
Heavy quark transport coefficients in a viscous QCD medium
with collisional and radiative processes

Adiba Shaikh ,1,* Manu Kurian ,2,† Santosh K. Das,3 Vinod Chandra,2 Sadhana Dash,1 and Basanta K. Nandi1
1Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

2Indian Institute of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India
3School of Physical Sciences, Indian Institute of Technology Goa, Ponda 403401 Goa, India

(Received 9 June 2021; accepted 22 July 2021; published 16 August 2021)

The heavy quark drag and momentum diffusion coefficients in the presence of both the collisional and
radiative processes have been studied in a hot viscous QCD medium. The thermal medium effects are
incorporated by employing the effective fugacity quasiparticle model based on the lattice QCD equation of
state. Viscous effects are embedded into the heavy quark transport through the near-equilibrium distribution
functions of the constituent medium particles of the quark-gluon plasma. The viscous corrections to the
momentum distributions have been estimated from the effective Boltzmann equation. The effect of shear
viscous correction on drag and diffusion is investigated by considering the soft gluon radiation by heavy
quarks along with the elastic collisional processes of the heavy quark with the light quarks and gluons
within the quark-gluon plasma medium. The momentum and temperature dependence of the heavy quark
transport coefficients are seen to be sensitive to the viscous coefficient of the quark-gluon plasma for the
collisional and radiative processes. The collisional and radiative energy loss of the heavy quark in the
viscous quark-gluon plasma has also been explored.

DOI: 10.1103/PhysRevD.104.034017

I. INTRODUCTION

Heavy-ion collision experiments at the Relativistic
Heavy Ion Collider (RHIC) at BNL and Large Hadron
Collider (LHC) at CERN provided ample evidence of the
formation of a new phase of hot and dense nuclear matter
known as the quark-gluon plasma (QGP) with quarks,
antiquarks, and gluons as the fundamental degrees of
freedom [1–6]. The QGP evolution has been successfully
described within the framework of relativistic viscous
hydrodynamics [7–9]. The dissipative processes in the
QGP and the associated transport coefficients are sensitive
to the medium evolution. Various transport coefficients
associated with the transport processes in the hot QCD/
QGP medium can be determined from the underlying
microscopic theories (QCD or effective kinetic theory
approach). They could also be extracted from the exper-
imental observables at the RHIC and LHC. Previous
studies with viscous hydrodynamics focused on a small
value of shear viscosity to entropy density ratio (η=s) [10],

and recently the impact of bulk viscosity on the evolution of
the QGP have been explored [11].
Heavy quarks, mainly charm and bottom, are created

dominantly due to partonic hard scattering in the early
stages of the heavy-ion collisions and are considered as an
effective probe to study theQGP properties [12–16]. Because
of their large masses (mc ≈ 1.3 GeV, mb ≈ 4.2 GeV) in
comparison to the temperature of the thermal background
medium (T), they traverse through the QGP without being
equilibrated with the medium constituents and thus carry
information about the evolution of the QGP. The heavy
quark dissipates energy while traveling through the QGP
via the collisional process (elastic interaction) and through
the radiative process (inelastic interaction) [17–29]. The
Brownian motion of heavy quarks in the QGP medium can
be described within the framework of the Fokker-Planck
dynamics, where the interactions of the heavy quarks with
the medium constituents are incorporated through the drag
and momentum diffusion coefficients [30,31]. Several
studies have been performed to explore the heavy quark
transport coefficients, and the associated measured observ-
ables in heavy-ion collisions such as nuclear modification
factor RAA, directed and elliptic flow coefficients in the hot
QCD medium [32–50]. The impact of soft gluon radiation
by the heavy quark on its transport coefficients in the
thermalized QGP medium has been recently explored in
Refs. [51,52]. It is observed that the collisional energy loss
is dominant at the low momentum regime of the heavy
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quark, whereas at high momentum regimes, energy loss
due to medium induced gluon radiation by the heavy quark
is dominant. The heavy quark transport coefficients, while
considering the radiative process of heavy quarks along
with the collisional process in a viscous QGPmedium, is an
interesting aspect to explore, and this sets the motivation for
the present study.
The current focus is to study the sensitivity of the heavy

quark drag and diffusion coefficients to the shear viscosity
for the collisional and radiative energy loss in viscous QGP.
The realistic equation of state effects is embedded in the
analysis through the effective fugacity quasiparticle model
(EQPM) [53,54] description of the QGP medium. The non-
equilibrium distribution function has been obtained by solv-
ing the consistently developed effective Boltzmann equation
based on the EQPM by employing the Chapman-Enskog-
like iterative method within the relaxation time approxima-
tion [55]. Notably, the mean field contributions that originate
from the basic conservation laws are incorporated in the
estimation of the near-equilibrium momentum distribution
functions. The impact of viscous coefficients of the QGP has
already been explored in photon production, dilepton emis-
sion, and many relevant observables of heavy-ion collisions
[56–60]. Recently performed estimations of heavy quark
dynamics in the anisotropic medium have investigated the
effects of momentum anisotropy of the QGP on its transport
coefficients, energy loss, and the associated nuclear modi-
fication factor RAA [52,61]. In Refs. [62–67], the physics of
nonequilibrium dynamics of the medium to the heavy quark
transport and related observables have been investigated.
The viscous corrections to the heavy quark transport
coefficients due to the collisional processes have been
studied in Refs. [68–72].
The prime focus of this work has been to investigate the

