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We show that the cross section for diffractive dissociation of a small onium off a large nucleus at total
rapidity Y and requiring a minimum rapidity gap Ygap can be identified, in a well-defined parametric limit,
with a simple classical observable on the stochastic process representing the evolution of the state of the
onium, as its rapidity increases, in the form of color dipole branchings: it formally coincides with twice the
probability that an even number of these dipoles effectively participate in the scattering, when viewed in a
frame in which the onium is evolved to the rapidity Y − Ygap. Consequently, finding asymptotic solutions to
the Kovchegov-Levin equation, which rules the Y dependence of the diffractive cross section, boils down to
solving a probabilistic problem. Such a formulation authorizes the derivation of a parameter-free analytical
expression for the gap distribution. Interestingly enough, events in which many dipoles interact
simultaneously play an important role, since the distribution of the number k of dipoles participating
in the interaction turns out to be proportional to 1=½kðk − 1Þ�.
DOI: 10.1103/PhysRevD.104.034026

I. INTRODUCTION

Diffraction has been observed in the scattering of protons
and nuclei [1,2]; more unexpectedly, also in deep-inelastic
electron-proton scattering [3–5]. Diffractive events should
represent a sizable fraction of the events seen at future
electron-ion colliders [6,7], on the order of 20%–30% [8].
At high energies, electron-hadron scattering cross sec-

tions may always be calculated starting from onium-hadron
cross sections. Indeed, in an appropriate frame, the elec-
tron-hadron interaction is mediated by a colorless quark-
antiquark (onium) fluctuation of a virtual photon picked in
the state of the electron [9,10] (see, e.g., Ref. [11] for an
overview of high energy QCD).
Diffractive events are traditionally split into two

classes: quasielastic scattering events, in which the dif-
fractive system typically consists in a vector meson or in a
hadronized open quark-antiquark pair, and high-mass
diffractive dissociation events, in which the diffractive
system possesses an invariant mass on the order of the
center-of-mass energy of the onium-hadron subreaction,
and a sizable multiplicity. While the former have drawn a
lot of attention recently (see, e.g., Ref. [12] for a review),
less effort has been devoted to the latter. In many works,
the high-mass diffractive system is treated as a

quark-antiquark-gluon system (see, e.g., [8,13]), neglecting
any further quantum evolution. While this is a fair
approximation for phenomenological studies, the descrip-
tion of the parametric large-rapidity asymptotics requires us
to account for all possible fluctuations.
An equation for the distribution of the rapidity gap in the

form of an evolution in the total rapidity Y, here referred to
as the Kovchegov-Levin (KL) equation, was established
in Ref. [14], but only numerical solutions have been
known [15]. Recently, based on a simple partonic picture
of diffraction in which a gap of size Ygap is due to an
unusual fluctuation in the onium evolution at rapidity
Y − Ygap, the asymptotic functional form of that distribu-
tion was argued [16,17], in the limit of large rapidities and
in the geometric scaling [18] kinematical region (see also
Ref. [19] for an alternative calculation). But the overall
numerical factor was believed not to be computable. In the
present paper, we shall provide a parameter-free expression
for the gap distribution, based on a new formulation of
diffractive dissociation in terms of a probabilistic process.
Our starting point (Sec. II) will be the well-known

relation between fixed impact-parameter semi-inclusive
cross sections and S-matrix elements solutions of the
Balitsky-Kovchegov (BK) equation [20,21]. In an appro-
priate limit, we shall derive a probabilistic formulation
of diffraction, involving weights of the number of color-
singlet effective independent exchanges between the dif-
fractive system and the nucleus. Analytical expressions
will be obtained for the latter (Sec. III), from which the
diffractive cross section and the rapidity gap distribution
will be derived (Sec. IV). We present our conclusions and
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some prospects in Sec. V, and we report on on a numerical
check of our results in the Appendix.

II. FORMULATION OF SCATTERING
CROSS SECTIONS

We consider the scattering of an onium of initial size r
off a large nucleus. The relative rapidity of these colliding
objects is denoted by Y. In the following, we shall rescale
all the rapidity variables by multiplying them by
ᾱ≡ αsNc=π. The kinematical rapidities will be written
in capital letters, and the rescaled rapidities in lowercase
letters; for example, we shall replace the total relative
rapidity by y≡ ᾱY.
Throughout this paper, we shall rely on the color dipole

picture [22] to represent the Fock state of an onium of fixed
initial size r by a random set of dipoles of various sizes
frig. It assumes the limit of infinite number Nc of colors,
and is relevant in the large-rapidity limit. Technically, the
dipole model can be seen as a tool to resum systematically
all planar graphs that contribute to the probability of a given
Fock state, keeping the terms that dominate when the
onium is viewed in a frame in which it is very fast.
The distribution of these sets of dipoles depends on the

rapidity of the onium in the reference frame in which it is
probed. In the dipole picture, Fock states are elegantly
generated by a simple 1 → 2 branching process in rapidity
[22], which is a particular branching random walk (see,
e.g., Ref. [23] for a review). The latter is defined by the rate
of branching per unit rapidity dp1→2ðr; r0Þ of a dipole of
size vector r into a pair of dipoles of size vectors fr0; r − r0g
(the common endpoint of these dipoles being localized
within a surface of size d2r0), which reads in QCD

dp1→2ðr; r0Þ≡ d2r0

2π

r2

r02jr − r0j2 : ð1Þ

A. Matrix element for onium-nucleus
forward elastic scattering

We shall express the onium-nucleus cross sections with
the help of the forward elastic scattering matrix element S
for a given set of dipoles present in the state of the onium at
rapidity ỹ0 ≡ y − y0. At high energies, cross sections are
purely absorptive, hence, in the conventions we shall use,
the scattering amplitudes and the S-matrix elements are all
real. Given that the dipoles are assumed to interact
independently with the nucleus, we can write

Sðy0Þ ¼
Y
frig

Sðy0; riÞ; ð2Þ

where Sðy0; riÞ is the S-matrix element that encodes the
scattering of a single dipole of size ri off the nucleus
(averaged over the fluctuations of the target nucleus), at

relative rapidity y0 (which is the rapidity of the nucleus in
the chosen frame.) This matrix element solves the BK
evolution equation in rapidity y0 [14], with as an initial
condition at y0 ¼ 0 the onium-nucleus S-matrix element at
zero relative rapidity taken, e.g., from the McLerran-
Venugopalan model [24].
We recall that the BK equation is a nonlinear integro-

differential equation which reads, for a function Sðy; rÞ,

∂ySðy;rÞ¼
Z
r0
dp1→2ðr;r0Þ½Sðy;r0ÞSðy;jr−r0jÞ−Sðy;rÞ�:

ð3Þ

The initial condition is given in the form of a function of r
only. We will refer to Eq. (3) as “BKS.” The function
Sðy0; riÞ that appears in the right-hand side of Eq. (2) solves
BKS, with the identification S≡ S. One may also write
equivalently the BK equation for the function T≡ 1 −S:

∂yTðy; rÞ ¼
Z
r0
dp1→2ðr; r0Þ½Tðy; r0Þ þTðy; jr − r0jÞ

−Tðy; rÞ −Tðy; r0ÞTðy; jr − r0jÞ�: ð4Þ

Any equation in this form will be referred to as “BKT.” Its
solution is not known analytically. However, it has been
established that for a wide class of initial conditions, which
includes all the ones of interest for us, it tends asymptoti-
cally to a traveling wave [25]. Let us recall the main
properties of this asymptotic solution.
We first need to introduce some background and a

few useful notations. The integral kernel of the linearized
equation (4) admits power functions of the formTγðy; rÞ≡
r2γ as eigenfunctions. The eigenvalue equation readsZ

r0
dp1→2ðr; r0Þ½Tγðy; r0Þ þTγðy; jr − r0jÞ −Tγðy; rÞ�

¼ χðγÞTγðy; rÞ; ð5Þ

where χðγÞ≡ 2ψð1Þ − ψðγÞ − ψð1 − γÞ, with the definition
ψðγÞ≡ d lnΓðγÞ=dγ. Of particular importance for the
physics we are investigating are the eigenvalues in the
vicinity of the peculiar one χðγ0Þ, where γ0 ∈�0; 1½ solves
χ0ðγ0Þ ¼ χðγ0Þ=γ0 [26,27].
It will prove convenient to use, instead of the dipole size

variable r, a logarithm of r. More precisely, we define

x≡ ln
1

r2Q2
A
; ð6Þ

and call any such quantity a “log inverse size.” In this
definition, QA is a fixed momentum scale characteristic
of the nucleus. (It can be identified with the saturation
momentum of the nucleus at rest, which emerges for
example from the McLerran-Venugopalan model [24].)
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The traveling wave that solves the BKT equation at large
rapidities is a smooth function connecting the fixed points 1
at x → −∞ and 0 at x → þ∞. For a wide class of “steep-
enough” initial conditions,1 to which all the initial con-
ditions we will need to consider belong, many properties
of the traveling wave are independent of the latter. The
transition between T ¼ 1 and T ¼ 0 is located around
the value

Xy ≡ χ0ðγ0Þy −
3

2γ0
ln y ð7Þ

of x, within a region of typical size 1=γ0 (up to a
nonuniversal y-independent term, and up to terms vanish-
ing for large y). Xy is related to the rapidity-dependent
saturation momentum QsðyÞ through

Xy ≡ ln
Q2

sðyÞ
Q2

A
: ð8Þ

The shape of T ahead of this transition region reads

Tðy; xÞ ≃ const × ðx − XyÞe−γ0ðx−XyÞ exp
�
−
ðx − XyÞ2
2χ00ðγ0Þy

�
;

ð9Þ

which holds in the limit of large y, and for values of x such
that 1 ≪ x − Xy ≲ ffiffiffi

y
p

.
Let us introduce the number density nðx0Þ of dipoles of

log inverse size x0 in a given realization of the onium Fock
state evolved to the rapidity ỹ0. In terms of n, Sðy0Þ in
Eq. (2) becomes

Sðy0Þ ¼
Y
x0
½Sðy0; x0Þ�nðx0Þdx0 ; ð10Þ

where the product now goes over all the bins in dipole log
inverse size of infinitesimal width dx0. This also reads

Sðy0Þ ¼ exp

�
−
Z

dx0nðx0Þ ln 1

Sðy0; x0Þ
�
≡ e−Iðy0Þ; ð11Þ

with the definition

Iðy0Þ≡
Z

dx0nðx0Þ ln 1

Sðy0; x0Þ
: ð12Þ

Note that Iðy0Þ is a random number, since n is a random
distribution.
The S-matrix element for the scattering of the initial

onium of log inverse size x at total relative rapidity y reads

Sðy; xÞ ¼ hSðy0Þiỹ0;x; ð13Þ

where the averaging is over all the dipole configurations of
the onium at rapidity ỹ0, namely over all realizations of n.
The obtained function S is the same as the ones entering the
expression of S in Eq. (10), evaluated at a different rapidity.

B. Observables

Let us recall the relation between cross sections for
onium-nucleus scattering at a fixed impact parameter b per
unit transverse surface d2b, and S-matrix elements.
(1) The total onium-nucleus cross section reads

σtotðy; xÞ ¼ 2h1 − Sðy0Þiỹ0;x: ð14Þ

(In this formula and in all the following ones, the b
dependence in S and in the σs is understood). The
total cross section is obviously independent of the
rapidity y0, although it is not manifest in the right-
hand side of this equation.

(2) The diffractive cross section, with a rapidity gap not
less than y0, coincides with the elastic cross section
for the scattering of the Fock state of the onium at
rapidity ỹ0 off the nucleus:

σdiffðy; x; y0Þ ¼ h½1 − Sðy0Þ�2iỹ0;x: ð15Þ

This cross section is the sum of the purely elastic and
of the diffractive dissociative cross sections.

(3) The inelastic cross section is the difference between
the total cross section and the diffractive one. In
terms of S, it reads

σinðy; x; y0Þ ¼ h1 − ½Sðy0Þ�2iỹ0;x: ð16Þ

At variance with σtot, the diffractive and inelastic cross
sections obviously depend on y0. Their rate of variation is
related to the gap distribution, that we define as

πðy; r; ygapÞ≡ −
1

σtot

∂σdiff
∂y0

����
y0¼ygap

¼ 1

σtot

∂σin
∂y0

����
y0¼ygap

: ð17Þ

So far, these expressions are fully accurate when so-
called fan diagrams dominate the calculation of the S
matrix. This is the case in the dipole model for QCD
evolution of the onium Fock state, and when the scattering
is off a very large nucleus.

C. Probabilistic picture

We now assume that in all the Fock state realizations
which effectively contribute to cross sections, the scattering
probability of each of the individual dipole is very small. In
particular, the probability that the same dipole scatters more

1Tðy ¼ 0; xÞ has to decrease faster than e−γ0x when x → ∞.
Such solutions determined by the small-T tail are called “pulled
fronts” in the terminology of Ref. [28].
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than once is negligible. Then Sðy0; x0Þ can be assumed to be
close to 1 for all relevant values of x0 in the expression of I
defined in Eq. (12). For this reason, writing the latter in
terms of T ¼ 1 − S, we may keep the term linear in T,
and drop higher powers of T. We denote by Ið1Þðy0Þ the
resulting overlap:

Ið1Þðy0Þ ¼
Z

dx0nðx0ÞTðy0; x0Þ: ð18Þ

This integral corresponds to the sum of all possible
diagrams in which one single dipole in one given realiza-
tion of the onium Fock state, the content of which is fully
encoded in the number density n, interacts by coupling
to a single color-singlet gluon pair which mediates the
interaction with the evolved nucleus. We shall call the
approximation leading to Eq. (18) the “single-exchange
approximation.”
We further define

FNðIÞ ¼
IN

N!
and GkðIÞ ¼ FkðIÞe−I : ð19Þ

FN ½Ið1Þðy0Þ� is the quantum-mechanical amplitude corre-
sponding to the sum of all the diagrams in which N dipoles
present in the Fock state exchange color singlets with the
nucleus at relative rapidity y0. Gk½Ið1Þðy0Þ� is Fk½Ið1Þðy0Þ�
endowed with an extra e−I

ð1Þðy0Þ factor that unitarizes it
(
P

k Gk ¼ 1), turning it into a quantity that may be
interpreted as a probability: it represents the probability
that when choosing scattering configurations with a weight
given by their amplitude FN ½Ið1Þðy0Þ�, one picks those in
which exactly k dipoles interact. (Note that if the expo-
nential is expanded, it is seen to resum an infinity of
graphs). Gk½Ið1Þðy0Þ� is also the probability that the set of
dipoles that eventually interact with the nucleus, when the
event is viewed from the restframe of the latter, are
offspring of exactly k dipoles, at the rapidity y0 relative
to the nucleus. Both FN and Gk are understood to be
evaluated for a given Fock state realization of the onium.
We can now reformulate the scattering observables

defined in Eqs. (14)–(16) in terms of these probabilities
averaged over the realizations of the onium Fock state:

(i) The total cross section (14) simply reads

σtotðy; xÞ ¼ 2ð1 − hG0½Ið1Þðy0Þ�iỹ0;xÞ

¼ 2
X∞
k¼1

wkðy; x; y0Þ; ð20Þ

where the terms in the right-hand side are the
average weights, defined as

wkðy; x; y0Þ≡ hGk½Ið1Þðy0Þ�iỹ0;x: ð21Þ

Note that each weight wk individually may a priori
be frame dependent, i.e., depend upon y0, although
the total cross section is boost invariant.

