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We investigate the sinðϕΛ − ϕSÞ single-spin asymmetry in the transversely polarized Λ production in
semi-inclusive deeply inelastic scattering process within the transverse momentum dependent (TMD)
factorization. The asymmetry is contributed by the convolution of the polarizing TMD fragmentation
function D⊥

1T of the Λ hyperon and the unpolarized TMD distribution function f1 of the proton target.

We adopt the spectator diquark model result and the available parametrization for D⊥;Λ↑=q
1T to numerically

estimate the sinðϕΛ − ϕSÞ asymmetry at the kinematical region of the electron ion collider (EIC). To
implement the TMD evolution formalism, we apply two different parametrizations on the nonperturbative
Sudakov form factors associated with the distribution function of the proton and the fragmentation function

of the Λ. It is found that the two sets of D⊥;Λ↑=q
1T lead to different sinðϕΛ − ϕSÞ asymmetry, particularly in

sign. We also discuss the impact of the assumptions and approximations applied in the calculations, which
may bring large uncertainties to the results in the EIC. Future measurements on the sinðϕΛ − ϕSÞ
asymmetry with high precision at the EIC can provide important cross checks on the available Λ polarizing
fragmentation functions, as well as constrain them more stringently.

DOI: 10.1103/PhysRevD.104.034020

I. INTRODUCTION

Understanding the internal partonic structure of hadrons
and the fragmentation mechanism of partons are among the
main goals in QCD and high energy physics. Once the
production of a polarized lambda hyperon from unpolar-
ized pp collisions had been observed [1,2], it has become a
long-standing challenge [3,4] in QCD spin physics since
such polarization should be small in leading twist in the
collinear picture [3]. The traditional theory expects that the
single spin asymmetries should be forbidden in the partonic
level, and the averaged polarization ofΛ should be zero [4].
Thus, the production of a transversely polarized Λ provides
an opportunity not only to study the spin structure [5] but
also the fragmentation mechanism [6–10] of partons.
After introducing the intrinsic transverse momentum into

the collinear picture, the transverse single spin asymmetry
can originate from the correlation of the transverse motion
of the parton and the transverse spin of the hadron. It is

suggested [11] that a polarizing fragmentation function
(FF) [12], denoted by D⊥

1Tðx; k2TÞ, can account for the
polarization of the Λ production.D⊥

1T is a time-reversal-odd
(T-odd) and transverse momentum dependent (TMD) FF,
which describes the fragmentation of an unpolarized quark
to a transversely polarized hadron, and reflects the corre-
lation of the transverse spin of the produced Λ and the
transverse momentum of the parent quark. Sometimes it is
viewed as the analog of the Sivers function [13,14], which
is a T-odd TMD parton distribution function (PDF)
describing the asymmetric density of unpolarized quarks
inside a transversely polarized nucleon. Furthermore, D⊥

1T
may play an important role in the spontaneous polarization,
such as the process q → Λ↑X [15]. Thus, the study on the
production of polarized Λ could also provide the informa-
tion on the spin structure of the hyperon. This is intriguing
since the Λ hyperon can not serve as a target in high energy
scattering processes.
Experimentally, the single inclusive eþe− annihilation

(SIA) experiment performedbyOPALat theLargeElectron-
Positron collider has not observed a significant signal on the
transverse polarization of the Λ hyperon [16]. As an
alternative to SIA, the processes eþe− → Λ↑ þ hþ X
[17–19] and semi-inclusive deep inelastic scattering
(SIDIS) lp→l0þΛ↑þX have been suggested [17] to
study the Λ spin asymmetry, where D⊥

1T contribute to the
transverse polarization of Λ. Those measurements could
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provide a further understanding of the origin of the sizable
transverse polarization of hyperons observed in different
processes [2,10–12,20–25]. Recently, a nonzero transverse
polarization of Λ production in SIA and semi-inclusive
eþe− → ΛðΛ̄Þ þ K�ðπ�Þ þ X processes were measured by
the Belle Collaboration [19], making the extraction [26–28]
of the polarizing FF ofΛ possible. On the other hand, model
calculations may also provide an approach to acquire
knowledge of the Lambda polarizing FFD⊥

1T. A calculation
of D⊥

1T for light flavors based on a spectator-diquark model
has been performed in Ref. [29], and the result was used to
make predictions on physical observables.
The main purpose of this work is to study the role of

the polarizing Λ FF D⊥
1T in the transverse-spin dependent

sinðϕΛ − ϕSÞ asymmetry in SIDIS. Particularly, we
apply the TMD factorization [30–34] to estimate the
spin-dependent cross section in lþ p → l0 þ Λ↑ þ X, as
well as the unpolarized cross section. The asymmetry can
be expressed as the ratio of the two cross sections. In the
last two decades, TMD factorization has been widely
applied in various high energy processes [34–47]. Within
the TMD factorization, the differential cross section in the
small transverse momentum region PhT=zh ≪ Q (PhT is
the transverse momentum of the final-state hadron, andQ is
the virtuality of the photon) can be expressed as the
convolution of the hard scattering factors and the well-
defined TMD distributions and fragmentation functions. In
our case, the sinðϕΛ − ϕSÞ asymmetry is contributed by the
convolution of f1, D⊥

1T and the hard scattering factors. The
TMD formalism also encodes the evolution information of
TMD PDFs and FFs, governed by the so-called Collins-
Soper equation [30,31,34,48]. The solution of the equation
is usually expressed as an exponential form of the Sudakov-
like form factor [31,34,37,49], which determines the scale
dependence of TMDs. Therefore, in this work, we will
consider the TMD evolution effect of the polarizing FF
D⊥

1T , which is not usually included in the previous
calculation for the semi-inclusive Λ production
[26,27,50]. In the literature, several TMD evolution for-
malisms have been developed [31,34,37,40,42,44,51–58].
Particularly, the nonperturbative parts of the Sudakov form
factor for the TMD PDFs and FFs have been extracted from
experimental data based on different parametrizations. In
this work, we will adopt two parametrizations on the
nonperturbative part to estimate the asymmetry [42,44]
for comparison.
The remaining content of the paper is organized as

follows. In Sec. II, we present the formalism of the
sinðϕΛ − ϕSÞ asymmetry in the process lp → e−Λ↑X
within the TMD factorization. In Sec. III, we investigate
the evolution effect for the TMD PDFs and FFs.
Particularly, we discuss the parametrization of the non-
perturbative Sudakov form factors associated with the
studied TMD functions in details. In Sec. IV, we present
the numerical estimate on the sinðϕΛ − ϕSÞ asymmetry in

the e−p → e−Λ↑X process at the kinematical region of the
EIC with different choices on the nonperturbative part
associated with the TMD evolution effect. Finally, we
summarize the paper in Sec. V.