impact of the shear viscosity of the QGP on the radiative
processes regarding heavy quark dynamics. In this context,
heavy quark drag and diffusion coefficients along with the
heavy quark energy loss have been studied and analyzed in
contrast to that fromthecollisional (2 → 2 scattering)process.
The shear viscous corrections have been observed to have a
sizable impact on the heavy quark transport coefficients.
The article is organized as follows. In Sec. II, the

formulation of the heavy quark dynamics in the viscous
QGP medium is discussed while incorporating the colli-
sional and radiative processes along with the EQPM
description of viscous corrections to the quarks, antiquarks,
and gluon distribution functions. Section III is devoted to
the results and discussion. The analysis is summarized with
an outlook in Sec. IV.
Notations and conventions: In the article, the subscript k

denotes the particle species, i.e., k ¼ ðlq; lq̄; gÞ, with lq, lq̄,
and g representing light quarks, light antiquarks, and
gluons, respectively. The degeneracy factor for gluon is
γg ¼ Ns × ðN2

c − 1Þ and for light quark (antiquark) is γlq ¼
Ns × Nc × Nf with Ns ¼ 2, Nf ¼ 3 (u, d, s) and Nc ¼ 3

[for SUð3Þ]. The quantity uμ is the normalized fluid
velocity with uμuμ ¼ 1 and gμν ¼ diagð1;−1;−1;−1Þ is
the metric tensor.

II. FORMALISM

A. Heavy quark transport coefficients

Heavy quarks can be considered to be a nonequilibrated
degree of freedom executing Brownian motion within
the background QGP medium. Such massive quarks lose
their energy due to collision with the medium constituents
(elastic 2 → 2 process) and through gluon radiation (inelas-
tic 2 → 3 process). Both these interactions of heavy quarks
in the QGP medium are embedded in the drag and diffusion
coefficients. We initiate the analysis with the collisional
process followed by the inelastic radiative process.

1. Collisional process

While traversing through the QGP medium, heavy quark
ðHQÞ undergoes collisions with the medium constituents,
i.e., light quarks ðlqÞ, light antiquarks ðl̄qÞ and gluons (g).
Here, we consider the elastic (2 → 2) process,

HQðpÞ þ lq=lq̄=gðqÞ → HQðp0Þ þ lq=lq̄=gðq0Þ: ð1Þ
We followed the formalism developed in [30] to study the
Brownian motion of heavy quarks in the medium. The
Boltzmann transport equation for the evolution of the heavy
quark momentum distribution fHQ reduces to the Fokker-
Planck equation within the soft scattering approximation
and has the following form:

∂fHQ

∂t ¼ ∂
∂pi

�
AiðpÞfHQ þ ∂

∂pj
ðBijðpÞfHQÞ

�
; ð2Þ

where the drag force AiðpÞ and momentum diffusion BijðpÞ
of the heavy quark respectively take the forms,

AiðpÞ ¼
1

2EpγHQ

Z
d3q

ð2πÞ3Eq

Z
d3q0

ð2πÞ3Eq0

Z
d3p0

ð2πÞ3Ep0

×
X

jM2→2j2ð2πÞ4δð4Þðpþ q − p0 − q0Þ
× fkðEqÞð1� fkðEq0 ÞÞ½ðp − p0Þi�

¼ ⟪ðp − p0Þi⟫; ð3Þ

and

BijðpÞ ¼
1

2EpγHQ

Z
d3q

ð2πÞ3Eq

Z
d3q0

ð2πÞ3Eq0

Z
d3p0

ð2πÞ3Ep0

×
X

jM2→2j2ð2πÞ4δð4Þðpþ q − p0 − q0Þ
× fkðEqÞð1� fkðEq0 ÞÞ½ðp − p0Þi�

¼ 1

2
⟪ðp − p0Þiðp − p0Þj⟫; ð4Þ
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where γHQ ¼ Ns × Nc is the heavy quark degeneracy
factor. The term jM2→2j represents the scattering amplitude
of the collisional process for the 2 → 2 process as depicted
in Fig. 1 and is described in Appendix A. Here, fkðEqÞ
denotes the Fermi-Dirac distribution function for quarks
and the Bose-Einstein distribution function for gluons.
Incorporating quantum statistics, we have considered Fermi
suppression ð1 − flqðEq0 ÞÞ and Bose enhancement ð1þ
fgðEq0 ÞÞ for the final state phase space of the quarks and
gluons, respectively. The position dependence of fHQðp; tÞ
is neglected by assuming its homogeneity with respect to
the spatial coordinate. The drag force measures the thermal
average of the momentum transfer, whereas Bij quantifies
the square of the momentum transfer due to the interactions
of heavy quarks in the medium. As both AiðpÞ and BijðpÞ
depend only on the initial heavy quark momentum ðpÞ, the
drag force and momentum diffusion of the heavy quarks
can be decomposed as follows:

