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The pion structure is represented by generalized parton distribution functions (GPDs). The momentum
transfer dependence of GPDs of the pion was obtained on the basis of the form of GPDs of the nucleon in
the framework of the high energy generalized structure (HEGS) model. To this end, different forms of PDFs
of the pion of various collaborations were examined with taking into account the available experimental
data on the pion form factors. As a result, the electromagnetic and gravitomagnetic form factors of the pion
were calculated. They were used in the framework of the HEGS model with the electromagnetic and
gravitomagnetic form factors of the proton for describing pion-nucleon elastic scattering in a wide energy
and momentum transfer region with a minimum of fitting parameters. The properties of the obtained
scattering amplitude were analyzed.
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I. INTRODUCTION

The study of the particle structure is one of the old and
longstanding problems in modern physics. The main step
was made by introducing the parton picture of hadrons.
Now many collaborations have obtained some forms of the
parton distribution functions (PDF) using the recent data
obtained at HERA and LHC in deep inelastic scattering.
Besides this main point of the modern picture of the hadron
structure, which depends only on the Bjorken longitudinal
variable x, there were introduced a number of other more
complicated structure functions, for example, the general-
ized parton distribution functions (GPDs) (which depend
on x, momentum transfer t and the skewness parameter ξ),
transverse momentum distributions (TMDs) functions
(which depend on x, inner momentum transfer k and
skewness parameters ξ) and many others. Now we have
more generalized parton distributions which depend on
different variables GTMDsðx; k⃗; ξ; Δ⃗Þ, Generalized trans-
verse momentum dependent distributions of partons [1–3].
They are parametrized by the unintegrated off-diagonal
quark-quark correlator depending on the three-momentum
k⃗ of the quark and on the four-momentum, which is
transferred by the probe to the hadron. Taking Δ ¼ 0,

we can obtain TMDðx; k⃗Þ the transverse momentum-

dependent parton distribution. In another way, after inte-
gration over k⃗ we obtain GPDsðx; ξ;ΔÞ, generalized parton
distributions.
The remarkable property of GPDs is that the integration

of different momenta of GPDs over x gives us different
hadron form factors [4–6]. The x dependence of GPDs is
determined, in most part, by the standard PDFs, which are
obtained by many collaborations from the analysis of
deep-inelastic processes. Specific reactions can be related
with different form factors. For example, strong hadron-
hadron scattering can be proportional to the gravitomag-
netic form factor or the matter distribution of hadrons, and
the Compton scattering is described by the Compton form
factors. Hence, the generalized parton distributions reveal
themselves as a bridge between the data on the inelastic
reaction and the recent data on the elastic hadron-hadron
cross section. Many different forms of the momentum
transfer dependence of GPDs were proposed. In the
quark diquark model [7] the form of GPDs consists of
three parts—PDFs, function distribution and the Regge-
like function. In other works (see, e.g., [8]), the descrip-
tion of the t-dependence of GPDs was developed in a more
complicated picture using the polynomial forms with
respect to x.
Note that functions like GPDs(x,t, ξ ¼ 0) were already

used in the old “Valon” model proposed by Sanielevici and
Valin in 1986 [9]. In that model, the hadron elastic form
factor was obtained by the integration function LðxÞGðx; tÞ
where LðxÞ corresponds to the parton function and Gðx; tÞ
corresponds to an additional function which depends on the
momentum transfer and x. In modern language, this exactly
corresponds to GPDs. The recent results from the LHC
gave plenty of new information about the elastic and
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deep-inelastic processes, which raised new questions in the
study of the structure of hadrons.
In the paper, we analyze the hadrons structure, which is

presented by the GPDs of hadrons. In Sec. II, the
momentum transfer dependence of GPDs of hadrons
obtained in the framework of the high energy generalized
structure (HEGS) model is discussed. It is very important to
check the obtained t-dependence of GPDs, as it determined
the t-dependence of the gravitomagnetic form factor of
nucleons, which in turn impact on momentum transfer
dependence of the differential cross sections. As an
example, in Sec. III we calculated by integration other
Mellin moments of GPDs which give us the corresponding
Compton form factors and transition magnetic form factor.
Comparing the corresponding cross sections determined by
Compton form factors and transition magnetic form factor
with the existing experimental data gives us additional
support of the obtained t-dependence of GPDs. In Sec. IV, a
short review of the results of the HEGS model for the
nucleon structure and nucleon-nucleon scattering is pre-
sented. In Sec. V, the GPDs of the pion are determined, and
on their basis the electromagnetic and gravitomagnetic pion
form factors are calculated. In Sec. VI, the obtained
nucleon and pion form factors are used in the framework
of the HEGS model for pion-nucleon elastic scattering. The
conclusion is presented in the final section.

