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We discuss soft-gluon resummation for the associated production of a single top quark and a Higgs
boson (tqH production) in single-particle-inclusive kinematics. We present analytical results for the higher-
order corrections and numerical results for the cross sections at LHC energies. We calculate approximate
next-to-next-to-leading-order total rates, including scale dependence and uncertainties from parton
distributions, as well as top-quark transverse-momentum and rapidity distributions. In all cases we find
that the soft-gluon corrections are dominant and provide important contributions to the total and differential
cross sections.
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I. INTRODUCTION

The top quark and the Higgs boson occupy a central
role in particle-physics studies at current collider ener-
gies. The production of a single top quark in association
with a Higgs boson is a very interesting process as it
involves both of these very massive particles, and its cross
section is sensitive to top-quark and Higgs couplings.
Thus, modifications to the couplings due to new physics
beyond the Standard Model would directly affect the
cross section for tqH production. Searches for this
process have been made at the LHC at 8 TeV [1] and
13 TeV [2] energies. Next-to-leading-order (NLO) cal-
culations for tqH production have been done in
Refs. [3,4]. Given the large size of the NLO corrections,
it is important to calculate radiative corrections beyond
that order.
Soft-gluon resummation is a powerful formalism for

making theoretical predictions for perturbative corrections
at higher orders. The resummation is a consequence of the
factorization properties of the cross section [5–10]. The
soft-gluon corrections in the perturbative series are in the
form of plus distributions that involve logarithms of a
threshold variable that measures the energy in the soft
emission.
For many processes, and in particular for top-quark

production (see Ref. [11] for a review), these soft-gluon
corrections are large and they numerically dominate the

corrections at higher orders. Thus, they can be considered
as excellent approximations to complete results at NLO,
next-to-NLO (NNLO), etc. Specific processes for which
soft-gluon corrections have been known to provide
excellent approximations are top-antitop pair production
[12], single-top production in the s, t, and tW channels
[13,14], top production in association with a charged
Higgs boson [15], and top production via anomalous
couplings in association with a Z boson [16], a photon
[17], or a Z0 boson [18]. As we will show in this
paper (see also [10]), tqH production is another such
process.
The choice of threshold variable in the resummation

depends on the kinematics. While most calculations
in the past have been done for 2 → 2 processes in
single-particle-inclusive (1PI) kinematics or pair-invari-
ant-mass kinematics (see the reviews in Refs. [11,19]),
and some additional work has been done on 2 → 3
processes such as tt̄X [20–28] using three-particle-
invariant-mass kinematics, the resummation formalism
has been recently extended in 1PI kinematics [10]
to processes with an arbitrary number of final-state
particles.
In this paper, we employ our resummation formalism in

[10] to calculate cross sections for tqH production. In
addition, our formalism also allows the calculation of 1PI
differential distributions in transverse momentum and
rapidity. We begin in Sec. II with a description of soft-
gluon resummation for tqH production. We define a
threshold variable s4 that measures the additional energy
in soft radiation and that vanishes at partonic threshold, and
we derive the exponentiation of the logarithms of that
threshold variable. We also present results for the soft
anomalous dimensions through two loops and discuss
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fixed-order expansions. In Sec. III, numerical results are
presented for tqH þ t̄qH production at LHC energies,
including total cross sections as well as top-quark trans-
verse-momentum and rapidity distributions. We conclude
in Sec. IV.

II. RESUMMATION FOR tqH PRODUCTION

In this section we review the formalism for soft-gluon
resummation in 1PI kinematics for tqH production. We
consider the partonic process aðpaÞ þ bðpbÞ → tðp1Þ þ
qðp2Þ þHðp3Þ (i.e., bq0 → tqH). The leading-order
diagrams are shown in Fig. 1. We define the parton-level
kinematical variables s ¼ ðpa þ pbÞ2, t ¼ ðpa − p1Þ2,
and u ¼ ðpb − p1Þ2. If we have emission of an
additional gluon with momentum pg in the final state,
then momentum conservation requires that pa þ pb ¼
p1 þ p2 þ p3 þ pg.
We then define a threshold variable s4¼ðp2þp3þpgÞ2−

ðp2þp3Þ2. This variable describes the extra energy from
gluon emission and clearly vanishes as pg → 0. It is straight-
forward to show that the above expression is equivalent
to s4 ¼ sþ tþ u − p2

