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We apply the renormalization group optimized perturbation theory (RGOPT) to evaluate the quark
contribution to the QCD pressure at finite temperatures and baryonic densities, at next-to-leading
order (NLO). Our results are compared to NLO and state-of-the-art higher orders of standard perturbative
QCD (pQCD) and hard thermal loop perturbation theory (HTLpt). The RGOPT provides an all
order resummed pressure in a well-defined approximation, exhibiting a drastically better remnant
renormalization scale dependence than pQCD, thanks to built-in renormalization group invariance
consistency. At NLO, upon simply adding to the RGOPT-resummed quark contributions the purely
perturbative NLO glue contribution, our results show a remarkable agreement with ab initio lattice
simulation data for temperatures 0.25 ≲ T ≲ 1 GeV, with a remnant scale dependence drastically reduced
as compared to HTLpt.
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I. INTRODUCTION

The complete prediction of the phase diagram describing
strongly interacting matter transitions represents one of
the major theoretical challenges in contemporary particle
physics, despite the enormous progress achieved by lattice
QCD (LQCD) numerical simulations. The main reason is
that the well documented sign problem [1], which arises
when finite chemical potential (μ) values are considered,
prevents LQCD to be reliably applied at intermediate to
high finite baryonic densities, while at low densities the
problem may be circumvented, e.g., by performing a Taylor
expansion around vanishing chemical potential results. In
particular, within the latter regime LQCD has been very
successful in predicting [2] that a crossover occurs at a
pseudocritical temperature close to Tpc ≈ 155 MeV when
μ ¼ 0. One alternative to describe the low temperature-high
density domain is to employ effective quark theories [3], or
the Nambu–Jona-Lasinio (NJL) model [4], evaluating
physical quantities within some analytical more nonper-
turbative framework (e.g., mean field theory, MFT). This
approach predicts that the (chiral) phase transition at low-T

and finite μ is of the first kind [5] so that, as a by-product,
one should observe a critical end point (CP) signaled by a
second order phase transition taking place at intermediate
values of T and μ where the first order transition boundary
terminates. This intriguing possibility is about to be tested
in heavy-ion collisions experiments by decreasing the beam
energy,

ffiffiffiffiffiffiffiffi
sNN

p
, so that the baryonic density increases. In

view of these experiments it is an unfortunate situation that
theoretical predictions using the full QCD machinery
cannot be consistently carried out with the currently
available nonperturbative techniques.
As already emphasized LQCD is plagued by the sign

problem while analytical tools such as the large-N approxi-
mation (which is related to MFT) may produce misleading
results at criticality. More analytical alternatives to LQCD
can partly address the deconfinement and/or chiral sym-
metry restoration at finite temperature and/or density:
typically, some extensions of the NJL model [5,6] or
Polyakov NJL (PNJL) [7,8], or other approaches incorpo-
rating more basic QCD dynamics in well-defined approx-
imations, like the Dyson-Schwinger equations (see e.g.,
[9,10]), the functional renormalization group (see e.g., [11]),
or other approaches [12]. On another side, standard thermal
perturbation theory (PT) is unreliable at the relevant temper-
ature and chemical potential ranges. Indeed, despite the
asymptotic freedom (AF) property, its convergence can only
be achieved at temperatures many orders of magnitude
larger than the critical one. Even at intermediate temper-
atures, it is well-known that thermal PT is plagued by severe
infrared divergences from bosonic zero modes and has to be
resummed to be more compatible with strong coupling
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regimes (for pedagogical reviews and lecture notes see, e.g.,
Refs. [13,14] and the very recent Ref. [15]). Yet, even the
state-of-the-art, highest available order thermal PT [16,17],
that incorporates a suitable resummation of infrared diver-
gences, becomes more poorly accurate at moderate to low
temperatures. A very successful alternative resummation
method is to systematically expand from the start about a
quasiparticle mass [18–20], that also more directly avoids
infrared divergences apart from improving convergence
issues. (One should keep in mind however that not all
infrared divergences can be cured by such resummations: as
is well-known the screening of static magnetic fields [21] is
an additional nonperturbative phenomenon occurring in
Yang-Mills theory, intrinsically limiting in practice theweak
coupling expansion to maximal order α3S ln αS). The expan-
sion about a quasiparticle mass is actually close to analytical
resummation approaches also used at zero-temperature,
reminiscent of the traditional Hartree approximation and
its variational generalizations, suitable to tackle the infrared
divergence issues of massless theories. Basically one essen-
tially deforms the original Lagrangian by a Gaussian mass
term to be treated as an interaction, defining a modified
perturbative expansion leading to a sequence of (variation-
ally improved) approximations at successive orders.
The latter approaches appear under various names in the

literature, such as optimized perturbation theory (OPT)
[22–24] (as we dub it here), linear δ expansion (LDE) [25],
variational perturbation theory (VPT) [26], or screened
perturbation theory (SPT) [19,27] in the thermal context.
Remark that adding a Gaussian term does not change the
polynomial structure of the theory so that the process is
compatible with the usual renormalization procedure.
Already at NLO one usually goes beyond the simple
Hartree approximation since the variational mass is dressed
by incorporating different resummed topologies (exchange
terms, vertex corrections, etc.) order by order. Moreover, at
leading order the OPT has the welcome property of exactly
reproducing large-N results [28]. As discussed, e.g., in
Ref. [29] this technique has been used to describe success-
fully a variety of physical situations, involving phase
transitions in different models. On the other hand, for
thermal theories, the SPTmethod has been generalized over
the past two decades in order to be compatible with Yang-
Mills theories. This generalization was made possible
thanks to the hard thermal loop (HTL) gauge-invariant
effective Lagrangian originally built by Braaten and
Pisarski [18], consistently embedding HTL contributions,
Landau damping and a screening gluon thermal mass term,
with momentum-dependent self-energies and HTL-dressed
vertices. The high temperature expansion based on the HTL
Lagrangian, known as hard thermal loop perturbation
theory (HTLpt) [20], has been employed in a series of
applications up to NNLO (three-loops), to describe the
QCD thermodynamics, considering both the glue [30] and
quark [31–33] sectors at finite temperatures and baryonic

densities. Given the intrinsic technical difficulties associ-
ated with the HTLpt evaluations, the NNLO state-of-the-art
calculations performed typically in Refs. [32,33] represents
a remarkable achievement. Unfortunately it is worth
noting a serious remnant issue, also plaguing standard
PT but not sensibly reduced in HTLpt: namely the
sensitivity to the arbitrary renormalization scale is observed
to substantially increase when higher orders are consid-
ered. More precisely, as compared to PT the NNLO HTLpt
predictions in Refs. [32,33] are very close to the lattice
results for temperatures down to T ≳ 2Tpc for the com-
monly chosen “central” renormalization scale choice,
M ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
. However, even a moderate scale

variation of a factor 2 dramatically affects the pressure and
related thermodynamical quantities by relative variations of
order 1 or more. It has been argued [33] that resumming
logarithms may help to improve the situation but, as
explained in Refs. [34,35], it appears that the lack of
renormalization group (RG) invariance is more basically
rooted within the HTLpt approach. More recently an
alternative combining the OPT framework with RG proper-
ties has been proposed: the renormalization group opti-
mized perturbation theory (RGOPT) [34–37]. The main
novelty is that it restores RG invariance at all stages of the
calculation, in particular when fixing the arbitrary varia-
tional mass parameter. At vanishing temperatures it has
been used in QCD up to high (three and four-loop) orders to
estimate the basic coupling αs [37], predicting values very
compatible with the world averages [38]. Also accurate
values of the (vacuum) quark condensate were obtained at
four-loop [39] and five-loop [40] orders. Concerning
thermal theories the RGOPT has been applied to the
simpler scalar ϕ4 model [34,35] at NLO, as well as to
the nonlinear sigma model (NLSM) [41]. In these thermal
applications the RGOPT and PT/SPT predictions for the
pressure have been compared, showing how the former
approximation ameliorates the generic residual scale
dependence of thermal perturbation theories at increasing
perturbative orders. More recently we have evaluated the
quark contribution to the QCD pressure at two-loop (NLO)
at finite densities and vanishing temperatures, showing how
the method improves over perturbative QCD (pQCD) [42].
In the present work we extend our approach to include the
effects of a thermal bath. Note that applying the RGOPT
readily to the glue contributions is beyond the present
scope, due to some specific technical difficulties as briefly
explained below (work in this direction is in progress [43]).
Therefore in the present application the RGOPT resumma-
tion will be applied strictly only to the quark sector, while
the gluons will be treated as in standard (NLO) PT. In the
end both contributions will be combined in order to
produce our complete final prediction for the NLO QCD
pressure.
The paper is organized as follows. In the next section we

briefly review our starting point, the perturbative
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expressions considered for the (massive) quark pressure at
NLO, for which the basic RGOPT construction is recalled.
In Sec. III the RGOPT is precisely defined for the quark
pressure up to NLO (two-loop). Details of our two possible
prescriptions at NLO are described in Sec. IV (that may be
skipped by the reader only interested in the main results).
Then Sec. V illustrates our main results for the pressure,
both for the pure quark sector and for the full QCD one. We
compare our results with the NLO and state-of-the-art
higher orders of both PT and HTLpt, and also to lattice data
for the complete QCD pressure. Section VI contains our
conclusions and perspectives. Finally, three appendixes
specify some formulas and additional details used in our
analysis.