II. MOMENTUM TRANSFER DEPENDENCE OF
GPDs OF NUCLEON

In [10], the standard Gaussian ansatz of the t-dependence
of GPDs is chosen in a simple form

Hqðx; tÞ ¼ qðxÞ exp½aþfðxÞt�; ð1Þ

with fðxÞ ¼ ð1 − xÞ2=xβ. The isotopic invariance can be
used to relate the proton and neutron GPDs. The complex
analysis of the corresponding description of the electro-
magnetic form factors of the proton and neutron by
different PDFs sets (24 cases) was carried out in [11].
These PDFs include the leading order (LO), next leading
order (NLO) and next-next leading order (NNLO) deter-
mination of the parton distribution functions. They used
different forms of the x dependence of PDFs. A slightly
complicated form of GPDs was taken into account in
comparison with the equation used in [10], but it is the
simplest one as compared to other works (for example,
[12], where fðx; tÞq was chosen in the form with different x
dependence, six parameters control the small x behavior of
these functions, whereas their behavior at large x is
controlled other six parameters. Note, that in [13], it was
shown that at large x → 1 and momentum transfer the
behavior of GPDs requires a larger power of ð1 − xÞb in the
t-dependent exponent.

Huðx; tÞ ¼ quðxÞe2aHfuðxÞt;
Hdðx; tÞ ¼ qdðxÞe2aHfdðxÞt; ð2Þ

Euðx; tÞ ¼ quðxÞð1 − xÞγue2aEfuðxÞt;
Edðx; tÞ ¼ qdðxÞð1 − xÞγde2aEfdðxÞt; ð3Þ

where

fuðxÞ ¼
ð1 − xÞ2þϵu

ðx0 þ xÞm ;

fdðxÞ ¼ ð1þ ϵ0Þ
ð1 − xÞ2þϵd

ðx0 þ xÞm :

with aH, γ, ϵi, x0, m being the parameters determined from
the analysis of the existing experimental data of the
electomagnetic form factors.
On the basis of our GPDs with PDFs ABM12 [14], we

calculated the hadron form factors by numerical integration
and then by fitting these integral results by the standard
dipole form with some additional parameters

F1ðtÞ ¼ ð4mp − μtÞ=ð4mp − tÞ
× 1=ð1þ q=a1 þ q2=a22 þ q3=a33Þ2 ð4Þ

where mp is the proton mass and ai are free parameters.
That is slightly different from the standard dipole form of
two additional terms with small sizes of the coefficients.
The matter form factor

AðtÞ ¼
Z

1

0

xdx½quðxÞe2αHfÞuðxt þ qdðxÞe2αHfdðxÞt� ð5Þ

is fitted by the simple dipole form

AðtÞ ¼ Λ4=ðΛ2 − tÞ2

where Λ is a free parameter, which equal 1.6 GeV2 for the
proton case. These form factors will be used in our model
of the proton-proton and proton-antiproton elastic scatter-
ing and further in one of the vertices of pion-nucleon elastic
scattering.

III. COMPTON AND MAGNETIC TRANSITION
FORM FACTORS

It is very important to check the obtained t-dependence
of GPDs, as it determined the t-dependence of the
gravitomagnetic form factor of nucleons, which in turn
impact on momentum transfer dependence of the differ-
ential cross sections. Let us calculate the moments of GPDs
with inverse power of x. This gives us the Compton form
factors RVððtÞ, RTðtÞ. Using the obtained form factors, the
reaction of the real Compton scattering can be calculated
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[15]. For Hqðx; tÞ, Eqðx; tÞ with PDFs from the work [16],
which was chosen on the basis of the analysis carried out in
[11] and with the parameters obtained in our fitting
procedure of describing the proton and neutron electro-
magnetic form factors in [11]. The form factors Ri are
determined