Ai ¼ piAðp2Þ; ð5Þ

Bij ¼
�
δij −

pipj

p2

�
B0ðp2Þ þ pipj

p2
B1ðp2Þ; ð6Þ

where p ¼ jpj is the magnitude of heavy quark initial
momentum. From Eq. (5), the heavy quark drag coefficient
is defined as

A ¼ ⟪1⟫ −
⟪p:p0⟫
p2

: ð7Þ

Similarly, the transverse and longitudinal momentum
diffusion coefficients are defined as

B0 ¼
1

4

�
⟪p02⟫ −

⟪ðp:p0Þ2⟫
p2

�
; ð8Þ

B1 ¼
1

2

�
⟪ðp:p0Þ2⟫

p2
− 2⟪ðp:p0Þ⟫þ p2⟪1⟫

�
; ð9Þ

respectively. The kinematics is simplified in the center-of-
momentum frame of the system, and the thermal average of
a function FðpÞ for 2 → 2 process in the center-of-
momentum frame takes the form as follows:

⟪FðpÞ⟫col ¼
1

ð512π4ÞEpγHQ

Z
∞

0

dq

�
s −m2

HQ

s

�
fkðEqÞ

× ð1� fkðEq0 ÞÞ
Z

π

0

dχ sin χ
Z

π

0

dθcm sin θcm

×
X

jM2→2j2
Z

2π

0

dϕcmFðpÞ; ð10Þ

where χ is the angle between the incident heavy quark and
medium particles in the lab frame. Here, θcm and ϕcm are
the zenith and azimuthal angles in the center-of-momentum
frame, respectively. The Mandelstam variables (s, t, u) are
defined as

s ¼ ðEp þ EqÞ2 − ðjpj2 þ jqj2 þ 2jpjjqj sin χÞ; ð11Þ

t ¼ 2p2
cmðcos θcm − 1Þ; ð12Þ

u ¼ 2m2
HQ − s − t; ð13Þ

where pcm ¼ jpcmj represents the magnitude of heavy
quark initial momentum in the center-of-momentum frame.
It is important to note that the IR divergences occurring due
to the t-channel gluonic propagator in Figs. 1(a) and 1(d)
are regularized by inserting the Debye screening mass (mD)
at leading order for gluons within the medium.

2. Radiative process

Heavy quarks can radiate gluons while moving through
the QGP medium along with collisions with the medium
constituents. We consider the inelastic (2 → 3) process,

HQðpÞ þ lq=lq̄=gðqÞ → HQðp0Þ þ lq=lq̄=gðq0Þ þ gðk0Þ;
ð14Þ

where k0 ≡ ðEk0 ;k0⊥; k0zÞ is the four-momentum of the
emitted soft gluon by the heavy quark in the final state
(k0 → 0). Being an inelastic process, only the kinematical
and the interaction parts change in comparison to Eqs. (3)
and (4) and the transport part remains the same. The general
expression for the thermal averaged FðpÞ for 2 → 3 process
is as follows [51]:

FIG. 1. Heavy quark 2 → 2 processeswith (a) lq=lq̄ (t-channel),
(b) g (s-channel), (c) g (u-channel), (d) g (t-channel).
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⟪FðpÞ⟫rad ¼
1

2EpγHQ

Z
d3q

ð2πÞ3Eq

Z
d3q0

ð2πÞ3Eq0

Z
d3p0

ð2πÞ3Ep0

×
Z

d3k0

ð2πÞ3Ek0

X
jM2→3j2δð4Þ

× ðpþ q − p0 − q0 − k0Þ
× ð2πÞ4fkðEqÞð1� fkðEq0 ÞÞð1þ fkðEk0 ÞÞ
× θ1ðEp − Ek0 Þθ2ðτ − τFÞFðpÞ: ð15Þ

The theta function θ1ðEp − Ek0 Þ constraints the phase space
where the heavy quark initial state energy Ep is always
greater than the radiated soft gluon energy Ek0 in the final
state and θ2ðτ − τFÞ ensures that the collision time τ of the
heavy quark with the medium particles is greater than
the gluon formation time τF (Landau-Pomeranchuk-
Migdal effect) [73–75]. The Bose enhancement factor
ð1þ fgðEk0 ÞÞ is for the radiated gluon in the final state.
The term jM2→3j2 denotes the matrix element squared for
the 2 → 3 radiative process as depicted in Fig. 2, which can
be expressed in terms of the collision process multiplied by
the probability for soft gluon emission [76] as

jM2→3j2 ¼ jM2→2j2 ×
12g2s
k0⊥

�
1þm2

HQ

s
e2yk0

�−2
; ð16Þ

where yk0 is the rapidity of the emitted gluon and

ð1þ m2
HQ

s e2yk0 Þ−2 is the dead-cone factor for the heavy
quark. In the limit of soft gluon emission (θk0 ≪ 1) we have