II. QUARK CONTRIBUTION TO
THE QCD PRESSURE

A. RG invariant perturbative pressure

At two-loop order-g,1 the contribution of (massive)
quarks to the QCD perturbative pressure (the Feynman
diagrams displayed in Fig. 1) can be obtained by combin-
ing the vacuum (T ¼ μ ¼ 0) results of Ref. [39] and the
T;μ≠ 0 results of Refs. [44,45]. Considering the case of
degenerate masses mu ¼ md ¼ ms ≡m, the renormalized
pressure in the MS renormalization scheme, normalized per
flavor, is

PPT
1

NfNc
¼ −

m4

8π2

�
3

4
− Lm

�
þ 2T4J1

�
m
T
;
μ

T

�

− 3g
m4

2ð2πÞ4 CF

�
L2
m −

4

3
Lm þ 3

4

�

− gCF

��
m2

4π2
ð2 − 3LmÞ þ

T2

6

�
T2J2

�
m
T
;
μ

T

�

þ T4

2
J22

�
m
T
;
μ

T

�
þm2T2J3

�
m
T
;
μ

T

��
; ð2:1Þ

where g≡ gðMÞ, Lm ≡ lnðm=MÞ, M is the arbitrary
renormalization scale, CF¼ðN2

c−1Þ=ð2NcÞ, Nc ¼ 3, and
Nf ¼ 3. The in-medium and thermal effects are included in
the (dimensionless) single integrals,

J1

�
m
T
;
μ

T

�
¼
Z

d3p̂
ð2πÞ3fln½1þe−ðEpþμ

TÞ�þ ln½1þe−ðEp−
μ
TÞ�g;

ð2:2Þ

with p̂≡ p=T, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þ m2

T2

q
,

J2

�
m
T
;
μ

T

�
¼

Z
d3p̂
ð2πÞ3

1

Ep
½fþðEpÞ þ f−ðEpÞ�; ð2:3Þ

as well as in the double integral [after performing exactly
the angular integration over p · q=ðjpjjqjÞ],

J3

�
m
T
;
μ

T

�
¼ 1

ð2πÞ4
Z

∞

0

Z
∞

0

dp̂ p̂ dq̂ q̂
EpEq

×

�
Σþ ln

�
EpEq − m2

T2 − p̂ q̂

EpEq − m2

T2 þ p̂ q̂

�

þ Σ− ln

�
EpEq þ m2

T2 þ p̂ q̂

EpEq þ m2

T2 − p̂ q̂

��
; ð2:4Þ

where

Σ� ¼ fþðEpÞf�ðEqÞ þ f−ðEpÞf∓ðEqÞ; ð2:5Þ

ð2:6Þ

in terms of the Fermi-Dirac distributions for antiquarks
(þ sign) and quarks (− sign),

f�ðEpÞ ¼
1

1þ eðEp�μ
TÞ
; ð2:7Þ

where μ represents the quark chemical potential, which
relates to the baryonic chemical potential via μB ¼ 3μ.
In the present work we consider the case of symmetric

quark matter and so do not distinguish the chemical
potentials associated with the different flavors ðμs ¼ μu ¼
μd ≡ μÞ. The generalization to the case of chemical
equilibrium needed to impose, e.g., β equilibrium should
be straightforward. Also relevant for our purpose and
comparisons is the well-known resulting two-loop pressure
expression for strictly massless quarks (that simplifies
considerably since the Ji integrals reduce to simple ana-
lytical expressions in this case, given for completeness in
Appendix A),

PPT
1 ðm → 0Þ
PSBðT; μÞ

¼ 1 −
25gðMÞ
42π2

�
1þ 72

5
μ̂2 þ 144

5
μ̂4

1þ 120
7
μ̂2 þ 240

7
μ̂4

�
ð2:8Þ

with μ̂ ¼ μ=ð2πTÞ. The Stefan-Boltzmann (SB) ideal gas
limit reads

FIG. 1. Feynman diagrams contributing to the perturbative
quark pressure up to NLO OðgÞ.

1In all what follows we normalize for convenience the
(running) coupling in the MS-scheme as gðMÞ≡ 4παSðMÞ.
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PSBðT;μÞ¼T4NfNc

�
7π2

180

��
1þ120

7
μ̂2þ240

7
μ̂4
�
: ð2:9Þ

Coming back to the massive quark case, we next define the
standard homogenous RG operator,

M
d
dM

¼ M∂M þ βðgÞ∂g −mγmðgÞ∂m; ð2:10Þ

where our normalization convention for theQCD β-function
and anomalous mass dimension γm is

βðgÞ ¼ −2b0g2 − 2b1g3 þOðg4Þ; ð2:11Þ

γmðgÞ ¼ γ0gþ γ1g2 þOðg3Þ; ð2:12Þ

where to two-loop order,

ð4πÞ2b0 ¼ 11 −
2

3
Nf; ð2:13Þ

ð4πÞ4b1 ¼ 102 −
38

3
Nf; ð2:14Þ

γ0 ¼
1

2π2
; ð4πÞ4γ1 ¼

404

3
−
40

9
Nf: ð2:15Þ

As is well known, the massive pressure (equivalently the
massive free energy) is lacking perturbative RG-invariance:
it can be easily checked that applying Eq. (2.10) to Eq. (2.1)
leaves a remnant term starting at leading order. Now to
turn Eq. (2.1) into a (perturbatively) RG invariant quantity,
we proceed as in Refs. [34,35,39] (or closer to the present
case, as in Ref. [42]), by subtracting a finite zero-point
contribution,

PRGPT

NcNf
¼ PPT

NcNf
−
m4

g

X
k

skgk; ð2:16Þ

where the si are determined at successive perturbative orders
so that

M
d
dM

�
PRGPT

NcNf

�
¼ Oðg2m4Þ; ð2:17Þ

up to neglected higher order terms. Since our evaluations are
being carried up to NLO, to restore perturbative RG
invariance at this order it is sufficient to add the first two
s0, s1 coefficients that involve the coefficients of βðgÞ, γmðgÞ
through Eq. (2.10). One finds explicitly [39,42]

s0 ¼ −½ð4πÞ2ðb0 − 2γ0Þ�−1; ð2:18Þ

s1 ¼ −
1

4

�
b1 − 2γ1

4ðb0 − 2γ0Þ
−

1

12π2

�
: ð2:19Þ

B. Implementing the RGOPT for the quark pressure

The RGOPT construction[35,37,42] may be summarized
as the following successive steps:
(1) First one restores perturbative RG invariance of the

massive theory, following the procedure above
described, giving at NLOPRGPTðm; gÞ in Eqs. (2.16),
(2.18), (2.19). The subtraction contributions can be
viewed as extending theLagrangian by vacuum terms
∼ðm4=gÞHðgÞ, that could be equivalently introduced
at the bare level [34,40], although the above pre-
scription working directly with renormalized quan-
tities is most convenient. At this stage, upon using
commonly defined NLO running coupling and
masses from Eqs. (2.13)–(2.15), it could easily be
checked that Eq. (2.16) has a remnant scale depend-
ence only of higher order ∼m4g2 by construction.

(2) Next the RGOPT requires to variationally deform
the Lagrangian, by rescaling the coupling (consis-
tently for every standard interaction terms), and
modifying quark mass terms, as

LRGOPT
QCD ¼LQCDðg→ δg; m→mð1−δÞaÞ; ð2:20Þ

m being now an arbitrary mass. Equation (2.20)
is to be viewed as a convenient bookkeeping
prescription actually performed on an already re-
normalized quantity Pðm; gÞ, thus obtained from
standard perturbative expansion and appropriate
renormalizations of the massive theory. Concerning
the pressure it amounts to do those substitutions
within PRGPTðm; gÞ of Eq. (2.16), thus incorporating
the previously obtained vacuum subtractions.2

(3) The resulting expression from Eq. (2.20) is ex-
panded in powers of δ, at the same perturbative
order considered, and next setting δ → 1 to recover
the massless limit. At any finite order this leaves a
residual m-dependence, that can be fixed by a
stationarity criterion [22], the mass optimization
prescription (MOP),

∂
∂mPRGOPTðOðδkÞ; δ → 1Þ

				
m̄
≡ 0: ð2:21Þ

Equation (2.21) is however not the sole nor the most
compelling prescription once RG invariance proper-
ties are considered. Moreover, while in related OPT/
SPT or HTLpt approaches the simple (linear) value
a ¼ 1was used in Eq. (2.20) mainly for simplicity, it
was observed [35,37] that step 3 generally spoils RG
invariance at leading order, even when Eq. (2.20) is

2For overall RG consistency it is crucial to perform first the
perturbative RG-restoring procedure as in Eq. (2.16), before
modifying the perturbative expansion according to Eq. (2.20), as
the two procedures do not commute.
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performed on a perturbatively RG invariant pressure
like Eq. (2.16).

(4) Thus in conjunction with step 3, to preserve good
RG properties of the variationally modified pressure
the further RGOPT ingredient is to fix [35,37] the
exponent a purposely introduced in Eq. (2.20): we
require the δ → 1 pressure to satisfy, since Eq. (2.21)
is used, the reduced (massless) RG equation,

½M∂M þ βðgÞ∂g�PRGOPT
δ→1 ¼ 0: ð2:22Þ

For this it is sufficient to expand to leading order
ðδ0Þ, yielding

a ¼ γ0
2b0

; ð2:23Þ

that only depends on the universal (scheme-
independent) LO RG coefficients,3 in agreement
with previous RGOPT applications to which we
refer for detailed demonstration [34,37,42]. At NLO
Eq. (2.22) is no longer exactly satisfied by Eq. (2.23)
alone, thus it can provide an alternative determina-
tion of m̄ besides Eq. (2.21), as will be illustrated in
concrete NLO applications below. Importantly,
keeping Eq. (2.23) at higher orders further guaran-
tees that the only acceptable solutions are those
matching [37] the perturbative asymptotic freedom
(AF) behavior for g → 0 at T ¼ 0. This simple but
compelling criterion often selects a unique solution,
even at five-loop order so far explored [40], in
contrast with the related OPT/SPTapproaches where
using solely Eq. (2.21) generates an increasing
number of possible solutions at increasing orders.

