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We study the dynamics of chemical freeze-out of single strange hadrons—K, Λ, Σ, from a homogeneous
and isotropically expanding system consisting of π,K, ρ,N, Λ, and Σ hadrons with zero net baryon density.
We use the momentum-integrated Boltzmann equation or rate equation to study the evolution of strange
hadrons considering Bjorken and Hubble-like expansions. We calculate the scattering rates of K, Λ, Σ and
compare with the expansion rate to analyze the chemical freeze-out of these species. In this microscopic
calculation the cross sections, which are input to the rate equation, are taken either from phenomenological
models or are parametrized by comparing against experimental data. From this calculation it is found that these
strange hadrons freeze out early near transition temperature Tc when the system follows a Hubble-like fast
expansion. But, for a slowerBjorken-like expansion, strange hadrons take a longer time to decouple following
a sequential behavior. The present calculation may set a guideline to understand the common freeze-out
behavior of strange hadron species at Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider
(LHC), which is mostly predicted by thermal models while explaining the yields of identified particles.
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I. INTRODUCTION

Experimental observations and theoretical analysis sug-
gest that quark gluon plasma (QGP)—one of the phases of
quantum chromodynamics (QCD), is formed in relativistic
heavy ion collisions at top RHIC and LHC energies [1–8].
The temperature and density of QGP is much higher
compared to the normal nuclear matter. Once QGP is
produced in such collisions it expands and undergoes a
transition to hadronic matter, when the temperature of the
system cools down to Tc. The system of interacting hadrons
expands further with gradual fall in temperature and that
leads to the decoupling of various hadronic species. At the
decoupling, which is popularly called freeze-out, the
particles stop interacting. Two types of decoupling, chemi-
cal and kinetic freeze-out, are realized in relativistic heavy
ion collisions. In case of “chemical freeze-out” the inelastic
scatterings between different hadronic species stop com-
pletely, whereas, in case of “kinetic freeze-out,” the elastic
scatterings stop and particles then follow a free-streaming
motion. Corresponding temperatures are referred to in this
article as Tch and Tk, respectively. In such an expanding
system the freeze-out is mostly decided by the scattering
rates of interacting species and expansion rate of the
system.

It has been a long-standing issue to analyze with rigor
whether all hadron species decouple at the same time/
temperature in an expanding system or if they do
gradually at different times/temperatures. It is intuitive
that different particle species decouple from the medium
at different temperatures as their masses and interaction
cross sections are different. But the models that explain
experimental data observed from RHIC or LHC show that
the decoupling of hadrons is consistent with a single
freeze-out scenario at Tc [9–14]. Some models also
explain the same data with a double freeze-out scenario
[15,16]. Hence a detailed calculation in this regard is
missing. Thus it is worth to study the freeze-out behavior
of various species in different systems, more specifically
in systems produced at RHIC and LHC energies. Again,
the study at these energies may help in summarizing the
properties of QCD matter and mapping some portion of
QCD phase diagram.
The scenario where different species decouple gradually

at different temperatures or times is referred to as sequential
freeze-out. On the other hand, when they decouple at the
same temperature, the scenario is termed simultaneous
or common freeze-out. Theoretically, the mean-free paths
of all species together become too large compared to the
system size at simultaneous freeze-out. Some people also
term it common universal freeze-out [17]. Both sequential
and simultaneous nature of decoupling are plausible in case
of chemical as well as kinetic freeze-outs in a multi-
component hadronic system.
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Exact information on both chemical and kinetic freeze-
outs of all species is highly important for hydrodynamic
calculations. It has been observed that these calculations are
somewhat successful in describing the hot and dense fluid
produced at RHIC and LHC. But, we know most of these
calculations [18–26] available for different observables such
as net yield of identified hadrons, electromagnetic spectra,
flow of the different species, etc., assume a simultaneous and
sudden freeze-out scenario (both for Tch and Tk) and attempt
to provide important thermodynamic information of the
produced system. The Cooper-Frye prescription is also
employed with similar assumption of “sudden kinetic
freeze-out (Tk),” which considers that the mean-free paths
of the various hadron species become large enough suddenly
through a thin freeze-out hypersurface. In hybrid model
calculations, chemical freeze-out temperatures for all species
are also assumed to be the same.Tc is chosen conveniently as
Tch to stop hydrodynamic evolution of the fluid and to start
transport calculation for different species.
It is well known that the invariant yields and other

observables depend on Tch and Tk substantially. Hence it is
highly important to know the behavior of both freeze-outs
and temperatures accurately in case of relativistic heavy ion
collisions. Considering this pertinent issue, an attempt has
been made here to understand whether the freeze-out is
simultaneous or sequential. Again, can it be sudden or is it
continuous, and how does expansion of the system play
a role?
In this article, we focus only on the study of chemical