1 − p2
23 where we have defined

p23 ¼ p2 þ p3.
If the initial-state partons a and b are from protons A and

B, we define the hadron-level kinematical variables
S ¼ ðpA þ pBÞ2, T ¼ ðpA − p1Þ2, and U ¼ ðpB − p1Þ2,
and note that pa ¼ xapA and pb ¼ xbpB with xa, xb

momentum fractions for the partons. We also define the
variable S4 ¼ Sþ T þ U − p2

1 − p2
23 and, after some alge-

bra, we derive the relation

S4
S

¼ s4
s
− ð1 − xaÞ

ðu − p2
23Þ

s
− ð1 − xbÞ

ðt − p2
23Þ

s

þ ð1 − xaÞð1 − xbÞ
ðp2

1 − p2
23Þ

s
: ð2:1Þ

The last term in the above equation involves ð1 − xaÞ
ð1 − xbÞ and can, thus, be ignored in the threshold limit,
xa → 1 and xb → 1.

A. Resummed cross section

We write the differential cross section in 1PI kinematics
for tqH production in proton-proton collisions as a
convolution,

E1

dσpp→tqH

d3p1

¼
X
a;b

Z
dxadxbϕa=Aðxa; μFÞϕb=Bðxb; μFÞE1

dσ̂ab→tqHðs4; μFÞ
d3p1

; ð2:2Þ

where E1 is the energy of the observed top quark,
ϕa=A and ϕb=B are the parton distribution functions
(PDF) for partons a and b in protons A and B, respectively,
σ̂ab→tqH is the hard-scattering partonic cross section, and μF
is the factorization scale. The cross section at each
perturbative order also depends on the renormalization
scale, μR.
The cross section factorizes in integral transform

space [5–10]. We define Laplace transforms, denoted
below by a tilde, of the partonic cross section as
˜̂σab→tqHðNÞ ¼ R

s
0 ðds4=sÞe−Ns4=sσ̂ab→tqHðs4Þ, where N is

the transform variable. The logarithms of s4 appearing in
the perturbative series transform into logarithms of
N and, as we will see, the latter exponentiate.
We also define transforms of the PDF via ϕ̃ðNÞ ¼R
1
0 e−Nð1−xÞϕðxÞdx.
We next write the parton-parton cross section,

E1dσab→tqH=d3p1, in the same form as Eq. (2.2) but with
the initial-state hadrons replaced by partons [5–10]

E1

dσab→tqHðS4Þ
d3p1

¼
Z

dxadxbϕa=aðxaÞϕb=bðxbÞE1

dσ̂ab→tqHðs4Þ
d3p1

; ð2:3Þ

where for simplicity we suppress the dependence on the
scales, and we define its transform as

E1

dσ̃ab→tqHðNÞ
d3p1

¼
Z

S

0

dS4
S

e−NS4=SE1

dσab→tqHðS4Þ
d3p1

:

ð2:4Þ

By taking a transform of Eq. (2.3), as defined in
Eq. (2.4), and taking into consideration Eq. (2.1), we have

FIG. 1. Leading-order diagrams for tqH production.
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E1

dσ̃ab→tqHðNÞ
d3p1

¼
Z

1

0

dxae−Nað1−xaÞϕa=aðxaÞ
Z

1

0

dxbe−Nbð1−xbÞϕb=bðxbÞ

×
Z

s

0

ds4
s

e−Ns4=sE1

dσ̂ab→tqHðs4Þ
d3p1

¼ ϕ̃a=aðNaÞϕ̃b=bðNbÞE1

d ˜̂σab→tqHðNÞ
d3p1

; ð2:5Þ

where Na ¼ Nðp2
23 − uÞ=s and Nb ¼ Nðp2

23 − tÞ=s.
We then provide a new refactorized form of the cross section in terms of a different set of functions [5–10]. We first

rewrite Eq. (2.1) in the form

S4
S

¼ −ð1 − xaÞ
ðu − p2

23Þ
s

− ð1 − xbÞ
ðt − p2

23Þ
s

þ s4
s

¼ −wa
ðu − p2

23Þ
s

− wb
ðt − p2

23Þ
s

þ wS þ wq; ð2:6Þ

where the w’s denote dimensionless weights, and wa ≠ 1 − xa and wb ≠ 1 − xb because they refer to different functions.
Then, we find a refactorized form for the cross section [5,8,10] as