We recall that the quark sector at finite temperature
has no zero modes; thus strictly there is no need to
resum infrared divergences, and in standard thermal PT

this sector is commonly treated purely perturbatively
[16,17]. Accordingly since our present construction is being
performed solely for the quark sector, it is not dealing with
thermal infrared divergences (that anyhow occur only at
NNLO from the gluon sector). It nevertheless resums well-
defined RG-induced higher order contributions, leading to
rather drastic differences with NLO pQCD, as will be
illustrated below. At lowest nontrivial order δ0 the resulting
RGOPTpressure is given, keeping all terms of formally one-
loop order, by

PRGOPT
0

NfNc
¼ −

2m4

ð4πÞ2
�
3

4
− Lm

�
−m4s1

þ 2T4J1

�
m
T
;
μ

T

�
þ m4

ð4πÞ2gb0
: ð2:24Þ

Remark that the LO s0 coefficient, Eq. (2.18), has produced
the last term ∝ 1=b0 in Eq. (2.24) after algebraic simplifi-
cations. There is a subtlety here: as Eq. (2.19) shows, s1
involves two-loop RG coefficients and thus it is not
mandatory to restore (perturbative) RG invariance at LO,
that requires only s0 ≠ 0 as explained. Yet, since s1 enters
the pressure formally atOð1Þ, it appears sensible to include
it also within our one-loop RGOPT result Eq. (2.24),
incorporating in this way higher order RG properties.
(Actually the difference between the LO prescriptions with
s1 ≠ 0 or taking more simply s1 ¼ 0 is not drastic). At the
one-loop level the coupling runs according to the well-
known expression,

gðMÞ ¼ 1

2b0 lnðM=ΛMSÞ
: ð2:25Þ

Proceeding similarly at the next RGOPT order, the NLO
pressure reads, after performing steps 1–4 above,

PRGOPT
1

NfNc
¼ −

m4

8π2

�
3

4
− Lm

�
þ 2T4J1

�
m
T
;
μ

T

�
þ m4

ð2πÞ2
�
γ0
b0

��
1

2
− Lm

�
þm2

�
γ0
b0

�
T2J2

�
m
T
;
μ

T

�

þ m4

ð4πÞ2b0

�
1

g

�
1 −

γ0
b0

�
þ
�
ðb1 − 2γ1Þπ2 −

ðb0 − 2γ0Þ
3

��
− 3gCF

m4

2ð2πÞ4
�
L2
m −

4

3
Lm þ 3

4

�

− gCF

��
m2

4π2
ð2 − 3LmÞ þ

T2

6

�
T2J2

�
m
T
;
μ

T

�
þ T4

2
J22

�
m
T
;
μ

T

�
þm2T2J3

�
m
T
;
μ

T

��
: ð2:26Þ

3At NLO and higher orders one could possibly further generalize the interpolation ð1 − δÞa in Eq. (2.20) with δ2 and higher order
terms without spoiling the crucial LO RG properties entirely fixed by Eq. (2.23). But this would involve extra arbitrary variational
parameters with no compelling reasons, with no way of fixing those so that the remnant NLO scale dependence of Oðg2m4Þ would
exactly disappear. Keeping a minimal form with only a in Eq. (2.23) gives the same prescription at successive orders, thus more sensible
for comparisons.
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The exact two-loop (2L) running coupling, analogue of the
one-loop Eq. (2.25), is obtained by solving for gðMÞ the
implicit relation (see, e.g., Ref. [46]),

ln
M
ΛMS

¼ 1

2b0g
þ b1
2b20

ln

�
b0g

1þ b1
b0
g

�
; ð2:27Þ

for a given ΛMS value (this also defines the ΛMS basic
scale in our normalization conventions). In the numerical
illustrations below, we will use a value very close to the
latest world average value [38],ΛMS¼335MeV forNf ¼ 3,
that equivalently corresponds to αsðNf ¼ 3; 1.5 GeVÞ≃
0.326. (NB the latter αs value precisely compares with
the one taken in the literature for the NLO PT and HTLpt
pressures [31]).

III. RG-OPTIMIZED RESUMMATION

A. One-loop RGOPT

Before proceeding to our most relevant NLO results,
derived basically from Eq. (2.26), it is useful to examine the
probably more transparent RGOPT features at the lowest
nontrivial ðδ0Þ LO. We recall that at this order the pressure
already satisfies the massless RG Eq. (2.22) exactly, via the
RG-driven exponent Eq. (2.23) of the variationally modi-
fied Lagrangian, Eq. (2.20). Consequently the arbitrary
mass m may be fixed only by using the MOP Eq. (2.21).
The latter acting on the LO pressure Eq. (2.24) can easily be
cast into the form,

1

b0g
þ ln

m2

M2
−1−16π2s1−8π2

T2

m2
J2

�
m
T
;
μ

T

�
¼ 0; ð3:1Þ

whose nontrivial solution gives an RG invariant dressed
mass m̄ðg; T; μÞ, since the combination 1=ðb0gðMÞÞþ
lnm2=M2 is trivially M-independent according to
Eq. (2.25). [NB for more generality we keep s1 unspecified
at this stage, while for numerics below we will take s1 ≠ 0
as given by Eq. (2.19)]. Once inserting m̄ in Eq. (2.24) it
produces a (one-loop) exactly RG invariant pressure, that
takes the compact form,

PRGOPT
0

NfNc
¼2T4J1

�
m̄
T
;
μ

T

�
þT2

2
m̄2J2

�
m̄
T
;
μ

T

�
−

m̄4

32π2
; ð3:2Þ

where it is understood that m̄ is the nontrivial solution of
Eq. (3.1).4 Some properties of the dressed mass m̄ðg; T; μÞ
may be more transparent from considering the above
expressions in the high temperature approximation (and
μ ¼ 0 to simplify), upon using well-known T ≫ m limits
of the thermal integrals [14] J1, J2, given in Appendix A.
This gives from Eq. (3.1),

m̄2ðg; T; μ ¼ 0Þ ¼ T2
π2

3

�
1

2b0g
− ln

�
MeγE

πT

�
− 8π2s1

�
−1

≃
3

8
gT2 þOðg2Þ; ð3:3Þ

or, equivalently using Eq. (2.25),

m̄2ðT; μ ¼ 0Þ ¼ T2
π2

3

�
ln

�
πT

eγE−
53
84ΛMS

��
−1
; ð3:4Þ

where we used 8π2s1 ¼ −53=84 for Nf ¼ 3. As seen in
Eq. (3.3), for small coupling m̄ admits a perturbative
expansion having the expected form of a thermal screening
mass. We stress however that m̄ is unrelated to the
perturbative Debye mass [44], which at one-loop order
has the well-known expression (for μ ¼ 0),

m2
PT ¼ g

6
T2 þOðg2Þ: ð3:5Þ

In contrast m̄ in Eq. (3.3) represents an intermediate
variational quantity, whose meaning is merely once
being inserted in Pðm̄; g; T; μÞ to define the (optimized)
physical pressure at a given order. Remark that, upon
embedding RG invariance properties via the subtraction
terms in Eq. (2.16), leading to m̄ in Eq. (3.1), the LO
RGOPT pressure (3.2) involves nontrivial interaction
terms. Indeed upon perturbatively reexpanding Eq. (3.2)
using Eq. (3.3), it can be seen to resum arbitrary higher
order contributions, although only those contributions
induced by the specific leading order RG dependence.5

Accordingly at LO and in the high-T approximation, using
Eq. (2.25), Eq. (3.2) takes the simpler form,

PRGOPT
0

PSB
≃ 1 −

5

14

�
ln

�
πT

eγE−
53
84ΛMS

��
−1
; ð3:6Þ

normalized to the SB ideal quark gas PSB Eq. (2.9) (here for
μ ¼ 0). The fact that the higher order contributions may be
absorbed essentially into a one-loop running coupling (for
μ ¼ 0 and high-T limits) is a peculiar LO feature of our
construction: as we will see below at NLO the more
involved RG-induced higher order corrections are not so
simply incorporated. Another RGOPT feature is manifest
in Eq. (3.6): at high-T the explicit M-dependence in
Eq. (3.3) has been automatically traded for a dependence
in gð∼πT=ΛMSÞ, consequently from scale invariance, rather
than being an extra convenient scale choice M ∼ πT to
absorb lnðM=πTÞ terms like in more standard (nonre-
summed) thermal perturbative expansions.

4Notice that the explicit dependence upon s1 cancelled
in PRGOPT

0 Eq. (3.2) upon using Eq. (3.1), but the solution m̄
of Eq. (3.1) does depend on s1 as specified.

5In the simpler OðNÞϕ4 model, the analogous LO RGOPT[34]
resums all large-N contributions, reproducing the exactly known
large-N pressure[47], including nonanalytic terms ∼λ3p=2, p ≥ 1,
typical of a boson gas pressure.
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The LOpressure Eq. (3.2) is however not expected to give
a very realistic approximation of the complete higher order
pressure, as it only relies on LO RG-invariance properties
embedded within an essentially free gas pressure. The LO
dressed mass m̄ of Eq. (3.1) with exact T-dependence is
illustrated as function of T in Fig. 3 (where it is also
compared to NLO RGOPT dressed masses to be specified
below). The corresponding pressure Eq. (3.2) is illustrated
e.g., in Figs. 5 and 6 for μ ¼ 0 or in Figs. 9 and 10 for μ ≠ 0,
where it is also compared with NLO RGOPT and other
NLO results. We will next proceed to the more realistic
NLO RGOPT pressure: most of the above features will be
maintained, except that the scale invariance can only be
achieved approximately beyond LO, as we will examine.