freeze-out of strange hadrons K, Λ, Σ. The dynamics
related to chemical freeze-out is complex in nature due
to the lack of complete understanding of all interactions in a
multicomponent hadronic fluid. A microscopic approach
using the momentum-integrated Boltzmann equation or
rate equation is followed with the available interaction
channels to analyze the behavior. We follow a similar
approach discussed in [27] to study the freeze-out of
various species in case of early universe. The scattering
rates (Γ) of the species of interest are calculated and
compared with the expansion rate (H) of the system.
The calculation is done by considering a slower Bjorken
expansion and a faster Hubble-like expansion. Then the
freeze-out of K, Λ and Σ is discussed by comparing these
rates in both cases. The present calculation discusses
whether the assumption of simultaneous freeze-out at
top RHIC and LHC energies is plausible or not. We keep
the discussion of kinetic freeze out for future work.
Some attempts were made earlier to study the freeze-out

scenario in relativistic heavy ion collisions [16,17,28–35].
The authors in [28] study the successive kinetic freeze-out
scenario in a Bjorken type of expansion, but not the
chemical freeze-out. In [30] the authors describe the
breakdown of hydrodynamics and freeze-out of particles
through the Cooper-Frye prescription with the assumption
of sudden transition of particles in the fluid element in

perfect local thermal equilibrium, but do not discuss the
details of freeze-out behavior. Authors in [16] assume
double freeze-out scenario to explain the observables using
the hadron resonance gas (HRG) model. Sequential freeze-
out has also been advocated in [34] using lattice calcu-
lation. Authors in [36] explained the chemical freeze-out of
a gas of octet of pseudo-scalar mesons from chiral
perturbation theory. But the present approach to study
chemical freeze-out of strange hadrons in a multi-
component hadronic fluid is different.
In this article, since we are dealing with chemical freeze-

out, the equilibrium would mean as chemical equilibrium
from next onwards. We mention thermodynamic or kinetic
equilibrium explicitly if phenomena related to both appear
anywhere. Similarly the scattering here is basically inelastic
scattering.
In the next section we give a note on the chemical

equilibrium and freeze-out scenario to set up the problem.
In Sec. III we discuss the dynamics by setting up a rate
equation with notations for a two-component π-K system
and discuss the freeze-out of kaon. In Sec. IV, we consider
the system with hadrons π; K; K̄; ρ; N;Λ;Σ and evaluate
the scattering rates of K, Λ, Σ and compare with expansion
rate of the system. We finally summarize in Sec. V.

II. CHEMICAL EQUILIBRIUM
AND FREEZE-OUT

A system in complete thermodynamic equilibrium
(chemical, mechanical, and kinetic) may remain in equi-
librium forever as long as the system is static and isolated.
If the system consists of multiple species with some in
complete and others in partial equilibrium, then the species
which are not in equilibrium would try to achieve it after
certain time depending on their scattering rates. To make
the statements more precise, consider an isolated system
at fixed volume (V) and temperature (T) that consists of
two types of particles X and Z. Let the possible reactions in
the system be

XX ⇌ ZZ:

Chemical equilibrium is the state when the rates of forward
and backward reactions are equal. Once chemical equilib-
rium is achieved, although the reactions proceed at equal
rates in the forward and backward directions, there is no net
change in the number of X and Z particles, i.e., at chemical
equilibrium

dNi

dt
¼ 0; i ¼ X; Z;

where Ni denotes the total number of ith species. Let Neq
i

denote the corresponding total number at chemical equi-
librium. If one of the species, say X, is not in chemical
equilibrium then NX relaxes to its equilibrium value
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according to the following rate equation (see [27] for
the derivation):

dNX

dt
¼ −R̄½N2

X − ðNeq
X Þ2�; ð1Þ

where R̄ is a constant and is a measure of the probability of
X undergoing chemical reactions per unit time and depends
only on T. Since T is fixed here, both R̄ and Neq

X are
independent of time. Now for small departure from
equilibrium, NX can be written as NX ¼ Neq

X þ δNX such
that δNX ≪ Neq

X . Substituting this in Eq. (1) and ignoring
quadratic powers in δNX, we get

d
dt

ðδNXÞ ¼ −2R̄Neq
X δNX ⇒ δNXðtÞ ∼ e−t=τX;

where τX ¼ 1
2R̄Neq

X
, which means any perturbation away

from equilibrium relaxes to its equilibrium value on a
timescale τX. If the system consists of more than two
particles and is not in chemical equilibrium, then each
species relaxes due to inelastic scatterings in various
channels and the system always leads to chemical equi-
librium. For example, consider a system consisting of X, Y,
Z and let the possible reactions be