�
1þm2

HQ

s
e2yk0

�−2
≈
�
1þ 4m2

HQ

sθ2k0

�−2
; ð17Þ

where θk0 is the angle between the heavy quark and the
radiated soft gluon which is related to its rapidity by
yk0 ¼ − ln½tanðθk0=2Þ�. From Eqs. (16) and (17), the hier-
archy in the radiative energy loss for light quarks (lq),
charm (c) and bottom (b) is

jM2→3jb < jM2→3jc < jM2→3jlq;

where mb > mc > mlq. The heavy quark transport coef-
ficient for the radiative process in Eq. (15) can be further
simplified in terms of the kinematic part of Eq. (10) in the
center-of-momentum frame as follows:

⟪FðpÞ⟫rad ¼
1

ð512π4ÞEpγHQ

Z
∞

0

dq

�
s −m2

HQ

s

�
fkðEqÞð1� fkðEq0 ÞÞ

Z
π

0

dχ sin χ
Z

π

0

dθcm sin θcm

Z
2π

0

dϕcm

×
Z

d3k0

ð2πÞ32Ek0

12g2s
k0⊥

�
1þm2

HQ

s
e2yk0

�−2
ð1þ fgðEk0 ÞÞθ1ðEp − Ek0 Þθ2ðτ − τFÞ

X
jM2→2j2FðpÞ: ð18Þ

The evaluation of the soft gluon three-momentum
integral is discussed in detail in Appendix B.

B. EQPM distribution of quarks and gluons
in a viscous medium

An adequate modeling of the viscous QGP medium is
needed for the effective description of heavy quark trans-
port while including the effects of the thermal interactions
of the medium via a realistic QCD equation of state. To that
end, we employ the EQPM in the analysis. For the near-
equilibrium system (not very far from local equilibrium),
the particle momentum distribution function takes the
following form:

fk ¼ f0k þ δfk; δfk=f0k ≪ 1; ð19Þ

with f0k as the EQPM equilibrium distribution function. The
EQPM distribution functions of light quarks/antiquarks and
gluons at vanishing baryon chemical potential can be
defined in terms of effective fugacity parameter zk to
encode the QCD medium interactions as follows:

f0lq=lq̄ ¼
zlq exp½−βðu · qÞ�

1þ zlq exp½−βðu · qÞ� ; ð20Þ

f0g ¼
zg exp½−βðu · qÞ�

1 − zg exp½−βðu · qÞ� : ð21Þ

FIG. 2. Partonic 2 → 3 process considered for inelastic colli-
sion of HQ with lq=lq̄=g and a soft gluon emission in the final
state. Here, the blob represents all the 2 → 2 processes displayed
in Fig. 1.
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The realistic hot QCD medium equation of state can be
interpreted in terms of noninteracting quasiparticles having
temperature-dependent effective fugacities. The EQPM
description of the QCD medium was seen to be thermo-
dynamically consistent, realizing the medium as a grand
canonical ensemble of quarks/antiquarks and gluons. The
effective grand canonical partition function for the QGP
medium Zeff , which yields the above forms of the equi-
librium EQPM distribution, is as follows [53,54]:

Zeff ¼ ZgZlqZlq̄; ð22Þ

where

lnZk ¼ �γkV
Z

djqkj
ð2πÞ3 lnð1� zk expð−βðEq − akμÞÞ;

ð23Þ
are the quark/antiquark and gluonic contributions, respec-
tively. Here, V is the volume, − is for the gluonic and þ is
for the quark case. The temperature behavior of the fugacity
parameter can be obtained by fitting the pressure obtained
within the EQPM description (PβV ¼ lnZeff ) with the
lattice QCD results; see Ref. [54] for more details.
The physical significance of zk can be understood from

the single-particle energy dispersion. From the fundamental
thermodynamic relation, we can define the quasiparticle
energy ωk as follows:

ωk ¼ −
1

V
∂β lnZeff ¼ Eq þ δωk; ð24Þ

with δωk ¼ T2∂T lnðzkÞ as the medium modified part of the
dispersion relation. Hence, the fugacity parameter modifies
the covariant form of the dispersion relation as follows [55]:

q̃kμ ¼ qμk þ δωkuμ; ð25Þ

where q̃μk ¼ ðωk;qkÞ and qμk ¼ ðEq;qkÞ are the dressed
(quasiparticle) and bare particle momenta, respectively.
Note that at the limit zk → 1, the system approaches the
ultrarelativistic limit (ideal equation of state) and the
medium modified part of the energy dispersion vanishes,
i.e., δωk → 0. Further, one can define an effective coupling
from the kinetic theory following the definition in terms of
EQPM momentum distributions. The EQPM description of
the hot QCD medium is based on the charge renormaliza-
tion in medium [53], and can be realized in terms of the
effective coupling αeff as [77]

αeff
αsðTÞ

¼
2Nc
π2

PolyLog½3; zg� − 2Nf

π2
PolyLog½3;−zlq�

ðNc
3
þ Nf

6
Þ

: ð26Þ

Here, αsðTÞ denotes the two-loop running coupling con-
stant at finite temperature and has the form [37,78]

