.56−0.33−0.28−0.03 0.07−0.09−0.00 −0.34−0.36 0.96−0.53−0.39 1.00−0.34 0.15 0.17 0.20 0.47

αT2

1
0.08 0.15 0.11 0.55 0.98 0.87−0.13 0.09−0.01 0.50 0.96−0.29 0.50 0.98−0.34 1.00 0.81−0.07 0.23 0.18

αT2

2
0.07 0.27 0.44 0.38 0.79 0.94−0.14 0.11 0.10 0.31 0.80 0.22 0.23 0.82 0.15 0.81 1.00−0.04 0.36 0.50

αT23

0
−0.55 0.26−0.03 0.24−0.06−0.04 0.69 0.25 0.08 0.23−0.11 0.15 0.20−0.10 0.17−0.07−0.04 1.00 0.32 0.11

αT23

1
−0.11 0.86 0.07 0.20 0.23 0.28 0.32 0.80 0.60 0.11 0.29 0.24 0.07 0.31 0.20 0.23 0.36 0.32 1.00 0.86

αT23

2
−0.01 0.73 0.40 0.09 0.18 0.32 0.12 0.59 0.57 −0.00 0.22 0.52−0.10 0.24 0.47 0.18 0.50 0.11 0.86 1.00
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