XX ⇌ ZZ; YY ⇌ ZZ:

Further assume that X, Y are not in chemical equilibrium
but Z is in chemical equilibrium. Then the rate equations
for X and Y become

dNX

dt
¼ −R̄X½N2

X − ðNeq
X Þ2�;

dNY

dt
¼ −R̄Y ½N2

Y − ðNeq
Y Þ2�:

Linearizing and solving the above equations, we get

δNXðtÞ ∼ e−t=τX ; δNYðtÞ ∼ e−t=τY ;

where τX ¼ 1
2R̄XN

eq
X
and τY ¼ 1

2R̄YN
eq
Y
. This means that species

X and Y relax to chemical equilibrium on timescales τX
and τY , respectively, and the relaxation time of the whole
system is τ ¼ maxðτX; τYÞ.
However, the picture changes when the system is

expanding, due to which volume will not be a constant
but changes with time. As a result T will become a function
of time and so are the quantities R̄ andNeq

X in Eq. (1). Let us
again consider the example of a system with X and Z
particles as discussed above. Now we allow the volume to
expand. We are interested in the early and late time
dynamics of Eq. (1) when R̄ and Neq

X are functions of
time/temperature. Initially, if the system is not far from

equilibrium then we can write NX ¼ Neq
X þ Δ such that

Δ ≪ Neq
X and dΔ

dt ≪
dNeq

X
dt . Equation (1) becomes

dNeq
X

dt
¼ −2R̄Neq

X Δ ⇒ Δ ¼ −
1

2R̄
d
dt

lnNeq
X ð2Þ

As time progresses, R̄ decreases; also the time derivative of
Neq

X is decreasing in the negative direction. So Δ increases
with time and the system is driven further away from
equilibrium. After certain time, say tch, Δ becomes com-
parable in magnitude to Neq

X and Eq. (2) no longer holds.
However, for late times, i.e., t ≫ tch, Δ becomes so large
that one can write NX ¼ Neq

X þ Δ ≈ Δ. In that case Eq. (1)
becomes

dΔ
dt

≈ −R̄Δ2: ð3Þ

Now if R̄ decreases faster than 1=t then it can be argued
that for t → ∞, Δ → Δ∞ðconstantÞ. For example, let us say
R̄ ∼ 1

tα for α > 1, then we have

dΔ
dt

¼ −
Δ2

tα:

Integrating the above equation, we get

ΔðtÞ ¼ −
tαðα − 1Þ

tþ ctαðα − 1Þ !t→∞ −
1

c
¼ Δ∞;

where c is an integration constant. The above arguments
indicate that an expanding system, even if it starts in
equilibrium, falls out of equilibrium due to expansion, as a
result of which the interparticle separation increases and
interaction rate decreases. At very late times, the inter-
actions rates fall to such an extent that it will not be possible
to further change the numbers of individual species and
total numbers then become constant. This is called the
chemical freeze-out and the corresponding time (temper-
ature) at which this is achieved is called chemical freeze-out
time (temperature). The effect of rate of expansion is
implicit in tch. For a fast expansion,Δ becomes comparable
to Neq in a very short time, say ðtFchÞ; however, for a slower
expansion it takes a longer time for Δ to become of the
order of Neq and hence tFch < tSch.
For an expanding system with more than two particle

species a question arises: Is it possible that the species
freeze out simultaneously in a multicomponent system?
In a multicomponent system, a particular species may be
involved in several inelastic reactions. If tc denotes the time
when temperature of the system becomes Tc, then in the
time interval ðtc; tchÞ as the temperature falls, the reactions
with higher threshold will freeze out first as the reacting
species may not possess enough thermal energy to over-
come the threshold. Let Tchi be the temperature at which
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any of the inelastic processes stop first and this marks the
beginning of the freeze-out of the species. It is difficult to
know this temperature exactly, as the thermal tail of
distribution function at any temperature can provide the
required threshold. However, probabilities of such proc-
esses with higher threshold are very less at a temperature of
our interest. As time progresses and temperature falls, more
and more inelastic channels involving the species stop and
mean-free path increase gradually. At certain temperature,
Tch, when the system cannot provide the required threshold
for all the inelastic channels related to that species, the
mean-free path (considering inelastic cross sections)
becomes much larger. Hence the entire process of chemical
freeze-out happens in a temperature range Tchi − Tch
continuously. This range must be different for different
species. Thus a sequential nature is expected. However,
simultaneous freeze-out may be realized for a case where
the fluid expansion is very fast which decreases the number
density to a low value in a very short time. Thereby,
expansion plays a crucial role in the freeze-out. To quantify,
we discuss scenarios with a slow (Bjorken) and a fast
(Hubble) expansion.
In this work, we study a multicomponent hadronic