αsðTÞ ¼
1=4π

β0½log ð 2πT
1.3Tc

Þ2� þ ðβ1β0Þ log½log ð 2πT
1.3Tc

Þ2� ; ð27Þ

where β0 and β1 respectively take the forms,

β0 ¼
11Nc − 2Nf

48π2
; β1 ¼

102Nc − 38Nf

3ð16π2Þ2 : ð28Þ

The utility of the model in the context of the QGP (hot
QCD medium) has been realized by setting up an effective
kinetic theory. The evolution of the distribution function is
described by the effective Boltzmann equation based on
the EQPM. The covariant form of the effective transport
equation within the relaxation time approximation is as
follows [55]:

q̃μk∂μfkðx; q̃kÞ þ Fμ
kðu · q̃kÞ∂ðqÞ

μ fk ¼ −ðu · q̃kÞ
δfk
τR

; ð29Þ

where τR is the thermal relaxation time and Fμ
k ¼

−∂νðδωkuνuμÞ denotes the mean field force term that
originates from the conservation laws of energy-
momentum and particle flow in the medium. The viscous
corrections to the distribution function are obtained by
solving Eq. (29). We adopt an iterative Chapman-Enskog-
like method [79] for solving the relativistic Boltzmann
equation and obtain

δfk ¼ τR

�
q̃γk∂γβ þ

βq̃γkq̃
ϕ
k

u · q̃k
∂γuϕ − βθδωk

�
f0kf̃

0
k; ð30Þ

where f̃k
0≡ð1−akf0kÞ (ag ¼ −1 for bosons and alq ¼ þ1

for fermions). The first-order evolution for the shear stress
tensor πμν within the effective kinetic theory has the
following forms [80]:

πμν ¼ 2τRβπσ
μν; ð31Þ

with θ≡ ∂μuμ as the scalar expansion and σμν ≡ Δμν
αβ∇αuβ

where Δμν
αβ ≡ 1

2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ denotes the

traceless symmetric projection operator orthogonal to the
fluid velocity uμ. Here, βπ is the first-order coefficient and
has the form,

βπ ¼ β
X
k

½J̃ð1Þk 42 þ ðδωkÞL̃ð1Þ
k 42�: ð32Þ

The thermodynamic integrals J̃ðrÞk nm and L̃ðrÞ
k nm are described

in Appendix C. Employing the evolution equation, the
shear viscous correction to the distribution function can be
expressed as

δfk ≡ δfsheark ¼ βf0kf̃
0
k

2βπðu · q̃kÞ
q̃αkq̃

β
kπαβ: ð33Þ

HEAVY QUARK TRANSPORT COEFFICIENTS IN A VISCOUS … PHYS. REV. D 104, 034017 (2021)

034017-5



We employ the shear viscous part of the distribution
function as described in Eq. (33) in Eqs. (7)–(9) to obtain
the nonequilibrium corrections to the heavy quark drag and
diffusion coefficients in the viscous medium. We consider
longitudinal boost invariant expansion to model the hydro-
dynamical evolution of the QGP medium. The boost
invariant expansion can be expressed within the Bjorken
prescription [81] by employing the Milne coordinates
ðτ; x; y; ηsÞ where τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the proper time and ηs ¼

tanh−1ðz=tÞ is the space-time rapidity with uμ ¼ ð1; 0; 0; 0Þ
and gμν ¼ ð1;−1;−1;−1=τ2Þ. Employing the Milne coor-
dinates, Eq. (33) gets simplified to

δfsheark ¼ f0kf̃
0
ks

βπωkTτ

�
η

s

��jqkj2
3

− ðqkÞ2z
�
; ð34Þ

where we have used πμνσμν ¼ 4η=3τ2 and η is the shear
viscosity of the QGP medium. The EQPM description of
the entropy density s of the QGP medium is described
in Ref. [80].

III. RESULTS AND DISCUSSIONS

A. Heavy quark drag and momentum diffusion
in the viscous medium

In the current analysis, we have studied the heavy
quark transport coefficients within the viscous QGP con-
sidering medium-induced gluon emission of the charm
quark in addition to the collisional process. For the
quantitative analysis, we choose the mass of charm quark
mc ¼ 1.3 GeV, the quark-hadron transition temperature
Tc ¼ 170 MeV for three flavors, and the proper time

τ ¼ 0.25 fm. We have studied the effect of viscous cor-
rections for two values of the shear viscosity to entropy
density ratio η=s ¼ 1=4π; 2=4π. We have worked in the
limit of massless light quarks with three flavors (u, d, s) and
zero net baryon density (μlq ¼ 0). Therefore, our study is
valid in the regime where mHQ ≫ T ≫ mlq; μlq.
Figure 3 (left panel) depicts the effects of shear viscous

corrections on the momentum behavior of the charm
quark drag coefficient due to the collisional and radiative
processes in the QGP medium. The drag coefficient of
the heavy quark in the viscous QGP is critically depen-
dent on its momentum along with the temperature of the
medium. The momentum dependence of the drag coef-
ficient due to the collisional and radiative processes can
be described from Eqs. (7), (10), and (18). It is observed
that the shear viscosity reduces the heavy quark drag at
low momentum regimes in contrast to the high momen-
tum region. This could be realized from the interplay of
two terms in Eq. (7) in the low and high momentum
regimes while incorporating the viscous effects through
Eq. (34). The shear viscous correction is more prominent
at the low momenta of the charm quark around
p ≈ 1–3 GeV, and an increase in the shear viscosity
results in a decrease in the drag coefficient for both
collisional and radiative processes. It is observed that the
drag coefficient increases with an increase in η=s at high
momentum (p ≈ 10 GeV). Figure 3 (right panel) displays
the effect of the variation of the scaled drag coefficient
AðηÞ=Aðη ¼ 0Þ as a function of the scaled QGP temper-
ature T=Tc. It is seen that the shear viscous effect reduces
the heavy quark drag coefficient throughout the relevant
temperature range at p ¼ 5 GeV (Fig. 3, right panel).