II. THE sinðϕΛ −ϕSÞ ASYMMETRY IN THE
lp → lΛ↑X PROCESS

The process under study is the semi-inclusive deep
inelastic scattering process,

lðlÞ þ pðPÞ → lðl0Þ þ Λ↑ðPΛÞ þ X; ð1Þ

in which the lepton beam with momentum l scatters off an
unpolarized proton target p with momentum P. In the final
state, the scattered lepton momentum l0 is measured
together with a transversely polarized Λ hyperon, with
PΛ being the momentum of the Λ hyperon. We define the
spacelike momentum transfer q ¼ l − l0 and Q2 ¼ −q2.
The usual invariants in the SIDIS process are introduced as

xB ¼ Q2

2P · q
; y ¼ P · q

P · l
¼ Q2

xBs
;

z ¼ P · PΛ

P · q
; s ¼ ðPþ lÞ2; ð2Þ

where s is the total center of mass energy squared, xB is
the Bjorken variable, y is the inelasticity, and z is the
momentum fraction of the final state Λ hyperon. The
corresponding six-fold (xB, y, z, ϕΛ, ϕS and P2

ΛT) differ-
ential cross section (for a transversely polarized Λ pro-
duction) in the γ�N collinear frame can be given as [59–61]

d6σ
dxBdydzdϕΛdϕSdP2

ΛT

¼ α2

xByQ2
×

��
1−yþ1

2
y2
�
FUUU

þS⊥
�
sinðϕΛ−ϕSÞ

�
1−yþ1

2
y2
�
FsinðϕΛ−ϕSÞ
UUT

��
: ð3Þ

In the γ�N collinear frame, the momentum direction of the
virtual photon is defined as the z-axis, the hadron plane is
determined by the z-axis and the momentum direction of Λ,
and the lepton plane is given by l and l0. Hence, ϕΛ stands
for the azimuthal angle between the lepton and hadron
planes, while ϕS is the azimuthal angle of the transverse
spin vector of Λ, PΛT is the component of PΛ transverse to
q with PΛT ¼ −zqT [62]. Here, PΛT is the characteristic
transverse momentum detected in the SIDIS process, the
value of which determines the validity of TMD factoriza-
tion, i.e., if P2

ΛT=z
2 ≪ Q2, then TMD factorization can be

applied, and the process is sensitive to the TMD PDFs/FFs

[34]. FUUU and FsinðϕΛ−ϕSÞ
UUT are the spin-averaged and

transverse spin-dependent structure functions, with the
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first, second, and third subscripts denoting the polarization
of the lepton beam, proton target, and the final-state
hadron (Λ hyperon), respectively (U ¼ unpolarized, L ¼
longitudinally polarized, T ¼ transversely polarized).
We can define the single transverse-spin asymmetry with

a sinðϕΛ − ϕSÞ modulation as follows [60]:

AsinðϕΛ−ϕSÞ
UUT ðxB; y; z; P2

ΛTÞ

¼
1

xyQ2 ð1 − yþ 1
2
y2ÞFsinðϕΛ−ϕSÞ

UUT

1
xyQ2 ð1 − yþ 1

2
y2ÞFUUU

: ð4Þ

According to TMD factorization, the structure functions

FUUU and FsinðϕΛ−ϕSÞ
UUT can be expressed as the convolution

of the TMD PDF and TMD FF as [60,61]

FUUUðQ;P2
ΛTÞ ¼ C½f1D1�; ð5Þ

FsinðϕΛ−ϕSÞ
UUT ðQ;P2

ΛTÞ ¼ C
�
ĥ · kT
MΛ

f1D⊥
1T

�
; ð6Þ

where the unit vector ĥ is defined as ĥ ¼ PΛT
PΛT

[36,63], and
the notation C denotes the convolution of the transverse
momenta

C½ωfD� ¼ x
X
q

e2q

Z
d2pTd2kTδ2ðpT − kT þ qTÞωðpT; kTÞ

× fqðx; p2TÞDqðz; k2TÞ; ð7Þ

with ωðpT; kTÞ being an arbitrary function of pT and kT .
Note that f1ðxB; p2TÞ is the unpolarized TMD PDF of
the proton. Also note that D1ðz; k2TÞ and D⊥

1Tðz; k2TÞ are
the unpolarized FF and the transversely polarizing FF. The
transverse momentum kT is related to the transverse
momentum of the produced hadron with respect to the
quark through K⊥ ¼ −zkT .
It is convenient to deal with the TMD evolution effect in

the b⊥ space that is conjugate to the transverse momentum
space through Fourier transformation since it can turn the
complicated convolution in the transverse momentum
space into simple product. Therefore, we perform a trans-
formation for the delta function

δ2ðpT − kT þ qTÞ ¼
1

ð2πÞ2
Z

d2b⊥e−ib⊥·ðpT−kTþqT Þ ð8Þ

and obtain the following explicit form of the spin-averaged
structure function FUUU:

C½f1D1� ¼ x
X
q

e2q

Z
d2pTd2kTδ2ðpT − kT þ qTÞfq=p1 ðxB; p2T ;QÞDΛ=q

1 ðz; k2T ;QÞ

¼ x
1

z2
X
q

e2q

Z
d2pTd2K⊥δ2ðpT þ K⊥=z − PΛT=zÞfq=p1 ðxB; p2T ;QÞDΛ=q

1 ðz;K2⊥;QÞ

¼ x
1

z2
X
q

e2q

Z
d2b⊥
ð2πÞ2 e

iPΛT ·b⊥=zf̃q=p1 ðxB; b⊥;QÞD̃Λ=q
1 ðz; b⊥;QÞ

¼ x
1

z2
X
q

e2q

Z
dbb
2π

J0ðPΛTb=zÞf̃q=p1 ðxB; b;QÞD̃Λ=q
1 ðz; b;QÞ; ð9Þ

with PΛT ¼ jPΛT j, b ¼ jb⊥j, J0 the zeroth-order Bessel function of the first kind. The unpolarized PDF and FF in b⊥ space
can be defined as (hereafter the tilde terms represent the ones in b⊥ space)

f̃q=p1 ðxB; b⊥;QÞ ¼
Z

d2pTe−ipT ·b⊥f
q=p
1 ðxB; p2T ;QÞ;

D̃Λ=q
1 ðz; b⊥;QÞ ¼

Z
d2K⊥e−iK⊥·b⊥=zDΛ=q

1 ðz;K2⊥;QÞ: ð10Þ

Similarly, the transverse spin-dependent structure function FsinðϕΛ−ϕSÞ
UUT can be written as
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C
�
ĥ · kT
MΛ

f1D⊥
1T

�
¼ x

X
q

e2q

Z
d2pTd2kTδ2ðpT − kT þ qTÞ

ĥ · kT
MΛ

fq=p1 ðxB; p2T ;QÞD⊥Λ=q
1T ðz; k2T ;QÞ

¼ −x
1

z3
X
q

e2q

Z
d2pTd2K⊥

Z
d2b⊥
ð2πÞ2 e

−iðpTþK⊥=z−PΛT=zÞ·b⊥
�
ĥ · K⊥
MΛ

�
fq=p1 ðxB; p2T ;QÞD⊥Λ=q

1T ðz;K2⊥;QÞ

¼ −x
1

z3
X
q

e2q

Z
d2b⊥
ð2πÞ2 e

iPΛT ·b⊥=zĥαf̃
q=p
1 ðxB; b⊥;QÞD̃⊥ðαÞΛ=q

1T ðz; b⊥;QÞ; ð11Þ

where the polarizing FF of Λ hyperon in b⊥ space is
defined as

D̃ðαÞ⊥Λ=q
1T ðz; b⊥;QÞ

¼
Z

d2K⊥e−iK⊥·b⊥=z K
α⊥

MΛ
D⊥Λ=q

1T ðz;K2⊥;QÞ: ð12Þ

After performing all of the approaches above, the next
important issue is the energy dependence of the TMDs,
which is encoded in the TMD evolution equations and will
be discussed in detail in the following section.

III. THE EVOLUTION OF TMD PDFS AND FFS

In this section, we set up the formalism of the TMD
evolution for the unpolarized TMD PDF f1 of the proton,
the unpolarized TMD FF D1, as well as the polarizing FF
D⊥

1T of the Λ hyperon. As mentioned in the previous
section, it is more convenient to express the differential
cross section of the process in the b⊥ space than in the
transverse momentum space. Therefore, the TMD evolu-
tion of these TMDs is usually performed in the b⊥ space.
Generally, the TMDs F̃ðx; b; μ; ζFÞ and D̃ðz; b; μ; ζDÞ
depend on two energy scales [30,31,34,37,39,55]. One is
the renormalization scale μ, related to the corresponding
collinear PDFs or FFs; the other one is the energy scale ζF
(or ζD) used as a cutoff to regularize the light-cone
singularity in the operator definition of TMD PDFs and
FFs. The ζ-dependence is encoded in the Collins-Soper
(CS) equation as

∂ ln F̃ðx; b; μ; ζFÞ
∂ ffiffiffiffiffi

ζF
p ¼ ∂ ln D̃ðz; b; μ; ζDÞ

∂ ffiffiffiffiffiffi
ζD

p ¼ K̃ðb; μÞ; ð13Þ

with K̃ being the CS evolution kernel, which can be
computed perturbatively for small values of b with the
form (up to order αs)

K̃ðb; μÞ ¼ −
αsCF

π
½lnðμ2b2Þ − ln 4þ 2γE� þOðα2sÞ: ð14Þ

Here, γE ≈ 0.577 is the Euler’s constant [30]. The μ
dependence is driven by the renormalization group
equations as

dK̃
d ln μ

¼ −γKðαsðμÞÞ; ð15Þ

d ln F̃ðx; b; μ; ζFÞ
d ln μ

¼ γF

�
αsðμÞ;

ζ2F
μ2

�
; ð16Þ

d ln D̃ðz; b; μ; ζDÞ
d ln μ

¼ γD

�
αsðμÞ;

ζ2D
μ2

�
; ð17Þ

where γK , γF, and γD are the anomalous dimensions of K̃,
F̃, and D̃, respectively,

γK ¼ 2
αsCF

π
þOðα2sÞ; ð18Þ

γD ¼ γF ¼ αs
CF

π

�
3

2
− ln

�
ζF
μ2

��
þOðα2sÞ: ð19Þ

Solving the equations in Eqs. (15)-refeq:evol3), one can
obtain the general solution for the energy dependence of F̃
and D̃ as follows:

F̃ðx; b;QÞ ¼ F ðQÞ × e−SðQ;bÞ × F̃ðx; b; μiÞ; ð20Þ

D̃ðz; b;QÞ ¼ DðQÞ × e−SðQ;bÞ × D̃ðz; b; μiÞ; ð21Þ

where F and D are the hard factors related to the hard
scattering, and SðQ; bÞ is the Sudakov form factor.
Hereafter, we will set μ ¼ ffiffiffiffiffi