B. Two-loop RGOPT

At NLO the RG Eq. (2.22) is no longer automatically
satisfied by Eq. (2.26) with (2.23), and can be thus
considered as an independent constraint. Following
[35,41,42] we can in principle use either the MOP
Eq. (2.21) or the RG Eq. (2.22), defining two possible
alternative dressed mass m̄ðg; T; μÞ: we will consider in the
following both prescriptions, for completeness and com-
parison purposes. Accordingly the coupling gðMÞ is simply
determined from standard PT, i.e., with its running at
(exact) two-loop order given by Eq. (2.27) and scale M
chosen as a combination of πT and μ when both T, μ are
nonzero. As shown above in Sec. III A, the LO RGOPT
pressure exhibits one-loop-exact scale invariance as a
consequence of the simple form of Eq. (2.24) only depend-
ing on b0. While at NLO or beyond, PRGOPTðm̄ðgÞ;M; � � �Þ
inevitably has a remnant scale dependence: the basic reason
is that the subtractions in Eq. (2.16) solely guarantee RG
invariance up to remnant higher order terms,∼m4g2 at NLO.
This feature cannot be drastically reduced by the subsequent
variational modification in Eq. (2.20). Concretely the exact
NLO running coupling Eq. (2.27), that depends only on bi
coefficients in Eqs. (2.13), (2.14), cannot perfectly cancel
the explicit scale dependence ofEq. (2.26), that also involves
anomalous mass dimension coefficients γi in (2.15) remi-
niscent of the originally NLO massive theory. Nevertheless
it is a nontrivial consequence of our above construction
through steps (1)–(4) in Sec. II B, preserving RG invariance
at least at the same perturbative level as Eq. (2.17), that the
remnant scale dependence remains formally of higher order
∼m4g2. Accordingly this NLO RGOPT scale dependence,
that wewill exhibit by varying the scale by a factor 2 around
central M ∼ 2πT (for μ ¼ 0), is generically milder
[34,35,41] than for standard PT and HTLpt. It is thus
expected to remain moderate (and to further decrease at
NNLO) even for relatively low temperature where the
resulting dressed thermal mass is not necessarily perturba-
tively screened.Using the standardPTrunning coupling also
more directly compares with the same common prescription
in other related thermal resummations approaches, like

HTLpt typically. But one should keep in mind that identify-
ing the arbitrary renormalization scale M to be OðπTÞ is
strictly valid only at sufficiently high temperatures.
As mentioned above, Eq. (2.23) has the property to select

a unique NLO solution matching the perturbative asymp-
totic freedom (AF) behavior for g → 0 at T ¼ 0. As it
happens however regarding the NLO quark pressure
Eq. (2.26), imposing either Eq. (2.21) or Eq. (2.22) both
fail to readily give a real dressed mass m̄ðg; T; μÞ for a
substantial part of the physically relevant T, μ range. This is
admittedly a technical burden of such methods, but the
occurrence of complex variational solutions has no deeper
physical meaning. Rather, it may be viewed to some extent
as an accident of the specific MS scheme in which the
original perturbative coefficients were calculated, given
that nonreal solutions are often expected upon exactly
solving nonlinear equations, like in the present case solving
for m the NLO Eqs. (2.21) or (2.22). At the same time we
wish to maintain these relations as exact as possible in order
to capture RG resummation properties beyond PT. A crude
escape could be simply to take the real part of the solutions,
but that potentially loses some of the sought RG properties.
The nonreal solution issue also occurred in the simpler T ¼
μ ¼ 0 case [37] as well as within the T ¼ 0, μ ≠ 0 cold
quark matter application [42], where it was cured by
performing a renormalization scheme change (RSC)
[37]. The latter allows for the recovery of real solutions
by modifying perturbative coefficients while keeping RG
consistency by definition. Of course for such a solution to
work the RSC should not be arbitrary, but fixed by a
sensible prescription, and importantly such that it remains a
moderate (i.e., perturbative) deviation from the original
scheme. More specifically in [42] a relevant NLO RSC
parameter B2 was uniquely fixed by requiring collinearity
of the RG and MOP curves in the fm; gg plane (that
precisely expresses the recovering of real solutions).
Technically this implies to nullify the determinant of partial
derivatives of the RG and MOP equations, and to solve the
latter together with, e.g., Eq. (2.21) for fB2; m̄ðB2; gÞg.
While solving such a coupled system was easily manage-
able for the (entirely analytical) T ¼ 0, μ ≠ 0 NLO
expressions in [42], it becomes numerically quite chal-
lenging for the rather involved T; μ ≠ 0 NLO dependence
from Eq. (2.26). Therefore in the present study, seeking as
much as possible for simplicity, we will exploit the RSC
arbitrariness quite similarly to recover real solutions, but
via simpler alternative prescriptions precisely defined in
next Sec. IV. The reader mainly interested in concrete
results for the thermodynamical quantities may skip this
section proceeding directly to Sec. V.

IV. NLO PRESCRIPTIONS

A. Simple RSC parametrization

Let us first specify for our later purposes the RSC to be
used. Since one basically introduces a variational (quark)
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mass, the most natural and simplest RSC can be defined by
modifying only the mass parameter,

m → m0ð1þ B2g2Þ; ð4:1Þ

where a single B2 coefficient parametrizes a perturbative
NLO scheme change from the original MS-scheme.6 As is
well-known, for a perturbative series truncated at order gk

[like in the present case the original order-g pressure
Eq. (2.1)], different schemes differ formally by remnant
terms of order Oðgkþ1Þ, such that the difference between
two schemes is expected to decrease at higher orders for
sufficiently small coupling value. Note that we perform the
perturbative RSC Eq. (4.1) consistently on the original PT
expression (2.1) prior to its modification induced from
Eq. (2.20) with the subsequent δ-expansion. The net RSC
modification to the pressure is to add an extra term,
−4gðm0Þ4s0B2, entering thus the resulting exact NLO
Eq. (2.21) or Eq. (2.22). Thus Eq. (4.1) modifies the latter
equations purposefully, now considering those equations as
constraints for the arbitrary massm0, after the modifications
from Eq. (2.20).7 Accordingly B2 may be considered as an
extra variational parameter, quite similarly to m, thus to be
fixed by a definite prescription as will be specified below.

B. AF-compatible NLO dressed mass solutions

To identify some relevant properties of the sought
dressed m̄ðg; T; μÞ solutions we consider first the MOP
Eq. (2.21) more explicitly at NLO, thus applied to
Eq. (2.26). It is convenient to formally solve it in a first
stage for ln½m2=M2�, as that would give simply an exact
quadratic equation at T ¼ μ ¼ 0. Accordingly the two
equations (that are implicit in m for T; μ ≠ 0) can be
conveniently written, after straightforward algebra, as

− ln
m2

M2
þ Bmop ∓ 2π

3g

ffiffiffiffiffiffiffiffiffiffi
Dmop

p ¼ 0; ð4:2Þ

where for T; μ ≠ 0, Bmop and Dmop take a relatively
compact form,

Bmop ¼ −
7π2

9g
þ 5

6
þ 4π2

�
J02 þ

T2

m2
J2

�
; ð4:3Þ

Dmop ¼ 9
π2

4
−
47

6
g−g2

�
35

16π2
þ288

π2

7
B2

�

þ36π2g2
�
J022 þ T4

m4
J22

�
þ9gðg−2π2Þ

�
T2

m2
J2−J02

�

þ8π2g2
T2

m2
ð3J2−1ÞJ02−48π2g2

�
J03þ

T2

m2
J3

�
;

ð4:4Þ

where Ji ≡ Jiðm2=T2; μ=TÞ, J0i ≡ ∂xJiðxÞ, (note that here
x≡m2=T2). In Eq. (4.4) we explicitly separated the T, μ-
independent part within Dmop in the very first line to make
its T; μ → 0 limit clear [remark also thatDmopðT ¼ 0Þ does
not depend on m].
One first property of Eq. (4.2) is exhibited from

expanding it perturbatively to the first few terms. That gives

ln
m̄2

M2
ð−Þ ≃ −

16π2

9g
þ 139

54
þ 8π2

T2

m̄2
J2 þOðgÞ; ð4:5Þ

and

ln
m̄2

M2
ðþÞ ≃ 2π2

9g
−
49

54
þ 8π2J02 þOðgÞ: ð4:6Þ

One easily recognizes that, for T → 0 the leading term for
g → 0 in m̄2ð−Þ has the correct AF behavior: ln m̄2

M2 ð−Þ∼
−1=ðb0gÞ, noting that b0 ¼ 9=ð16π2Þ (for Nf ¼ 3), which
as recalled above is a compelling requirement of the
RGOPT. In contrast the other ðþÞ solution has a wrong
sign and coefficient, thus drastically in contradiction with
AF for g → 0. Therefore clearly only the above Eq. (4.2)
with ð−Þ is to be selected. It is further instructive to
investigate the behavior of those two solutions for
T ≠ 0, taking for simplicity the high-T approximation
[and μ ¼ 0, see Eq. (A2)]. After straightforward algebra
one obtains, for the first few perturbative expansion terms,

m̄2
ð−Þ
T2

¼ 3

8
g

�
1 −

3

8π2
g

�
3LT þ 85

36

��
−1

þ g2
�

67

288π2
þ 6J3ð0; 0Þ

�
þOðg3Þ; ð4:7Þ

where we defined for short,

LT ≡ ln

�
MeγE

πT

�
: ð4:8Þ

As seen the AF-compatible solution m̄ð−Þ has a typical
perturbative thermal screening mass behavior m ∼ ffiffiffi

g
p

T,
with a coefficient here mainly determined by RG properties
[notice that the first order term is consistent with our LO
above result, Eq. (3.3)]. In contrast the non-AF-compatible

6Equation (4.1) has also the welcome property that it does not
affect the definition of the reference QCD scale ΛMS, in contrast
with a similar perturbative modification acting on the coupling
(see Ref. [37] for details).

7To avoid excessive notation proliferation, in what follows
once having performed the replacement implied by Eq. (4.1) we
simply rename m0 → m the variational mass to be determined
from Eq. (2.21) or Eq. (2.22).
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Eq. (4.2) with ðþÞ has m̄ðþÞ solutions for T; μ ≠ 0 having
a coupling dependence that cannot be cast into the form of a
perturbative expansion for small enough g. Moreover the
corresponding real solutions generally give m=T ≫ 1,
unless g is very large (see Appendix B). The latter features
give further compelling reasons to rejecting this non-AF
solution also for the T; μ ≠ 0 case. Thus as anticipated the
AF-compatibility criterion leads to a unique MOP solution.
The purely perturbative expansion Eq. (4.7) is however

not expected to give a very good approximation for
relatively low8 T, and obviously not useful anyway for
μ ≠ 0. Before we proceed below with the more elaborate
RSC prescription to solve exactly Eq. (4.2), it may be
instructive to illustrate the results of using the simple
perturbative solution Eq. (4.7), inserted in our NLO
pressure Eq. (2.26), and with the resulting expression
being truncated simply at first order in g [i.e., this is
accordingly the NLO generalization of Eq. (3.6)]. This is
shown in Fig. 2, compared to the true standard NLO
massless quark PT pressure Eq. (2.8). This result represents
a good consistency check of our procedure: the two
pressures are not strictly identical but very close, since
after expressing the optimized mass m̄ðgÞ, the RGOPT is
expected to approximate a massless theory. [Note that
replacing m in Eq. (2.26) instead by, e.g., the standard
thermal Debye mass Eq. (3.5), would give results more
drastically departing from the massless PT pressure]. Now
more interestingly, the main purpose of the RGOPT is
rather to provide higher order deviations from standard PT,
induced by higher order RG-induced terms, as we will
exhibit next.

