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The graviton soft wall (GSW) model provides a unified description of the scalar glueball and meson
spectra with a unique energy scale. This success has led us to extend the analysis to the description of the
spectra of other hadrons. We use this model to calculate masses of the odd and even ground states of
glueballs for various spins, and show that the GSWmodel is able to reproduce the Regge trajectory of these
systems. In addition, the spectra of the ρ, a1 and η mesons will be addressed. Results are in excellent
agreement with current experimental data. Furthermore such an achievement is obtained without any
additional parameters. Indeed, the only two parameters appearing in these spectra are those that were
previously fixed by the light scalar meson and glueball spectra. Finally, in order to describe the π meson
spectrum, a suitable modification of the dilaton profile function has been included in the analysis to
properly take into account the Goldstone realization of chiral symmetry. The present investigation confirms
that the GSW model provides an excellent description of the spectra of mesons and glueballs with only a
small number of parameters unveiling a relevant predicting power.
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I. INTRODUCTION

In the last few years, hadronic models, inspired by the
holographic conjecture [1,2], have been widely used and
developed in order to investigate nonperturbative features
of glueballs and mesons, in an attempt to grasp funda-
mental features of QCD [3,4]. Recently we have used the
so-called AdS/QCD models to study the scalar glueball
spectrum [5,6]. The holographic principle relies on a
correspondence between a five-dimensional classical
theory with an anti–de Sitter (AdS) metric and a super-
symmetric conformal quantum field theory with NC → ∞.
This theory, different from QCD, is taken as a starting
point to construct a five-dimensional holographic dual of it.
This is the so-called bottom-up approach [7–10]. In this
scenario, models are constructed by modifying the five-
dimensional classical AdS theory with the aim of resem-
bling QCD as much as possible. The main differences
characterizing these models are related to the strategy used
to break conformal invariance. Moreover, it must be noted

that the relation which these models establish with QCD is
at the level of the leading order in the number of colors
expansion, and thus the mesonic and glueball spectrum and
their decay properties are ideal observables to be studied by
these models.
As the meson and glueball masses are OðN0

CÞ, the AdS/
QCD models reproduce the essential features of the meson
and glueball spectrum [6,11–15]. For mesons and baryons,
these approaches have also been successfully used to
describe form factors and various types of parton distri-
bution functions [13,16–18]. Besides these developments,
which are in line with the present investigation, other
models have been recently introduced by using the bottom-
up holography. For example, an interesting development is
the no-wall model [19], which has been successful in
explaining the heavy meson spectra.
The present investigation has as its starting point the

holographic soft-wall (SW) model scheme, were a dilaton
field is introduced to softly break conformal invariance.
This procedure allows to properly reproduce the Regge
trajectories of the meson spectra. Within this scheme we
have recently introduced the graviton soft-wall (GSW)
model [6,20,21] which has been able to reproduce, not only
the scalar meson spectrum, but also the lattice QCD scalar
glueball masses [22–24], that were not described by the
traditional SW models. Moreover, a formalism to study the
glueball-meson mixing conditions has been developed and
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some predictions, regarding the observably of pure glueball
states, have been provided [20,21]. The success of the
model in reproducing the scalar QCD spectra, has moti-
vated us to extend, in the present investigation, the GSW
model to describe the ρ vector meson, the a1 axial vector
meson, and the pseudoscalar meson spectra and to calculate
the Regge trajectories of high-spin glueballs. To develop a
unified approach where the QCD dynamics of glueballs is
encoded in the modified metric, a specific dilaton, provid-
ing the correct confining mechanism for a given hadron, is
constructed. To this aim, a differential equation for the
dilaton field is obtained, which leads to an effective
phenomenological potential that produces a good descrip-
tion of several meson spectra.
In the next section, the modification of the SW model, to

obtain the GSW one, is discussed. In particular, in Sec. II
we summarize the essence of the GSW model [6,20,21]. In
Sec. III the GSW model is applied to estimate the scalar
glueball and spin-dependent glueball spectra. In the last
case the Regge trajectories are obtained and they compare
successfully with lattice data. In Secs. IV–V the scalar
spectrum is investigated. To this aim, a procedure to
establish a dilaton which provides the correct confining
mechanism is developed. In Sec. III the ρ spectrum is
described and in Sec. IV that of the a1 meson is shown
together with a comparison with data. In Sec. V the
pseudoscalar meson spectra is analyzed and the GSW
results are presented. In Sec. VI we discuss and summarize
the results of our analysis. Finally, we have included three
Appendixes where the determination of the dilaton equa-
tion is described in detail.

II. THE GSW MODEL

Let us review in this section the essence of the GSW
model. The development of this approach has been moti-
vated by the impossibility of the conventional SW models
to describe the glueball and meson spectra with the same
energy scale [6,20,21]. The essential feature, which dis-
tinguishes the GSW model from the traditional SW, is a
deformation of the AdS metric in five dimensions,

ds2 ¼ R2

z2
eαϕ0ðzÞðdz2 þ ημνdxμdxνÞ

¼ e2AðzÞðdz2 þ ημνdxμdxνÞ
¼ eαϕ0ðzÞgMNdxMdxN ¼ ḡMNdxMdxN ð1Þ

where AðzÞ ¼ logR=zþ αϕ0ðzÞ=2.
The quantities evaluated in the GSW model will be

displayed with an overline. The function ϕ0ðzÞ will be
specified later. This kind of modification has been adopted
in many studies of the properties of mesons and glueballs
within AdS/QCD [14,15,25–32]. The relation between the
standard AdS5 metric and ḡMN is

ḡMN ¼ e−αϕ0ðzÞgMN; ð2Þ
ffiffiffiffiffiffi
−ḡ

p ¼ e
5
2
αϕ0ðzÞ ffiffiffiffiffiffi

−g
p

: ð3Þ

Once the gravitational background has been defined by
the model, the same strategy used in the SW case is
considered to obtain the equations of motion for the
different fields dual to given hadronic states. The action,
in terms of the standard AdS metric of the SW model, is
given by

S̄ ¼
Z

d4xdze−ϕ0ðzÞβ ffiffiffiffiffiffi
−ḡ

p
Lðxμ; zÞ

¼
Z

d4xdzeϕ0ðzÞð52α−βþ1Þ ffiffiffiffiffiffi
−g

p
e−ϕ0ðzÞLðxμ; zÞ; ð4Þ

where here the prefactor exp½ϕ0ðzÞð52 αþ β þ 1Þ� is due to
the modification of the metric. The parameters α and β
parametrize the internal dynamics of the hadrons of QCD in
AdS, its holographic dual. In the AdS dynamics, α
characterizes the modification of the metric, while β
characterizes the SW model dilaton, namely the breaking
of conformal invariance. If one considers, as a starting
point, the GSW model as a modification of the SW model,
one is forced to fix β to have the same kinematics [6,20,21]
which leads, in the case of scalar fields, to β ¼ βs ¼ 1þ 3

2
α

and in the case of the vector fields to β ¼ βρ ¼ 1þ 1
2
α. The

function Lðxμ; zÞ is the Lagrangian density representing the
hadronic system. In Refs. [6,11–15], the chosen dilaton
profile function was ϕ0ðzÞ ¼ k2z2. We start with the same
dilaton; however in order to include the chiral symmetry
behavior of the pion, this functional form of the dilaton has
to be modified. Details will be discussed in Sec. VI.
Moreover, as it will become clear in the next section, in
order to properly describe confinement and thus the
spectra, a further free parameter addition to the dilaton
has been introduced.
We proceed in the next section to describe the spectra of

glueballs, and their relative Regge trajectories, and we
compare the results of our calculations with lattice data.

III. GLUEBALLS IN THE GSW MODEL

This section is dedicated to the successful application of
the GSW model to the study of the glueball spectra and its
comparison with lattice data.