RiðtÞ ¼
X
q

e2q

Z
1

0

dx
x
Fjqðx; ξ ¼ 0; tÞ; ð6Þ

where Fjq are equal to Hq, Eq and H̃q and give the form
factors RVðtÞ, RTðtÞ, RAðtÞ, respectively.
In the present work for H̃qðx; tÞ we take Δq in the form

[16] for NNLO Q0 ¼ 2 GeV2

xΔqðx;Q0Þ ¼ Nqηqxaqð1 − xÞbqð1þ cqxÞ: ð7Þ

Assuming SUð3Þ flavor symmetry of Δq̄, the coefficient
Nq is determined as

1

Nq
¼

�
1þ cq

aq
1þ aq þ bq

�
Bðaq; bq þ 1Þ; ð8Þ

where Bðaq; bq þ 1Þ is determined by

Bða; bÞ ¼ ΓðaÞΓðbÞ
Γðaþ bÞ ¼

Z
1

0

ta−1ð1 − tÞb−1dt: ð9Þ

The results of our calculations of the Compton form factors
are shown in Figs. 1(a) and 1(b). The form factors RVðtÞ
and RTðtÞ have a similar momentum transfer dependence
but essentially differ in size. On the contrary, the axial form
factor RA has an essentially different t dependence. The
calculations of Ri on the whole, correspond to the calcu-
lations of [12].
The differential cross section of the real Compton

scattering can be written as [12]

dσ
dt

¼ πα2em
s2

ðs − uÞ2
−us

×

�
R2
VðtÞ −

t
4m2

R2
TðtÞ þ

t2

ðs − uÞ2 R
2
AðtÞ

�
; ð10Þ

where RVððtÞ, RTðtÞ, RAðtÞ are the form factors given by
the 1=x moments of the corresponding GPDs Hqðx; tÞ,
Eqðx; tÞ, H̃qðx; tÞ.
The results for the cross sections are presented in Fig. 2.

Except for very large angles at low energies the coincidence
with experimental data is sufficiently good.
To check the obtained momentum dependence of the

spin-dependent part of GPDs Eu;dðx; ξ ¼ 0; tÞ, we can
calculate the magnetic transition form factor which is
determined by the difference of Euðx; ξ ¼ 0; tÞ and
Edðx; ξ ¼ 0; tÞ. For the magnetic N → Δ transition form
factor G�

MðtÞ, in the large Nc limit, the relevant GPDNΔ can

be expressed in terms of the isovector GPD yielding the
sum rule [18]

G�
MðtÞ ¼

G�
Mðt ¼ 0Þ
kv

Z
1

−1
dxðEuðx; ξ; tÞ − Edðx; ξ; tÞÞ ð11Þ

where kv ¼ kp − kn ¼ 3.70.

(a)

(b)

FIG. 1. The Compton form factors (a) [top] t2RVðtÞ and t2RTðtÞ;
(b) [bottom], t2RAðtÞ.

FIG. 2. The differential Compton cross sections (the lines are
our calculations at s ¼ 8.9 GeV2, s ¼ 10.92 GeV2 and
s ¼ 20 GeV2, the data points are for s ¼ 8.9 GeV2 (circles)
[17]; s ¼ 10.92 GeV2 (squares) [17]).
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The results of our calculations, based on Eqs. (2) and (3),
are presented in Fig. 3. The experimental data exist up to
−t ¼ 8 GeV2 and our results show a sufficiently good
coincidence with experimental data. It is confirmed that the
form of the momentum transfer dependence of Eðx; ξ; tÞ
determined in our model is correct.