ζF
p ¼ ffiffiffiffiffiffi

ζD
p ¼ Q and express

F̃ðx; b; μ ¼ Q; ζF ¼ Q2Þ and D̃ðz; b; μ ¼ Q; ζD ¼ Q2Þ for
simplicity. Equations (20) and (21) demonstrate that
the TMDs F̃ and D̃ at the arbitrary scale Q can be
determined by the same TMDs at an initial scale μi
through the evolution encoded by the exponential form,
expð−SðQ; bÞÞ [30–34,48,64].
More specifically, the exponential expð−SðQ; bÞÞ has the

following explicit form (taking the one for F̃ as example):
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expð−SðQ; bÞÞ

¼ exp

�
ln
Q
μ
K̃ðb�; μÞ

þ
Z

μ

μi

dμ̄
μ̄

�
γFðgðμ̄Þ; 1Þ − ln

�
Q
μ̄

�
γKðgðμ̄ÞÞ

��

× exp

�
gj=Pðx; bÞ þ gKðbÞ ln

Q
Q0

�
: ð22Þ

The exponential in the first line of Eq. (22) comes from the
solutions ofEqs. (13), (15), and (16) in the perturbative region
(the small b region 1=Q ≪ b ≪ 1=Λ). It contains K̃ðb�; μÞ,
the CS evolution kernel in the small b region, and the
anomalous dimension γF, γK. However, in the nonperturba-
tive region (largeb region), the evolutionkernel K̃ðb; μÞ is not
calculable. In order to access the contribution in the large b
region, the exponential in the second lineofEq. (22) is usually
included. Here, the function gj=Pðx; bÞ parametrizes the
nonperturbative large b behavior that is intrinsic to the proton
target, while gK parametrizes the nonperturbative large b
behavior of the evolution kernel K̃ðb; μÞ.
A matching procedure must be introduced with a

parameter bmax serving as the boundary between the small
b and large b regions. The prescription should also allow
for a smooth transition from perturbative to nonperturbative
regions and avoid the Landau pole singularity in αsðμÞ.
There are different choices on the b� prescription in the
literature. A frequently used one is the Collins-Soper-
Sterman (CSS) prescription [31]

b� ¼ b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=b2max

q
; bmax < 1=ΛQCD; ð23Þ

which guarantees the feature that b� ≈ b at small b value
and b� ≈ bmax at large b value. To ensure that b� is always
in the perturbative region, the typical value of bmax is
chosen around 1 GeV−1.
Therefore, the complete result for the Sudakov form

factor appearing in Eqs. (20)–(22) can be sketched as
follows:

SðQ; bÞ ¼ SPðQ; b�Þ þ SNPðQ; bÞ; ð24Þ

where SPðQ; b�Þ and SNPðQ; bÞ corresponds to the pertur-
bative part and the nonperturbative part of the Sudakov
form factor, with the boundary of two parts set by bmax.
The perturbative part SPðQ; b�Þ has been studied
[39,42,55,56,58] in detail and has the same result for
different TMD PDF and FFs,

SPðQ;b�Þ¼
Z

Q2

μ2b

dμ̄2

μ̄2

�
Aðαsðμ̄ÞÞ ln

Q2

μ̄2
þBðαsðμ̄ÞÞ

�
; ð25Þ

where the A and B coefficients in Eq. (25) can be expanded
as perturbative series of αs=π,

A ¼
X∞
n¼1

AðnÞ
�
αs
π

�
n
; ð26Þ

B ¼
X∞
n¼1

BðnÞ
�
αs
π

�
n
: ð27Þ

In this work, we will take AðnÞ up to Að2Þ and BðnÞ up to Bð1Þ
in the accuracy of next-to-leading-logarithmic (NLL) order
[31,37,39,53,56,65],

Að1Þ ¼ CF; ð28Þ

Að2Þ ¼ CF

2

�
CA

�
67

18
−
π2

6

�
−
10

9
TRnf

�
; ð29Þ

Bð1Þ ¼ −
3

2
CF: ð30Þ

In the perturbative region 1=Q ≪ b ≪ 1=Λ, other
important elements are TMD PDFs and FFs at a fixed
scale [F̃ðx; b; μÞ and D̃ðx; b; μÞ�, which can be expressed as
the convolution of the perturbatively calculable coefficients
C and the corresponding collinear counterparts of TMDs
[Fi=Hðξ; μÞ and DH=jðξ; μÞ],

F̃ðx; b; μÞ ¼
X
i

Z
1

x

dξ
ξ
Cq←iðx=ξ; b; μÞFi=Hðξ; μÞ; ð31Þ

D̃ðz; b; μÞ ¼
X
j

Z
1

z

dξ
ξ
Cj←qðz=ξ; b; μÞDH=jðξ; μÞ: ð32Þ

Here, μ is a dynamic scale related to b� by μ ¼ c=b�,
with c ¼ 2e−γE . The parameter c is chosen to optimize
the perturbation expansion such that, in this choice,
the order-OðαsÞ result of Kðb�; μÞ vanishes. Note that

Cq←iðx=ξ;b;μÞ¼
P∞

n¼0C
ðnÞ
q←iðαs=πÞn and Cj←qðz=ξ; b; μÞ ¼P∞

n¼0 C
ðnÞ
j←qðαs=πÞn are the perturbatively calculable coef-

ficient functions.
The nonperturbative part SNP can not be calculated

from perturbative QCD. They may be parametrized
and extracted from experimental data. There are several
different parametrizations on SNP in the literature
[31,34,37,40,42,44,51–58]; we will discuss two of them
in detail.