A. Scalar glueballs as gravitons

A peculiarity of the GSW model, which is the reason for
the name, is that the scalar glueball arises from the scalar
component of the graviton and is not introduced as an
independent field. Thus in our scheme the metric character-
izes the scalar graviton. Therefore the Einstein equation for
the metric (1) is the glueball mode equation. In the fifth
variable z once the x dependence has been factorized as
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ΦðzÞeixμqμ , where q2 ¼ −M2 and M represents the mass of
the glueball modes, this equation becomes:

d2ΦðzÞ
dz2

−
�
αk2zþ3

z

�
dΦðzÞ
dz

þ
�
8

z2
−6αk2−4α2k4z2þM2

�
ΦðzÞ− 8

z2
eαk

2z2ΦðzÞ¼0:

ð5Þ

By performing the change of function

ΦðzÞ ¼ eαk
2z2=4

�
z
αk

�3
2

ϕðzÞ ð6Þ

we get a Schrödinger-type equation

−
d2ϕðzÞ
dz2

þ
�
8

z2
eαk

2z2 −
15

4
α2k4z2 þ 7αk2 −

17

4z2

�
ϕðzÞ

¼ M2ϕðzÞ: ð7Þ

In this equation it is apparent that M2 represents the mode
mass squared which will arise from the eigenvalues of a
Hamiltonian operator scheme. It is convenient to move to
the adimensional variable t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
αk2=2

p
z and to define the

mode by Λ2 ¼ ð2=αk2ÞM2. The equation becomes

−
d2ϕðtÞ
dt2

þ
�
8

t2
e2t

2 − 15t2 þ 14 −
17

4t2

�
ϕðtÞ ¼ Λ2ϕðtÞ:

ð8Þ

This is a typical Schrödinger equation with no free
parameters except for an energy scale in the mass deter-
mined by αk2. The potential term is uniquely determined by
the metric and only the scale factor is unknown and will be
determined from lattice QCD. This equation has no exact
solutions but numerical ones have been found [6]. The
above expression can be approximated by expanding the
exponential up to the second term to get a Kummer-type
equation. However, such a procedure does not lead to good
results and the spectrum turns out to be too flat; see details
in Ref. [21]. As one can see in the left panel of Fig. 3, for

the value αk2 ∼ ð0.37 GeVÞ2 the scalar linear glueball
spectrum is well reproduced; see also Table I. Let us
mention the recent study in Refs. [33,34] where the mass of
the ground state of the scalar glueball has been extracted
from a phenomenological analysis of the BESIII data of the
J=Ψ decays. The result obtained is very close to that
predicted by the GSW model [20].

B. High-spin glueballs

In order to describe even and odd high-spin glueballs we
follow the approach described in Refs. [15,30,35]. In this
case the action, written in terms of pure AdS5 is the same as
that of the scalar case [21],

S̄ ¼
Z

d5x
ffiffiffiffiffiffi
−g

p
e−k

2z2 ½gMN∂MGðxÞ∂NGðxÞ

þ eαk
2z2M2

5R
2GðxÞ�; ð9Þ

and therefore the equation of motion is obtained from

∂Mð
ffiffiffiffiffiffi
−g

p
e−ϕ0ðzÞgMN∂NGðxÞÞ¼

ffiffiffiffiffiffi
−g

p
e−ϕ0ðzÞð1−αÞM2

5R
2GðxÞ:
ð10Þ

In order to describe spin-J glueballs, one can add J
covariant derivatives in the gravity dual operator
[13,15,30,35]. Therefore, for an even-spin glueball, the
operator has the form,

O4þj ¼ FDfμ1.…DμJgF; ð11Þ

which is a p ¼ 0 form whose conformal dimension is
Δ ¼ 4þ J. For the odd-spin case, one considers the
symmetrized operator,

O6þj ¼ SymTrðF̃μνFDfμ1.…DμJgFÞ; ð12Þ

which is also a p ¼ 0 form whose conformal dimension
Δ ¼ 6þ J. By using, the relation between the conformal
dimension and the mass in five dimensions [Eq. (24)], since
the glueballs are p-forms of index p ¼ 0, one gets that for
even-spin glueballs,

TABLE I. Scalar glueball masses (in MeV) from lattice calculations by MP [22], YC [23] and LTW [24] and the recent analysis by
SDTK [33,34] together with the result of our calculation for

ffiffiffi
α

p
k ¼ 370 MeV, obtained by the GSW model [20].

JPC 0þþ 2þþ 0þþ 2þþ 0þþ 0þþ

MP 1730� 94 2400� 122 2670� 222
YC 1719� 94 2390� 124
LTW 1475� 72 2150� 104 2755� 124 2880� 164 3370� 180 3990� 277
SDTK 1865� 25þ10

−30
GSW 1920 2371 2830 2830 3289 3740
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M2
5R

2 ¼ JðJ þ 4Þ for even J; ð13Þ

and for the odd-spin glueballs

M2
5R

2 ¼ ðJ þ 2ÞðJ þ 6Þ for odd J: ð14Þ

In this framework, the equation of motion (EoM)
for the glueballs can be rearranged into a Schrödinger-type
equation:

−ψ 00ðzÞ þ
�
B0ðzÞ2
4

−
B00ðzÞ
2

þM2
5R

2

z2
eαk

2z2
�
ψðzÞ ¼M2ψðzÞ;

ð15Þ

where, AðzÞ¼ logðR=zÞþαϕ0=2 and BðzÞ¼−ϕðzÞ−3AðzÞ,
where again ϕðzÞ ¼ βsk2z2. The above equation leads to

−ψ 00ðzÞ þ
��

−βs þ 3α

2

�
2

k4z2 − 2

�
−βs þ 3α

2

�
k2

þ 15

4z2
þM2

5R
2

z2
eαk

2z2
�
ψðzÞ ¼ M2ψðzÞ: ð16Þ

In this case, since M2
5R

2 ≥ 0 [see Eqs. (13)–(14)], the
exponential term is positive and therefore the potential is
binding. The exact equation can be numerically solved for
bound states. Results of the calculations for the odd and
even glueballs are shown in Tables II and III, respectively,
and will be discussed later. Let us recall that in our
formalism for the scalars βs ¼ 1þ 3

2
α.

C. Odd glueballs

Despite the lack of data related to glueballs with J ≥ 1
spin, several QCD lattice and model calculations are at our

disposal [22,23,36–44]. In order to evaluate this spectrum
within the GSW model, Eq. (16) should be solved to find
the lowest mode corresponding to n ¼ 0 and for
M2

5R
2 ¼ ðJ þ 2ÞðJ þ 6Þ. In Table II we compare the results

of our calculations for the ground states with a series of
lattice results and model calculations and we see
that we obtain a quite good agreement with them. Also
in this case let us remark that this is a parameter-free
calculation. Indeed, α and k, the only parameters of the
model, have been fixed by the spectra of the scalar glueballs
and light scalar mesons [21]. The latter remark will be
discussed in the next section. It is important to stress that
the present calculation is not a fit to the data but a direct
evaluation of the spectrum without any free parameters.
From our results, shown in Table II, one can derive the
Regge trajectories:

J ∼ 0.18� 0.01M2 − 0.75� 0.28 ð17Þ

where M here is in GeV. This result should be compared
with that of Ref. [37],

J ∼ 0.18M2 þ 0.25: ð18Þ

D. Even glueballs

We calculate here the spectrum for even-spin
glueballs by means of Eqs. (16) and (13). In this case,
M2

5R
2 ¼ JðJ þ 4Þ. Let us recall that for this sector lattice

data of both the ground and excited states for the 0þþ and
2þþ are available together with that of the ground states of
4þþ and 6þþ states. The interpretation of the spectrum of
the 0þþ was the motivation behind the formulation of the
GSW model [6,20,21] and has been thoroughly studied;

TABLE II. Comparison of the masses of the ground states for the odd-spin glueballs (in MeV) from M&P [22], Ky [23], My [36], Ll
[37], Mta [38], and Sz [39], with the results of the GSW model. We also show results obtained by the models of Refs. [30,31].