FIG. 3. Drag coefficient AðηÞ for the charm quark including the shear viscous correction and scaled with its corresponding value for
the nonviscous case Aðη ¼ 0Þ as a function of its initial momentum (left panel) at T ¼ 3Tc and as a function of QGP temperature (right
panel) at p ¼ 5 GeV.
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This behavior is mainly due to the negative contribution

from the momentum factor ½jqkj2
3

− ðqkÞ2z � in δfk as
described in Eq. (34). The shear viscous effect is more
pronounced in the temperature regime near the transition
temperature. This can be anticipated from the temperature
behavior of βπ in the definition of δfk in Eq. (34). It is
important to emphasize that the βπ ∝ T4 such that s

βπT
∝

1
T2 in Eq. (34) (note that βπ ¼ 4P

5
for the ideal equation of

state, where P is the pressure of the QGP medium).
Overall, it is important to emphasize that for charm quark
momentum p ≈ 1 GeV at T ¼ 3Tc (left panel of Fig. 3),
the maximum deviation to the ratio AðηÞ=Aðη ¼ 0Þ is
observed where the drag coefficient ratio ranges from
≈0.85–0.75 for collisional case and from ≈0.8–0.55 for
the radiative case with an increase in η=s from 0.08 to
0.16. Qualitatively, similar behavior is observed at low
temperature T ¼ 1.5Tc for the charm quark of momen-
tum p ¼ 5 GeV (right panel of Fig. 3)
The momentum dependence of the transverse momen-

tum diffusion coefficient (B0) of the charm quark is
depicted in Fig. 4 (left panel). In contrast to the drag
coefficient, the transverse diffusion coefficient of the charm
quark increases with the shear viscous correction at near
p ≈ 1 GeV. For momenta p≳ 3 GeV, the viscous correc-
tion reduces the transverse diffusion coefficient. In Fig. 4
(right panel), the transverse momentum diffusion coeffi-
cient is studied as a function of temperature. Both the
momentum and temperature dependence indicate suppres-
sion of the transverse diffusion coefficient of the charm
quark with an increase in shear viscosity. This suppression,
however, is observed to be relatively more for the radiative
process compared to the collision.

The longitudinal momentum diffusion coefficient (B1)
of the charm quark is shown in Fig. 5 (left panel). We
observed that the viscous correction considerably
reduces the coefficient at low momenta (p≲ 2 GeV)
affecting both collisional and radiative curves equally
with the variation of η=s. For momenta p≳ 6 GeV, the
longitudinal diffusion coefficient increases as compared
to its value in the absence of shear viscosity, with higher
η=s resulting in a larger deviation. The effect of η=s on
the charm quark longitudinal diffusion coefficient for
T ¼ 3Tc (left panel of Fig. 5) is observed to be quite the
opposite for low momenta (p ≈ 1 GeV) in comparison
to the high momenta (p ≈ 10 GeV) for both collision
and radiative cases. The temperature dependence of the
longitudinal momentum diffusion coefficient is depicted
in Fig. 5 (right panel). For the charm quark momentum
of p ¼ 5 GeV in the temperature regime of T < 4Tc, the
ratio B1ðηÞ=B1ðη ¼ 0Þ seems to increase with an
increase in η=s for both collision and radiative
processes.
Following the same arguments for the temperature

behavior of the heavy quark drag coefficient, the shear
viscous effect (entering through the δfk with s

βπT
∝ 1

T2) to
the diffusion coefficients is more visible in the low temper-
ature regimes (right panels of Fig. 4 and Fig. 5). The
momentum dependence of B0 and B1 is described in Eq. (8)
and Eq. (9), respectively. The viscous corrections will
modify each of the terms in Eq. (8) and Eq. (9) such as
⟪p02⟫, ⟪ðp:p0Þ2⟫, ⟪ðp:p0Þ⟫, and ⟪1⟫ via Eq. (10) and
Eq. (18) by employing Eq. (34). This will affect the
qualitative behavior of the longitudinal and transverse
diffusion coefficients in the viscous QGP medium.