system with strange hadrons K, Λ, Σ and nonstrange
hadrons π, ρ, N. Strange hadrons are considered to be
away from equilibrium and are governed by a transport
equation similar to Eq. (1). Assuming nonstrange hadrons
to be in complete equilibrium which provide a thermal
background to the strange hadrons, the scattering rates
of strange hadrons are evaluated and compared with the
expansion rate. The present work is divided into two parts.
First, a simple π-K system is studied in the next section
and the scattering rate of K is calculated. The analysis
will be very similar to the system of X and Z presented in
this section. But, the purpose is to present the equation
that we will solve numerically in the following section.
Then, the system with π; K; K̄; ρ; N;Λ;Σ is studied in the
second part in Sec. IV.

III. π − K SYSTEM

We first consider a simpler system of only π and K
mesons assuming nK ¼ nK̄ at all times. The only possible
inelastic reactions in such a system are ππ → KK̄ and
KK̄ → ππ. Pion is assumed to provide the thermal back-
ground and K is out of equilibrium. Now to analyze the
freeze-out, the momentum-integrated Boltzmann equation
or chemical rate equation for K can be written following
Ref. [27] as

dnK
dt

þ ΓenK ¼ Ro
ππ→KK̄nπnπ − Ro

KK̄→ππ
nKnK̄; ð4Þ

where Γe ¼ 1
V
dV
dT denotes the expansion rate of the system

and Ro
ab→cd denotes the thermal reaction rate as defined

in [37,38]:

Ro
ab→cd ≡ hσab→cdvabi ¼

Z
d3p1d3p2f

eq
a ðp1Þfeqb ðp2Þσvab:

σ denotes the cross section for the reaction ab → cd,
feqa ; f

eq
b denote the equilibrium distributions of a and b,

respectively, and vab denotes the relative velocity (Møller
velocity) and is given by

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa:pbÞ2 −m2

am2
b:

q
EaEb

p, m, and E are the momentum, mass, and energy of the
interacting particles.
If we assume classical Boltzmann statistics for all

the particles then the thermal reaction rate can be written
as [38,39]

Ro
ab→cdðTÞ ¼

Tgagb
32π4neqa ðTÞneqb ðTÞ

Z
∞

s0

ds½s − ðma þmbÞ2�

× ½s − ðma −mbÞ2�
σðsÞffiffiffi

s
p K1ð

ffiffiffi
s

p
=TÞ; ð5Þ

where
ffiffiffiffiffi
s0

p ¼ maxðma þmb;mc þmdÞ and s is the square
of the center of mass energy. In absence of the expansion
term, equilibrium condition demands that we must have

Ro
ππ→KK̄n

eq
π n

eq
π ¼ Ro

KK̄→ππ
neqK n

eq
K̄;

and since we assume π’s to be always in equilibrium, hence
the rate equation becomes

dnK
dt

þ ΓenK ¼ Ro
KK̄→ππ

½neqK neqK̄ − nKnK̄�: ð6Þ

Since nK ¼ nK̄ , the above equation can also be written as

dnK
dt

þ ΓenK ¼ Ro
KK̄→ππ

½ðneqK Þ2 − ðnKÞ2�: ð7Þ

Following [27], we now define YK ¼ nK=s, where s is
the entropy density, to scale out the effect of expansion,
and x ¼ Tc=T which is a dimensionless quantity. Here
Tc ¼ 155 MeV is the crossover temperature at μB ¼ 0.
x ¼ xc ¼ 1 is then the point where we start the evolution
for chemical rate equations. In the context of heavy ion
collisions at μB ¼ 0, due to large abundance of pions,
entropy is related to the yields of pions. Then YK is related
to the ratio of kaons to pions yields. The lhs of Eq. (7) can
be written as

dnK
dt

þ ΓenK ¼ s _YK:

Also,
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_YK ¼ dx
dt

dYK

dx
¼ −

Tc

T2

�
dT
dt

�
dYK

dx
¼ −

x2

Tc

�
dT
dt

�
dYK

dx:

Hence, the rate equation (7) becomes

dYK

dx
¼ −

Tcs
x2

�
dT
dt

�
−1
Ro
KK̄→ππ

½ðYeq
K Þ2 − ðYKÞ2�: ð8Þ

Other inputs that are needed to solve Eq. (8) are s, dT=dt,
and Γe. To obtain s, one should in principle calculate
the entropy density of an interacting pion gas. However,
such a calculation is beyond the scope of this work.
In the temperature range in which we are interested
(T < 155 MeV), due to low mass, pions are the most
abundant species. So in this temperature range, the entropy
density of a pure pion gas should not differ much from the
entropy density of a gas of hadrons for which parametriza-
tion are available in the literature. So in this and the later
section, to a first approximation, we use the parametrization
from [40] for pressure (P) obtained using the results from
the lattice QCD and HRG model and is given by