JPC M&P Ky My Ll Mta Sz This work Ref. [31] Ref. [30]

1−− 3850� 140 3830� 130 3240� 480 3950 3990 3001 3308� 15 2400 2630
3−− 4130� 290 4200� 245 4330� 460 4150 4160 4416 4451� 12 3030 3700
5−− 5050 5260 5498 5752� 10 5010 4740
7−− 5900 6972� 8 7000 5780

TABLE III. Comparison of the masses of the ground states for the even-spin glueballs (in MeV) fromM&P [22], Ky [23], My [36], Gy
[40], Sk [41], and Mtb [42], with the results of the GSW model and that of the approach of Ref. [30].

JPC M&P Ky My Gy Sk Mtb This work Ref. [30]

2þþ 2400� 145 2390� 150 2150� 130 2620� 50 2420 2590 2695� 21 2080
4þþ 3640� 150 3990 3770 3920� 14 3170
6þþ 4360� 460 4600 5141� 12 4220
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thus here we discuss the behavior of the ground state of the
2þþ; 4þþ; 6þþ glueballs. As one can see in Table III, the
ground states are well reproduced. From the results shown
in Table III, one can derive the Regge trajectories,

J ∼ ð0.21� 0.01ÞM2 þ 0.58� 0.34; ð19Þ

where M is here in GeV. The slope is in reasonable
agreement with Refs. [43,44], i.e., 0.25.
In Table IV we show the glueball lattice data, the results

for the graviton solutions (GSW), the J ¼ 0 solution
(GSW0) and the J ¼ 2 solution for the same values of
the parameters as before (GSW2). The graviton solution
describes the data well, while the J ¼ 0 and the J ¼ 2
solutions do not. One cannot try to justify the discrepancy
in terms of the chosen energy scale since the J ¼ 0 solution
would require a higher energy scale while the J ¼ 2
solutions requires a lower energy scale. Somehow the
graviton solution with its degeneracy, between the scalar
and tensor modes, seems to contain the appropriate physics.

IV THE SCALAR MESON SPECTRUM

In this section we present the results of the calculations
of the light and heavy scalar meson spectra within the
GSW model. In the light sector we get the following
EoM [21]:

∂Mð
ffiffiffiffiffiffi
−g

p
e−ϕ0ðzÞgMN∂NSðx; zÞÞ

¼ ffiffiffiffiffiffi
−g

p
e−ϕ0ðzÞð1−αÞM2

5R
2Sðx; zÞ: ð20Þ

Once we separate the x dependence by factorizing
Sðx; zÞ ¼ ΣðzÞe−iqμxμ with q2 ¼ −M2, where M is the
mass of the meson modes, we get

−
d2ΣðzÞ
dz2

þ
�
3

z
þ2k2z

�
dΣðzÞ
dz

−
M2

5R
2

z2
eαϕ0ðzÞΣðzÞ¼M2ΣðzÞ:

ð21Þ

By recalling that ϕ0ðzÞ ¼ k2z2 and performing the change
of function

ΣðzÞ ¼
�
z
k

�3
2

ek
2z2=2σðzÞ; ð22Þ

a Schrödinger-type equation can be obtained,

−
d2σðzÞ
dz2

þ VsðzÞσðzÞ

¼ −
d2σðzÞ
dz2

þ
�
k4z2 þ 2k2 þ 15

4z2
−

3

z2
eαk

2z2
�
σðzÞ

¼ M2σðzÞ: ð23Þ

For the scalar meson, the AdS mass is

M2
5R

2 ¼ ðΔ − pÞðΔþ p − 4Þ ð24Þ

where Δ is the conformal dimension and p is the p-form
index. For the scalar fieldM2

5R
2 ¼ −3 since the Δ ¼ 3 and

p ¼ 0 [45].
The potential of the above equation, obtained with the

same procedure used for the glueballs, is in this case not
binding, as shown by the full line of Fig. 1. Indeed, since
for scalar mesons the conformal mass is negative, the

TABLE IV. Glueball masses (in MeV) from lattice calculations by MP [22], YC [23], LTW [24] and the recent analysis by SDTK
[33,34] compared with the graviton (GSW) and field (GSW0 and GSW2) correspondences.

JPC 0þþ 2þþ 0þþ 2þþ 0þþ 0þþ

MP 1730� 94 2400� 122 2670� 222
YC 1719� 94 2390� 124
LTW 1475� 72 2150� 104 2755� 124 2880� 164 3370� 180 3990� 277
SDTK 1865� 25þ10

−30
GSW 1920 2371 2830 2830 3289 3740
GSW0 1411� 52 1728� 67 1995� 79 2231� 86
GSW2 2695� 21 3179� 20

FIG. 1. The full potential in Eq. (23) is shown by the solid line
and the dot-dashed line shows the potential arising from the series
expansion of the potential around small values of α keeping the
first three terms. The figures shown have been obtained for
α ¼ 0.55.
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exponential term in Eq. (23) prevents the system from
binding. However, in Ref. [21], it has been shown that if the
above potential is Taylor expanded for small values of α, up
to the first three terms, a binding potential related to the
glueball dynamics of QCD described by the metric (1), can
be obtained. In the next section a formal procedure to
motivate such a truncation will be presented together with
its physical interpretation.

V. NEWDILATON AND A PHENOMENOLOGICAL
POTENTIAL FOR MESONS

In this section we present a new procedure to coherently
describe the glueball and the meson spectra within the
GSW model, i.e., the same metric. As previously seen, the
spin-dependent glueballs have a positive conformal mass
and thus the metric (1) leads to a confining potential. At
variance, in the meson sector, the conformal mass is
negative and their potential is therefore not binding.
However, it has been shown that if this potential is
truncated after a Taylor expansion for small values of α,
the potential confines and the spectrum is very well
reproduced [21]. Therefore, in this section we show how
the approximated potential can be obtained. Let us remark
that the latter quantity is very appealing because, as
discussed in Ref. [21], it leads to a very good description
of the light and heavy meson spectra with only one free
parameter, α, since the scale parameter αk2 was fixed by the
spectrum of the scalar glueball [6]. In this framework, we
point out that the procedure introduced here will not make
use of any additional free parameter and the only restriction
consists in obtaining the convenient effective potential for
the scalar meson EoM. Let us anticipate that, as it will be
shown in the next sections, this type of potential allows to
reproduce the spectra of various meson families without
introducing any ad hoc parameters. To this aim, we
consider a modification of the dilaton in the meson sector.
In the following we consider the scalar case; however, as
shown in Appendixes A–C, the results can be generalized
to the vector sector and to the pion, which will require a
specific prescription to describe chiral symmetry breaking.
Let us consider an extension of Eq. (4) for the scalar

meson,

S̄ ¼
Z

d5x
ffiffiffiffiffiffi
−g

p
e−ϕ0ðzÞ−ϕnðzÞ½gMN∂MSðxÞ∂NSðxÞ

þ eαϕ0ðzÞM2
5R

2S2ðxÞ�; ð25Þ

where we recall that ϕ0 ¼ k2z2. Furthermore, we denote by
ϕn an addition to the dilaton ϕ0 with the purpose of
generating the effective potential. The relative EoM is now,

∂M½
ffiffiffiffiffiffi
−g

p
e−ϕ0ðzÞ−ϕnðzÞgMN∂NSðxÞ�

−
ffiffiffiffiffiffi
−g

p
M2

5R
2eαϕ0ðzÞ−ϕnðzÞSðxÞ ¼ 0: ð26Þ

Then the potential in the corresponding Schrödinger
equation reads,

VsðzÞ ¼
15

4z2
þM2

5R
2
eαk

2z2

z2
þ 2k2 þ k4z2

þ ϕ0
nðzÞ

�
3

2z
þ k2z

�
þ ϕ0

nðzÞ2
4

−
ϕ00
nðzÞ
2

: ð27Þ

Now we compare the above potential with the one
obtained by considering the dilaton ϕ0 and the truncated
exponential,

VA
s ðzÞ ¼

15

4z2
þM2

5R
2
1þ αk2z2 þ 1

2
α2k4z4

z2
þ 2k2 þ k4z2:

ð28Þ

From this comparison we conclude that the addition to the
old dilaton, ϕn, is determined by solving the following
second-order differential equation:

−
ϕ00
nðzÞ
2

þ ϕ0
nðzÞ

�
3

2z
þ k2z

�
þ ϕ0

nðzÞ2
4

þM2
5R

2

z2

�
eαk

2z2 − 1 − αk2z2 −
1

2
α2k4z4

�
¼ 0: ð29Þ

As one can see, the differential equation is highly
nonlinear. However, a numerical solution can be found.
In Fig. 2 we show the evaluation of the dilaton together
with a fit obtained by considering known profile functions.
Further details are discussed in Appendix A where, a
differential equation, valid for a scalar system, is shown
without specifying the initial dilaton so that it can be
applied to more general frameworks. Moreover, in
Appendix B we show the equivalent expression for vector

FIG. 2. The dotted line shows the dilaton addition obtained by
solving numerically Eq. (29). The full line represents a fit to the
dilaton addition obtained by the function ϕnðuÞ ∼ aþ bu3=2 þ
cu2 þ du4 þ eu6 whose coefficients are shown in Appendix A.
Here u ¼ αk2z2.
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fields and, finally in Appendix C a general expression for
the differential equation for the dilaton correction is found
for both the scalar and the vector fields addressing the
general behavior for this addition.
Once a solution has been shown to exist, the equation of

motion for the scalar meson is that obtained in Ref. [21]
with the potential shown in Eq. (28) which corresponds to
the described truncation of the metric. Let us point out that
for the moment, since we are mainly interested in the
spectra, the explicit expression of ϕn is not needed once its
existence is verified. In closing this section we remark that
the philosophy behind the procedure is to reproduce a
phenomenological potential which leads to an excellent
description of the spectra despite its simplicity, as will be
presented in the next sections. Furthermore, the procedure
does not require any new free parameters making the
physical interpretation as clear as possible. In fact, the
dilaton is the mechanism used in the SW model to describe
confinement. On the other hand, the deformation of the
metric has been introduced to describe what in the dual
QCD sector is an additional interaction of gluons beyond
confinement leading to the correct glueball spectra. We
recall that we are dealing with 1=Nc physics. Therefore, if
this additional contribution destroys confinement in the
meson sector, it cannot be correctly interpreted as a realistic
contribution to the SWmodel providing the correct binding
energy for those systems. Therefore, an appealing solution
is to modify the dilaton, in the meson sector, to dynamically
compensate the metric effects which prevent the binding.
The consequent truncation of the exponential up to the third
term provides confinement. Thus, such a procedure can be
physically interpreted as an attempt to estimate additional
gluon effects beyond confinement in the standard SW
description of the mesons. As it will be shown in detail later
on, the good results, in describing all the spectra, by using
only two parameters, suggest that this procedure is appeal-
ing and realistic. In closing, let us stress again that despite
the dependence of the dilaton on the considered systems, as
shown in Appendix C, the differential equation for the
addition ϕn has the same form for scalar and vector fields.
The differences arise due to their AdS mass M2

5R
2 and two

calculated coefficients related to their kinematics (see
Appendix C for details). Therefore we remark that our
procedure does not introduce any new freedom in the
model. We conclude that in the GSW model, confinement
is determined by the interplay of the glueball dynamics of
QCD described by the metric (1), and confinement is
described by a well-defined dilaton which leads to a
phenomenological binding potential.

A. The scalar meson with the new dilaton

Motivated by the properties of the new dilaton, ϕ0 þ ϕn,
we recall here the main outcome of Ref. [21], i.e., the light
and heavy meson spectra within the GSW model. As
already discussed, the main effect of the correction ϕn is

to produce a potential similar to that of Eq. (23) but with the
exponential truncated to the third term. The final
Schrödinger equation (23) is shown in terms of the
adimensional variable u ¼

ffiffiffiffiffiffiffiffiffiffi
k2=2

p
z,

−
d2σðuÞ
du2

þ
�
4u2 þ 4þ 15

4u2
−

3

u2
e2αu

2

�
σðuÞ ¼ Ω2σðuÞ;

ð30Þ

where Ω2 ¼ ð2=k2ÞM2.
Expanding the exponential up to third order in Eq. (30)

we get

−
d2σðuÞ
du2

þ
�
ð4−6α2Þu2þð4−6αÞþ 3

4u2

�
σðuÞ¼Ω2σðuÞ:

ð31Þ

This equation can be transformed into a Kummer-type
equation by the change of variables v ¼ ð4 − 6α2Þ1=4u

−
d2σðvÞ
dv2

þ
�
v2þ 4−6αffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4−6α2
p þ 3

4v2

�
σðvÞ¼ Ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4−6α2
p σðvÞ;

ð32Þ

which has an exact spectrum given by

Ω2
n ¼ 4ðnþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 6α2

p
þ 4− 6α; n¼ 0;1;2;… ð33Þ

and the mode functions are

σðvÞ ¼ N e−v
2=2v3=21F1ð−n; 2; v2Þ ð34Þ

where N is a normalization factor and 1F1 is a
well-known hypergeometric function and recall that v ¼
ð4 − 6α2Þð1=4Þu where u ¼ ð

ffiffiffiffiffiffiffiffiffiffi
k2=2

p
zÞ. Note that the

approximate solution only has bound states for
jαj < ffiffiffiffiffiffiffiffi

2=3
p

. The meson modes are functions of α. As
one can see in the left panel of Fig. 3 a good fit is found
for 0.51 ≤ α ≤ 0.59.

B. Heavy mesons

In addition in Ref. [21] it has been shown that the GSW
can also reproduce the heavy meson spectra by following
the procedures developed in Refs. [19,48,49], i.e., by
including in the dynamics the mass of the heavy quarks.
Among the different possibilities, we have used the
following ansatz:

Mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðαÞnþ BðαÞ

p
þ C; ð35Þ

where C is the contribution of the quark masses, and thus
there will be a Cc for the cc̄ states and a different one Cb for
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the bb̄ states. The comparison between data [46,47] and
predictions is shown in the right panel of Fig. 3. In order to
perform the calculation, the value of α has been kept
fixed from that obtained in the analysis of light mesons, i.e.,
α ¼ 0.55 (solid) and α ¼ 0.55� 0.04 (dotted). Moreover,
C ¼ 0 for the light quark sector, Cc ¼ 2400 MeV, for the
cc̄ mesons, and for the bb̄ mesons Cb ¼ 8700 MeV. As
one can see in the right panel of Fig. 3, the model
reproduces the data extremely well. Moreover, one should
notice that the additional parameters Cc and Cb are
extremely close to the value of 2mc and 2mb, respectively,
as expected. Let us stress that the heavy quark sector has
not been considered to estimate the value of α. From the
present calculations one can conclude that all mesons
satisfy approximately the same mass trajectories apart from
an overall scale associated with the quark masses and that
all the elements in Refs. [46,47] suspected of being scalar
mesons seem to be scalar mesons, except for some possible
mixing with the low-lying scalar glueballs, which is not

contemplated in this scheme [21]. The model has proven to
be tremendously predictive. Details on the comparison with
data are displayed in Table V. We summarize this section by
stating that the GSW model describes well the scalar lattice
glueball and the phenomenological scalar meson spectra of
QCD with only two parameters, i.e., α and the energy scaleffiffiffi
α

p
k [6,21].