FIG. 4. Transverse momentum diffusion coefficient B0ðηÞ for the charm quark including the shear viscous correction and scaled with
its corresponding value for the nonviscous case B0ðη ¼ 0Þ as a function of its initial momentum (left panel) at T ¼ 3Tc and as a function
of temperature (right panel) at p ¼ 5 GeV.
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B. Collisional and radiative energy loss
in viscous medium

The differential energy loss is related to the drag
coefficient of the heavy quark, which quantifies the
resistance to the heavy quark motion due to the QGP
constituents. The differential energy loss of the heavy quark
can be expressed in terms of its drag coefficient as [31]

−
dE
dx

¼ pAðpÞ: ð35Þ

Figure 6 (left panel) shows the ratio of the differential
energy loss for the radiative (inelastic) process in com-
parison with the collisional (elastic) energy loss of the
charm quark for different values of η=s in the viscous QCD
medium at temperature of 3Tc ¼ 510 MeV. We observe
that the elastic collision is the dominant mode of energy
loss for the heavy quark in the low momenta regime
(up to p ≈ 3 GeV), whereas beyond p ≈ 4 GeV, radiative
energy loss dominates. Increasing shear viscosity decreases
the ratio of radiation to collisional energy loss for low

FIG. 6. Ratio of the radiative to collisional differential energy loss for the charm quark at 3Tc (left panel). The differential radiative
energy loss for the charm and the bottom quark at 3Tc (right panel).

FIG. 5. Longitudinal momentum diffusion coefficient B1ðηÞ for the charm quark including shear viscous correction and scaled with its
corresponding value for the nonviscous case B1ðη ¼ 0Þ as a function of its initial momentum (left panel) at T ¼ 3Tc and as a function of
temperature (right panel) at p ¼ 5 GeV.
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momentum. However, the viscous corrections have a
negligible effect at high momenta regimes (p≳ 7 GeV).
The differential energy loss for the radiative process

is shown in Fig. 6 (right panel) for the charm quark and
the bottom quark at the T ¼ 3Tc. The suppression in the
radiative energy loss of the bottom quark in comparison
to the charm quark is due to the dead-cone effect, which
prohibits the heavy quark from radiating gluon at a
small angle. The higher the quark mass, the larger is the
dead-cone angle, and less is the probability of the
energy loss due to radiation. The shear viscous correc-
tions are significant at low momentum (p ≈ 2 GeV) for
the charm quark radiative process. However, for the
bottom quark, which is almost 3 times heavier than the
charm quark, including nonequilibrium shear viscous
corrections does not lead to a visible deviation from the
equilibrium case when compared with the charm quark.

IV. CONCLUSION AND OUTLOOK

In this article, we have investigated heavy quark
transport and its energy loss by considering the colli-
sional and radiative processes in the viscous QGP
medium. The Brownian motion of the heavy quark in
the hot QCD medium has been studied using the
Fokker-Planck dynamics. The inelastic gluon radiation
of the heavy quark along with the elastic collision
interactions with the medium constituents have been
included in the study of the transport coefficients,
namely, drag and momentum diffusion coefficients.
The thermal medium interactions are embedded in the
analysis through EQPM effective degrees of freedom via
temperature-dependent effective fugacity parameters of
quarks, antiquarks, and gluons.
We have estimated the viscous corrections to the

momentum and temperature dependence of the charm
quark drag and diffusion coefficients. The viscous
corrections to the heavy quark transport coefficients
enter through the quarks, antiquarks, and gluon momen-
tum distribution functions. The shear viscous corrections
to the distribution function employed in this analysis are
obtained by solving the effective Boltzmann equation

based on the EQPM framework. It is seen that the
effects of viscous corrections on the drag and diffusion
coefficients are larger for the radiative process in
comparison with that to the collisional process in
the expanding QGP medium, especially for the slow-
moving charm quark and in the low temperature
regimes. We have also estimated the charm quark
collisional and radiative energy losses within the viscous
QGP and studied their sensitivity to the shear viscosity.
Further, we have observed suppression of the gluon
radiation in the viscous QGP medium for the bottom
quark in comparison to the charm quark due to the large
mass of the bottom quark, whose thermalization time is
comparatively large.
The viscous correction and realistic equation of state

effects to the heavy quark transport coefficients may affect
the nuclear modification factor RAA and the collective flow
coefficients in the heavy-ion collisions. We intend to
investigate the phenomenological implications of these
viscous corrections by modeling the expanding hot QCD
medium with a (3þ 1) dimensional relativistic hydrody-
namic approach in the near future. The gluon radiation by
the heavy quark in a magnetized medium will be another
work to follow in the future.
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APPENDIX A: MATRIX ELEMENT FOR HEAVY
QUARK SCATTERING

For the elastic 2 → 2 collision (Fig. 1), the matrix
element squared for the heavy quark interaction with light
quark (lq), light antiquark (lq̄), and gluon (g) take the
following forms [82–85]:

(i) For the process HQþ lq=lq̄ → HQþ lq=lq̄,

jMðaÞj2 ¼ γHQγlq=lq̄

�
64π2α2

9

ðs −m2
HQÞ2 þ ðm2

HQ − uÞ2 þ 2tm2
HQ

ðt −m2
DÞ2

�
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(ii) For the process HQþ g → HQþ g,

jMðbÞj2 ¼ γHQγg

�
64π2α2

9

ðs −m2
HQÞðm2

HQ − uÞ þ 2m2
HQðsþm2

HQÞ
ðs −m2

HQÞ2
�
;

jMðcÞj2 ¼ γHQγg

�
64π2α2

9

ðs −m2
HQÞðm2

HQ − uÞ þ 2m2
HQðm2

HQ þ uÞ
ðm2

HQ − uÞ2
�
;

jMðdÞj2 ¼ γHQγg

�
32π2α2

ðs −m2
HQÞðm2

HQ − uÞ
ðt −m2

DÞ2
�
;