E1

dσab→tqH

d3p1

¼
Z

dwadwbdwqdwSψa=aðwaÞψb=bðwbÞJqðwqÞ

× tr

�
Hab→tqHðαsðμRÞÞSab→tqH

�
wS

ffiffiffi
s

p
μF

��
δ

�
S4
S
þ wa

ðu − p2
23Þ

s
þ wb

ðt − p2
23Þ

s
− wS − wq

�
: ð2:7Þ

The hard function, Hab→tqH, is infrared safe and it receives contributions from the amplitude and its complex conjugate for
the process, while the soft function, Sab→tqH, describes the emission of noncollinear soft gluons. The hard and the soft
functions are both matrices in the color space of the partonic scattering (2 × 2 matrices for bq0 → tqH) and, thus, we take
the trace of their product in the above equation. The functions ψ are distributions for incoming partons at a fixed value of
momentum and involve collinear emission, and they differ from the PDF ϕ [5–10,29]. The function Jq describes collinear
emission from the final-state light quark.
After taking a transform of Eq. (2.7) via Eq. (2.4), and using Eq. (2.6), we then find

E1

dσ̃ab→tqHðNÞ
d3p1

¼
Z

1

0

dwae−Nawaψa=aðwaÞ
Z

1

0

dwbe−Nbwbψb=bðwbÞ

×
Z

1

0

dwqe−NwqJqðwqÞ tr
�
Hab→tqHðαsðμRÞÞ

Z
1

0

dwse−NwsSab→tqH

�
ws

ffiffiffi
s

p
μF

��

¼ ψ̃a=aðNaÞψ̃b=bðNbÞJ̃qðNÞ tr
�
Hab→tqHðαsðμRÞÞS̃ab→tqH

� ffiffiffi
s

p
NμF

��
: ð2:8Þ

We see that the hard function Hab→tqH is independent of N, and all the N dependence is absorbed in the functions S̃ab→tqH,
ψ̃ , and J̃q, in contrast to the original form where both the partonic cross section ˜̂σ and the parton densities ϕ̃ have N
dependence [5–10,29].
By comparing Eq. (2.5) with Eq. (2.8), we find an expression for the hard-scattering partonic cross section in transform

space,

E1

d ˜̂σab→tqHðNÞ
d3p1

¼ ψ̃aðNaÞψ̃bðNbÞJ̃qðNÞ
ϕ̃a=aðNaÞϕ̃b=bðNbÞ

tr

�
Hab→tqHðαsðμRÞÞS̃ab→tqH

� ffiffiffi
s

p
NμF

��
: ð2:9Þ

The dependence of the soft matrix, S̃ab→tqH, on the transform variable, N, is resummed via renormalization-group
evolution [5]. We have
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S̃bab→tqH ¼ ðZSab→tqHÞ†S̃ab→tqHZSab→tqH; ð2:10Þ

where S̃bab→tqH is the unrenormalized (bare) quantity and
ZSab→tqH is a matrix of renormalization constants. Thus, we
find that S̃ab→tqH obeys the renormalization-group equation

�
μR

∂
∂μR þ βðgsÞ

∂
∂gs

�
S̃ab→tqH

¼ −ðΓS ab→tqHÞ†S̃ab→tqH − S̃ab→tqHΓSab→tqH; ð2:11Þ

where g2s ¼ 4παs and β is the QCD beta function. The
soft anomalous dimension matrix, ΓSab→tqH, controls
the evolution of the soft function. Soft anomalous
dimensions are calculated from the coefficients of the
ultraviolet poles of the relevant eikonal diagrams
[5,7,10,13,30–32].
The N-space resummed cross section is derived from the

renormalization-group evolution of the N-dependent func-
tions in Eq. (2.9), i.e., S̃ab→tqH, ψ̃ , ϕ̃, and J̃q, and it is given
by [5,8–11]