A. Approach I

One of the approaches applied in this study is the
Echevarria-Idilbi-Kang-Vitev (EIKV parametrization) non-
perturbative Sudakov SNP for the unpolarized TMD PDFs
and TMD FFs, which has the following form [42]:

sinðϕλ − ϕsÞ AZIMUTHAL … PHYS. REV. D 104, 034020 (2021)
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SpdfNP ðb;QÞ ¼ b2
�
gpdf1 þ g2

2
ln

Q
Q0

�
; ð33Þ

SffNPðb;QÞ ¼ b2
�
gff1 þ g2

2
ln

Q
Q0

�
: ð34Þ

Here, g2 includes the information on the large b behavior of
the evolution kernel K̃. (gKðbÞ ¼ g2b2.) This function is
universal for different types of TMDs and is spin inde-
pendent [34,37,42,43]. On the other hand, g1 contains
information on the intrinsic nonperturbative transverse
motion of bound partons. It could depend on the type of
TMDs and can be interpreted as the intrinsic transverse
momentum width for the relevant TMDs at the initial
scale Q0 [37,57,65–67]. Furthermore, gpdf1 and gff1 are
parametrized as follows:

gpdf1 ¼ hk2TiQ0

4
; ð35Þ

gff1 ¼ hp2
TiQ0

4z2
; ð36Þ

where hk2TiQ0
and hp2

TiQ0
are the averaged intrinsic trans-

verse momenta squared for TMD PDFs and FFs at the
initial scale Q0, respectively. In Ref. [42] the authors tuned
the current extracted ranges of three parameters hk2TiQ0

,

hp2
TiQ0

, and g2 with Q0 ¼
ffiffiffiffiffiffiffi
2.4

p
GeV in Refs. [68–70] and

further found that the following values of parameters can
reasonably describe the SIDIS data together with the Drell-
Yan lepton pair and W=Z boson production data:

hk2TiQ0
¼ 0.38 GeV2; hp2

TiQ0
¼ 0.19 GeV2;

g2 ¼ 0.16 GeV2; bmax ¼ 1.5 GeV−1: ð37Þ

Since the information of the nonperturbative Sudakov form
factor for the polarizing FF of the Λ hyperon still remains
unknown, we assume it to be the same as that for the
unpolarized TMD FF SffNP.
It is straightforward to rewrite the scale-dependent

TMDs F̃ and D̃ in b⊥ space as

F̃q=Hðx; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

Fq=H
NP ðQ;bÞFq=Hðx; μÞ; ð38Þ

D̃H=qðz; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

DH=q
NP ðQ;bÞDH=qðz; μÞ: ð39Þ

Hereafter, we apply the leading order (LO) results for the
hard coefficients C, F , and D for f1, D1, and D⊥

1T , i.e.,

Cð0Þ
q←i ¼ δiqδð1 − xÞ, Cð0Þ

j←q ¼ δqjδð1 − zÞ, F ðQÞ ¼ 1 and
DðQÞ ¼ 1. The factor of 1

2
in front of SP comes from the

fact that SP is equally distributed to the initial-state quark
and the final-state quark [71].

With all the above ingredients, we can write down the
evolved TMDs explicitly as

f̃q=p1 ðxB; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−SpdfNP ðQ;bÞfq=p1 ðxB; μÞ; ð40Þ

D̃Λ=q
1 ðz; b;QÞ ¼ e−

1
2
SPðQ;b�Þ−SffNPðQ;bÞDΛ=q

1 ðz; μÞ; ð41Þ

D̃⊥ðαÞΛ=q
1T ðz; b;QÞ ¼ ibα⊥

2
e−

1
2
SPðQ;b�Þ−SffNPðQ;bÞD̂⊥ð3Þ

1T ðz; z; μÞ:
ð42Þ

Here, D̂⊥ð3Þ
1T ðz; z; μÞ is the twist-3 FF of quark flavor q to Λ

hyperon, which satisfies the following relation with the
polarizing FF D⊥Λ=q

1T and the first transverse moment of the

polarizing FF D⊥ð1Þ
1T [72]:

D̂⊥ð3Þ
1T ðz; z; μÞ ¼

Z
d2K⊥

jK2⊥j
MΛ

D⊥h=q
1T ðz;K2⊥; μÞ

¼ 2MΛD
⊥ð1Þ
1T ðz; μÞ: ð43Þ

Thus, the TMDs in the transverse momentum space can
be obtained by performing the Fourier transformation,

fq=p1 ðxB;pT ;QÞ

¼
Z

∞

0

dbb
2π

J0ðpTbÞe−1
2
SPðQ;b�Þ−SpdfNP ðQ;bÞfq=p1 ðxB;μÞ; ð44Þ

DΛ=q
1 ðz; K⊥;QÞ

¼
Z

∞

0

dbb
2π

J0ðK⊥b=zÞe−1
2
SPðQ;b�Þ−SffNPðQ;bÞDΛ=q

1 ðz; μÞ;

ð45Þ

Kα⊥
MΛ

D̃⊥Λ=qðαÞ
1T ðz;K⊥;QÞ

¼
Z

∞

0

dbb2

4π
J1ðK⊥b=zÞe−1

2
SPðQ;b�Þ−SffNPðQ;bÞD⊥ð3Þ

1T ðz;z;μÞ:

ð46Þ

where pT ¼ jpT j, K⊥ ¼ jK⊥j.