(ii) The inelastic cross section (16) can also be ex-
pressed in terms of wk. We write

σinðy; x; y0Þ ¼ hðeIð1Þðy0Þ − e−I
ð1Þðy0ÞÞe−Ið1Þðy0Þiỹ0;x

ð22Þ

and expand the difference of the exponentials to get

σinðy; x; y0Þ ¼ 2
X
k odd

wkðy; x; y0Þ: ð23Þ

(iii) Likewise, the diffractive cross section (15) is then
just twice the weight of the graphs in which an even
number of dipoles interact:

σdiffðy; x; y0Þ ¼ 2
X
k even

wkðy; x; y0Þ; ð24Þ

where it is understood that the term k ¼ 0 is
excluded from this sum.

D. Comparison to the Kovchegov-Levin equation

We are going to show that the expression of the inelastic
cross section in Eq. (23) in terms of the weights wk is
consistent with the solution to the KL equation.

1. Brief review of the Kovchegov-Levin equation

In this paragraph, we shall release the single-exchange
approximation to review the exact equation for diffraction
in the framework of the dipole model.
The KL equation, established in Ref. [14], can be

expressed as an evolution equation (with the rapidity y)
of the physical probability that there be no inelastic
scattering between the state of the onium at ỹ0 and the
nucleus,

Sinðy; r; y0Þ≡ 1 − σinðy; r; y0Þ ¼ h½Sðy0Þ�2iỹ0;r ð25Þ

[see Eq. (16)]. The KL equation coincides with the BKS
[Eq. (3)] equation, with the substitution S ¼ Sin, and the
initial condition

Sinðy0; r; y0Þ ¼ ½Sðy0; rÞ�2: ð26Þ

Written in terms of the inelastic cross section σin and of the
dipole amplitude T, this initial condition reads

σinðy0; r; y0Þ ¼ 2Tðy0; rÞ − ½Tðy0; rÞ�2: ð27Þ

The rapidity gap distribution can easily be deduced
from Sin, applying Eq. (17) to σin.
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2. Evolution of the inelastic cross section
in the single-exchange approximation

We now turn to the inelastic cross section as given by
Eq. (23), namely in the single-exchange approximation
leading to Eq. (18) for the overlap.
Let us define Wðy; r; y0Þ to be the weight of the graphs

contributing to the onium-nucleus forward elastic scattering
amplitude restricted to the diagrams in which there is an
odd number of dipoles interacting with the nucleus boosted
to the rapidity y0:

Wðy; r; y0Þ≡
X
k odd

wkðy; r; y0Þ: ð28Þ

The inelastic cross section (23) is just twice this quantity.
Using well-known techniques, we may easily estab-

lish an evolution equation for W with the total rapidity
y ≥ y0. This goes as follows: we start from the rest frame
of the onium, and increase the total rapidity of the
scattering process by dy through a boost of the onium. In
the small rapidity interval dy, the initial dipole of
transverse size r splits into a pair of dipoles of respective
sizes fr0; r − r0g with probability dydp1→2ðr; r0Þ, or stays
a single dipole with probability 1 − dy

R
dp1→2ðr; r0Þ.

One notices that, if it splits, then the only contributions
to Wðyþ dy; r; y0Þ come from the following configura-
tions: the further fluctuations of one offspring eventually
scatter an odd number of times, while the fluctuations of
the other one either scatter an even number of times or
do not scatter at all. The probability of such configu-
rations reads

Wðy; r0; y0Þ × ½1 −Wðy; jr − r0j; y0Þ� þ fr0 ↔ r − r0g:
ð29Þ

The first term is illustrated in Fig. 1.
Putting together the contributions of all possible cases

weighted by the corresponding probabilities, and letting
dy → 0, we get the integro-differential equation

∂yWðy; r; y0Þ ¼
Z
r0
dp1→2ðr; r0Þ½Wðy; r0; y0Þ

þWðy; jr − r0j; y0Þ
− 2Wðy; r0; y0ÞWðy; jr − r0j; y0Þ
−Wðy; r; y0Þ�: ð30Þ

The three first terms under the integral in the right-hand
side come from the splitting events, the last term from
nonsplitting events. For y ¼ y0, the rapidity at which we
want to take the initial condition, the onium Fock state
reduces to a single dipole of size r: W then just equals the
amplitude T at y ¼ y0,

Wðy0; r; y0Þ ¼ Tðy0; rÞ: ð31Þ

Comparing Eq. (30) with Eq. (4), we see that the
function 2W obeys BKT, but with as an initial condition2

Wðy0; r; y0Þ ¼ 2Tðy0; rÞ, namely the first term of the initial
condition Eq. (27) for the KL equation. We note that this
term is dominant in the parametric region in which T ≪ 1,
and this allows us to argue that the solutions of the KL
equation on the one hand, and 2W on the other hand, match
asymptotically. Indeed, this stems from a general property
of nonlinear equations in the class of the Fisher [29] and
Kolmogorov-Petrovsky-Piscounov [30] equation, to which
the BKT equation belongs [25]. The large-rapidity sol-
utions of such equations are essentially determined by the
shape of the small-r (i.e., large positive-x) tail of the initial
condition [28]. In this region, 2T − T2 ≃ 2T: the two
functions taken as initial conditions coincide, and thus,
the large-y solutions are the same. Therefore, for our
purpose of deriving the exact asymptotics of solutions to
the KL equation, we can safely trade σin for twice the sum
W of all odd weights, and consequently, σdiff for twice the
sum of all even weights, as in Eq. (24).

FIG. 1. Contributions of dipole splitting events to the evolution ofW (left; this is one of the two possible configurations, the other one
being deduced from the one displayed through the exchange W ↔ 1 −W), and of wk (right).

2As a side remark, 2T is a function that takes values between 0
and 2, while the stable fixed point of Eq. (4) is T ¼ 1, which is a
bit unusual.

ANALYTICAL ASYMPTOTICS FOR HARD DIFFRACTION PHYS. REV. D 104, 034026 (2021)

034026-5



III. ANALYTICAL ASYMPTOTICS FOR
THE WEIGHTS OF THE NUMBER OF

PARTICIPATING DIPOLES

A. Heuristic calculation

In this section, we shall compute the wks from their
definition (21) as the probability that exactly k dipoles in
the Fock state of the onium at rapidity ỹ0 interact with the
nucleus boosted to the rapidity y0. The main ingredient is
the overlap integral Ið1Þ defined in Eq. (18). T in there is the
forward elastic scattering amplitude of a dipole, which
solves the Balitsky-Kovchegov equation, with as an initial
condition, the scattering amplitude of a dipole off a nucleus
at zero rapidity: its expression is derived from Eq. (9).
We will also need the form of the dipole number density

n in realizations of the QCD evolution, endowed with its
distribution, in order to be able to take the expectation value
in Eq. (21). It is not known analytically: therefore, we shall
use the phenomenological model for QCD evolution to
represent the dipole content of the onium. This model was
introduced in Ref. [31] for general branching random
walks, and recently used in the context of QCD in
Ref. [32]. We start with a brief review of the phenomeno-
logical model, before giving the expression of the overlap
integral. We will then be in a position to calculate the
weights wk.