E1

d ˜̂σresumab→tqHðNÞ
d3p1

¼ exp

�X
i¼a;b

EiðNiÞ
�
exp

�X
i¼a;b

2

Z ffiffi
s

p

μF

dμ
μ
γi=iðNiÞ

�
exp ½E0

qðNÞ�

× tr

�
Hab→tqHðαsð

ffiffiffi
s

p ÞÞP̄ exp

�Z ffiffi
s

p
=N

ffiffi
s

p
dμ
μ
Γ†
Sab→tqHðαsðμÞÞ

�

×S̃ab→tqH

�
αs

� ffiffiffi
s

p
N

��
P exp

�Z ffiffi
s

p
=N

ffiffi
s

p
dμ
μ
ΓS ab→tqHðαsðμÞÞ

��
; ð2:12Þ

where P denotes path ordering in the same sense as the
integration variable μ and P̄ denotes path ordering in the
reverse sense. This moment-space resummed cross section
resums logarithms of the moment variable N. For next-to-
leading-logarithm (NLL) resummation we need one-loop
calculations for the process-dependent soft anomalous
dimensions, while for next-to-NLL (NNLL) resummation
we need two-loop calculations.
The first exponential in Eq. (2.12) resums soft and

collinear emission from the initial-state partons [29,33],

EiðNiÞ ¼
Z

1

0

dz
zNi−1 − 1

1 − z

×

�Z ð1−zÞ2

1

dλ
λ
AiðαsðλsÞÞ þDi½αsðð1 − zÞ2sÞ�

�
;

ð2:13Þ

where Ai ¼
P∞

k¼1ðαs=πÞkAðkÞ
i . We have Að1Þ

i ¼ Ci

with Ci ¼ CF ¼ ðN2
c − 1Þ=ð2NcÞ for a quark or

antiquark and Ci ¼ CA ¼ Nc for a gluon, with Nc ¼ 3

the number of colors. Furthermore, Að2Þ
i ¼ CiK=2 where

K ¼ CAð67=18 − π2=6Þ − 5nf=9, with nf the number of

light quark flavors. We also have Di ¼
P∞

k¼1ðαs=πÞkDðkÞ
i ,

with Dð1Þ
i ¼ 0.

The second exponential in Eq. (2.12) provides the scale
evolution in terms of the parton anomalous dimensions

γi=i ¼ −Ai lnNi þ γi. Here γi ¼
P∞

k¼1ðαs=πÞkγðkÞi , with

γð1Þq ¼ 3CF=4 for quarks and γ
ð1Þ
g ¼ β0=4 for gluons, where

β0 ¼ ð11CA − 2nfÞ=3.

The third exponential in Eq. (2.12) describes radiation
from the final-state quark [7,8,29,33]. We have

E0
qðNÞ ¼

Z
1

0

dz
zN−1 − 1

1 − z

�Z
1−z

ð1−zÞ2
dλ
λ
AqðαsðλsÞÞ

þ Bq½αsðð1 − zÞsÞ� þDq½αsðð1 − zÞ2sÞ�
�
;

ð2:14Þ

where Bq ¼
P∞

k¼1ðαs=πÞkBðkÞ
q , with Bð1Þ

q ¼ −3CF=4.
The process-dependent hard and soft functions,

which are matrices, have the perturbative expansions

Hab→tqH¼P∞
k¼0ðαs=πÞkHðkÞ

ab→tqH and S̃ab→tqH¼P∞
k¼0ðαs=πÞkS̃ðkÞab→tqH. Finally, the soft anomalous dimen-

sion matrix has the expansion ΓSab→tqH ¼P∞
k¼1ðαs=πÞkΓðkÞ

S ab→tqH.

B. Soft anomalous dimension matrices

Next, we present the soft anomalous dimension matrices
for the processes bðpaÞ þ q0ðpbÞ → tðp1Þ þ qðp2Þ þ
Hðp3Þ at one and two loops [10]. In addition to s, t, u
we also define the kinematical variables s0 ¼ ðp1 þ p2Þ2,
t0 ¼ ðpb − p2Þ2, and u0 ¼ ðpa − p2Þ2, and we choose the
color basis c1 ¼ δa1δb2 and c2 ¼ Tc

1aT
c
2b. The four ele-

ments of the soft anomalous dimension matrix at one loop,

where the ijth element is denoted by Γijð1Þ
S bq0→tqH, are given in

this color basis by
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Γ11ð1Þ
S bq0→tqH ¼ CF

�
ln

�
t0ðt −m2

t Þ
mts3=2

�
−
1

2

�
;