B. Approach II

Besides the traditional parametrization [53,54,73] and
the EIKV parametrization, some other forms have been also
proposed [44,57,64,74] recently. Particularly, a new evo-
lution formalism was proposed by Bacchetta, Delcarro,
Pisano, Radici, and Signori (BDPRS parametrization) in
Ref. [44] for f̃a1 and D̃a→h

1 ,

f̃a1ðx; b2;Q2Þ
¼ fa1ðx; μ2Þe−Sðμ

2;Q2Þe
1
2
gKðbÞ lnðQ2=Q2

0
Þf̃a1NPðx; b2Þ; ð47Þ
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D̃a→h
1 ðz;b2;Q2Þ
¼Da→h

1 ðz;μ2Þe−Sðμ2;Q2Þe
1
2
gKðbÞ lnðQ2=Q2

0
ÞD̃a→h

1NP ðz;b2Þ; ð48Þ

where gK ¼ −g2b2=2, following the choice in
Refs. [53,54,73]. Note that f̃a1NPðx; b2Þ and D̃a→h

1NP ðz; b2Þ
are the intrinsic nonperturbative part of the PDFs and FFs
respectively, which are parametrized as

f̃a1NPðx; b2Þ ¼
1

2π
e−g1

b2
4

�
1 −

λg21
1þ λg1

b2

4

�
; ð49Þ

D̃a→h
1NP ðz; b2Þ ¼

g3e
−g3 b2

4z2 þ ðλFz2Þg24ð1 − g4 b2

4z2Þe
−g4 b2

4z2

2πz2ðg3 þ ðλFz2Þg24Þ
; ð50Þ

with

g1ðxÞ ¼ N1

ð1 − xÞαxσ
ð1 − x̂Þαx̂σ ; ð51Þ

g3;4ðzÞ ¼ N3;4
ðzβ þ δÞð1 − zÞγ
ðẑβ þ δÞð1 − ẑÞγ : ð52Þ

Here, x̂ ¼ 0.1 and ẑ ¼ 0.5 are fixed, and α, σ, β, γ, δ,
N1 ≡ g1ðx̂Þ, N3;4 ≡ g3;4ðẑÞ are free parameters fitted to the
available data from SIDIS, Drell-Yan, and W=Z boson
production processes. Besides the b�ðbÞ prescription in the
original CSS approach [31], there are also several different
choices on the form of b�ðbÞ [44,75]. In Ref. [44], a new b�
prescription different from Eq. (23) was proposed as

b� ¼ bmax

�
1 − e−b

4=b4max

1 − e−b
4=b4min

�1=4

: ð53Þ

Again, bmax is the boundary of the nonperturbative and
perturbative b⊥ space region with fixed value of bmax ¼
2e−γE GeV−1 ≈ 1.123 GeV−1. Furthermore, the authors in
Ref. [44] also chose to saturate b� at the minimum
value bmin ∝ 2e−γE=Q.
We note that the above two approaches can reasonably

describe the SIDIS, Drell-Yan, and W=Z boson production
data, with the values of introduced free parameters. In this
work, we will adopt both the EIKV evolution formalism
and the BDPRS evolution formalism to estimate the
sinðϕΛ − ϕSÞ asymmetry in SIDIS. The goal is to inves-
tigate the impact of the different evolution formalisms on
the asymmetry.

IV. NUMERICAL CALCULATION

Using the framework set up above, we perform the
numerical calculation on the sinðϕΛ − ϕSÞ azimuthal asym-
metry in the process e−p → e−Λ↑X at the kinematical
region of the EIC. To do this we need to know the collinear

functions appearing in Eqs. (40)–(42). For the unpolarized
PDF f1ðx; μÞ of the proton target, we apply the next-to-
leading-order set of the CT10 parametrization (central PDF

set) [76]. For theD⊥ð3Þ
1T ðz; μÞ andD1ðz; μÞ of theΛ hyperon,

we adopt two different sets for comparison.
The first set (set I) is the polarizing FF of lambdaD⊥

1T for
light flavors from the spectator diquark model calculation
[29], in which the contributions from both the scalar
diquark and the axial-vector diquark spectators are
included. Assuming the SU(6) spin-flavor symmetry, the
fragmentation functions of the Λ hyperon for light flavors
satisfy the relations between different quark flavors and
diquark types as

D⊥u
1T ¼D⊥d

1T ¼ 1

4
D⊥ðsÞ

1T þ3

4
D⊥ðvÞ

1T ; D⊥s
1T ¼D⊥ðsÞ

1T ; ð54Þ

where u, d, and s denote the up, down, and strange quarks,

respectively. D⊥ðvÞ
1T and D⊥ðsÞ

1T represent the contribution
from the axial-vector diquark and scalar diquark, and their
expressions, as well as the values of the parameters, can be
found in Refs. [29]. One should notice that in this model
only the valence quarks contribute to the Λ fragmentation
function, while the sea quark contribution is zero. For
consistency, in this set, we apply the FF DΛ=q

1 ðzÞ from the
same model in Ref. [29]. Furthermore, we apply the
QCDNUM package [77] to perform the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution of the unpolar-

ized FF DΛ=q
1 ðz; μbÞ and the polarizing FF D̂⊥ð3Þ

1T ðz; z; μbÞ
from the model scale Q0 to another energy since the

evolution kernel for the diagonal piece of D̂⊥ð3Þ
1T ðz; z; μbÞ

is the same as that for the unpolarized FF [78].
The second set (set II) of the FFs is the parametrization of

the Λ polarizing FF in Ref. [26], extracted from the Belle
experimental data on the Λ=Λ̄ polarization in the eþe−
annihilation process, in which the inclusive (plus a jet) Λ
and associated production of a light charged hadron is
measured. In Ref. [26], the first transverse-moment of D⊥

1T
is given by

D⊥ð1Þ
1T ðzÞ ¼

ffiffiffi
e
2

r
1

zMΛ

1

Mpol

hK2⊥i2pol
hK2⊥i

ΔDΛ↑=qðzÞ; ð55Þ

with

hK2⊥ipol ¼
M2

pol

M2
pol þ hK2⊥i

hK2⊥i; ð56Þ

where the unpolarized Gaussian width hK2⊥i ¼ 0.2 GeV2

[68] and the z-dependent part of the polarizing FF
ΔDΛ↑=qðzÞ was parameterized as
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ΔDΛ↑=qðzÞ¼Nqzaqð1− zÞbq ðaqþbqÞaqþbq

aqaqbqbq
DΛ=qðzÞ: ð57Þ

Here, the Albino-Kniehl-Kramer 08 [79] set for unpolar-
ized Λ FFDΛ=qðzÞ is adopted. Since the Λ FF sets are given
for Λþ Λ̄, the two contributions are separated as [26]