1. Formulation of the phenomenological model

The main assumption of the phenomenological model
is that the onium Fock state evolves deterministically,
except for one single fluctuation consisting in one unusu-
ally large dipole produced at some random rapidity ỹ1,
which, subsequently to its emission, also evolves deter-
ministically until the scattering rapidity ỹ0.
The deterministic, or “mean-field,” evolution of dipoles

can be taken from the study of Ref. [31].3 Its calculation
relies on the observation that the dipole density in a given
realization of the high-energy evolution of an onium looks
typically like the solution to the Balitsky-Fadin-Kuraev-
Lipatov equation [33–35] in dipole form [22], when this
equation is supplemented by a cutoff on the large-dipole-
size tail. The latter is placed in such a way that at each step
of the evolution, the dipole density as a function of the
dipole log-size goes to zero for log-sizes larger than some
predefined number of order unity from the log-size for
which the latter density is equal to one. Physically, such a
cutoff takes account of the fact that the dipole density in a
given realization is actually a discrete distribution which
has a largest dipole, a property which is not captured by the

plain Balitsky-Fadin-Kuraev-Lipatov equation since the
latter evolves the mean dipole density.4

The calculation in Ref. [31] transposed to the dipole
model shows that the mean-field dipole number density of
log inverse size x0 in an onium of initial log inverse size X,
after evolution over the rapidity interval Δỹ, reads

n̄ðΔỹ; x0 −XÞ ¼ C1ðx0 −X − X̃ΔỹÞeγ0ðx0−X−X̃ΔỹÞ

× exp

�
−
ðx0 −X − X̃ΔỹÞ2

2χ00ðγ0ÞΔỹ
�

× Θðx0 −X − X̃ΔỹÞ; ð32Þ

where X̃Δỹ ¼ −χ0ðγ0ÞΔỹþ 3
2γ0

lnΔỹ. [There may be an
additive constant of order unity, but in Eq. (32), it is either
negligible compared to other terms, or, when exponenti-
ated, absorbed into the overall constant.]
As for the distribution of the rapidity and size of the

fluctuation, we introduce the joint probability density
pðδ; ỹ1Þ that the log inverse size of the unusually large
dipole be smaller by δ than the log inverse size of the
typical largest dipole Xþ X̃ỹ1 , and that it occurs at rapidity
ỹ1. We assume that it coincides with the distribution of the
relative log inverse size of the largest dipole at ỹ1. The
probability that there is at least one dipole with a size larger
than some fixed size, from which one deduces pðδ; ỹ1Þ by
simple derivation and change of variables, solves the
equation BKT, with as an initial condition an appropriate
Heaviside distribution. Thus, for δ ≫ 1,

pðδ; ỹ1Þ ¼ Cδe−γ0δ exp

�
−

δ2

2χ00ðγ0Þỹ1

�
: ð33Þ

(Again, C is an undetermined numerical constant of
order unity.)
The number density of dipoles of log inverse size x0 at

rapidity ỹ0, starting with an onium of log inverse size x,
reads

nðx0Þ¼ n̄ðỹ0;x0−xÞþ n̄ðỹ0− ỹ1;x0−x− X̃ỹ1 þδÞ ð34Þ

with probability pðδ; ỹ1Þdδdỹ1. The first term in the right-
hand side is the deterministic evolution of the initial dipole
of log inverse size X≡ x. The second term represents
the particle density generated by the evolution of the
fluctuation of initial log inverse size X≡ xþ X̃ỹ1 − δ.

3Actually, Ref. [31] addressed more general one-dimensional
branching random walks, a class to which the dipole model
belongs when restricted to a fixed impact parameter, or when
focusing on the evolution towards larger dipole-sizes, as in the
present context.

4The idea of modeling discreteness by imposing a moving
absorptive boundary condition on a deterministic evolution
equation for the mean density was first proposed in Ref. [36]
in the general context of the study of stochastic fronts. It turns out
that a similar cutoff was introduced independently in QCD in the
context of the scattering of two dipoles [37], but in the latter
work, it was not interpreted as a model for discreteness, but was
argued to be necessary to preserve the unitarity of the amplitudes.
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When x − Xy is large, the former is necessarily small
compared to the latter, and therefore, can be neglected.

2. Overlap

The overlap I of the particle number is given by Eq. (18),
up to the replacement of n by the second term in Eq. (34),
and of T by Eq. (9) with T ¼ T. (We will call the overall
numerical constant appearing in that formula C2.) Thus, in
the phenomenological model, it reads

Ið1Þδ;ỹ1
ðy; x; y0Þ ¼

Z
dx0n̄ðỹ0 − ỹ1; x0 − x − X̃ỹ1 þ δÞTðy0; x0Þ:

ð35Þ

Now we consider a fluctuation of size δ occurring at the
rapidity ỹ1 < ỹ0 such that ỹ0 − ỹ1 ≫ 1. We choose δ so that
x − Xy − δ be positive, large compared to unity but small
compared to

ffiffiffiffiffi
y0

p
, which is always possible if y0 is large

enough. This restriction is motivated by the fact that
configurations in this class, which maximize the overlap
integral Ið1Þ multiplied by the probability of a fluctuation
pðδ; ỹ1Þ, turn out to be the dominant ones when computing
the averages over the onium Fock states; see Ref. [32]. The
calculation of Ið1Þ, rather straightforward in the regime of
interest, was performed in the previous reference, and led to
the following expression:

Ið1Þδ;ỹ1
ðy;x;y0Þ¼C1C2

ffiffiffi
π

2

r
½χ00ðγ0Þ�3=2e−γ0ðx−XyÞ

�
y

y1ỹ1

�
3=2

eγ0δ:

ð36Þ

This formula is manifestly boost invariant, since it does not
exhibit a dependence on y0. Therefore, in what follows, we
shall cancel y0 from the list of variables upon which Ið1Þ
depends.

3. Evaluation of the weights wk

We are now ready to calculate the weights wk. In the
phenomenological model, this calculation is formulated as

wkðy; x; y0Þ≡
�
1

k!
½Ið1Þδ;ỹ1

ðy; xÞ�ke−I
ð1Þ
δ;ỹ1

ðy;xÞ
�

δ;ỹ1≤ỹ0
ð37Þ

where the average h·i over the Fock states takes the form of
an integration over the rapidity ỹ1 at which the fluctuation
may occur, and over its size δ, weighted by their probability
distribution pðδ; ỹ1Þ. In other terms,

wkðy; x; y0Þ

¼
Z

ỹ0

0

dỹ1

Z þ∞

0

dδpðδ; ỹ1Þ
1

k!
½Ið1Þδ;ỹ1

ðy; xÞ�ke−I
ð1Þ
δ;ỹ1

ðy;xÞ:

ð38Þ

We start by computing the integral over δ only: this is
just the density of the ỹ1 variable. After replacing p by its

expression given in Eq. (33), using Ið1Þδ;ỹ1
(denoted I) as an

integration variable instead of δ, we write

∂wk

∂ỹ1 ðy; x; y − ỹ1Þ

¼ C
γ20

1

k!
Ið1Þ0;ỹ1

ðy; xÞ
Z

∞

Ið1Þ
0;ỹ1

ðy;xÞ
dI ln

I

Ið1Þ0;ỹ1
ðy; xÞ

Ik−2e−I

× exp

�
−
ln2½I=Ið1Þ0;ỹ1

ðy; xÞ�
2γ20 χ

00ðγ0Þỹ1

�
: ð39Þ

Integrals of this form also appeared in Ref. [32]: it was
argued that the last exponential can be replaced by 1, and
the remaining integral could be performed in the relevant
limit (see Appendix A in Ref. [32]). Here we improve the
treatment of this integral: we write the last exponential in
the form of a series,

∂wk

∂ỹ1 ðy;x;y− ỹ1Þ¼
C
γ20

1

k!
Ið1Þ0;ỹ1

ðy;xÞ
X∞
n¼0

1

n!
ð−1Þn

½2γ20 χ00ðγ0Þỹ1�n

×
Z

∞

Ið1Þ
0;ỹ1

ðy;xÞ

dI
I
ln2nþ1

�
I

Ið1Þ0;ỹ1
ðy;xÞ

�
Ik−1e−I:

ð40Þ

Note that for any k ≥ 2, the integral is regular when

Ið1Þ0;ỹ1
→ 0. But it is logarithmically divergent in the case

k ¼ 1, which will require a separate treatment.
We are now going to compute the leading terms in the

joint large-ỹ1, large-j ln Ið1Þ0;ỹ1
j (i.e., large x − Xy) limit. We

will keep only the leading power of Ið1Þ0;ỹ1
, and resum the

terms in the series which possess the maximum number of

factors j ln Ið1Þ0;ỹ1
j ∼ γ0ðx − XyÞ for each power of 1=

ffiffiffiffiffi
ỹ1

p
. We

shall first address the values of k larger than or equal to 2,
which can all be treated in the same way, and then address
the case k ¼ 1.
Case k ≥ 2.—It is useful to represent the logarithms that

appear in Eq. (40) by derivatives of power functions. Then,
the integral therein reads

Z
∞

Ið1Þ
0;ỹ1

ðy;xÞ

dI
I
ln2nþ1

�
I

Ið1Þ0;ỹ1
ðy; xÞ

�
Ik−1e−I

¼ ∂2nþ1

∂α2nþ1

����
α¼0

nh
Ið1Þ0;ỹ1

ðy; xÞ
i
−α

× Γ
h
αþ k− 1; Ið1Þ0;ỹ1

ðy; xÞ
io

;

ð41Þ

where Γ is the incomplete Euler-Gamma function
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Γðx; IÞ≡
Z

∞

I
dĪĪx−1e−Ī : ð42Þ

The leading log terms are obtained when all the derivatives with respect to α act on the factor ½Ið1Þ0;ỹ1
ðy; xÞ�−α, and the

incomplete Gamma function is replaced by the complete one, which evaluates as the factorial ½ðk − 2Þ!�. After trivial
simplifications, we find

∂wk

∂ỹ1 ðy; x; y − ỹ1Þ ¼
C
γ20

1

kðk − 1Þ I
ð1Þ
0;ỹ1

ln
1

Ið1Þ0;ỹ1

X∞
n¼0

ð−1Þn
n!

ln2n Ið1Þ0;ỹ1

½2γ20 χ00ðγ0Þỹ1�n
; ð43Þ

where we have understood the variables upon which the function Ið1Þ0;ỹ1
depends.

The leading-log series can easily be resummed in the form of an exponential. Replacing Ið1Þ0;ỹ1
by its expression (36) and

ð− ln Ið1Þ0;ỹ1
Þ by γ0ðx − XyÞ, which amounts to neglecting constants and logarithms of y, y1, ỹ1 compared to x − Xy, we get

∂wk

∂ỹ1 ðy; x; y − ỹ1Þ ¼
c
γ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p 1

kðk − 1Þ ðx − XyÞe−γ0ðx−XyÞ
�

y
y1ỹ1

�
3=2

exp

�
−
ðx − XyÞ2
2χ00ðγ0Þỹ1

�
; ð44Þ

where we have defined the constant c as a product of the previously introduced undetermined numerical constants,

c≡ CC1C2π½ χ00ðγ0Þ�2: ð45Þ

The integration over the rapidity ỹ1 at which the fluctuation occurs,

wkðy; x; y0Þ ¼
Z

ỹ0

0

dỹ1∂ ỹ1wkðy; x; y − ỹ1Þ; ð46Þ

is well defined, due to the last exponential in Eq. (44) which acts as a diffusive cutoff on small values of ỹ1. We may write
the integral with the help of an error function and of elementary functions as

Z
ỹ0

0

dỹ1

�
y

y1ỹ1

�
3=2

exp

�
−
ðx − XyÞ2
2χ00ðγ0Þỹ1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p
x − Xy

�
1 −

ðx − XyÞ2
χ00ðγ0Þy

�
erfc

�
x − Xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ00ðγ0Þ

p ffiffiffiffiffiffiffi
y0
yỹ0

r �
exp

�
−
ðx − XyÞ2
2χ00ðγ0Þy

�

þ 2

ffiffiffiffiffiffiffi
ỹ0
yy0

s
exp

�
−
ðx − XyÞ2
2χ00ðγ0Þỹ0

�
: ð47Þ

When y → ∞, it boils down to two simple terms.
Therefore, in this limit, wk eventually reads

wk≥2ðy; x; y0Þ ¼
c
γ0

1

kðk − 1Þ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ

s
x − Xyffiffiffiffiffi

y0
p

!

× e−γ0ðx−XyÞ: ð48Þ
Interestingly enough, the ratio wk≥2=w2 has a very simple
expression:

wk≥2

w2

¼ 2

kðk − 1Þ : ð49Þ

This shows that the distribution of the number of partici-
pating dipoles decreases only slowly at large k. The events

which involve many of them are not rare at all. As a matter
of fact, the mean participant number is formally infinite.
Case k ¼ 1.—In this case, it is convenient to change

variable in the integral in Eq. (40). We define

l≡ ln½I=Ið1Þ0;ỹ1
ðy; xÞ�: the integral over I then becomes

Z þ∞

0

dll2nþ1 exp
�
−Ið1Þ0;ỹ1

ðy; xÞel
	
: ð50Þ

The exponential is tantamount to a cutoff effectively

limiting the integration region to ½0;− ln Ið1Þ0;ỹ1
ðy; xÞ�. For

small Ið1Þ0;ỹ1
, we can replace it by a Heaviside-theta function,

and hence perform trivially the integral. We get
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1

2nþ 2
ln2nþ2 Ið1Þ0;ỹ1

ðy; xÞ: ð51Þ

After resummation of the series of the leading logarithms

of Ið1Þ0;ỹ0
and simplifications along the same lines as those

followed in the case k ≥ 2, one finds

∂w1

∂ỹ1 ðy; x; y − ỹ1Þ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ00ðγ0Þ
2π

r
e−γ0ðx−XyÞ y3=2

y3=21

ffiffiffiffiffi
ỹ1

p

×


1 − exp

�
−
ðx − XyÞ2
2χ00ðγ0Þỹ1

��
: ð52Þ

As in the case k ≥ 2, we may integrate over the rapidity
ỹ1 between 0 and ỹ0. Now the singularity at ỹ1 ¼ 0 is not
cut off, but it is integrable. Since we assume that ỹ0 is on
the order of y, and since we take x in the scaling region
such that ðx − XyÞ2 ≪ y, the upper limit of the relevant
integration region is on the order of ðx − XyÞ2. We can
approximate ðy=y1Þ3=2 by 1, and set the upper bound to
þ∞. The integral to perform takes the form

Z
∞

0

dỹ1ffiffiffiffiffi
ỹ1

p


1− exp

�
−
ðx−XyÞ2
2χ00ðγ0Þỹ1

��
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

χ00ðγ0Þ

s
× ðx−XyÞ:

ð53Þ

Hence, the weight of the contributions of a single partici-
pating dipole reads

w1ðy; x; y0Þ ¼ cðx − XyÞ × e−γ0ðx−XyÞ: ð54Þ

At this level of approximation, w1 is manifestly boost
invariant. Actually, what is rigorously boost invariant is the
total cross section σtot, i.e., the series 2

P
k≥1 wk. But the

term 2w1 dominates this sum parametrically, since it has an
extra x − Xy factor with respect to all other terms.