C. NLO mass optimization prescription

Going back to the exact MOP Eq. (4.2), Eq. (4.4)
involves the RSC parameter B2 as induced from Eq. (4.1).
In the original MS scheme, i.e., B2 ≡ 0, Dmop from
Eq. (4.4) can take negative values for not particularly large
couplings.9 As anticipated above it therefore renders the
(exact) m̄ðg; T; μÞ solution not always real, except in a
rather limited range of physically interesting T and/or μ
values. Remark however that since the (perturbatively
leading) first term in Eq. (4.4) is positive, this loss of real
m̄ solutions arises solely when considering the exact
Eq. (4.2): now since all our results were obtained from
modifying perturbative NLO expressions, one may simply
expand perturbatively Eq. (4.2), obtaining therefore a real
expression at arbitrary orders [as partially illustrated by the
first few orders of such an expansion in Eq. (4.7)]. But it is
soon realized that this is a poor approximation of the
actual exact expression, even for g slightly below the value
at which Dmop becomes negative. Accordingly such per-
turbative expansion would partly lose the sought RG
properties, due to RG-consistent contributions being per-
turbatively truncated. Now with Dmop not too far from
being positive, a more efficient way to recover real
solutions is from an appropriately chosen B2 value such
that Dmop > 0.
Let us thus define precisely our prescription for the MOP

Eq. (4.2): in a first stage we fix the arbitrary RSC parameter
B2 in Eq. (4.4) such that Dmop > 0. Next, the resulting
modified AF-matching Eq. (4.2) with (−) is solved exactly
(numerically) for m̄ðg; T; μÞ, recovering real solutions for
practically most relevant g values. Note that simply
requiring Dmop ≥ 0 does not give a unique prescription,
but it happens to be rather constrained: first Dmop ¼ 0 is
excluded, as it would spoil the crucial AF-compatibility of
Eq. (4.5), that at least requires the LO (first) term of
Eq. (4.4). On the other hand if Dmop > 0 would be too
large, the AF-matching (−) Eq. (4.2) would take too
negative values no longer giving a real solution (i.e., it
cannot cross the x-axis). Since the problem comes from
some negative terms within Eq. (4.4), a prescription that
appears minimal is to fix B2 such as to cancel solely the
largest (in magnitude) T, μ-independent negative term
within Eq. (4.4), −ð47=6Þ g. Explicitly that gives

B2 ¼ −
329

1728π2 g
: ð4:9Þ

The latter B2 prescription is very simple, and the resulting
m̄MOP solution remains real for practically all physically
relevant gðT; μÞ values, while still including nontrivial

FIG. 2. Perturbatively reexpanded NLO RGOPT pressure
PðT; μ ¼ 0Þ (red band) compared with standard perturbative
NLO pressure Eq. (2.8) (blue band), with scale dependence
πT ≤ M ≤ 4πT.

8In particular the exact NLO m̄ as obtained below can be such
that m̄=T > 1 at sufficiently low T (see Fig. 3), somewhat
invalidating the high-T approximation.

9For example for T ¼ μ ¼ 0 where only the first three terms of
Eq. (4.4) are nonvanishing, Dmop ≤ 0 for rather moderate
g ≥ 2.64, i.e., αS ≥ 0.21.
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higher order corrections induced from all remnant
terms of Eq. (4.2). Other slightly different B2-fixing
prescriptions are possible for T; μ ≠ 0, but a notable
property is that for different B2 choices, that imply different
exact m̄ðB2Þ solutions, the resulting physical pressure
Pðm̄ðB2Þ; B2; � � �Þ Eq. (2.26) happens to be largely insen-
sitive to those unphysical B2 parameter choices
provided that m̄ðB2Þ remains real. This welcome feature
is to be traced to the underlying RSC properties, together
with the further perturbative screening from Eq. (4.7):
m̄2 ∼ ð3=8ÞgT2 þOðg2Þ: as easily checked, B2 from
Eq. (4.1) only appears at higher order Oðg3Þ both in the
perturbatively expanded m̄ Eq. (4.7) and corresponding
reexpanded pressure from Eq. (2.26). In other words once
B2 is adjusted to recover a real m̄ solution of Eq. (4.2), the
discrepancies between possibly different B2 prescriptions
are somewhat hidden within perturbatively higher
order terms.
To close this subsection, we illustrate in Fig. 3 the

resulting dressed thermal masses as function of the temper-
ature, both at LO from Eq. (3.1), and NLO from MOP
Eqs. (4.2), (4.9). As already mentioned their behavior is
essentially that of screening thermal masses, except that
those are determined from RG properties. We also compare
in Fig. 3 with the similar dressed thermal mass as obtained
from the alternative RG prescription, giving Eqs. (4.10)
with (4.13), as we will specify in next subsection.
Correspondingly Fig. 4 illustrates the relevant RSC
deviation B2g2 in Eq. (4.1) resulting from Eq. (4.9) as
function of T. As an important cross-check, it shows that
the departure from the original MS-scheme remains quite
moderate.

D. Alternative NLO RG prescription

Alternatively, the other very relevant prescription, as
anticipated in Sec. III B, is to consider the RG Eq. (2.22)
instead of the MOP Eq. (4.2) to determine the dressed mass

m̄ðg; T; μÞ. Once expressed for lnðm2=M2Þ it takes a similar
quadratic form as Eq. (4.2), conveniently normalized as

− ln
m2

M2
þ Brg ∓ 8π2

g

ffiffiffiffiffiffiffiffiffiffiffi
2

3
Drg

r
¼ 0; ð4:10Þ

where explicitly

Brg ¼ −
1

b0g
þ 172

81
−
64

81

�
4g
9π2

�
1

1þ 4g
9π2

þ 8π2
T2

m2
J2;

ð4:11Þ
and

Drg ¼ −
�
3

7
B2 þ

11

384π4

�
g2 −

g
27

ð4gþ 81π2Þ
ð4gþ 9π2Þ2

þ g2
T4

m4
J2

�
J2 −

1

6

�
− g2

T2

m2
J3: ð4:12Þ

Now, similarly to the previous MOP Eq. (4.2), for B2 ¼ 0
one obtains generally nonreal solutions since in Drg some
contributions happen to be negative. In contrast with
Eq. (4.2) however, the crucial AF-matching for the RG
solution is already guaranteed solely from the first term in
(4.11), up to higher order terms. These features strongly
suggest the prescription fixing the arbitrary RSC parameter
B2 as simply to fully cancel Drg,

DrgðB2Þ≡ 0: ð4:13Þ
Equation (4.13) determines B2 trivially using Eq. (4.12),
leading to a single real AF-compatible solution m̄RG
determined from the first two terms of Eq. (4.10), the
latter being still an implicit equation in m for T; μ ≠ 0 via
J2 entering Eq. (4.11). Equation (4.13) may appear a rather
peculiar choice, but there happen to be very few other
choices to recover a real RG solution. We stress that for any
(MOP or RG) prescriptions the resulting m̄ðB2Þ is an
intermediate variational parameter without much physical
meaning outside its use in the pressure. Here the resulting

FIG. 4. RSC parameter B2g2ðMÞ for the MOP and RG
prescriptions for πT ≤ M ≤ 4πT at μB ¼ 0.

FIG. 3. Exact LO RGOPT thermal mass (dot-dashed) compared
with exact MOP and RG NLO thermal mass for π ≤ M ≤ 4πT at
μB ¼ 0.

KNEUR, PINTO, and RESTREPO PHYS. REV. D 104, 034003 (2021)

034003-10



m̄RGðB2Þ still involves arbitrary higher order contributions,
as well as nontrivial T, μ dependence via Brg in Eq. (4.11).
Similarly as for the MOP above prescription, we have
checked that for other B2 choices, as long as being moder-
ately different from Eq. (4.13), our numerical RG results for
T; μ ≠ 0 are not strongly dependent upon those choices.
The dressed exact thermal mass m̄RG resulting from

Eqs. (4.10), (4.13) is illustrated as function of the temper-
ature in Fig. 3, and compared with the previously discussed
LOmass from Eq. (3.1) and m̄MOP from Eqs. (4.2), (4.9). As
seen the dressed masses are numerically quite different, but
such differences in the two alternative NLO variational
masses are drastically reduced within the physical pressure
as will be illustrated below. The corresponding RSC
deviation B2g2 obtained from Eq. (4.13) is illustrated in
Fig. 4 as function of T, and compared to the similar MOP
B2g2 from Eq. (4.9). Notice that despite the visible discrep-
ancies between the two expressions, they are numerically
not drastically different and both behave smoothly, except at
very low T ≲ 0.5 GeV: as already mentioned above the
important feature is that the induced departure from the
original MS-scheme remains moderate.

V. RGOPT PRESSURE RESULTS AT NLO

To obtain the full benefit from the RGOPT, in particular the
optimally reduced scale dependence, a price to pay as a result
of thevariational approach is to first solve exactly numerically
for the dressed mass [either from Eq. (2.21) or alternatively
Eq. (2.22)], prior to its use in the RGOPT pressure at NLO,
Eq. (2.26). Such a procedure is moreover complicated by the
onus of complex solutions, cured by the appropriate RSC as
specified above in Sec. IV. But the relevant NLO expressions
(4.2) or alternatively (4.10) are reasonably simple and the
numerical procedure is straightforward. Before illustrating
the resulting exact NLO RGOPT pressure, we start this
section with another intermediate (more perturbative) pre-
scription, to show the gradual improvement typically con-
cerning the remnant scale dependence.