VI. THE ρ VECTOR MESON SPECTRUM

Let us apply the GSW model to the calculation of the
spectrum of the vector meson family of the ρ. We consider a
vector field in the modified AdS space. The respective
action [30], modified with the GSW metric, reads,

S̄ ¼ −
1

2

Z
d5x

ffiffiffiffiffiffi
−ḡ

p
e−βρk2z2

�
1

2
ḡMPḡQNFMNFPQ

þM2
5R

2ḡPMAPAM

�
; ð36Þ

TABLE V. Scalar meson spectrum (in MeV) from the PDG listings [46,47] together with our results for α ¼ 0.55� 0.04 and the
energy scale

ffiffiffi
α

p
k ¼ 370 MeV; see Ref. [21] for details. Notice that in the PDG listings some of the particles are only suspected to be

scalars and others need confirmation.

light f0ð500Þ f0ð980Þ f0ð1370Þ f0ð1500Þ f0ð1710Þ f0ð2020Þ f0ð2100Þ f0ð2200Þ
IGðJPCÞ 0þð0þþÞ 0þð0þþÞ 0þð0þþÞ 0þð0þþÞ 0þð0þþÞ 0þð0þþÞ 0þð0þþÞ 0þð0þþÞ
PDG 475� 75 990� 20 1350� 150 1504� 6 1723� 6 1992� 16 2101� 7 2189� 13
GSW model [21] 907� 73 1248� 93 1514� 109 1740� 123 1941� 136 2121� 147 2288� 157
cc̄ χc0ð1PÞ χc0ð3860Þ Xð3915Þ Xð3940Þ Xð4160Þ Xð4350Þ χc0ð4500Þ χc0ð4700Þ
IGðJPCÞ 0þð0þþÞ 0þð0þþÞ 0þð0=2þþÞ ??ð???Þ ??ð???Þ 0þð???Þ 0þð0þþÞ 0þð0þþÞ
PDG 3414� 0.30 3862þ66

−45 3918� 1.9 3942þ13
−12 4156þ40

−35 4350þ5.3
−5.1 4506þ42

−41 4704þ24
−34

GSW model [21] 3307� 73 3648� 93 3914� 109 4141� 123 4340� 136 4521� 147 4688� 157 4844� 168

bb̄ χb0ð1PÞ χb0ð1PÞ
IGðJPCÞ 0þð0þþÞ 0þð0þþÞ
PDG 9859� 0.73 9912.21� 0.57
GSW model [21] 9707� 73 10048� 92

FIG. 3. Left panel: GSW fit to the scalar lattice glueball spectrum [22–24] and to the experimental scalar meson spectrum [46,47]. The
larger slope of the glueball spectrum is noticeable. This corresponds to αk2 ¼ ð0.37 GeVÞ2 and the values of α0.55 (solid) and
0.55� 0.04 (dotted). Right panel: the scalar meson spectrum GSW fit to the data shown for all quark sectors. The light dots represent the
scalar meson spectrum experimental data [46,47]. The curves correspond to Eq. (35) with Cc ¼ 2400 MeV for the cc̄ mesons and
Cb ¼ 8700 MeV for the bb̄ mesons and the values of α0.55 (solid) and 0.55� 0.04 (dotted) for all mesons.
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where for the rho meson the AdS mass given by Eq. (24)
leads toM2

5R
2 ¼ 0 since the conformal dimension is Δ ¼ 3

and the p-form index p ¼ 1 [45]. SinceM2
5R

2 ¼ 0, there is
no need to add a correction to the initial dilaton
ϕðzÞ ¼ βρk2z2; in fact, the simplest solution to the relative
differential equation (see Appendix B) is ϕnðzÞ ¼ 0.
Therefore, as previously discussed, if one moves to the
standard AdS metric, the action can be rearranged as,

S̄ ¼ −
1

2

Z
d5x

ffiffiffiffiffiffi
−g

p
ek

2z2ð−βρþα=2Þ
�
1

2
gMPgQNFMNFPQ

�
:

ð37Þ

Let us remark that in this case the GSW model is formally
equivalent to the SWone because the deformed metric does
not affect the EoM since M2

5R
2 ¼ 0. Nevertheless, we

anticipate that the energy scale kwill not be considered as a
free parameter but instead we will use the value fixed in the
scalar sector. As discussed in the previous section, we fix βρ
by imposing that the kinematic term in the action is the
same as that in the usual SWAdS action, thus βρ ¼ 1þ 1

2
α.

After this choice the action becomes,

S̄ ¼ −
1

2

Z
d5x

ffiffiffiffiffiffi
−g

p
e−k

2z2
�
1

2
gMPgQNFMNFPQ

�
; ð38Þ

which is the same expression used in Ref. [30]. Also in this
case, an EoM in the Schrödinger form can be found:

−ψ 00ðzÞ þ
�
B0ðzÞ2
4

−
B00ðzÞ
2

�
ψðzÞ ¼ M2ψðzÞ: ð39Þ

By setting BðzÞ ¼ k2z2 þ log z, the above expression
becomes

−ψ 00ðzÞ þ
�

3

4z2
þ k4z2

�
ψðzÞ ¼ M2ψðzÞ: ð40Þ

This equation can be exactly solved and the spectrum is
given by

Mρ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p
k: ð41Þ

Due to the fact that the five-dimensional mass is zero, this
formula coincides with that given in Ref. [10]; however
now we have no freedom to fix the parameter k which is
given by k ¼ 370=

ffiffiffi
α

p
MeV with α determined from the

scalar glueball and meson spectra to be 0.51 ≤ α ≤ 0.59.
One should notice that we can mathematically recover the
results of Ref. [30] by setting βρ ¼ 0 and α ¼ 1.
The phenomenological ρ spectrum requires some com-

ments before we show our results. The ρ mesons are
characterized by JPC ¼ 1−−. However, looking deeper
into the phenomenological analysis [46,47] the ρð1570Þ
is supposed to be an OZI forbidden of the ρð1700Þ and
therefore is not a pure ρ state. As one can see in
the left plot of Fig. 4 and Table VI we get an overall
good result for the spectrum. We must stress that our result

FIG. 4. Left: the ρ mass plot as a function of mode number according to the GSW model compared with the data where the
experimental ρð1570Þ has been excluded following the discussion of the PDG particle listings [46,47]. Right: the same plot with the
ρð1570Þ included. The result is not a fit since the parameters have been determined from the scalar mesons and the scalar glueballs.

TABLE VI. We show the experimental result for the ρmasses in MeV together with the results of our calculation for α ¼ 0.55� 0.04
and k ¼ 370=

ffiffiffi
α

p
MeV. The experimental values were taken from the PDG particle listings [46,47]. We also report the results obtained

by the model of Ref. [30].

ρð770Þ ρð1450Þ ρð1570Þ ρð1700Þ ρð1900Þ ρð2150Þ ρð2350Þ
PDG 775.26� 0.25 1465� 25 1570� 36� 62 1720� 20 1885� 22 2151� 42 2330� 35
This work 997� 38 1411� 54 1728� 66 1995� 76 2231� 85 2444� 94
Work of Ref. [30] 868.3 1228 1504 1736.7 1941.6 2127
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is not a fit since we have taken the parameters from the
scalar sector. In the right panel of Fig. 4 we include the
ρð1570Þ as the n ¼ 3mode to show that this incorporation
completely distorts the agreement. Thus the GSW model
predicts that the ρ ¼ 1700 is the n ¼ 3 mode and not the
ρ ¼ 1570. Some authors take out the so-called D-rho
mesons from the S-rho mesons in the mass fit [30].
Since the GSW model is well defined in the large-N
limit, the present approach cannot distinguish the above
states. Our mode number n acts as a good quantum
number and incorporates S and D states. Our result
shown in Fig. 4 and Table VI reproduces all the masses
of the rho meson states with the precision required from a
large-N approximation. The main discrepancy, i.e., the
ρð770Þ, has to do with the observation that the low-lying
strongly bound states are not so well reproduced in large-
N QCD.
If one represents M2 as a function of n one gets straight

lines whose slope is 4k2 ¼ 4 × 0.372=α which is in the
range 1.002� 0.072, included in the universal range
1.25� 0.25 [50]. The difference comes again from the
discrepancy in the mass of the ρð770Þ.