B. Generating function

In this section, we will establish that a generating
function of the weights wk obeys a set of BK equations.
We will conjecture the large-rapidity solution, and check it
numerically.

1. Rapidity evolution of the weights and of their
generating function

The set of weights fwk; k ≥ 0g obeys a hierarchy of
evolution equations,

∂ywkðy; r; y0Þ ¼
Z
r0
dp1→2ðr; r0Þ

�Xk
j¼0

wjðy; r0; y0Þwk−jðy; jr − r0j; y0Þ − wkðy; r; y0Þ
�
; ð55Þ

with the initial condition wkðy0; r; y0Þ ¼ δk;0Sðy0; rÞ þ
δk;1Tðy0; rÞ. The proof is straightforward, using well-
known techniques; see Fig. 1 for a graphical illustration
of the contribution of the nontrivial first term in the right-
hand side.
The generating function

w̃λðy; r; y0Þ ¼
X∞
k¼0

λkwkðy; r; y0Þ ð56Þ

obeys a unique equation, which turns out to be the BKS
equation (3), with S≡ w̃. The initial condition at y ¼ y0
reads

w̃λðy0; r; y0Þ ¼ 1 − ð1 − λÞTðy0; rÞ: ð57Þ

A few comments are in order. First, the unitarity of the
probability that any scattering may occur reads, in terms
of the generating function, w̃λ¼1ðy; r; y0Þ ¼ 1. Second, the
S-matrix coincides with the generating function evaluated
at λ ¼ 0: w̃λ¼0ðy; r; y0Þ ¼ Sðy; rÞ. Third, there is a direct

relation between the generating function evaluated at two
different values of λ and the difference of the diffractive and
inelastic cross sections:

2ðw̃λ¼−1 − w̃λ¼0Þ ¼ σdiff − σin: ð58Þ

2. Infinite-rapidity limit: traveling wave solution

In the infinite-y limit, the solution to the BK equation
converges to a traveling wave also starting with the initial
condition (57), namely that w̃λðy; x; y0Þ tends to a function
of x − Xy þ fy0ðλÞ only, where Xy was given in Eq. (8), and
f is a “delay function” that vanishes for λ ¼ 0.
When furthermore x − Xy þ fy0ðλÞ is taken finite but

large, the analytic form for the shape of the traveling wave
front reads

1− w̃λðy;x;y0Þ¼c½x−Xyþfy0ðλÞ�e−γ0½x−Xyþfy0 ðλÞ�; ð59Þ

where c is an undetermined constant of order unity.
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As for the delay function fy0ðλÞ, we may conjecture the
formula

fy0ðλÞ ¼
1

γ0
ln

1

1 − λ
×

 
1 −

1

γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ

s
1ffiffiffiffiffi
y0

p
!
: ð60Þ

This conjecture is motivated by the following observation.
There exists a function fy0ðλÞ such that the expression for
1 − w̃λðy0; x; y0Þ in Eq. (57), namely

cð1 − λÞðx − Xy0Þe−γ0ðx−Xy0
Þ ð61Þ

can be matched to the regular (delayed) traveling wave (59)
at y ¼ y0, in the region ln 1

1−λ ≪ x − Xy0 ≪
ffiffiffiffiffi
y0

p
. Indeed,

equalizing the two front shapes implies

eγ0fy0 ðλÞ ¼ 1

1 − λ
×

�
1þ fy0ðλÞ

Δ

�
; ð62Þ

which can be solved iteratively as

fy0ðλÞ¼
1

γ0
ln

1

1−λ
þ 1

γ0
ln

0
B@1þ

1
γ0
ln 1

1−λþ 1
γ0
ln
�
1þ fy0 ðλÞ

Δ

	
Δ

1
CA:

ð63Þ
For Δ satisfying the above ordering condition, the second
logarithm may be expanded to first order, leading to a
closed expression for the delay:

fy0ðλÞ ≃
1

γ0
ln

1

1 − λ

�
1þ 1

γ0Δ

�
: ð64Þ

Keeping λ fixed, choosing Δ of order say y1=2−ϵ0 for some
fixed ϵ ∈�0; 1

2
½ and letting y0 become large, this expression

clearly tends to the conjectured f∞ðλÞ, Eq. (60). Since the
expression for 1 − w̃λðy0; x; y0Þ is that of a regular front
which would have evolved from a step initial condition
Θð−xÞ in a large region from its tip, and since the
large-rapidity position of a traveling wave is determined
precisely by its shape in the tip region, we conclude that the
solution for 1 − w̃λðy; x; y0Þ indeed tends to a traveling
wave at large y, with position Xy pulled back by the
distance fy0ðλÞ. We expect this solution to be valid when
j lnð1 − λÞj ≪ ffiffiffiffiffi

y0
p

, which is not a too restrictive condi-
tion,5 since we are eventually interested in the expansion of
w̃λ around λ ¼ 0. We are not able to determine the finite-y0
correction from these heuristics, but sinceΔ is at most

ffiffiffiffiffi
y0

p
,

a subleading term of relative order 1=
ffiffiffiffiffi
y0

p
is plausible.

Note that f∞ðλÞ is the known leading contribution to the
delay when the initial condition for the BKT equation (or for
any equation in the same class) is a step function of height
1 − λ [38,39]. But in that case, 1

γ0
ln 1

1−λ represents the largest
term in the expression of the delay in the limit λ → 1, and
there is a subleading nonanalytic term − 1

γ0
ln½− lnð1 − λÞ�.

The numerical coefficient of the subleading term is
chosen in order to recover the expressions for wk found
above in the phenomenological model. Indeed, the shape
of the traveling wave (59) with fy0ðλÞ being replaced by
Eq. (60) can be expanded in the power series (56) of λ,
leading to expressions for the wks. Let us outline the main
steps of the calculation.
Starting from Eq. (59), replacing f in there by Eq. (60),

we get

1 − w̃λðy; x; y0Þ ¼ cð1 − λÞ1−
1
γ0

ffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ
p

1ffiffiffi
y0

p
"
x − Xy þ

1

γ0
ln

1

1 − λ

 
1 −

1

γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ

s
1ffiffiffiffiffi
y0

p
!#

e−γ0ðx−XyÞ: ð65Þ

Next, we expand for large y0, dropping all higher powers of 1=
ffiffiffiffiffi
y0

p
, and the terms of order 1=

ffiffiffiffiffi
y0

p
, which are not enhanced

by a power of x − Xy. The generating function then reads

1 − w̃λðy; x; y0Þ ¼
"
cð1 − λÞðx − XyÞ þ

c
γ0

ð1 − λÞ ln 1

1 − λ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ

s
x − Xyffiffiffiffiffi

y0
p

!#
e−γ0ðx−XyÞ: ð66Þ

Finally, we expand in power series of λ, using the identity

ð1 − λÞ ln 1

1 − λ
¼ λ −

X
k≥2

λk

kðk − 1Þ : ð67Þ

It is then straightforward to check that we get back Eq. (54)
for the coefficient w1 of (−λ) in this series (in the same
approximations), and Eq. (48) for the coefficient wk of
ð−λkÞ in the case k ≥ 2.
Let us comment that the proposed conjecture does not

only apply to the present context, but applies also much
more generally to a large class of branching random walk
models. This allows for accurate checks: indeed, we can
pick a model easy to implement numerically and to run, and