A. A simple perturbative approximation

The simplest we can do to recover real solutions without
going through RSC considerations as elaborated on pre-
viously in Sec. IV, while capturing at the same time more
accurate T, μ dependence, is to expand m̄ from the MOP
Eq. (4.2) perturbatively to NLO Oðg2Þ, but keeping the
exact thermal integrals in the resulting expression. This
gives after simple algebra,10

m2
MOP

T2
¼ 9

2
gJ2 þ g2

�
17

9
J02ð1 − 12J2Þ þ

34

3
J3

þ
�
20371

1728π2
−

81

32π2
ln

m2

M2

�
J2

�
; ð5:1Þ

therefore still to be solved numerically as an implicit
function since Ji ≡ JiðmT ; μTÞ. The above expression readily
gives a real solution, and allows us to consider μ ≠ 0within
the thermal integrals (and within the running coupling as
well) while still keeping a relatively simple “perturbative-
like” expression. Inserting the solution of Eq. (5.1) into the
RGOPTNLO quark pressure Eq. (2.26) (keeping also exact
thermal integrals consistently in the latter), gives the results
illustrated for μ ¼ 0 in Fig. 5, compared with the standard
NLO PT pressure Eq. (2.8), and also with the NLO HTLpt
(quark) pressure. (NB for a consistent comparison with the
latter at this stage, we have extracted the sole quark
contributions within the complete QCD NLO HTLpt
pressure, which is not a trivial separation as in the case
of NLO pQCD. How to do this precisely is explained in
Appendix C).
Alternatively, proceeding similarly with the RG

Eqs. (4.10) and (4.13) gives

m2
RG

T2
¼ 9

2
gJ2 þ

g2

32π2

�
172 − 81 ln

m2

M2

�
J2; ð5:2Þ

observing that the LO term and the lnM dependence are
identical to those in Eq. (5.1). This illustrates that although
the MOP and RG prescriptions are quite different if
considering their exact determinations, perturbatively they
differ only by Oðg2Þ terms, thus formally higher order than
the original NLO perturbative pressure from which they
were both constructed. Moreover, inserting Eq. (5.2) within

FIG. 5. Comparison of NLO RGOPT quark pressure Eq. (2.26)
with m̄ðg2Þ (green, thin lines), LO RGOPT (dotdashed), NLO PT
(blue, dashed), NLO HTLpt quark pressure (red, dotted) with
scale dependence πT ≤ M ≤ 4πT (bands) and central scale M ¼
2πT (lines) at μB ¼ 0.

10As an algebraic subtlety, one should first expand perturba-
tively the (AF-matching) Eq. (4.2) with (−) before to solve it
formally for m2=T2; otherwise one loses the latter AF-matching
properties.
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Eq. (2.26) gives almost identical results as in Fig. 5. Note
also that in both Eqs. (5.1) and (5.2) the running gðMÞ
exactly cancels the M-dependence at Oðg2Þ, as easily
checked using Eqs. (2.25), (2.13), and (A2).
As seen in Fig. 5 the RGOPT pressure with the (MOP

or RG) m̄ðg2Þ approximation has a more pronounced
decrease, i.e., a departure from the ideal gas limit, than
the standard NLO PT (pQCD) quark pressure and than LO
RGOPT for moderate and low T values, that is mainly
traced to the higher order g2 contributions in Eq. (5.1) or
Eq. (5.2). Actually, it is rather closer to the higher orders
standard pQCD pressure, as will be illustrated below, partly
due to Eq. (2.26) and the thermal functions Ji being kept
exact. (If perturbatively reexpanded, the resulting pressure
gets back closer to the NLO pQCD result). This is in
contrast with the NLO HTLpt pressure, that remains very
close to the ideal gas limit except at very low T as seen in
Fig. 5.11 In Fig. 5 the RGOPT pressure also exhibits a better
renormalization scale dependence as compared with NLO
pQCD (at least for T > 1 GeV), although this is only a
moderate improvement. Very similar results are obtained
for μ ≠ 0, that we omit to illustrate. We will see below that
the more elaborate untruncated RGOPT pressure, account-
ing for higher orders in m̄ðgÞ, has a more drastically
improved scale dependence, which is a main expected
RGOPT feature.

B. Hot quark matter: T ≠ 0, μ= 0

1. MOP prescription

The resummation properties of the NLO RGOPT
become more evident when one compares it with the
standard perturbative one (pQCD) at the same NLO. We
illustrate (first for μ ¼ 0) the exact NLO RGOPT pressure
Pðm̄; g; T; μÞ obtained from our first m̄MOP prescription,
defined by solving Eqs. (4.2), (4.9) (as explained in details
in Sec. IV C). In Fig. 6 the pressure is displayed as function
of the temperature, compared with the LO RGOPT and the
standard NLO pQCD Eq. (2.8), for the scale dependence
πT ≤ M ≤ 4πT. The reduction of scale dependence stem-
ming from the now exact (untruncated) NLO RGOPT
appears substantial (about a factor ∼2 improvement for
e.g., T ∼ 1 GeV). The HTLpt NLO (quark) pressure [31] is
also shown in the same figure for comparison. We observe
that the (NLO) quark HTLpt pressure has a small residual
scale dependence for most T values (which is partly a
consequence of limiting it to the quark only contribution),
but does not depart very much from the ideal gas limit, in

contrast with the RGOPT pressure. This latter feature is
similar concerning the complete QCD NLO HTLpt [31]),
while a more drastic departure from the ideal gas is only
obtained at NNLO for HTLpt [33].

2. Alternative RG prescription

Similarly to Fig. 6, we illustrate in Fig. 7 the exact NLO
RGOPT pressure as obtained from the alternative m̄RG
prescription defined from solving Eqs. (4.10) and (4.13)
(explained in details in Sec. IV D). As is seen the RGOPT
reduction of remnant scale dependence is even more
substantial than for the previous m̄MOP prescription. The
efficient reduction of remnant scale dependence with
respect to standard NLO pQCD is also shown more
quantitatively in Fig. 8, illustrating the maximal scale
variations, ΔP=P≡ ðPðM ¼ 4πTÞ=PðM ¼ πTÞ − 1, for
the different approximations as indicated. Despite the
numerically quite different MOP and RG dressed mass

FIG. 6. RGOPT quark pressures as function of temperature at
LO and NLO (MOP prescription) compared with standard NLO
PT (pQCD) and NLO HTLpt pressures, with scale dependence
πT ≤ M ≤ 4πT at μB ¼ 0.

FIG. 7. Same captions as for Fig. 6 but with the
RGOPT pressure obtained from alternative m̄RG prescription
Eqs. (4.10), (4.13).

11We mention that the NLO HTLpt pressure in Fig. 5 (and
similarly below in Figs. 6–7, Figs. 9–10) is somewhat different
than the results in Ref. [31], specially at very low T. This is due to
considering here only its pure quark contributions, and partly also
from using the exact Eq. (2.27) instead of a more approximate
two-loop running expression used in [31].
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(see Fig. 3), the resulting physical pressures are much
closer for the two prescriptions, except at very low T values
(i.e., very large coupling). This is a reasonable crosscheck
of the moderate dependence upon the details of the
optimization prescriptions, already observed here at
NLO. For both the MOP and RG prescriptions lower
pressure values are obtained at moderate temperatures as
compared to LO RGOPT, NLO HTLpt and NLO pQCD in
Figs. 6 and 7.

C. Hot and dense quark matter

We now consider nonzero chemical potential values.
Since the MOP (4.2), (4.9) and RG (4.10), (4.13) pre-
scriptions are defined quite generically they can be readily
applied to the more general T; μ ≠ 0 case. As a represen-
tative physical value we illustrate our results for

μB ¼ 1.2 GeV. For the renormalization scale variation
range we take as is common π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
≤ M ≤

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
within the exact NLO running coupling

Eq. (2.27). This gives the results for the pressure as a
function of temperature as shown in Figs. 9 and 10 for the
MOP and RG prescriptions respectively. As is seen, for this
rather sizable μB value the qualitative picture is very similar
to the μB ¼ 0 case above: namely the remnant scale
dependence reduction from RGOPT is drastic as compared
to pQCD, and sensible departures with respect to both
pQCD and HTLpt are obtained from resummation effects at
relatively low temperatures. These results appear to support
the robustness of the RGOPT for a more reliable explora-
tion of hot and dense matter.

D. Including glue contribution:
confrontation to lattice results

In principle a rather similar RGOPT treatment of the pure
glue sector should be possible, building on the hard thermal
loop (HTL) originally proposed in [18], with a gauge-
invariant (nonlocal) effective Lagrangian properly describ-
ing Landau damping and screening with a gluon (thermal)
“mass” term. However, this requires technically the evalu-
ation of presently unknown and quite involved thermal
integrals. More precisely, the RG-restoring subtraction
analogous of Eq. (2.16) for nonzero gluon mass mD

requires to calculate exact two-loop HTL m4
gαS contribu-

tions, rather than expanded in m2
D=T

2 up to order α5=2S , as
calculated e.g., in [30,48]. Such a calculation involves up to
five-dimensional complicated integrals, due to the highly
nontrivial dressing of gluon propagators and vertices rooted
in the HTL formalism. We leave such considerations for
future work [43]. Therefore as above anticipated in the
present work we treat the pure glue contribution most
conservatively in a standard perturbative manner. At the
same NLO, the standard perturbative pure glue contribution
has the well-known expression [49],

FIG. 10. Same captions as in Fig. 9 with alternative NLO RG
prescription.

FIG. 8. ΔP=P≡ PðM ¼ 4πTÞ=PðM ¼ πTÞ − 1 as a function
of temperature (for μB ¼ 0) for the different NLO RGOPT
prescriptions compared to standard NLO pQCD, with scale
dependence πT ≤ M ≤ 4πT.