PðTÞ
T4

¼ a0 þ a1=tþ a2=t2 þ a3=t3 þ a4=t4 þ a5=t5

b0 þ b1=tþ b2=t2 þ b3=t3 þ b4=t4 þ b5=t5;
ð9Þ

with t ¼ TðMeVÞ=154. The values of parameters a0is and
b0is are quoted in Ref. [40]. The entropy density and speed
of sound (c2s) are then obtained using the following
identities:

sðTÞ ¼ dP
dT

;
1

Tc2sðTÞ
¼ 1

s
ds
dT

:

To find Γe, we study the system with a slow Bjorken (BJ)
expansion and a faster Hubble-like (HB) expansion. For
Bjorken expansion, the four-velocity is

uμ ¼ t
τ

�
1; 0; 0;

z
t

�

with τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; using Γe ¼ ∂μuμ, one gets the expan-

sion rate corresponding to Bjorken expansion as

ΓB
e ¼ 1

τ
:

For Hubble-like expansion, the four-velocity

uμ ¼ t
τ

�
1;
x
t
;
y
t
;
z
t

�
;

with τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2 − y2 − z2

p
. This leads to the following

expansion:

ΓH
e ¼ 3

τ:

If the expansion is homogeneous and isotropic, then we
can set x ¼ y ¼ z ¼ 0 and get

Γe ¼
�
1=t Bjorken flow ðBJÞ
3=t Hubble-like flow ðHBÞ ð10Þ

The temperature dependence of Γe can be obtained by
assuming that the expansion is isentropic so that we have
the following continuity equation:

ds
dt

þ Γes ¼ 0:

Using Eq. (10), s can be obtained as a function of t and
gives s ∼ t−a, where a ¼ 1 for BJ and a ¼ 3 for HB
expansion. Equivalently,

sta ¼ constant:

Hence Γe ¼ − 1
s
ds
dt will become

Γe ¼
a

ðs0=sÞ1=at0
:

The temperature dependence of s will then give the
temperature dependence to Γe. We choose T0¼355MeV
and t0 ¼ 1 fm as the initial temperature and thermalization
time, respectively, of the QGP.

dT
dt can be obtained with the help of s and Γe as follows:

Γe ¼ −
1

s
ds
dt

¼ −
1

s
ds
dT

dT
dt

¼ −
1

Tc2s

dT:
dt

Hence

dT
dt

¼ −Tc2sΓe;

and the rate equation (8) becomes

dYK

dx
¼ s

xc2sΓe
Ro
KK̄→ππ

½ðYeq
K Þ2 − ðYKÞ2�

¼ −
Yeq
K

x
sYeq

K

c2sΓe
Ro
KK̄→ππ

�ðYKÞ2
ðYeq

K Þ2
− 1

�

¼ −
Yeq
K

x
Γ
H

�ðYKÞ2
ðYeq

K Þ2
− 1

�
; ð11Þ

where Γ ¼ sYeq
K R

o
KK̄→ππ

¼ neqK R
o
KK̄→ππ

denotes the thermal
rate at which kaons are annihilated and H ¼ c2sΓe ¼ j 1T dT

dt j
denotes the rate at which the system cools. Finally,
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x
Yeq
K

dYK

dx
¼ −

Γ
H

�ðYKÞ2
ðYeq

K Þ2
− 1

�
: ð12Þ

The rate equation in the form given in Eq. (12) suggests that
even if the system starts in equilibrium initially, i.e., at
x ¼ 1, it is driven out of equilibrium as x increases and the
rate at which this happens is controlled by the factor Γ=H.
The ratio, annihilation to expansion rate Γ=H for π-K
system is shown in Fig. 1. The solid blue line represents the
ratio when the system follows a Hubble-like expansion and
the red dashed line represents the ratio when it follows
Bjorken expansion. Since the Hubble expansion rate is
larger, the ratio Γ=H is smaller and less than 1 during the
entire evolution period. In case of the slower Bjorken
expansion, the expansion rate is smaller and Γ=H is more
than 1 at larger temperature. Then the system experiences
less scatterings due to sufficient fall in temperature, leading
to Γ=H < 1 beyond x ¼ 2.3.
With the inputs explained above, we now numerically

solve Eq. (8). The numerical solution is shown in Fig. 2 for
both BJ and HB cases where we plot the logarithm of YK
normalized to its initial value Yc