5This condition limits the values of k we may reach through
our calculation to numbers much smaller than Oðeconst× ffiffiffiffi

y0
p Þ; but

this is parametrically a very large number when y0 ≫ 1.
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solve it for the delay. Such a calculation is reported in the
Appendix and shows perfect consistency with our con-
jecture. The good matching of our numerical calculation
with the conjecture brings, in turn, strong support for the
expressions of the weights wk we have found from the
phenomenological model, since they are fully determined
by the delay of the traveling wave in the present approach.

IV. DIFFRACTIVE CROSS SECTION
AND GAP DISTRIBUTION

We are now in a position to come back to the physical
observables, and with the help of the results we
have obtained in the previous section, provide asymptotic
expressions. We shall then discuss the problems posed by a
standard perturbative formulation.

A. Analytical asymptotics

As argued above, we get the correct parametric expres-
sion for σtot by identifying it to 2w1.
As for the diffractive cross section, we get it by summing

2wk over the even values of k, starting with k ¼ 2. Using
Eq. (48) for wk≥2 and Eq. (54) for w1, we arrive at a very
simple expression:

σdiffðy; x; y0Þ
σtotðy; xÞ

¼ ln 2
γ0

 
1

x − Xy
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ

s
1ffiffiffiffiffi
y0

p
!
: ð68Þ

To get this result, we just needed to use the trivial identity

X
even k≥2

1

kðk − 1Þ ¼ ln 2: ð69Þ

This formula for σdiff=σtot is expected to be valid asymp-
totically for large y and large y0, and for x, chosen in the
scaling region, i.e., such that ðx − XyÞ2 ≪ y.
Let us interpret the two terms in Eq. (68). The fluctuation

creating a large dipole, that scatters elastically off the
nucleus, happens most likely either in the beginning of the
evolution (leading to a dissociative but small mass event)
or close to the scattering rapidity ỹ0 (leading to a gap of
size close to y0). The first configuration is dominant when
y0 is chosen large compared to ðx − XyÞ2, leading to the
first term in Eq. (68). The second configuration is dominant
when y0 is chosen small compared to ðx − XyÞ2: in this
case, the second, y0-dependent, term dominates the dif-
fractive cross section.
In the same way, starting from Eqs. (17), (24) and using

the analytical expression (44), we find that the rapidity gap
distribution in the scaling region reads

πðy; x; ygapÞ ¼
ln 2

γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p �
y

ygapðy − ygapÞ
�

3=2

× exp

�
−

ðx − XyÞ2
2χ00ðγ0Þðy − ygapÞ

�
: ð70Þ

Equation (68) is an integral of Eq. (70) over ygap, in the limit
x; y → þ∞, keeping x − Xy fixed. The determination of the
overall constant is the main new result in this work, while
the functional dependence was first found in Ref. [16].
This expression is tantamount to that of the distribution

of the splitting rapidity of the most recent common ancestor
of the set of dipoles which scatter derived in Ref. [32],
up to an extra factor ln 2. This distribution, denoted by
Gðy; x; y1Þ=Tðy; xÞ in the latter paper, can be expressed
with the help of our weights wk as

Gðy; x; y1Þ
Tðy; xÞ ¼

P∞
k¼2 ∂ ỹ1wkðy; x; y − ỹ1ÞP∞

k¼1 wkðy; x; y1Þ
: ð71Þ

Inserting the expression (44) for the∂ ỹ1wks into thenumerator
and replacing the denominator by its leading termw1 given in
Eq. (54), we recover the analytical form found in Ref. [32].
The factor ln 2 present in Eq. (70) does not appear here,
basically because the summation (69) to arrive at the gap
distribution is replaced by

P
k≥2 1=½kðk − 1Þ�, which is unity.

B. On the relation to the standard
perturbative approach

The formulation of the observables we are considering
has involved the probabilistic weights wk ¼ hGki of the
contribution of k participant dipoles exactly. These quan-
tities are probabilities in the dipole model, but they have no
simple diagrammatic interpretation: rather, they resum an
infinity of diagrams, involving an arbitrary number of
participating dipoles.
The standard approach consists instead in computing

forward elastic scattering amplitudes in perturbation theory,
order by order in the number of rescatterings. The con-
tribution of each graph to the considered observable is then
obtained by applying the Abramovsky-Gribov-Kancheli
cutting rules [40]. The latter were initially established in
the context of Regge theory, and argued to also hold in
QCD [41]. The KL equation was proved to be consistent
with these rules [14].
In the formalism we have used in this paper, this approach

corresponds to expanding the observables as series of
hFNðIÞi, where the FNs were defined in Eq. (19). Indeed,
one may write

σtotðy; xÞ ¼ 2
X∞
N¼1

ð−1ÞNþ1hFN ½Iðy0Þ�iỹ0;x;

σinðy; xÞ ¼
X∞
N¼1

ð−2ÞNþ1hFN ½Iðy0Þ�iỹ0;x; ð72Þ
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the diffractive cross section following from the difference of
the total and the inelastic cross sections. (See alsoRef. [42] for
a discussion of these formulas starting from theAbramovsky-
Gribov-Kancheli rules.) Note that the terms of order N of
these series are related to theNth derivative of the generating
function w̃λ, but evaluated at λ ¼ 1 instead of λ ¼ 0 as in the
case of the wks.
But, as shown in Ref. [43,44], the expansions (72) turn

out to be impractical to compute observables such as the
total or diffractive cross sections in the scaling region,
where unitarity corrections are important: indeed, they
were shown to be severely divergent asymptotic series,
and a Borel resummation is required to arrive at a
meaningful result.

V. CONCLUSION AND OUTLOOK

To summarize, we have found a purely probabilistic
formulation of diffractive onium-nucleus scattering, that
we expect to hold rigorously for large-enough values of the
rapidities. The very existence of such a formulation is
already surprising enough, since diffraction is a typical
quantum mechanical phenomenon, with no classical
counterpart.
This formulation has enabled us to derive a parameter-

free expression for the ratio of the diffractive cross section
with a fixed minimum rapidity gap to the total cross
section, in the geometric scaling region and for large
rapidities, as well as for the gap distribution. In variables
relevant to the scattering of an onium of size r off a large
nucleus at relative rapidity Y, this ratio reads [see Eq. (68)]

σdiffðY;r;Y0Þ
σtotðY;rÞ

¼ ln2
γ0

 
1

2 ln½1=rQsðYÞ�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ

s
1ffiffiffiffiffiffiffiffi
ᾱY0

p
!
;

ð73Þ

where the Y-dependent saturation scale in units of the
McLerran-Venugopalan momentum evolves as
ln½Q2

sðYÞ=Q2
A� ¼ χ0ðγ0ÞᾱY − 3=ð2γ0Þ lnðᾱYÞ. The gap dis-

tribution reads [see Eq. (70)]

πðY; r;YgapÞ ¼
ln 2

γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p 1ffiffiffī
α

p
�

Y
YgapðY − YgapÞ

�
3=2

× exp

�
−

ln2½r2Q2
sðYÞ�

2χ00ðγ0ÞᾱðY − YgapÞ
�
: ð74Þ

Along the way, we have found that diffraction is mostly
due to the exchange of a large number of color singlets
(“Pomerons” in the language of Regge theory) between
the onium and the nucleon. Indeed, the distribution wk of
the number k of participant dipoles turns out to go like
1=½kðk − 1Þ�. (Let us note that an equation for the moments
of the dipole multiplicity has been established very
recently, see Ref. [45]).