FIG. 9. RGOPT pressure as function of the temperature at LO
and NLO (MOP prescription), compared with NLO pQCD and
NLO HTLpt pressures, with scale variation π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
≤

M ≤ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
at μB ¼ 1.2 GeV.
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PPT
g

Pg;SB
¼ 1 −

15

4

�
g
4π2

�
þOðg2Þ; ð5:3Þ

where the ideal gluon gas pressure is Pg;SB ¼ ð8π2=45ÞT4.
Thus we simply add the perturbative NLO contribution
Eq. (5.3) (properly normalized) to our NLO RGOPT quark
contributions Eq. (2.26), and for the numerical illustrations
below we normalize our results to the full ideal pressure of
quarks plus gluons: PSB → Pq;SB þ Pg;SB.

12

Following the progressive elaboration levels as in the
previously shown quark pressure approximations, we first
illustrate in Fig. 11 the results of using the simple perturba-
tively reexpanded approximation for m̄, Eq. (5.1), for the
quark contribution, but supplemented now by the NLO glue
contribution, Eq. (5.3). The resulting RGOPT pressure is
compared with both the (massless quark) state-of-the-art
N3LO pQCD, which expression is taken fromRef. [16], and
to available LQCD results from Refs. [50–52]. As is seen,
adding the NLO PT glue contribution puts our results in the
right ballpark of LQCD data, with clearly visible improve-
ment as compared to pQCD, both for the central scale choice
and resulting remnant scale uncertainty. [We also note that
using instead the similar RG perturbative approximation
Eq. (5.2) gives almost undistinguishable results from
Fig. 11, illustrating the low order perturbative consistency
of the two different MOP and RG prescriptions]. Next in
Figs. 12 and 13, we illustrate similarly the results obtained
upon adding the NLO PT glue contributions Eq. (5.3) to
the NLO RGOPT quark pressure respectively for the
(exact) MOP and RG prescriptions. These are compared
with the state-of-the-art N3LO pQCD [16], and to LQCD

results [50–52]. As seen the RGOPT results get closer to
LQCD data, with a further reduced scale dependence, as
compared to pQCD. In Fig. 13 we compare in addition with
both NLO [31] and the state-of-the-art NNLO HTLpt [33].
The corresponding HTLpt pressure expressions are worked
out from Eqs. (51), (55), (56) in [31] at NLO, and from
Eqs. (4.5), (4.6) in [33] atNNLO (we refer toAppendixC for
more discussions on the HTLpt contributions). Notice also
that these NNLO HTLpt and the Oðg3 ln gÞ pQCD[16]
results were obtained using a standard perturbative three-
loop order running coupling. The pressure from the RG
prescription gives the smallest residual scale uncertainties
and is in remarkable agreement with LQCD data in [50] for
the central scale M ¼ 2πT, for temperatures as low as T ∼
0.25 GeV up to T ¼ 1 GeV, the highest value considered in
[50]. (More precisely let us mention that for the five

FIG. 11. RGOPT Pðm̄ðg2ÞÞ plus NLO PPT
g pressure as function

of T (green band) compared to ðN3LO; g3 ln gÞ pQCD (light blue
band), with scale dependence πT ≤ M ≤ 4πT, and to lattice data
[50–52] at μB ¼ 0.

FIG. 12. Full NLO RGOPT (MOP prescription) plus NLO PPT
g

pressure as function of T (grey band) compared to ðN3LOg3 ln gÞ
pQCD (light blue band), with scale dependence πT ≤ M ≤ 4πT,
and to lattice data [50–52] at μB ¼ 0.

FIG. 13. Full NLO RGOPT (RG prescription) plus NLO PPT
g

pressure (brown band) compared to N3LOg3 ln g pQCD (light
blue band), NLO HTLpt (light green band) and NNLO HTLpt
(light red band), with scale dependence πT ≤ M ≤ 4πT, and to
lattice data [50–52] at μB ¼ 0.

12As a slight abuse of notation, note that in Figs. 5–10 where
only quark contributions are included, PSB designates the sole
quark ideal pressure Eq. (2.9), while in Figs. 11–13 below
PSB ≡ Pq;SB þ Pg;SB.
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available LQCD points in [50] with T > 0.3 GeV the
central scale agreement is at the few permille level, and
even slightly better when considering their estimated con-
tinuum data). It is also in good agreement with more recent
LQCD data [51] at intermediate T. The RGOPT pressure is
somewhat closer to LQCD results from [50] than the NNLO
HTLpt pressure for 0.5 GeV≲ T ≲ 1 GeV, while at higher
T values HTLpt is nearer to the results of [52], and RGOPT
shows more sizeable differences of order 5%–7%. A
concomitant feature however is the visible tension between
low [50] and higher T [52] LQCD data in their common
temperature range.13

Let us briefly mention that we have tried some variants of
our prescriptions in order to check the stability of our
results. First, the other RSC prescription to recover real
solutions, mentioned above in Sec. III B and used in
Ref. [42], is to require the collinearity of the vectors
tangent to the MOP and RG curves considered as functions
of ðm; gÞ [see Eq. (4.7) of Ref. [42] ]. In the present T ≠ 0
case it is however numerically much more involved than
our simpler prescriptions above (in particular to identify
the AF-compatible solutions at moderate and low T values).
Yet we could check that the resulting pressure is roughly
similar to the one given by the MOP prescription in
Figs. 6, 12. Next, we have also considered a variant of
the RG prescription, by including the NNLO ∼ gm4s2
subtraction term of Eq. (2.16), that is formally of NLO
OðgÞ.14 The s2 expression [39,40] incorporates three-loop
order RG coefficient dependence, thus for consistency we
took a three-loop perturbative running coupling generalizing

Eq. (2.27). We remark that the resulting pressure for this
variant hardly shows visible differences with Figs. 13,
reflecting a good stability, so that we omit to illustrate it.
Another physical quantity of interest is the trace anomaly

(or equivalently interaction measure). The latter has the
well-known expression,

Δ≡ ε − 3P ¼ T
∂P
∂T − 4P ¼ T5∂ðP=T4Þ=∂T; ð5:4Þ

(where the second and third equalities are of course valid
only for μ ¼ 0). As previously we add the pure glue NLO
PTexpression to our RGOPT quark contribution. The result
is illustrated, for our best RG prescription, in Fig. 14 where
it is compared to LQCD data [50–52] only. A very good
agreement with LQCD results of [50,51] is obtained for
0.3 GeV≲ T ≲ 1 GeV, while there are more visible
differences with the higher T results from [52]. Just for
indication is also delineated the part of the remnant scale
uncertainties originating solely from the RGOPT quark
contributions (dashed lines) within the total uncertainties
that also include the ones coming from the (standard) NLO
PT glue contribution. As clearly seen however, similarly to
pQCD and HTLpt, the NLO RGOPT does not describe
correctly the peak region near the pseudocritical Tc temper-
ature as exhibited by lattice data. We speculate that a
similar RGOPT resummation in the gluon sector should be
a first necessary step to possibly better address the phase
transition region, while at present we have treated this
sector purely perturbatively as above explained. Therefore
our present results are certainly not reliable in the region
below T ≲ 0.25 GeV.
As a last fairly different illustration, we show the NLO

RGOPT pressure as function of the quark chemical potential
μ, for our two MOP and RG prescriptions respectively in
Figs. 15 and 16, for a fixed relatively low temperature

FIG. 14. NLO RGOPT (RG prescription) trace anomaly Δ≡
ε − 3P (including ΔPT

g ) (brown band) compared to lattice data
[50–52]. The additional dashed lines illustrate the scale uncer-
tainty originating solely from RGOPT quark contributions within
the full scale uncertainty added by ΔPT

g (brown) band.

FIG. 15. Full NLO RGOPT (MOP prescription) plus NLO PPT
g

pressure (grey band), as function of the quark chemical potential
μ for T ¼ 0.3 GeV, compared to N3LOg3 ln g pQCD (light blue
band) and NNLO HTLpt (light red band), with scale dependence
πðT2 þ μ2=π2Þ1=2 ≤ M ≤ 4πðT2 þ μ2=π2Þ1=2.

13We show LQCD data as given in publicly available files
[50–52] that do not include systematic uncertainties.

14This variant is the next order analogue of including the NLO
coefficient s1 ≠ 0 within LO RGOPT; see e.g., Eq. (3.3).
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T ¼ 0.3 GeV, thus definitely above the ðμ ¼ 0Þ pseudoc-
ritical temperature such that our presentNLOapproximation
with above indicated limitations is presumably still reliable.
As compared with HTLpt and pQCD, for both prescriptions
the RGOPT pressure appears somewhat lower for high and
moderate μ values, and exhibits a more regular behavior at
low μ. The gain in remnant scale dependence appears once
more drastic. We refrain to explore regions closer to the
transition where our present construction becomes anyway
unreliable.
To conclude this section it may be worth to recap the

origin of the drastic differences between RGOPT and
HTLpt, the latter being also basically a variational modi-
fication of the original QCD Lagrangian with mass terms,
although based on the more elaborate HTL effective
Lagrangian[18] (including among other features a thermal
gluon mass parameter, mD). There are essentially three
important differences:

(i) First, the perturbative RG-restoring subtraction
terms, like in Eq. (2.16) typically, are missing in
HTLpt. Accordingly the latter lacks perturbative
RG-invariance formally by a leading order term of
the massive theory pressure, Oðm4Þ lnðM=mÞ. Now
since for any (gluon or quark) thermal masses,
m2 ∼ #gT2, and HTLpt is also based on high
temperature expansions, the latter uncanceled term
is effectively only a three-loop order effect, thus
largely screened and harmless at LO, and moderate
even at NLO. In contrast this mismatch plainly
resurfaces at NNLO HTLpt, presumably mainly
explaining the large remnant scale dependence
observed in Refs. [30,32,33].

(ii) Second, the interpolating Lagrangian used in HTLpt
is linear, namely with an exponent a ¼ 1 in the HTL
equivalent of Eq. (2.20), instead of our RG-deter-
mined Eq. (2.23). As we have shown [34] this
generally spoils RG invariance even when the latter
is fulfilled perturbatively by the original pressure.