Γ12ð1Þ
S bq0→tqH ¼ CF

2Nc
ln

�
u0ðu −m2

t Þ
sðs0 −m2

t Þ
�
; Γ21ð1Þ

S bq0→tqH ¼ ln

�
u0ðu −m2

t Þ
sðs0 −m2

t Þ
�
;

Γ22ð1Þ
S bq0→tqH ¼ CF

�
ln

�
t0ðt −m2

t Þ
mts3=2

�
−
1

2

�
−

1

Nc
ln

�
u0ðu −m2

t Þ
sðs0 −m2

t Þ
�
þ Nc

2
ln

�
u0ðu −m2

t Þ
t0ðt −m2

t Þ
�
; ð2:15Þ

where mt is the top-quark mass.
At two loops, the four matrix elements of the soft anomalous dimension, with the ijth element denoted by Γijð2Þ

S bq0→tqH, can
be written directly in terms of the one-loop results. We have

Γ11ð2Þ
S bq0→tqH ¼ K

2
Γ11ð1Þ
S bq0→tqH þ 1

4
CFCAð1 − ζ3Þ; Γ12ð2Þ

S bq0→tqH ¼ K
2
Γ12ð1Þ
S bq0→tqH;

Γ21ð2Þ
S bq0→tqH ¼ K

2
Γ21ð1Þ
S bq0→tqH; Γ22ð2Þ

S bq0→tqH ¼ K
2
Γ22ð1Þ
S bq0→tqH þ 1

4
CFCAð1 − ζ3Þ: ð2:16Þ

C. Fixed-order expansions

When we expand the resummed cross section,
Eq. (2.12), to a fixed order and then invert back to
momentum space, we get powers of logarithms of s4 in
the form of plus distributions.
The NLO soft-gluon corrections in the cross section are

then given by

E1

dσ̂ð1Þbq0→tqH

d3p1

¼ FLO
bq0→tqH

αsðμRÞ
π

fcbq0→tqH
3 D1ðs4Þ

þ cbq
0→tqH

2 D0ðs4Þ þ cbq
0→tqH

1 δðs4Þg

þ αsðμRÞ
π

Abq0→tqHD0ðs4Þ; ð2:17Þ

where the plus distributions of the logarithms of s4 are

denoted by Dkðs4Þ ¼ ½ðlnkðs4=m2
t ÞÞ=s4�þ, and FLO

bq0→tqH ¼
trfHð0Þ

bq0→tqHS
ð0Þ
bq0→tqHg involves the leading-order (LO)

cross section. As can be seen from the above expression,
only a part of the corrections is proportional to FLO

bq0→tqH.
The coefficient of the leading logarithm at NLO,D1ðs4Þ,

is given by cbq
0→tqH

3 ¼ 3CF. The coefficients of the next-to-
leading logarithm at NLO, D0ðs4Þ, are given by

cbq
0→tqH

2 ¼ −2CF ln

�ðp2
23 − uÞðp2

23 − tÞ
m4

t

�

−
3

4
CF − 3CF ln

�
m2

t

s

�
− 2CF ln

�
μ2F
m2

t

�
ð2:18Þ

and

Abq0→tqH ¼ trfHð0Þ
bq0→tqHΓ

ð1Þ†
Sbq0→tqHS

ð0Þ
bq0→tqH

þHð0Þ
bq0→tqHS

ð0Þ
bq0→tqHΓ

ð1Þ
S bq0→tqHg: ð2:19Þ

We also have

cbq
0→tqH

1 ¼ CF

�
ln

�ðp2
23 − uÞðp2

23 − tÞ
m4

t

�
−
3

2

�
ln

�
μ2F
m2

t

�
:

ð2:20Þ

The analytical form of the NNLO soft-gluon corrections
is much longer and can be found from the expressions
in [10].