IV. HADRON FORM FACTORS AND ELASTIC
NUCLEON-NUCLEON SCATTERING

In the framework of the high energy generalized struc-
ture (HEGS) model of elastic nucleon-nucleon scattering
both hadron electromagnetic and gravitomagnetic form
factors were used. This allows us to build a model with
a minimum number of fitting parameters [20–22].
The Born term of the elastic hadron amplitude can now

be written as

FBorn
h ðs; tÞ ¼ h1F2

1ðtÞFaðs; tÞð1þ r1=ŝ0.5Þ
þ h2A2ðtÞFbðs; tÞ
� hoddA2ðtÞFbðs; tÞð1þ r2=ŝ0.5Þ; ð12Þ

where F1ðtÞ is the electromagnetic proton form factor,
which represents charge distribution in the proton, and AðtÞ
is the gravitation form factor which represents the matter
distribution in the proton; hence, both (electromagnetic and
gravitomagnetic) form factors are used. The parameters are
determined in [21] where Faðs; tÞ and Fbðs; tÞ have the
standard Regge form:

Faðs; tÞ ¼ ŝϵeBðŝÞt; Fbðs; tÞ ¼ ŝϵeBðŝÞ=4t; ð13Þ

where ŝ ¼ se−iπ=2=s0; s0 ¼ 4m2
pðGeV2Þ, and hodd ¼ ih3t=

ð1 − r20tÞ. The intercept 1þ ϵ ¼ 1.11 was chosen from the
data of different reactions and was fixed by the same size
for all terms of the scattering amplitude. The slope of the
scattering amplitude has the standard logarithmic

dependence on the energy BðsÞ ¼ α0 lnðŝÞ with α0 ¼
0.24 GeV−2 and with some small additional term [21],
which reflects the small nonlinear behavior of α0 [23]. The
final elastic hadron scattering amplitude is obtained after
unitarization of the Born term by the standard eikonal
representation. The model is very simple from the view-
point of the number of fitting parameters and functions.
There are no any artificial functions or any cuts which
bound the separate parts of the amplitude by some region of
momentum transfer.
In the framework of the model, the description of

experimental data was obtained simultaneously at the large
momentum transfer and in the Coulomb-hadron region,
using the CNI phase [24,25], in the energy range from

ffiffiffi
s

p ¼
9 GeV up to LHC energies. In the basic form of the HEGS
model 3416 experimental points were included in our
analysis in the energy region 9.8 GeV ≤

ffiffiffi
s

p
≤ 8: TeV

and in the region of momentum transfer 0.000375 ≤ jtj ≤
15 GeV2. The experimental data of proton-proton and
proton-antiproton elastic scattering are included in 92 sep-
arate sets of 32 experiments, including recent data of the

FIG. 3. The transition magnetic form factors G�
MðQ2Þ=ð3GdÞ

(line- our calculations, points are the experimental data [19]).

(a)

(b)

FIG. 4. (a) [top] The HEGS model calculations of the differ-
ential cross sections of elastic scattering of proton-proton (hard
line) and proton-antiproton (dashed line) at

ffiffiffi
s

p ¼ 52.2 GeV,
(circles, quires, triangles up and triangles down—[31–37])
(b) [bottom] pp elastic cross sections at

ffiffiffi
s

p ¼ 13 TeV (line—
the HEGS model calculations, points—the data [29,30]).
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TOTEM Collaboration at
ffiffiffi
s

p ¼ 8 TeV. The whole
Coulomb-hadron interference region, where the experimen-
tal errors are remarkably small, was included in our exami-
nation of experimental data. Our model of the GPDs leads to
a good description of the proton and neutron electromagnetic
form factors and their elastic scattering simultaneously. It
allows one to find some new features in the differential cross
section of pp-scattering in the unique experimental data of
the TOTEM collaboration at

ffiffiffi
s

p ¼ 13 TeV (small oscilla-
tions [26] and anomalous behavior at small momentum
transfer [27]). The inclusion of the spin-flip parts of the
scattering amplitude allows one to describe the low energy
experimental polarization data of the pp elastic scattering
[28], which are shown in the corresponding figures in [28].
Figure 4(a) represents the description at

ffiffiffi
s

p ¼ 52.8 GeV
and Fig. 4(b) shows the model calculations forffiffiffi
s

p ¼ 13 TeV, which coincide well with the recent exper-
imental data of the TOTEM Collaboration [29,30].