(iii) Finally, remark that upon choosing a variational
mass prescription Eq. (2.21) in HTLpt (as was done
e.g., in [31,32]), nonreal m̄ may occur, similarly to
what happens for RGOPT (although it happens
rather at NNLO in HTLpt). In NNLO HTLpt
applications this issue is avoided simply by replac-
ing the gluon m̄D arbitrary mass by a perturbative
thermal mass [30,33], and taking the quark mass
m̄q ¼ 0. However, enforcing perturbative masses is
partly lacking the behavior beyond standard pertur-
bation potentially provided by more variational
prescriptions.

VI. CONCLUSIONS AND PERSPECTIVES

We have applied our RGOPT resummation approach at
NLO at finite temperature and density for the QCD quark
matter. As explained it generates more nonperturbative
approximations with consistent RG properties already at
LO (one-loop). Our NLO results have been compared to
NLO and state-of-the-art N3LO pQCD predictions as well
as to the state-of-the-art (NNLO) HTLpt results. Scale
variations in the range πT ≤ M ≤ 4πT show that at NLO
the method reduces scale uncertainties drastically as
compared to pQCD. Since RG properties are consistently
embedded within the RGOPT, we stress that generically the
scale uncertainty bands observed at NLO should further
shrink by considering the NNLO, Oðg2Þ.
Our two possible 1‘MOP” or “RG” prescriptions

reflect the often nonuniqueness of variational approaches,
although here their respective solution is unique from the
compelling AF-matching requirement. Moreover the vis-
ible prescription difference for the resulting dressed mass
(see Fig. 3) is perturbatively consistent at low orders
[Eqs. (5.1), (5.2)] and is substantially reduced within the
resulting physical pressures. Using the RG Eq. (2.22)
prescription, that more directly embeds consistent RG
properties, not surprisingly gives the best remnant scale
dependence at NLO (at it also happened in other considered
models [34]). Once a specific RSC is adjusted to recover
real solutions, the discrepancies between possibly different
RSC prescriptions are formally perturbatively higher order
terms. Nevertheless since we consider all expressions
exactly rather than perturbatively truncated, numerically
the RSC has a moderate net effect on the final pressure
results. As we have illustrated, any perturbative reexpan-
sion of the exact solutions somehow degrades the scale
dependence.
Concerning the full QCD pressure, due to present

technical limitations in applying the RGOPT plainly to
the glue sector, in this work we have adopted a simple-
minded approach, adding the purely perturbative NLO glue
contributions to the pure quark sector resummed by
RGOPT. We have confronted the resulting predictions
for the QCD pressure with available LQCD results. For
our best RG prescription the central scaleM ¼ 2πT results

FIG. 16. Same captions as Fig. 15 but for m̄RG prescription
(brown band).
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are in remarkable agreement with the LQCD results [50,51]
for temperatures as low as T ≳ 0.25 GeV, which lies within
the nonperturbative regime, up to T ¼ 1 GeV. However,
similarly to pQCD and HTLpt, the NLO RGOPT con-
struction explored in the present work is unable to describe
the peak region near the pseudocritical Tc temperature as
exhibited by lattice data. Although our simple prescription
appears to describe fairly well the moderate to high-T
regimes T ≳ 0.25 GeV ∼ 1.5Tpc, going beyond NLO one
would not avoid to face the infrared divergences from gluon
contributions, calling for appropriate resummations. The
striking matching with LQCD results from Ref. [50] as seen
in Fig. 13 may be partly numerically accidental, but
variants of our prescription, specifically the MOP pressure
in Fig. 12, still appears in very good agreement given our
essentially NLO construction. Moreover the RG properties
native to the RGOPT are not accidental in drastically
reducing the scale dependence problem, particularly when
comparing our NLO results to NNLO HTLpt. There are
however some visible differences between our results and
higher 1 GeV≲ T ≲ 2 GeV LQCD data[52]. We remark
that the LQCD pressure results in [50] and in Ref. [52]
appear to be in tension in their common temperature
range, while the trace anomaly shows more continuity,15

a feature that may call for more investigations independ-
ently of our results. When comparing with 2þ 1 flavor
LQCD as here illustrated, one may also keep in mind
our presently not fully realistic approximation of Nf ¼ 3

degenerate flavors. As illustrated the RGOPT properties
extend without much degradation to sizable chemical
potential values and relatively low temperatures (see
Figs. 9, 10, and Figs. 15, 16), that indicates the potential
of our approach towards a more systematic exploration of
hot and dense matter. Future applications may consider the
inclusion of physical quark masses to generate a more
realistic equation of state.
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APPENDIX A: HIGH-T LIMIT

We give here for completeness the well-known T ≫
m; μ ¼ 0 approximations (see e.g., [14,44]) of the basic
thermal integrals defined in Eqs. (2.2)–(2.4),

2J1ðT≫m;μ¼ 0Þ

≈
7π2

180
−

m2

12T2
þm4

T4

2

ð4πÞ2
�
3

4
− ln

�
meγE

πT

��
þO

�
m6

T6

�
;

ðA1Þ

J2ðT ≫ m; μ ¼ 0Þ

≈
1

12
þ 1

4π2
m2

T2

�
ln

�
meγE

πT

�
−
1

2

�
þO

�
m4

T4

�
; ðA2Þ

and the more complicated genuine two-loop integral J3 of
Eq. (2.4) has a finitem → 0 limit (however not analytically
integrable to our knowledge, we give below its numerically
integrated approximate value),

J3

�
m
T
→0;

μ

T
¼0

�

¼ 4

ð2πÞ4
Z

∞

0

dp̂
Z

∞

0

dq̂nFðp̂ÞnFðq̂Þln
�jp̂− q̂j
p̂þ q̂

�
þO

�
m2

T2

�

≃−0.00129532þO
�
m2

T2

�
; ðA3Þ

where p̂; q̂≡ p=T; q=T and nFðpÞ ¼ ðep þ 1Þ−1 is the
Fermi-Dirac distribution.

APPENDIX B: NUMERICAL m̄
SOLUTIONS AT NLO

We discuss here in some details the behavior of the exact
NLO numerical solutions for the two MOP or RG pre-
scriptions as defined in Secs. IV C, and IV D. Note that
using directly the MOP Eq. (4.2) or the RG Eq. (4.10)
makes the AF solution identification obvious. Concerning
the MOP Eq. (4.2), once B2 is consistently determined by
Eq. (4.9) such as to recover Dmop > 0 in Eq. (4.4), one sees
from the structure of (4.2) that ð−Þ (AF) solutions only exist
if − lnðm2=M2Þ þ Bmop > 0, and conversely ðþÞ (non-AF)
solutions only exist if − lnðm2=M2Þ þ Bmop < 0. Once
M; gðMÞ are taken to be T, μ-dependent via the perturbative
running coupling Eq. (2.27), Eq. (4.2) becomes a function
of m=T and gðT=ΛMSÞ. Despite the nonlinear dependence
in m=T, at the level of Eq. (4.2) both the AF and non-AF

15The LQCD simulations in Refs. [50–52] primarily calculate
the trace anomaly Δ, the pressure being derived by the integral
method, i.e., essentially from numerically integrating the last
equality in Eq. (5.4).
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solutions happen to be unique in their respective existence
range. This is illustrated in Fig. 17 (for μ ¼ 0) for two
representative low to moderate temperatures, respectively
T ¼ 0.5 and T ¼ 1 GeV, and for the central scale choice
M ¼ 2πT. It is also clear that for any T the smallest
solution is the AF one: Indeed for gðπT ≤ M ≤ 4πTÞ,
− lnðm2=M2Þ þ Bmop is a monotonically decreasing func-
tion of m for fixed T, and is > 0 (respectively < 0) below
(respectively above) a given m0, such that necessarily
m̄ðAFÞ < m0 < m̄ðnon-AFÞ. The value of m0 depends
quite strongly on T (and M): typically for the input
corresponding to Fig. 17 with M ¼ 2πT, one finds m0 ≃
1.28ð1.91Þ for T ¼ 0.5ð1.0Þ GeV respectively. (Notice also
that in Fig. 17 the non-AF solution is unrealistically large
with respect to T, that also makes it easy to unambiguously
select the correct AF-matching solutions).
At μ ¼ 0, following the AF-matching m̄ of Eq. (4.2)

continuously from T ¼ 0 to arbitrary T is in principle
possible, although only for a fixed scale M [thus a fixed
gðMÞ] unrelated to T, otherwise obviously at some small
M ∼ πT one hits on M ∼ ΛMS where the perturbative

coupling diverges. For sizable μ ≠ 0 the latter problem if
avoided if defining as conventional M ∼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
(provided that one is not in the case of both T ≪ μ and
small μ).
Finally concerning the RG Eq. (4.10), both NLO

solutions are already AF-matching, giving thus a unique
solution upon using the prescription Eq. (4.13).
Numerically the exact m̄RG solution of Eq. (4.10) is
somewhat larger than m̄MOP for a given T, as illustrated
in Fig. 3.

APPENDIX C: NLO AND NNLO HTLPT
EXPRESSIONS

For completeness we specify here how the NLO[31] and
NNLO[33] HTLpt pressure expressions were precisely
used when compared with other results. In particular for
consistent comparison purposes in Figs. 5,6, and Figs. 9,10
we aim to pin down the HTLpt equivalent of the sole quark
contributions, as shown up to NLO in Fig. 1, but with the
quark and gluon propagators and quark-gluon vertex
replaced with HTL-dressed ones consistently. More pre-
cisely from first comparing Eq. (51) of [31] to the pure glue
NLO HTLpt pressure [given e.g., in Eq. (4.8) of second
Ref. in [30] ], it is not difficult to single out all terms
originating solely from the pure quark vacuum energy.
Next, from the resulting pressure we have rederived the
(variationally determined) dressed thermal gluon mD and
quark mq mass as in Eqs. (55),(56) in [31], that amounts to
remove in these expressions the pure glue contributions
[terms ∝ cA in Eq. (55) in [31] ].
At NNLO of HTLpt, a well-defined separation

between pure quark and pure glue contributions appear
ambiguous as these become more entangled. When com-
paring with our complete QCD RGOPT pressure e.g., in
Fig. 13 and subsequent figures, we obviously took the
complete QCD NNLO HTLpt pressure, as given e.g., in
Eqs. (4.5),(4.6) of Ref. [33] (see also Ref. [32]).
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