DΛ̄=qðzpÞ ¼ DΛ=q̄ðzpÞ ¼ ð1 − zpÞDΛ=qðzpÞ; ð58Þ

where the scaling variable zp is related to z by zp ≃
z½1 −M2

Λ=ðz2Q2Þ�. The corresponding collinear twist-3
fragmentation function of quark flavor q to Λ hyperon

D̂⊥ð3Þ
1T ðz; z; μbÞ can also be obtained by using Eq. (43). The

best fit of the parameters in Eq. (57) are obtained as

Nu ¼ 0.47þ0.32
−0.20 ; Nd ¼ −0.32� 0; 13;

Ns ¼ −0.57þ0.29
−0.43 ; au ¼ 0; ad ¼ 0;

as ¼ 2.301.08−0.91; bu ¼ 3.50þ2.33
−1.82 ; bd ¼ 0;

bs ¼ 0; hK2⊥ipol ¼ 0.1� 0.02 GeV2: ð59Þ

We apply the kinematical ranges of the EIC as
follows [80]:

0.001< x < 0.4; 0.07< y < 0.9; 0.2< z < 0.75;

1 GeV2 <Q2; W > 5 GeV;ffiffiffi
s

p ¼ 45 GeV; PΛT < 0.5 GeV; ð60Þ

with W2 ¼ ðPþ qÞ2 ≈ 1−x
x Q2 being the invariant mass of

the virtual photon-nucleon system. Using the above kin-
ematical configurations and applying Eqs. (4), (9), and
(11), we numerically estimate the sinðϕΛ − ϕSÞ asymmetry
in the electroproduction of transversely polarized Λ at the
EIC. The corresponding numerical results are plotted in
Figs. 1 and 2, in which the left, middle, and right panels

show the sinðϕΛ − ϕSÞ azimuthal asymmetry as functions
of PΛT , x, and z, respectively. In order to estimate, the
predicted asymmetry are also plotted as red points with the
statistical error bars in the figures. The statistical errors δA
are obtained from the unpolarized cross section σ and the
integrated luminosity L through the relation [81]

δA ¼ 1ffiffiffiffiffiffi
Lσ

p : ð61Þ

In this work, the integrated luminosity is adopted as
L ¼ 100 fb−1 for the EIC [82]. Since the statistical errors
are too small to be depicted, the error bars in the figures are
enlarged by a factor 10. It can be found that the statistical
errors are quite small, which will make the measurement
possible, however, we should note that there are no
systematic errors being estimated in the figures.
Figure 1 plots the asymmetries calculated from the

spectator diquark model result (set I) of the Λ polarizing
FF [29]. Here, two different approaches for the non-
perturbative Sudakov form factor in the TMD evolution
formalism are adopted for comparison. The dashed lines
correspond to the asymmetry from the EIKV parametriza-
tion [42] (approach I) on SNP combined with the b�
prescription in Eq. (23). The shaded areas show the
uncertainty bands due to the uncertainties of the parame-
ters. The solid lines show the asymmetry calculated from
the BDPRS parametrization (approach II) [44] on the
nonperturbative Sudakov form factor. In this calculation,
the b� prescription in Eq. (53) is used, which is different
from the CSS prescription. As depicted in Fig. 1, in all
cases the sinðϕΛ − ϕSÞ azimuthal asymmetries are negative
and sizable. The minus sign of the asymmetry comes from
the negative results of Λ polarizing FFs in our model
calculation. In addition, the magnitude of asymmetry
decreases with increasing x, while it increases with increas-
ing PΛT or z. Moreover, we find that different approaches

FIG. 1. The sinðϕΛ − ϕSÞ azimuthal asymmetry in SIDIS process lp → Λ↑ þ X. The solid lines correspond to the results from the
BDPRS parametrization [44] [Eqs. (47) and (48)] on the nonperturbative form factor, while the dashed lines correspond to the results
calculated from the EIKV parametrization [42] [Eqs. (33) and (34)]. The shaded areas show the uncertainty bands determined by the
uncertainties of the parameters. In this calculation the spectator model result for the Λ polarizing FF is adopted. The statistical errors
from experimental measurements at the EIC (L ¼ 100 fb−1) are depicted with red bars for several points. Since the statistical error bars
are too small, they are enlarged by a factor of 10 to make them visible.
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dealing with the nonperturbative part of evolution lead to
the same signs and the tendencies of the asymmetries,
although the size of x-dependent and PΛT-dependent
asymmetries are somewhat different. For the z-dependent
asymmetry, it is found that the two approaches lead to very
similar results.
To investigate the dependence of the asymmetry on

different choices of the Λ polarizing FFs, we also adopt the
parametrization in (55) [26] to calculate the sinðϕΛ − ϕSÞ
asymmetry in SIDIS. The results are plotted by the dashed
lines in Fig. 2. The solid lines denote the results (solid lines
in Fig. 1) from the spectator model calculation for the Λ
polarizing FF for comparison. In this calculation, we utilize
the BDPRS parametrization (approach II) on the nonper-
turbative part of the TMD evolution formalism. Again, the
shaded areas in Fig. 2 show the uncertainty bands deter-
mined by the uncertainties of the parameters in the extraction
of the polarizing FF. We find that the magnitude of the
PΛT- and x-dependent asymmetries calculated from the
parametrization forΛ polarizing FF in Ref. [26] is similar to
the results using the Λ polarizing FF from the spectator
model, however, the sign of the asymmetry is opposite to that
from the spectator model result. Furthermore, the results
calculated from the parametrization shows a node in the
z-dependent asymmetry. This is because the extracted Λ
polarizing FF for the up quark in Ref. [26] is positive, while
that for the down quark is negative. Thus, future exper-
imental data on the sinðϕΛ − ϕSÞ asymmetry of Λ produc-
tion in SIDISwith high precision at the EIC can discriminate
different results for theΛ polarizing FF.We also note there is
a relatively large uncertainty band since in this calculation
the errors of the parameters of theΛ polarizing FF have also
been included.
Finally, we would like to comment on the uncertainties

and assumptions applied in the calculations, which lead to
the uncertainties of the asymmetry. From the theoretical
point of view, there are several sources which will con-
tribute to the uncertainties of the predicted asymmetry in
Figs. 1 and 2, as listed in the following:

(1) The uncertainties from the collinear PDF f1ðx; μÞ
and the collinear polarizing fragmentation function

(PFF) D⊥ð3Þ
1T ðz; μÞ of the Λ hyperon. As f1ðx; μÞ

appears in both the numerator and the denominator,
and we calculate the ratio, the uncertainty from
f1ðx; μÞ to the asymmetry almost cancels. In the case
of the spectator model result (set I) for the FFs, the
parameters in the model calculation are fixed and
uncertainties are not provided in Ref. [29], therefore,
in the asymmetry predicted from set I FFs, the
uncertainties from the PFF is not included. In the
case of the parametrization for the FFs (set II), the
errors for the parameters are given in Ref. [26].
Thus, in this case we include the uncertainties from
the FFs of set II in the calculation.

(2) The uncertainty from the nonperturbative evolution
of TMDs, i.e., the nonperturbative Sudakov form
factors. In the case of EIKV parametrization, the
errors for the parameters g1 and g2 are also unknown.
Furthermore, in both the EIKV and BDPRS para-
metrizations we assume a universal intrinsic trans-
verse momentum dependence for the fragmented
hadron (gff1 in EIKV parametrization and D1NP in
BDPRS parametrization), as there is no information
for the Λ hyperon. Therefore, in calculation of the
asymmetry from EIKV parametrization, the uncer-
tainties on the parameters for the nonperturbative
Sudakov form factors are not considered.

(3) The uncertainty from the order of perturbative
calculations, which include the hard coefficient
Cq←i and the perturbative Sudakov form factor SP.
In our calculation we apply the LO results for Cq←i

and the NLL result for SP. We note that higher order
corrections to Cq←i and SP may also bring uncer-
tainties to the asymmetry.

Therefore, the uncertainty bands shown in Figs. 1 and 2
only represent the errors from the known nominal errors on
the extracted parameters, and they (particularly the band in

FIG. 2. Comparison between the asymmetry from the set I result (spectator model result [29]) and that from the set II result
(parametrization in [26]) for the Λ polarizing FF, depicted by the solid lines and dashed lines, respectively. The shaded areas show the
uncertainty bands determined by the uncertainties of the parameters. In this calculation the BDPRS parametrization [44] for the TMD
evolution is adopted. The statistical errors from experimental measurements at the EIC (L ¼ 100 fb−1) are depicted with red bars for
several points. Since the statistical error bars are very small, they are enlarged by a factor of 10 to make them visible.
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Fig. 1 and the one around the solid line in Fig. 2) should be
much larger if all the uncertainties mentioned above are
considered. However, we expect these uncertainties will not
change the sign of the asymmetries. Further studies are
needed in order to provide more precise phenological
analysis on the sinðϕΛ − ϕSÞ asymmetry of electroproduc-
tion of the Λ hyperon.

V. CONCLUSION

In this work, we have applied the TMD factorization
approach to study the sinðϕΛ − ϕSÞ azimuthal asymmetry
in the e−p → e−Λ↑X process at the kinematical region of
the EIC. The asymmetry arises from the convolution of the
polarizing FF D⊥

1T for Λ hyperon and the unpolarized PDF
f1 for the proton. We have taken into account the TMD
evolution effects of the unpolarized FF and the transversely
polarizing FFD⊥

1T of Λ hyperon. In practical calculation we
have taken into account two approaches for the TMD
evolution for comparison. One is the EIKV approach, the
other is the BDPRS approach. Their main difference is the
treatment on the nonperturbative part of evolution, while
the perturbative part in the two approaches is the same and
has been kept at NLL accuracy in this work. As the
nonperturbative Sudakov form factor associated with the
Λ polarizing FF is still unknown, we assume that it has
the same form as that of the unpolarized fragmentation
function. The hard coefficients associated with the corre-
sponding collinear functions in the TMD evolution for-
malism are kept at leading-order accuracy. For the Λ
polarizing FF at fixed scale, the model result from the
diquark spectator model and the extraction from the Belle
eþe− data have been adopted to estimate the asymmetry.

The numerical calculations show that different choices of
nonperturbative Sudakov form factors in the TMD evolu-
tion formalism lead to similar results for sinðϕΛ − ϕSÞ
asymmetry at the energy scale of the EIC, particularly in the
z-dependent asymmetry. The asymmetry utilizing the
spectator model for the Λ polarizing FF is negative in
the entire kinematical region since the polarizing FFs of Λ
for u and d quarks are both negative, due to the assumption
of SUð6Þ spin-flavor symmetry. As a comparison, the x-
dependent and PΛT-dependent asymmetries calculated
from the parametrization for the Λ polarizing FF show
positive values, and there is a node in the z-dependent
asymmetry. Our study demonstrates that a different choice
on the Λ polarizing FF can lead to a very different
asymmetry in SIDIS. We have also provided detailed
discussion on the assumptions and approximations applied
in the calculation, which can lead to large uncertainties of
the asymmetry. However, we expect these uncertainties will
not change the sign of the asymmetries. As a contrast, the
projected statistical errors are rather small at the EIC with
high luminosity, which will make the future measurement
on the asymmetry possible. Thus, future experimental data
on the sinðϕΛ − ϕSÞ asymmetry of Λ production in SIDIS
with high precision at the EIC can discriminate different
results for the Λ polarizing FF.
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