VII. THE a1 AXIAL MESON SPECTRUM

In the present approach, the only difference between
vector mesons and axial-vector mesons due to chiral
symmetry breaking is that the latter have M2

5R
2 ≠ 0; see

Ref. [51] for details. A mechanism for chiral symmetry
breaking can change the mass equation by introducing an
anomalous conformal dimension Δp [45]

M2
5R

2 ¼ ðΔþ Δp − pÞðΔþ Δp þ p − 4Þ: ð42Þ

Δp ¼ 0 for scalar mesons and vector mesons and turns
out to be Δp ¼ −1 for pseudoscalar mesons and axial-
vector mesons. Thus M2

5R
2 ¼ −4 for pseudoscalars and

M2
5R

2 ¼ −1 for axial-vector mesons. Therefore the EoM
for the a1 becomes

−ψ 00ðzÞ þ
�

3

4z2
þ k4z2 −

eαk
2z2

z2

�
ψðzÞ ¼ M2ψðzÞ: ð43Þ

As already discussed several times, such a potential is not
binding. Therefore also in this case a modification of the
dilaton, ϕn, is included so that the effective potential is
obtained by expanding the term eαk

2z2 in the above
expression up to the second order. The differential equation
for ϕn is explicitly shown in Appendix B. The correspond-
ing spectrum equation reads

M2 ¼ ½4ðnþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
− α�k2; ð44Þ

which naturally for α ¼ 0 coincides with the vector
meson mass. Using our fixed value k ¼ 370=

ffiffiffi
α

p
MeV

FIG. 5. The a1 mass plot as a function of mode number according to the GSW model compared with the data. The three lighter a1
experimental masses are from Refs. [46,47], while the three heavier ones have been taken from Ref. [52]. The result is not a fit since the
parameters have been determined from the scalar mesons and the scalar glueballs. Left panel: calculation vs data. Right panel: same as
the left one but with data shifted on the n axis by one unit.

TABLE VII. We show the experimental result for the a1 masses in MeV together with the results of our calculation for α ¼
0.55� 0.04 and k ¼ 370=

ffiffiffi
α

p
MeV. The three lower masses were taken from the PDG particle listings [46,47] and the three higher

masses from Ref. [52]. A comparison with the results obtained by the model of Ref. [45] is also shown.

a1ð1260Þ a1ð1420Þ a1ð1640Þ a1ð1930Þ a1ð2095Þ a1ð2270Þ
PDG&Av 1230� 40 1411þ15

−13 1655� 16 1930þ19
−70 2096þ17

−121 2270þ55
−40

This work 833� 53 1235� 72 1535� 87 1785� 100 2005� 111 2202� 122
Work of Ref. [45] 808.1 1114.7 1351.3 1558.7 1744.3 1913.4
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and α ¼ 0.55� 0.04 we get the spectrum shown in Fig. 5
and Table VII, which is close to the experimental results.
Our calculation favors that the a1ð1930Þ, a1ð2095Þ and
a1ð2270Þ, not appearing in the PDG [46,47] but shown in
Ref. [52], are axial resonances, thus favoring more
experimental research in those energy regions. Moreover,
in the right panel of Fig. 5, the same data are shown shifted
by one unit in n. As one can see the agreement of the
calculation with data increases. Therefore, in this very first
application of the GSWmodel to the axial-vector spectrum,
one could propose that the model predicts the existence of a
missing ground state with a mass lower then the quoted
1230 MeV.

VIII. PSEUDOSCALAR MESONS

Last we will discuss the spectrum of the pseudoscalar
mesons. The EoM is governed by the conformal dimension
related to the dual field operator of the considered hadron.
For a pseudoscalar meson the study of the conformal
dimensions leads to an AdS mass M2

5R
2 ¼ −4 [45].

Thus we are going to consider the spectrum of particles
characterized by JPC ¼ 0−þ, which correspond in the
spectroscopic notation, previously used, to J ¼ 0 and
L ¼ 0. In this case the EoM becomes

−
d2ψðzÞ
dz2

þ
�
k4z2þ2k2þ 15

4z2
−
4

z2
eαk

2z2
�
ψðzÞ¼M2ψðzÞ:

ð45Þ

Since in this approach the pseudoscalar and scalar
mesons are described within the same formalism, the only
difference isM2

5R
2 and therefore one can add the correction

of the dilaton which satisfies Eq. (29). Thus, the truncated
potential is recovered. From the phenomenological point of
view there are two families of pseudoscalar particles: the
π’s and the η’s. Let us first study the η’s.

A. The η pseudoscalar meson

In Fig. 6 we show our calculation where the band
characterizes α ¼ 0.55� 0.04. In Table VIII we show
the PDG values of the η masses [46,47] compared with
the results of our calculation. It was discussed in the PDG
review that the ηð1405Þ and the ηð1475Þ might be the same
particle, which is what our calculation seems to indicate.
Moreover in the upper mass sector the experimental mass
gap becomes larger, which according to the GSW model
might indicate that some eta resonances are experimentally
missing. In Table VIII and in Fig. 6 we have left those mode
numbers empty between the ηð1760Þ and the ηð2225Þ. If
one trusts the results of the calculation, the GSW model
predicts the existence of two resonances between the
ηð1760Þ and the ηð2225Þ and that the ηð1405Þ and
ηð1470Þ seem to be the same resonance. From the
flavor content it is known that the η’s have hidden
strangeness and therefore corrections associated to the
quark mass should be added. Since the strange quark is
not too heavy the corrections will be smaller than our
theoretical errors. We must stress, once more, that this
calculation is not a fit since our parameters were fixed by
the scalar spectrum.

B. The π pseudoscalar spectrum

The main difference between the η and the π is the
isospin; however since our model does not take into
account Coulomb corrections, the chargeless pions behave
very much like the η from the point of view of quantum
numbers and therefore the spectrum should be the same in
our model but it is not so in nature. In fact, there is one main
difference; indeed the pion is the Goldstone boson of
SUð2Þ × SUð2Þ chiral symmetry and this fact is

FIG. 6. The spectrum of the η meson. The upper curve
corresponds to α ¼ 0.51 and the lower curve to α ¼ 0.59. We
have given ηð1405Þ and ηð1475Þ the same mode number, n ¼ 3
(see discussion in the text), and we have skipped modes n ¼ 5, 6
since the mass gap between the ηð1760Þ and the ηð2225Þ is
double that of the lower-mass η’s.

TABLE VIII. We show the experimental results for the η masses, in MeV, given by the PDG reviews [46,47] together with the results
of our calculation. The gaps are introduced in order to respect the mass gaps of the GSW model calculation.

η η0 ηð1295Þ ηð1405Þ–ηð1475Þ ηð1760Þ ηð????Þ ηð????Þ ηð2225Þ
PDG 547.862� 0.017 957.78� 0.06 1295� 4 1408.8� 2.0 1751� 15 2221� 12

1475� 4
This work 513� 92 943� 111 1231� 133 1463� 151 1663� 168 1842� 183 2005� 198 2155� 210
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instrumental in giving the lightest pion its low mass. We
should therefore implement the spontaneous broken reali-
zation of chiral symmetry in the GSW holographic model
to reproduce the low mass of the ground-state pion. The
physics of confinement and chiral symmetry breaking is
described by the dilaton [11,25,53]. Therefore, to the
present aim, a modification of the dilaton profile function
is here proposed to implement the realization of chiral
symmetry in a phenomenological way. The dilaton besides
the conventional behavior ϕ0ðzÞ ∼ βsk2z2 at large z,
which determines Regge behavior, requires a different
behavior at low z to implement chiral symmetry, namely
φðzÞ ∼ β0k2z2 þOðz4Þ, with β0 < β [53]. To the present
aim, an efficient choice for the dilaton profile function is to
promote β to be a function of z

βðzÞ ¼ β∞ tanh ðγz4 þ δÞ: ð46Þ

This kind of ansatz has been considered several times in
different analyses to implement the chiral symmetry break-
ing in holographic models; see Refs. [11,25,53]. This
ansatz leads, as required by chiral symmetry, to,

lim
z→∞

βðzÞ ¼ β∞; ð47Þ

and

lim
z→0

βðzÞ ¼ β0 ¼ β∞ tanhðδÞ þOðz4Þ < β∞: ð48Þ

The term tanhðδÞ is therefore related to the realization of
chiral symmetry. With this phenomenological input, the
dilaton function becomes