III. CROSS SECTIONS FOR tqH + t̄qH
PRODUCTION AT LHC ENERGIES

In this section we present results for the production cross
section for tqH þ t̄qH as well as top-quark differential
distributions in transverse momentum and rapidity. We set
the top-quark mass mt ¼ 172.5 GeV and the Higgs-boson
mass mH ¼ 125 GeV, and we use the latest MSHT20 [34]
and CT18 [35] PDF sets via LHAPDF6 [36]. The calcu-
lations of the cross sections at each perturbative order use
the PDF provided at that order. We set the factorization and
renormalization scales equal to each other and denote this
common scale by μ. We compute higher-order soft-
gluon corrections from resummation at NLL accuracy.
The complete NLO results are found by using
MadGraph5_aMC@NLO [37]. In our discussion, we
denote the sum of the complete NLO cross section and
the NNLO soft-gluon corrections as approximate
NNLO (aNNLO).
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A. Total cross sections

In Fig. 2 we display the total cross sections with μ ¼ mt
for LHC energies from 8 to 14 TeV. The plot on the left
shows the LO cross section using MSHT20 LO PDF, the
NLO cross section using MSHT20 NLO PDF, and the
aNNLO cross section using MSHT20 NNLO PDF. The
inset plot on the left displays theK-factors, i.e., the ratios of
the NLO and aNNLO cross sections to the LO cross
section. We see that the NLO corrections are important and
increase with energy, and the further aNNLO corrections
are quite significant: the NLO/LO K-factor indicates
corrections of nearly 13.5% at 14 TeV energy while the
aNNLO/LO K-factor indicates corrections of nearly 19.3%
at 14 TeV energy. The plot on the right of Fig. 2 shows the
NLO cross section using CT18 NLO PDF and the aNNLO
cross section using CT18 NNLO PDF (we do not show LO
results with CT18 PDF as there are no LO PDF provided by
that set). The results with CT18 PDF are almost identical to
those with MSHT20 PDF.
At this point we would like to highlight the quality of the

soft-gluon approximation by comparing our approximate
NLO (aNLO) results (found by adding the NLO soft-gluon
corrections from Eq. (2.17) to the LO cross section) with
the complete NLO results. At 8 TeV collision energy, the
difference between the central (i.e., with μ ¼ mt) aNLO
and the NLO cross sections is entirely negligible, at
the per mille level; as shown in Table I, both results are
19.5 fb with MSHT20 NLO PDF. Varying the scale
between mt=2 and 2mt the aNLO cross section at 8 TeV
ranges from 18.8 to 20.0 fb while the NLO cross section
varies from 19.5 to 19.9 fb.
At 13 TeV energy, the difference between the central

aNLO and NLO cross sections remains small, only
around 3%. The aNLO cross section ranges from 77.4
to 82.5 fb while the NLO ranges from 77.9 to 79.3 fb. At

14 TeV energy, the aNLO cross section ranges from 94.4
to 100.6 fb and the NLO ranges from 94.5 to 96.2 fb.
We note that at all three energies the NLO scale variation
lies entirely within the aNLO scale variation.
Thus, at LHC energies the soft-gluon corrections account

for the majority of the complete corrections, they provide
very good approximations to the complete results at NLO,
and they need to be considered and included at higher
orders beyond NLO for more robust theoretical predictions.
For reference, Table I shows the central cross sections at
LO, aNLO, NLO, and aNNLO for 8, 13, and 14 TeV LHC
energies.
In Fig. 3 we show the scale variation of the cross sections

at 13 TeV LHC energy. The plot on the left shows the LO,
NLO, and aNNLO results as functions of μ=mt using
MSHT20 PDF at the corresponding order. We see that
while the LO cross section has a relatively large scale
variation, this dependence is smaller at NLO and aNNLO.
The plot on the right shows the scale variation of the NLO
and aNNLO cross sections using CT18 PDF, with very
similar results. We see a rather small variation at aNNLO,
less than 4%, between the maximum and minimum values

TABLE I. The tqH þ t̄qH cross sections (in fb, with μ ¼ mt) in
pp collisions at the LHC with

ffiffiffi
S

p ¼ 8, 13, and 14 TeV, with
mt ¼ 172.5 GeV, mH ¼ 125 GeV, and MSHT20 PDF at each
order.

tqH þ t̄qH cross sections

σ in fb LO aNLO NLO aNNLO

LHC 8 TeV 18.2 19.5 19.5 20.5
LHC 13 TeV 69.2 80.4 78.0 81.9
LHC 14 TeV 83.4 98.2 94.8 99.5
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FIG. 2. The total cross sections at LO, NLO, and aNNLO for tqH þ t̄qH production at LHC energies using (left) MSHT20 PDF and
(right) CT18 PDF.
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over this entire range, indicating a very stable result. If we
write the result with central scale μ ¼ mt and traditional
scale variation betweenmt=2 and 2mt, then the cross section
at 13 TeV energy is 81.9þ0.9