V. GPDs OF PION

The pion structure in some sense is simpler than the
nucleon structure. In the nucleon there are 3 constituent
quarks that can create different configurations, for example,
such as “Mercedes star” or a linear structure with a quark at
one end and a diquark at the other. These configurations can
lead to different results for hadron interactions, for exam-
ple, the Odderon-hadron coupling. For a meson we have
only two quark states

jπi ¼ jqq̄i þ jqq̄qq̄i þ jqq̄gi……

It is needed to note that the standard definition of the pion
form factor through the matrix elements of the electro-
magnetic vector current

VμðxÞ ¼ euūðxÞγμuðxÞ − edd̄ðxÞγμdðxÞ; ð14Þ

gives

hπþðp⃗0ÞjVμð0Þjπþðp⃗Þi ¼ ðp0
μ þ pμÞFπðQ2Þ; ð15Þ

with Q2 ¼ −q2 and FπðQ2Þ being the space-like form
factor of the pion [38]. It is related with the separate quark
contributions

FπðtÞ ¼ euFu
π − edFd

π: ð16Þ

For the definition of the electromagnetic form factor of the
pion there are many different approximations beginning
with the standard monopole form

Fπ ¼ Λ2=ðΛ2 − tÞ; ð17Þ

(with Λ as a free parameter determined from experimental
data), including the Regge exponential form

Fπ ¼ y−απðtÞ
et−m

2
π

Λ2

and monopole form with polynomial form of t
dependence [39]

Fπðt ¼ M2zÞ ¼ 1

1þ 0.44zþ 0.06z2 þ 0.00033z3
:

and in complicated form of t dependence [40]

FπðQ2Þ ¼ 1

1þQ2=m2
ρ

�
1þ c1Z þ c2Z2

1þ c1Z þ c2Z2 þ c3Z3

�
;

where Z ¼ Logð1þQ2=Λ2Þ and Λ is the QCD scale
parameter. Such a form is similar to that proposed in
[41] within a dispersion relation analysis; however, the
presented form uses two additional parameters and takes a
rather large value of Λ ¼ 1 GeV.
For the pion Generalized parton distribution we have

the standard definition through the matrix element, for
example [39]

Hq
πðx;t;ξÞ

¼1

2

Z
dz−

2π
eixP

þz−

×

�
π;PþΔ

2

����q̄
�
−
z
2

�
γþ

�
−
z
2
;
z
2

�
q

�
z
2

�����π;P−Δ
2

	
zþ¼0;x⊥¼0

;

ð18Þ

with the skewness ξ ¼ −Δþ=ð2PþÞ and the momentum
transfer t ¼ −Δ2. Taking into account the charge conju-
gation corresponding to separate quarks of GPDs, we
obtain

Hu
πþðx; t; ξ ¼ 0Þ ¼ −Hd

πþð−x; t; ξ ¼ 0Þ ð19Þ

and for the charged pions

Hu
π�ðx; tÞ ¼ Hd

π�ðx; tÞ: ð20Þ

For the full form of pion GPDs we take the same ansatz as
we used for the nucleon case. We have focused on the zero-
skewness limit, where GPDs have a probability-density
interpretation in the longitudinal Bjorken x and the trans-
verse impact-parameter distributions. The pion form factors
will be obtained by integration over x in the whole range
0–1. Hence, the obtained form factors will be dependent on
the forms of PDF at the ends of the integration region.
Some PDFs have the polynomial form of x with different
power. Some others have the exponential dependence of x.
As a result, the behavior of PDFs, when x → 0 or x → 1,
can impact the form of the calculated form factors.
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Various collaborations have determined the PDF sets
from inelastic processes only in some region of x, which are
further approximated to x ¼ 0 and x ¼ 1. Also, there is a
serious problem in determining the main ingredient of
GPDs of a pion—the basic form of parton distribution
functions. The predictions based on the perturbative QCD
and the calculations using different approaches support the
pdf in the form ð1 − xÞ2 as x → 1 (see for example [42] and
complicated analysis carried out in [43] However, the
constituent quark model and calculation in the framework
of the Nambu-Jona-Lasino model lead to linear behavior
ð1 − xÞx→1. Several next-to-leading order (NLO) analyses
of the Drell-Yan data show that the valence distribution
turned out to be rather hard at high momentum fraction x,
typically showing only a linear or slightly faster falloff.
Correspondingly, there are many different forms of the PDF
of a pion. For example, [44,45]

νπbareðx;Q2
0Þ ¼ A0xαð1 − xÞβ

with α ¼ 1.8; β ¼ 1.8; or [M. Aicher et al. (2010)] [46]