ϕ0ðzÞ ¼ β∞ tanh ðγz4 þ δÞk2z2 ð49Þ
with β∞ ¼ βs ¼ 1þ 3

2
α to satisfy the correct large-z

behavior once we take into account the effect of the
GSW metric. Thus, the large-z behavior, which dominates
the spectrum of the higher modes, leads to the Regge
behavior. In the low-z region, which is related to the
transition region, δ and γ, characterize the spontaneous
chiral symmetry breaking beyond Δp, i.e., the effect
associated with the bulk five-dimensional mass discussed
previously. With this new dilaton, the equations of motion
can be generated by using the same strategy previously
discussed but by introducing the new dilaton in the
functions BðzÞ. As one might expect, the relative potential
is more complicated with respect to the η and other mesons.
We again perform an expansion of the exponential to keep
the largest binding potential and dismiss the terms which
make it not confining. From a phenomenological point of
view, one should expect that the value of γ depends on the
hadron under scrutiny. In particular, in the case of the low-
mass pion, γ must be relatively low so that the transition to
the large-z limit occurs at higher values. Let us try to fit the
low-mass pion with the new dilaton. In Fig. 7 we show the
wave function of a 135 MeV pion for δ ¼ 1.5325 and
γ ¼ 0.0055 GeV−4. The value of δ has been chosen to have
a n ¼ 0 mode in the approximate well-behaved solution.
We have kept this value fixed in the nonlinear full equation
and have varied only the γ to get a solution as close as
possible to the approximate one. The other parameters α
and k have been fixed as above.
In order to calculate the full pion spectrum, one should

notice that the excited states, namely n ≥ 1, are not
Goldstone bosons, and therefore it is reasonable to assume
that the relative EoM should be that described by Eq. (45).
In other words, within this prescription, the underlying
dynamics generating resonances of the pion should be
similar to that of the η meson. The full pion spectrum is
displayed in Table IX compared with the PDG data [46,47].
As one might notice, the GSW model, incorporating the
chiral symmetry breaking effect in the dilaton profile
function, predicts a number of pion states bigger than

FIG. 7. We show the wave function for a 135 MeV pion with
the new dilaton. We have used δ ¼ 1.5235, γ ¼ 0.0055 GeV−4,
α ¼ 0.55 and k ¼ 0.37=

ffiffiffi
α

p
GeV.

TABLE IX. We show the experimental result for the π masses given by the PDG particle listings [46,47] together with the results of
our calculation. We have used the π0 mass to fix the value of δ ¼ 1.5235. Our errors are again associated with the error in
α ¼ 0.55� 0.04. The masses are as always in MeV.

π0 πð1300Þ πð1800Þ
PDG 134.9768� 0.0005 1300� 100 1819� 10
This work 135 943� 111 1231� 133 1463� 151 1663� 168 1842� 183
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those experimentally observed. Such a feature is shared
with other models [45,53]. However, let us remark that the
present experimental results are somehow not conclusive.
Indeed, the πð1300Þ does not have a well-defined mass and
a has large width (over 200 MeV), and thus it might hide
two resonances within its huge width. Also the πð1800Þ has
an experimental mass ranging from 1770 to 1870 MeV, a
large width, and a complicated two pic structure, thus it
could also hide two states. In this scenario, the large-N
approximation, encoded in the approach proposed here, is
predicting states that could be observed once the exper-
imental region is cleared up.
Finally one may wonder if the new dilaton will change

the η spectrum, previously described. Let us show that this
is not the case. In Fig. 8, the wave functions of the first two
η modes, for the masses determined above (512 and
943 MeV) with the new dilaton (solid) and the old dilaton
(dashed), are shown. One sees that fixing δ ¼ 1.5235,
which should be the same for all particles, and letting γ
grow up to γ ∼ 1.0, to displace the transition region to lower
z values, one obtains exactly the same spectrum and almost
exactly the same wave functions. For larger values of γ the
resemblance of the wave functions is even greater, but then
we are mathematically approximating the old dilaton mode.
For the higher modes, the value of γ needed to reach a close
resemblance can be even lower since the z4 term dominates
the βðzÞ function. For values as low as γ ¼ 0.2, the
wave functions are not so close but still very similar.
Furthermore, as a cross check of the procedure to provide a
binding potential, in Fig. 9 we numerically show that the
correction to the dilaton applied to the η case is very close
to that needed for the π case. Such a feature reflects that
also in the GSW model, the chiral symmetry breaking can
be described by a new dilaton ϕ0 (49), while the truncation
of the metric effect in the potential can still be obtained by
means of corrections that for the pseudoscalar systems are
very similar.

IX. CONCLUSIONS

In the present investigation, a phenomenological analysis
of the glueball and meson spectra within the GSW model
was provided. This approach is based on the assumption
that the lowest scalar glueball is associated to a graviton
propagating in a deformed AdS5 space. We saw in the past
that the metric is fundamental in providing a good
representation of the experimental data with only one
parameter, and in so doing we determined the energy scale
k of the model. No approximation to the metric leads to a
reasonable result, and the graviton requires the full power
of the metric to produce the adequate experimental slope
and, in turn, to describe the correspondence to the confine-
ment mechanism. The next step was to fit the scalar mesons
within the same model. In this case the AdS5 mass is
negative and therefore the corresponding mode potential
does not bind. In order to make the potential confining we

FIG. 8. The wave functions of the η (left) and η0 (right) with the new dilaton (solid), and old dilaton (dashed). The new dilaton has been
calculated with α ¼ 0.55, δ ¼ 1.5235,γ ¼ 1.0 and k ¼ 0.37=

ffiffiffi
α

p
GeV. The masses of the etas for the two dilaton calculations are

identical: mη ¼ 512 MeV and mη0 ¼ 943 MeV.

FIG. 9. The dilaton addition ϕn for the pseudoscalar systems;
see Appendix A. Full fine: the calculation for the pion with the
initial dilaton ϕ0 of Eq. (49). Dotted line: results obtained for
the η meson with the initial dilaton ϕ0 ¼ βsk2z2. Dashed line: the
same for the scalar meson. Here u ¼ αk2z2.
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had to truncate the exponential at the third term. After
doing so we obtained an excellent fit to the light meson
spectrum with only one additional parameter associated
with the strength of the metric α. With these two parameters
fixed we proceeded to describe the whole glueball and light
meson spectrum. In all fits of glueballs, use has been made
of the full metric since the corresponding AdS5 masses are
positive. On the other hand, for all mesons, except for the ρ,
whose AdS5 mass is zero, we had to truncate the expo-
nential metric at the third term to get a binding potential.
With this procedure we have reproduced quite well the
mass spectra of the ρ, the a1, the η and the pion. While for
the ground-state pion a modification of the dilaton profile
function is required to implement the chiral symmetry
breaking, for all the other hadrons, the masses have been
calculated without any fit of the model parameters, of
which there are only two, k and α, which were fixed by the
scalar glueball and light scalar meson spectra. This feature
underlines the predictive power of the proposed model in
describing the hadron masses. We recall that the model is
also able to fit well the heavy scalar meson spectra. We can
conclude after this phenomenological analysis that the
GSW model provides a good description of the spectra
of the axial and vector mesons, high-spin glueballs and
pseudoscalar mesons and even heavy mesons with very few
parameters. Moreover, the model also predicts the existence
of further states not yet observed probably due to the
present experimental accuracy.
The success of this phenomenological meson potential

has led us to investigate how the exponential metric is
related to it. We have proven that a modification in the
dilaton field is able to generate the phenomenological
potential from the full metric. The proof is based on the
construction of a differential equation for the dilaton field
which relates the initial full potential with the phenom-
enological potential. We have shown that in our case, for all
the mesons studied, the differential equation is solvable and
moreover the new dilaton introduces no new parameters
since it is defined exclusively by the metric parameters and
the corresponding AdS mass. This new dilaton represents
additional QCD interactions modifying, in the case of the
mesons, the confining mechanism of glueballs.
We have compared the graviton solution for the glue-

balls, which described the scalar and tensor glueball
spectrum with the J ¼ 0 and J ¼ 2 glueball field solutions.
We have seen that the degeneracy between scalars and
glueballs of the former is instrumental in describing the
spectra with only one energy scale. The field solutions
require different energy scales for the J ¼ 0 and J ¼ 2
solutions since the one that fits the scalars leads to
extremely heavy tensors, and the one that fits the tensor
to extremely light scalars. The graviton seems to be a
necessary ingredient of AdS/QCD and the implications of
this fact for QCD have to be understood. For the higher-J
glueballs the field approximation is adequate and it has

allowed us to successfully calculate the Regge trajectories
of the even and odd high-spin glueballs. The scalar glueball
and the pion escape this scheme. The former requires a
graviton propagating in a deformed AdS space and the
latter a sophisticated dilaton. Clearly this might be asso-
ciated in QCD with the fact that the ground-state scalar
glueball is associated with the σ particle in some schemes
and the pion with the Goldstone boson of spontaneously
broken chiral symmetry.
One should notice that the GSW model, like other

phenomenological approaches based on the AdS=CFT
correspondence, is realized in the large-N approximation.
Therefore, one might expect higher-order corrections to be
required for precision calculations, which are beyond the
aim of the present investigation. Finally let us conclude by
noting the surprising capability of the model in reproducing
basic features of many different hadronic systems without
invoking a large number of parameters and therefore
unveiling a relevant predicting power that could be used
in future analyses.
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APPENDIX A: THE DILATON DIFFERENTIAL
EQUATION FOR THE SCALAR AND