−1.5 fb at aNNLO with MSHT20
PDF. We note that the PDF uncertainty is also small,
þ1.2%–0.7% with MSHT20 PDF and þ3.0%–2.0% with
CT18 PDF.
In Fig. 4 we show the scale variation of the cross

sections at 14 TeV LHC energy. Again, the plot on the
left shows LO, NLO, and aNNLO results with
MSHT20 PDF while the one on the right shows NLO
and aNNLO results with CT18 PDF. The conclusions
regarding the decreasing variation at higher orders
relative to LO is the same as for 13 TeV. Again, we
see a small variation at aNNLO of around 3.5% between
the maximum and minimum values. If we write the

result with central scale μ ¼ mt and traditional scale
variation between mt=2 and 2mt, then the cross section at
14 TeV energy is 99.5þ1.4

−2.0 fb at aNNLO with MSHT20
PDF. Again, the PDF uncertainty is also small,
þ1.1%–0.6% with MSHT20 PDF and þ2.8%–1.9% with
CT18 PDF.

B. Top-quark pT and rapidity distributions

Differential distributions provide more information
than total cross sections and can be useful in the search
for new physics. Transverse-momentum (pT) and rapidity
distributions of the top quark are typically measured in
such processes. In Fig. 5 we show the quality of the
soft-gluon approximation for the pT distributions as well
as the rapidity distributions. We compare the aNLO
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FIG. 4. The scale dependence of the LO, NLO, and aNNLO total cross sections for tqH þ t̄qH production at 14 TeV LHC energy
using (left) MSHT20 PDF and (right) CT18 PDF.
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FIG. 3. The scale dependence of the LO, NLO, and aNNLO total cross sections for tqH þ t̄qH production at 13 TeV LHC energy
using (left) MSHT20 PDF and (right) CT18 PDF.
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predictions for these quantities, including scale variation,
with the corresponding NLO results at 8 and 14 TeV
energies. We find that the results overlap throughout the
ranges in the plots, and thus that our approximation is
good not only at the level of total cross sections
but also at the more detailed level of differential
distributions.
In Fig. 6 we present the top-quark transverse-momen-

tum distributions at 13 TeV (left) and 14 TeV (right)
energies using MSHT20 PDF. We show LO, NLO, and
aNNLO distributions. We observe that the aNNLO
distributions peak at a pT value of around 50 GeV and
quickly diminish at high pT values. The inset plots show
the K-factors relative to LO, which indicate very

significant contributions from the NLO and aNNLO
corrections that increase with higher pT ; the combined
corrections through aNNLO provide an enhancement of
around 30% at a pT of 200 GeV at both 13 and 14 TeV
energies.
In Fig. 7 we present the top-quark rapidity distribu-

tions at 13 TeV (left) and 14 TeV (right) energies using
MSHT20 PDF. We show LO, NLO, and aNNLO dis-
tributions. The inset plots show the K-factors relative to
LO, which indicate very significant contributions from
the NLO and aNNLO corrections that are highest at
central rapidities. The combined corrections through
aNNLO provide an enhancement of around 25% at zero
rapidity.
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FIG. 5. A comparison between the aNLO and NLO results at 8 and 14 TeVenergies for the (left) top-quark pT distributions and (right)
rapidity distributions in tqH þ t̄qH production.
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FIG. 6. The LO, NLO, and aNNLO top-quark pT distributions in tqH þ t̄qH production at (left) 13 TeV and (right) 14 TeV LHC
energies.
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IV. CONCLUSIONS

We have presented a formalism for soft-gluon
resummation for tqH production in single-particle-
inclusive kinematics. This is the first 2 → 3 process
for which resummation has been performed in this
kinematics. We have provided analytical results for the
resummed cross section and fixed-order expansions, and
the soft anomalous dimension matrices at one and
two loops.
We have also calculated numerical results for tqH þ t̄qH

production at LHC energies. In particular, we have dis-
played results for the total cross sections as well as the

top-quark transverse-momentum and rapidity distributions
through approximate NNLO. We have shown that the soft-
gluon corrections are numerically dominant and provide
excellent approximations to the complete results at NLO.
We have also shown that the aNNLO soft-gluon corrections
are significant and their inclusion improves the theoretical
predictions.
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