K ¼ YKðxcÞ, (i.e., the value
at t ¼ tc or x ¼ 1). And, the initial value is chosen to be
the equilibrium value at Tc, i.e., Yc

K ≡ neqK ðTcÞ=sðTcÞ.
We also show the evolution of equilibrium value Yeq

K ¼
neqK ðTÞ=sðTÞ (normalized to Yc

K) by the solid green line for
a baseline to compare with the numerical results of Eq. (8).
As the evolution starts, the expansion drives the system

away from equilibrium. But, the rate at which this happens
depends on the expansion rate. In the BJ case, since the
expansion rate is slower compared to the scattering one, the
ratio Γ=H is greater than 1 and kaons remain close to
equilibrium for a certain time. After which the departure
from equilibrium becomes quite significant as the ratio
Γ=H decreases. For sufficiently longer time, the ratio Γ=H

becomes negligibly small, and YK does not change much
and approaches a constant value which corresponds to
freeze-out of kaons. As can be seen from Fig. 2, for the BJ
case the net yield changes slowly and takes a longer time
for the freeze-out process. This is because of the slow
expansion in the case of Bjorken dynamics. On the other
hand, for the HB case, the cooling rate is much faster so that
the ratio Γ=H is negligibly small right from the beginning
of the evolution. Hence, YK does not change much
compared to its initial value as can be seen by the constant
line (dashed-dotted blue) in Fig. 2. In other words, the yield
does not change much compared to the initial value and
gets frozen close to Tc. Freeze-out temperature is thus close
to Tc.

IV. π −K − ρ −N −Λ−Σ SYSTEM

Now we consider a system consisting of π; K; K̄; ρ; N;
Λ;Σ. We assume that the nonstrange particles ðπ; ρ; NÞ
provide a thermal background till the time of the freeze-out
of the strange hadrons ðK; K̄;Λ;ΣÞ. The assumption of
nonstrange hadrons providing a thermal background can be
justified as follows: the nonstrange hadrons involve pions
which are the lightest hadrons and are produced in large
numbers compared to the strange hadrons. Also, πN cross
sections are usually larger compared to meson-meson
interactions and ρ-meson is a resonance state in the ππ
scattering. Hence, the interaction rate among nonstrange
hadrons at any time would be larger compared to strange
hadrons so that they achieve equilibrium faster compared to
strange hadrons. We employ the momentum-integrated
Boltzmann equation or rate equations to study the dynam-
ics. The details of the cross sections, which go as input in
the rate equations, can be found in [41].
Considering all possible inelastic reactions and follow-

ing the notations of the previous section, the evolution
equations for K; K̄;Λ, and Σ can be written as

FIG. 1. The ratio of annihilation rate of kaons to cooling rate of
the system, Γ=H plotted as a function of x ¼ Tc=T for Bjorken
(BJ) and Hubble-like (HB) flows in a π-K system.

FIG. 2. Numerical solution of Eq. (8) with suitable
normalization.
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where the scattering rates of various channels contributing
to the net productions are defined as follows:

ΓðKÞ
K̄ ¼ neqK̄ ½Ro

KK̄→ππ
þ Ro

KK̄→πρ
þ Ro

KK̄→ρρ
þ Ro

KK̄→pp̄�;
ΓðKÞ
Λ ¼ neqΛ ½Ro

KΛ→πN þ Ro
KΛ→ρN �;

ΓðKÞ
Σ ¼ neqΣ R

o
KΣ→πN;

ΓðK̄Þ
K ¼ neqK ½Ro

KK̄→ππ
þ Ro

KK̄→πρ
þ Ro

KK̄→ρρ
þ Ro

KK̄→pp̄�;
ΓðK̄Þ
Λ ¼ neqN R

o
K̄N→Λπ; ΓðK̄Þ

Σ ¼ neqN R
o
K̄N→Σπ;

ΓðΛÞ
K ¼ neqK ½Ro

ΛK→πN þ Ro
ΛK→ρN �;

ΓðΛÞ
K̄ ¼ neqπ Ro

Λπ→K̄N; ΓðΛÞ
Λ ¼ neqΛ R

o
ΛΛ→pp̄

ΓðΣÞ
K ¼ neqK R

o
ΣK→πN; ΓðΣÞ

K̄ ¼ neqπ Ro
Σπ→K̄N;

ΓðΣÞ
Σ ¼ neqΣ R

o
ΣΣ̄→pp̄:

The above rates are plotted in Figs. 3 and 4. The cross
sections for various hadronic processes producing hyperons
and strange mesons are already mentioned in [41]. The
cross sections of all inverse reactions are obtained using the
principle of detailed balance as follows:

FIG. 3. Different rates appearing in Eqs. (13)–(16) for BJ case.
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σf→i ¼
pi

2

pf
2

gi
gf

σi→f; ð17Þ

where pi, pf are, respectively, the center of mass momenta
and gi, gf are the total degeneracies of the initial and final
channels.
It can be observed that the ratio Γ=H is different for

different channels. As a result, different channels should
freeze out at different temperatures.
Now we solve the coupled differential equations

Eqs. (13)–(16) numerically. The evolution starts at T ¼
Tc ¼ 155 MeV or x ¼ 1. The initial number densities are

chosen as the equilibrium values at Tc, i.e., n
ð0Þ
K ≡ neqK ðTcÞ;

nð0ÞK̄ ≡ neqK̄ ðTcÞ; nð0ÞΛ ≡ neqΛ ðTcÞ; nð0ÞΣ ≡ neqΣ ðTcÞ. The numeri-
cal solution is shown in Figs. 5 and 6. In the present
calculation, the freeze-out is achieved when the variable
Yi ¼ ni=s saturates. It comes automatically when 1=hnσvi
(scattering information from microscopic inputs) becomes
small compared to τexp (system expansion).
In the left panel of Fig. 5 the solution is plotted for the BJ

case and in the right panel for the HB case. Figure 6 shows
a comparative plot for Λ yield for both BJ and HB cases.
For the BJ case, K and K̄ decouple at later time (or lower

temperature) whereas Λ and Σ decouple earlier (or higher
temperature). For the HB case, since the expansion rate is
larger, all channels freeze out as soon as the evolution starts
so that the yields of all the particles are fixed at T ≈ Tc (the
yield however changes by about 2% for K; K̄ and about 6%
for Λ, Σ); hence, the chemical freeze-out temperature for all
is Tch ≈ Tc. But if one observes, the value of yields of
different species are fixed at different temperatures
although close to Tc. Again, it is prominent if one starts
with initial densities little away from equilibrium values.
With different initial number densities the yields of K, Λ

are plotted in Figs. 7 and 8. We have already discussed the
evolution of the strange species when they start evolving
with equilibrium initial densities at Tc and have shown how
they decouple as expansion continues. In Figs. 7 and 8, the
results of Eqs. (13) and (15) with initial densities ni ≠ neq

are shown for K, Λ for both cases of Bjorken and Hubble
expansion, respectively. All the curves with black color
(online) represent the evolution of K and with blue color
(online) represent the evolution of Λ. Solid lines are for
ni ¼ neq, dashed lines are the solution with ni ¼ 0.85neq,
and dotted lines for ni ¼ 0.75neq. The qualitative trend of
the evolution with ni ≠ neq is the same as ni ¼ neq. When
the system starts with initial condition slightly away from

FIG. 4. Different rates appearing in Eqs. (13)–(16) for HB case.
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equilibrium value, interactions try to maintain the equilib-
rium. Gradually with expansion, when the density/temper-
ature becomes insufficient for an inelastic collision, species
decouple; LogðY=YðxcÞÞ saturates. From Fig. 8 it is found
that change in the Λ yield with ni ¼ 0.85neq or 0.75neq

does not differ much from the yield with ni ¼ neq in case of
Hubble expansion, whereas the distinction is prominent for
K yield. Actually there is a difference, but it is small
compared to the case of Bjorken expansion. Difference is
visible when the scale is changed. The difference in yield of
Λ with ni ¼ 0.75neq and ni ¼ neq, for the case of Hubble
expansion, is small because the yield saturates soon or
decoupling happens early during evolution. In case of
Bjorken, the yield saturates later and by that time the
difference in yield (for ni ¼ neq from ni ¼ 0.85neq or
0.75neq) grows because of the secondary interaction.

FIG. 7. K and Λ yields are plotted considering initial densities
n ¼ 0.85neq and n ¼ 0.75neq when system follows Bjorken
expansion. These are the solution of Eqs. (13) and (15) with
suitable normalization.

FIG. 8. K and Λ yields are plotted considering initial densities
n ¼ 0.85neq and n ¼ 0.75neq when system follows Hubble
expansion. These are the solution of Eqs. (13) and (15) with
suitable normalization.

FIG. 6. Numerical solution of Eq. (15) with suitable
normalization.