PSEUDOSCALAR FIELDS

In this Appendix details on the differential equation (29)
are provided. In particular, since for the pion the initial
dilaton (ϕ) must be properly chosen in order to introduce
the chiral symmetry breaking into the model, here we
provide the general differential equation that the dilaton
addition (ϕn) must satisfy to generate a binding potential
where the metric effects are encoded in the truncated
expansion of eαk

2z2 . Let us start again with the full general
action for a scalar field:

S̄ ¼
Z

d5x
ffiffiffiffiffiffi
−g

p
e−ϕðzÞþ3

2
αk2z2−ϕnðzÞ½gMN∂MSðxÞ∂NSðxÞ

þ eαk
2z2M2

5R
2S2ðxÞ�; ðA1Þ

where we recall that for ϕðzÞ ¼ k2z2βs and βs ¼ 1þ 3
2
αwe

get the usual result (25) and that of Ref. [21]. From the
Euler-Lagrange equation and by properly choosing a
functional form the field SðxÞ, a Schrödinger equation
can be obtained,

−ψ 00ðzÞ þ VsðzÞψðzÞ ¼ M2ψðzÞ; ðA2Þ
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where the potential VsðzÞ ¼ ṼsðzÞ=ð4z2Þ and,

ṼsðzÞ¼4eαk
2z2M2

5þ3½5þαk2z2ð−4þ3αk2z2Þ�
þzfzϕ0ðzÞ2þð6−6αk2z2Þϕ0

nðzÞþzϕ0
nðzÞ2

þϕ0ðzÞ½6−6αk2z2þ2zϕ0
nðzÞ�−2z½ϕ00ðzÞþϕ00

nðzÞ�g:
ðA3Þ

The equivalent quantity obtained for ϕn ¼ 0 and ϕ ¼
k2z2ð1þ 3

2
αÞ becomes [21],

Ṽo
sðzÞ ¼ 15þ 4M2

5R
2eαk

2z2 þ 8k2z2 þ 4k4z4: ðA4Þ

Moreover, the binding potential, needed to reproduce
the scalar and pseudoscalar spectra previously discussed,
must be obtained by setting ϕn ¼ 0 and by expanding the
exponential term eαk

2z2 up to the third term:

Ṽa
s ðzÞ ¼ 4

�
1þ αk2z2 þ 1

2
α2k4z4

�
M2

5

þ 3½5þ αk2z2ð−4þ 3αk2z2Þ�
þ zfϕ0ðzÞ½6 − 6αk2z2 þ 2z� − 2zϕ00ðzÞg: ðA5Þ

Therefore, the differential equation, that the correction
dilaton ϕn must satisfy to move from the general potential
(A3) to the expression (A5) is,

ṼsðzÞ− Ṽa
s ðzÞ¼4M2

5R
2

�
eαk

2z2 −1−αk2z2−
1

2
α2k4z4

�

þz½ϕ0
nðzÞð6−6αk2z2þ2zϕ0ðzÞþzϕ0

nðzÞÞ
−2zϕ00

nðzÞ�¼0: ðA6Þ
The above equation can be simplified to

−
ϕ00
nðzÞ
2

þ ϕ0
nðzÞ2
4

þ ϕ0
nðzÞ

�
3

2z
−
3

2
αk2zþ 1

2
ϕ0
nðzÞ

�

þM2
5R

2

z2

�
eαk

2z2 − 1 − αk2z2 −
1

2
α2k4z4

�
¼ 0: ðA7Þ

As one can see this equation directly depends on the old
initial dilaton ϕ, and therefore such a procedure can be
applied for the scalar and pseudoscalar (η and π) mesons. In
the case of the scalar meson and η, ϕðzÞ ¼ k2z2ð1þ 3

2
αÞ

one gets

−
ϕ00
nðzÞ
2

þ ϕ0
nðzÞ2
4

þ ϕ0
nðzÞ

�
3

2z
þ k2z

�

þM2
5R

2

z2

�
eαk

2z2 − 1 − αk2z2 −
1

2
α2k4z4

�
¼ 0: ðA8Þ

The numerical solution has been used to fit ϕn as a
polynomial function of u ¼ αk2z2:

ϕnðuÞ ∼ 0.507286 − 0.035493u1.5 − 0.800325u2

þ 0.0052429u4 − 0.0000556475u6: ðA9Þ

APPENDIX B: THE DILATON DIFFERENTIAL
EQUATION FOR THE VECTOR FIELD

The same procedure can be extended to vector fields. In
this case dilatons describing chiral symmetry breaking are
not considered in the analysis. We show the differential
equation for ϕn given ϕ0 ¼ βρk2z2 where βρ ¼ 1þ 1

2
α.

In this case,

S̄V ¼ −
1

2

Z
d5x

ffiffiffiffiffiffi
−g

p
e−k

2z2−ϕn

�
1

2
gMPgQNFMNFPQ

þM2
5R

2gPMAPAMeαk
2z2
�
: ðB1Þ

From the EoM one can derive the potential

VvðzÞ ¼
�
B0ðzÞ2
4

−
B00ðzÞ
2

þM2
5R

2

z2
eαk

2z2
�

¼ −
ϕ00
nðzÞ
2

þ ϕ0
nðzÞ2
4

þ ϕ0
nðzÞ

�
1

2z
− k2z

�

þ k4z2 þ 3

4z2
þM2

5R
2

z2
eαk

2z2 ; ðB2Þ

where hereBðzÞ ¼ logðzÞ þ ϕnðzÞ − k2z2. Also in this case,
the approximated potential Va

v is obtained for ϕn ¼ 0

and by expanding eαk
2z2 up to the third term. The phenom-

enological potential is,

Va
vðzÞ ¼ k4z2 þ 3

4z2
þM2

5R
2

z2

�
1þ αk2z2 þ 1

2
α2k4z4

�
;

ðB3Þ

and therefore the differential equation reads,

VvðzÞ−Va
vðzÞ¼−

ϕ00
nðzÞ
2

þϕ0
nðzÞ2
4

þϕ0
nðzÞ

�
1

2z
−k2z

�

þM2
5R

2

z2

�
eαk

2z2−1−αk2z2−
1

2
α2k4z4

�
¼0:

ðB4Þ
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APPENDIX C: THE GENERAL
DILATON DIFFERENTIAL EQUATION

FOR ϕðzÞ= βk2z2
Due to the similarities between Eqs. (A8) and (B4),

we show here that although the dilaton expression would
explicitly depend on the kind of meson considered
(scalar or vector), no free parameters are involved and
the differential equation can be written through a general
expression:

−
ϕ00
n;IðzÞ
2

þ ϕ0
n;IðzÞ2
4

þ ϕ0
n;IðzÞ

�
AI

2z
þ BIk2z

�

þM2
5R

2

z2

�
eαk

2z2 − 1 − αk2z2 −
1

2
α2k4z4

�
¼ 0; ðC1Þ

where for the scalar we have I ¼ s, As ¼ 3, Bs ¼ 1 and for
the vector I ¼ v, Av ¼ 1, Bv ¼ −1.
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