MðbÞM�
ðdÞ ¼ M�

ðbÞMðdÞ ¼ γHQγg

�
8π2α2

ðs −m2
HQÞðm2

HQ − uÞ þm2
HQðs − uÞ

ðt −m2
DÞðs −m2

HQÞ
�
;

MðcÞM�
ðdÞ ¼ M�

ðcÞMðdÞ ¼ γHQγg

�
8π2α2

ðs −m2
HQÞðm2

HQ − uÞ −m2
HQðs − uÞ

ðt −m2
DÞðm2

HQ − uÞ
�
;

MðbÞM�
ðcÞ ¼ M�

ðbÞMðcÞ ¼ γHQγg

�
8π2α2

9

m2
HQð4m2

HQ − tÞ
ðs −m2

HQÞðm2
HQ − uÞ

�
;

jMð2Þj2 ¼ jMðbÞj2 þ jMðcÞj2 þ jMðdÞj2 þ 2RefMðbÞM�
ðdÞg þ 2RefMðcÞM�

ðdÞg þ 2RefMðbÞM�
ðcÞg:

APPENDIX B: EVALUATION OF THE SOFT
GLUON THREE-MOMENTUM INTEGRAL FOR

HQ RADIATIVE PROCESS

The integral over the three-momentum of the radiated
soft gluon excluding the kinematics and transport part is

Iðk0Þ ¼
Z

d3k0

ð2πÞ32Ek0

12g2s
k0⊥

�
1þm2

HQ

s
e2yk0

�−2

× ð1þ fðEk0 ÞÞθ1ðEp − Ek0 Þθ2ðτ − τFÞ; ðB1Þ

where k0 ≡ ðEk0 ;k0⊥; k0zÞ. In terms of the rapidity of the

radiated gluon, yk0 ¼ 1
2
lnðEk0þk0z

Ek0−k
0
z
Þ we have

Z
∞

−∞
d3k0 ¼

Z
∞

−∞
d2k0⊥

Z
∞

−∞
dk0z

¼ 2π

Z
∞

0

k0⊥dk0⊥
Z

∞

−∞
Ek0dyk0 : ðB2Þ

The theta function θ2ðτ − τFÞ demands τ > τF where the
interaction time τ (inverse of interaction rate, Γ ¼ 2.26 αsT)

is greater than the gluon formation time τF ¼ cosh y0k
k0⊥

such that

Γ−1 >
cosh yk0

k0⊥
⇒ k0⊥ > Γ cosh yk0 : ðB3Þ

The theta function θ1ðEp − Ek0 Þ restricts phase space for
the heavy quark energy Ep to be greater than the radiated
gluon energy Ek0 ¼ k0⊥ cosh yk0 and we have

Ep

cosh yk0
>

Ek0

cosh yk0
⇒

Ep

cosh yk0
> k0⊥: ðB4Þ

It is important to emphasize that Eqs. (B3) and (B4) set the
lower and upper bound, respectively, for the k0⊥ integral.
The Bose enhancement factor ð1þ fgðEk0 ÞÞ for the emitted
soft gluon in the final state for the limiting case of Ek0 ≪ T
becomes

1þ fgðEk0 Þ ¼ 1þ 1

eEk0=T − 1
≈

T
Ek0

¼ T
k0⊥ cosh yk0

: ðB5Þ

So, the k0 integral simplifies to

Iðk0Þ ¼ 3

2π2
g2sT

Z
Ep= cosh yk0

Γ cosh yk0
dk0⊥

Z
y

−y
dyk0

×

�
1þm2

HQ

s
e2yk0

�−2 1

k0⊥ cosh yk0
; ðB6Þ

where the limits of the rapidity integration is decided
according to the pseudorapidity coverage of the detector.

APPENDIX C: THERMODYNAMIC INTEGRALS

The thermodynamic integrals J̃ðrÞk nm and L̃ðrÞ
k nm are

respectively defined as follows:

J̃ðrÞk nm ¼ γk
2π2

ð−1Þm
ð2mþ 1Þ!!

Z
∞

0

djp̃kjðu · p̃kÞn−2m−r−1

× ðjp̃kjÞ2mþ2f0kf̃
0
k; ðC1Þ
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L̃ðrÞ
k nm ¼ γk

2π2
ð−1Þm

ð2mþ 1Þ!!
Z

∞

0

djp̃kj
ðu:p̃kÞn−2m−r−1

jp̃kj
× ðjp̃kjÞ2mþ2f0kf̃

0
k: ðC2Þ

For the massless limit of the light quark, the thermody-
namic integrals can be expressed in terms of the PolyLog
function as follows:

J̃ð1Þk 42 ¼ −
2akγkT5

5π2

�
2PolyLog½4;−akzk�

−
δωk

T
PolyLog½3;−akzk�

�
; ðC3Þ

L̃ð1Þ
k 42 ¼ −

akγkT4

5π2
PolyLog½3;−akzk�: ðC4Þ
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