We believe that the present work paves the way for a
number of future developments. On the formal side, a more
rigorous derivation of the weights wk for general branching
random walks would be of great interest, since the latter
processes and their observables are of potential relevance to
different fields of science. The generating function method
exposed in Sec. III B looks a promising starting point.
Also, finding a systematic way to compute the subleading
corrections would be extremely useful. Knowing the next-
to-leading order corrections, presumably of relative order
ln ᾱY=

ffiffiffiffiffiffi
ᾱY

p
or 1=

ffiffiffiffiffiffi
ᾱY

p
, would already enable us to extend

sizably the kinematical range in which the asymptotic
formulas are close to an exact calculation.
Diffraction in onium-nucleus scattering can easily be

related to the same process in electron-ion collisions. But
approaching closely our analytical results would require
rapidities that are not reachable at colliders. Nevertheless,
since Eqs. (73) and (74) should represent the exact
asymptotics of the KL equation, which follow from
QCD, they may be regarded as a solid theoretical starting
point for the construction of a realistic model for diffractive
dissociation in deep-inelastic scattering off a large nucleus
and in the kinematics of a future electron-ion collider (see,
e.g., [46,47]), built in such a way that it matches, in the
appropriate limits, the asymptotics we have found. A recent
numerical study of the KL equation [48] has illustrated that
the general trend of these asymptotics may be observed
experimentally, up to a significant smearing due to sub-
asymptotic corrections yet to be understood theoretically.
Finally, let us mention that the KL equation was also

studied theoretically, with phenomenological applications
to the DESY-HERA data, in Ref. [49]. The thrust was
however different. First, the considered process was deep-
inelastic scattering off a proton rather than off a large
nucleus. Consequently, the impact parameter dependence
was a crucial ingredient, while in our calculation targeted at
very large nuclei, we could safely neglect it. Second, all
kinematical regions were investigated in Ref. [49], from the
saturation region in which the S matrix is close to zero to
the regime of very weak scattering, while we have strictly
focused on the scaling region. In the region in which we
overlap, we believe that our results (73), (74) are more
complete. The main difference is in the nontrivial rapidity
dependence we have found in the ratio of the diffractive to
the total cross section (that was actually already argued—
but not derived—in Refs. [16,17]), which was not found in
Ref. [49]. In a nutshell, the mismatch can be traced back to
the subleading power correction to the exponential depend-
ence of the saturation scale upon the rapidity, which was
neglected in Ref. [49].
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APPENDIX: NUMERICAL CHECK OF THE
CONJECTURED DELAY FUNCTION

In this Appendix, we check that the conjecture in Eq. (60)
is consistent with numerical calculations. Our goal is not
to present QCD calculations in the kinematics of actual
colliders, but, instead, to check as accurately as possible our
theoretical conjecture and calculations. Therefore, we pick a
simple branching random walk model, and push y to the
largest possible values that allows a calculation of the delay
with reasonable computer resources.
As for the specific model, we consider the well-tested

discretization of the branching Brownian motion intro-
duced in Ref. [50] and further studied in Ref. [32]. We refer
the reader to the latter articles for a complete description of
the model, and in particular, for the numerical values of the
constants that replace γ0 and χ00ðγ0Þ in Eq. (60).
We solve numerically the equivalent BK equation in the

form BKT (which rules the evolution of 1 − w̃): for our
model, it is a discretization of the Fisher and Kolmogorov-
Petrovsky-Piscounov equation. We start with a sharp
step (tantamount to the McLerran-Venugopalan T-matrix
element), and evolve it to the rapidity y0. Then, either we
evolve further to the final rapidity y at which we measure
the delay, or we multiply the front by 1 − λ, and evolve this
new initial condition for ỹ0 ≡ y − y0 more time steps. We
eventually compute the difference in the position between

the two fronts we obtain: the number we get is the “delay”
we aim at studying.
In the case of a continuous model such as QCD, we

could get this delay by evaluating the integral

Z þ∞

−∞
dx½w̃0ðy; x; y0Þ − w̃λðy; x; y0Þ�≡ fnumy0;y ðλÞ: ðA1Þ

(Note that it has a y dependence since numerical calculations
are necessarily performed for finite y.) The integral in the left-
hand side is straightforwardly discretized to be taken over to
themodel we have implemented.We repeat the calculation of
the delay for different values of λ, y, and y0 < y.
The results are shown in Fig. 2. The upper set of points

represents the numerical data for the delay rescaled by
f∞ðλÞ and subtracted from 1 (which is the expected
infinite-y0 limit of this rescaled delay). The data is
compared to the conjectured function at finite y0, which

reads 1
γ0

ffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ
q

1ffiffiffiffi
y0

p . We pick two different values of the

parameter λ, namely λ ¼ 0.01 and λ ¼ 0.9, and for each λ,
three values of y: 104, 105, 106.
We see that in the relevant parametric domain in which

we expect our conjecture to be valid, namely 1 ≪ y0 ≪ y,
all data points almost superimpose, and approach closely
the graph of the conjectured function. The agreement is
better for larger y, due to the extension of the range in y0 of
validity of the approximations.
The lower set of points represents the difference of the

data and the conjecture. We see that the mismatch is

FIG. 2. Comparison of the front delay calculated by solving numerically the exact evolution equation and of the conjectured

formula (60), as a function of y0. The points represent the data for 1 − fnumy0 ðλÞ=f∞ðλÞ, which should tend to 1
γ0

ffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ
q

1ffiffiffiffi
y0

p at large y, see

Eq. (60) (full line), and the distance ½fnumy0 ðλÞ − fy0ðλÞ�=f∞ðλÞ between the full model and the conjectured asymptotics. Two different
values of λ have been considered (0.9 and 0.01), and for each λ, three different values of y (104, 105, 106). The dashed line and dashed-
dotted lines are the graphs of functions proportional to 1=y0 and ln y0=y0, respectively.

ANALYTICAL ASYMPTOTICS FOR HARD DIFFRACTION PHYS. REV. D 104, 034026 (2021)

034026-13



consistent with a function that decreases with y0 as 1=y0, or
at most as ln y0=y0.
Let us mention that we have also checked directly (by

solving the equivalent KL equation for this model) that the
rapidity-gap distribution itself does indeed converge,
for large rapidities, to the predicted form (70). We do
not report on these numerical calculations here, because the
results look very similar to those for the distribution

Gðy; x; y1Þ=Tðy; xÞ of the splitting rapidity ỹ1 of the last
common ancestor of all dipoles of log inverse size larger
than x: the latter was calculated analytically and numeri-
cally in Ref. [32]. The gap distribution and G=T turn out to
have the same large-rapidity asymptotics, except for the
extra factor ln 2 present in the expression of the former,
which we have checked numerically to be correct. The
finite-rapidity corrections exhibit the same patterns.
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