FIG. 5. Numerical solution of Eqs. (13)–(16) (left panel) BJ case and (right panel) HB case.
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V. SUMMARY AND CONCLUSIONS

Hydrodynamics along with transport calculation provide
a comprehensive model to describe the matter created at top
RHIC and LHC energies. But, these calculations require
information of freeze-out temperature(s) along with initial
thermalization and transition temperatures to infer accurate
properties. Hence it is important to know the freeze-out
temperature(s) at which different species decouple chemi-
cally as has been highlighted in this paper. In this work a
microscopic analysis is carried out to understand the
chemical freeze-out behavior of single strange hadrons
K, Λ, and Σ assuming a homogeneous and isotropically
expanding hadronic system consisting of π, K, ρ, N, Λ, and
Σ at zero net baryon density.
The study is made for two scenarios; i.e., part I is

described in Sec. III and part II is described in Sec. IV. The
description of part I in Sec. III is about the freeze-out
of kaons in an expanding π-K system, where the rate
equation or momentum-integrated Boltzmann equation has
been used to study the evolution of kaons. The scattering
rates are evaluated and compared with the expansion rate
considering both Bjorken and Hubble-like expansions. It is
observed that the expansion dynamics plays a major role
and the kaons take longer time to freeze out when the
system follows Bjorken expansion. However, for the
system following Hubble expansion, kaon yield gets frozen
early around Tc. The calculation is then extended(part II in
Sec. IV), to study the freeze-out of K, Λ, and Σ in a
hadronic system with π; ρ; K; K̄; N;Λ;Σ as constituents
which is described in Sec. IV. Similar observations of late
freeze-out of strange hadrons in case of Bjorken expansion
and an early freeze-out near Tc in case of Hubble-like
expansion are obtained. In addition, it is observed that the
single strange hadrons freeze sequentially when a system
follows Bjorken expansion. However, the freeze-out of
these strange hadrons appears as common or simultaneous
in case of Hubble-like expansion. This is because the
number-changing interactions continue until late times for
Bjorken expansion as it is slow in nature, due to which
inelastic scattering rates of the strange species are greater
than the expansion rate of the system. But, in case of the
Hubble expansion, the expansion rate is fast; number
densities become low quickly as temperature falls sharply,
making the mean-free path of strange hadrons suddenly
large. This leads to an early freeze-out of the strange
species. Here the calculation is microscopic in nature as the
interaction cross sections of all species are considered in
rate equation.
In principle, different inelastic processes have different

thresholds; hence, the freeze-out should always be sequen-
tial in nature. But, when the expansion is much faster (e.g.,
Hubble-like), the mean-free path becomes large (compared

to the system dimension) within a short span of time,
allowing each species to decouple quickly. The duration is
so short that the entire process appears to be simultaneous
where all particles appear to have frozen out at the same
temperature. However, the sequential nature of freeze-out is
prominent and distinguishable in case of a slow expansion
(e.g., Bjorken). This sequential nature is visible from the
ratio of scattering rate to expansion rate.
The hadronic system considered here is approximately

similar to the scenario created at RHIC and LHC. At RHIC
and LHC massive strange and nonstrange hadrons are
created, which are not considered here, but with less
abundances. They should not contribute much to the
properties of hadronic medium. Even if the contributions
from such massive hadrons and resonances are considered,
the conclusions should not change qualitatively. In fact,
recent calculation by Alba et al. [42] shows that the higher
resonances (additional to the list of resonances mentioned
in PDG2016+) mildly affect the chemical freeze-out
temperature, lowering it by a small amount.
In summary, the chemical freeze-out dynamics has been

analyzed microscopically with both slow (Bjorken) and fast
expansion (Hubble-like) scenarios for a multicomponent
hadronic fluid. The actual hadronic system produced in
relativistic heavy ion collisions will follow a scenario in
between these two. Thermal or statistical-hadronization
models mostly predict a simultaneous freeze-out of differ-
ent species which would then mean that the last stage of the
fireball or hadronic matter produced at RHIC and LHC
follows a fast expansion similar to Hubble-like expansion.
Any deviation from a single chemical freeze-out temper-
ature may then be attributed to the slower expansion of
the system.
In this study we have only discussed chemical freeze-out,

as the study of kinetic freeze-out is far more complex to
understand using transport equation. This is because the
evolution of momentum distributions is more involved
compared to the evolution of particle densities. Hence, it is
a separate work to be investigated in the future. The
evolution of a particular species after kinetic freeze-out
is simple; the particle number density goes as R−3 and
momentum falls as R−1 keeping the total number fixed,
where R is the system dimension. Based on the success of
the thermal models to fit yield ratios with a single temper-
ature, the answer to the question that whether there is a
single chemical (Tch) and kinetic (Tk) freeze-out temper-
ature, is probably yes, indicating that the system expansion
is too fast so that elastic and inelastic scatterings stop
suddenly. However, such a conclusion needs a precise
modeling of the expansion of the system which requires
precise determination of system properties like transport
coefficients etc.
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