νπbareðx;Q2
0Þ ¼ Nνxαð1 − xÞβð1þ γx2Þ

with α ¼ 1.06; β ¼ 1.75; γ ¼ 1.4. We examine many of
them [47–50] and keep two PDFs leading to approximately
the same results and giving the good description of the
existence experimental data of pion form factor: one is
(L. Chang [47])

νπðxÞ ¼ N3.47x0.021ð1 − xÞ2.33; ð21Þ

and R. Sufian [51]

νπðxÞ ¼ N
x−αð1 − xÞβð1þ γxÞ

ðBðαþ 1; β þ 1Þ − γBðαþ 2Þ; β þ 1Þ ð22Þ

where Bðα; βÞ is the incomplete Gamma function. There
are two variants: with γ ¼ 0 and with γ ¼ 4.28.
In first variant α ¼ −0.17, β ¼ 1.24 and in the second

variant α ¼ −0.22, β ¼ 2.12. In that work it was noted that
both variants give practically the same result.
In our fitting procedure with variation of the slope

parameters of the GPDs both variants give close values
for the constants of the electromagnetic and gravitomag-
netic form factors. In the first case Λ2

em ¼ 0.49� 0.04 and
Λ2
gr ¼ 1.12� 0.15, and in the second case Λ2

em ¼ 0.47�
0.08 and Λ2

gr ¼ 1.07� 0.09,
On the basis of our GPDs with PDFs, we have calculated

the pion form factors by numerical integration and then by
fitting these integral results by the standard monopole form,
which gives the powerlike scaling [52], and obtained
Λ2
π ¼ 0.5. In Fig. 5(a), the comparison of our calculation

with the existing experimental data of the pion form factor
is presented. It is seen that the difference between the
calculations of our two chosen PDFs is small, both variants

give the χ2 values that are the same within the estimated
uncertainty.
The matter form factor Aπ

GrðtÞ is calculated as the second
Mellin moment

Aπ
GrðtÞ ¼

Z
1

0

xdxqπðxÞe2απfðxÞ=t ð23Þ

and is fitted by the simple dipole form AðtÞ ¼ Λ4=
ðΛ2 − tÞ2. These form factors will be used in our model
of the πþp and π−p elastic scattering. In Fig. 5(b), our
calculations of the second momentum of GPDs of a pion
are shown. Again, we see that the impact of different PDFs
is tangible only at large momentum transfer.

VI. HADRON FORM FACTORS AND ELASTIC
PION-NUCLEON SCATTERING

Let us determine the Born terms of the elastic pion-
nucleon scattering amplitude in the same form as we

(a)

(b)

FIG. 5. (a) [top] The electromagnetic form factor of the π-
meson (hard and dashed curves—our calculations with PDF
[47,53], respectively; the circles and squares—the experimental
data [54–59]) (b) [bottom] the gravitomagnetic form factor of the
pion with the normalization AGrðt ¼ 0Þ ¼ 1 (the hard and dashed
curves—our calculation with the PDF [47,53], respectively);
long-dashed and tiny-dashed curves—the fits of our integral
calculations by a simple monopole form.
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determined the elastic nucleon-nucleon scattering ampli-
tudes. Using both the (electromagnetic and gravitomag-
netic) form factors of a pion and a nucleon, we obtain

FBorn
mh ðs; tÞ ¼ h1F1ðtÞFπðtÞFaðs; tÞ

þ h2ANðtÞAπ
GrðtÞFbðs; tÞ

� Rcðs; tÞ; ð24Þ

where FπðtÞ is the electromagnetic pion form factor, which
represents the charge distribution in the pion and Aπ

GrðtÞ is
the gravitation form factor which represents the matter
distribution in the pion, and Faðs; tÞ and Fbðs; tÞ have the
standard Regge form:

Faðs; tÞ ¼ ŝϵð1þ ð1 − k2=ðk1
ffiffiffî
s

p
ÞÞk1=

ffiffiffî
s

p
ÞeBðŝÞt; ð25Þ

Fbðs; tÞ ¼ ŝϵð1þ ð1þ k2=
ffiffiffî
s

p
Þ=

ffiffiffî
s

p
ÞeBðŝÞ=4t; ð26Þ

with ŝ ¼ se−iπ=2=s0; s0 ¼ 1 GeV2, and at t ¼ 0 the inter-
cept 1þ ϵ ¼ 1.11 was chosen the same as for nucleon-
nucleon elastic scattering. Hence, at the asymptotic energy
we have the universality of the energy behavior of the
elastic hadron scattering amplitudes.
The slope of the scattering amplitude has the standard

logarithmic dependence on the energy BðsÞ ¼ α0 lnðŝÞ with
α0 ¼ 0.24 GeV−2 (the same value as for nucleon-nucleon
elastic scattering). Examining the pion-nucleon elastic
scattering at low energies, we take into account the
contributions of the nonleading cross-odd Reggions using
the form factors of the pion and nucleon:

RBorn
c ðs; tÞ ¼ hcGπðtÞGNðtÞ

iðπ=2� 1Þffiffiffî
s

p ebRtLnðŝÞ; ð27Þ

with the standard Reggion slope bR ¼ 0.9 GeV−2.
As a result, only 5 constants of interaction are included in

the fitting procedure. The energy dependence, the momen-
tum transfer dependence and the real part of the scattering
amplitude are determined by the complex ŝ and intercept.
Their values do not change in the fitting procedure. The
final elastic hadron scattering amplitude is obtained after
unitarization of the Born term. So, at first, we have to
calculate the eikonal phase

χðs; bÞ ¼ −
1

2π

Z
d2qeib⃗·q⃗FBorn

h ðs; q2Þ ð28Þ

and then obtain the final hadron scattering amplitude.

Fhðs; tÞ ¼ is
Z

bJ0ðbqÞΓðs; bÞdb; ð29Þ

with Γðs; bÞ ¼ 1 − exp½χðs; bÞ�: ð30Þ

We take into account the experimental data on the πþp
and π−p elastic scattering from

ffiffiffi
s

p ¼ 7.807 GeV up to the

maximummeasured at
ffiffiffi
s

p ¼ 25.46 GeV. The total number
of the experimental dataNexp : ¼ 2009. As in the case of the
nucleon scattering, we take into account in the fitting
procedure the statistical and systematic errors separately.
Only the statistical errors are included in the standard fitting
procedure and calculations of χ2. The systematic errors are
taken into account as some additional normalization of the
experimental data of a separate set. The whole Coulomb-
hadron interference region, where the experimental errors
are remarkably small, was included in our examination of
the experimental data in the region of momentum transfer
0.00137 ≤ jtj ≤ 10 GeV2. After the fitting procedure, with
the modern version of FUMILY [60] we obtained the totalP

χ2i ¼ 2415 and ðP χ2Þ=nd:o:f: ¼ 1.2 (remember that we
used only statistical errors). The fitting parameters are
obtained as:

h1 ¼ 0.93�0.01; h2¼ 1.7�0.02; k1¼ 6.7�0.15;

k2 ¼ 15.7� 0.4; hc ¼ 1.4� 0.1

The model calculations are compared with the elastic π−p
(Fig. 6) and πþp (Fig. 7) at

ffiffiffi
s

p ¼ 19.4 GeV. At this energy
we have the largest number of experimental data in a wide
region of momentum transfer. On these figures and others
the comparison of the experimental data with theoretical
calculations is shown with additional normalization coef-
ficient equal to unity and with only statistical experimental
errors. In Fig. 8, such comparison is shown for energyffiffiffi
s

p ¼ 25.4 GeV. It is the highest energy at which we have
the experimental data on π�p elastic scattering from the
direct π�p elastic scattering. Obviously, the model gives a
good description of the exiting experimental data, especially
in the small t region where the Coulomb-hadron interference
plays an important role. The dashed line in Fig. 8 shows the
model calculations at this energy for πþp elastic scattering. It
can be seen that the largest difference between π−p and πþp
comes from theCoulombhadron interference termwhich has
different signs for these reactions. In Fig. 9, the comparison
of themodel calculationswith the experimental data is shown
at

ffiffiffi
s

p ¼ 9.74 GeV for π−p reactions. At last, in Fig. 10, the
experimental data of πþp elastic scattering are compared
with the model predictions. The data are measured up to
−t ¼ 4 GeV2. For this energy the latter value corresponds to
large angles; however, the model describes the data suffi-
ciently well. Note that in the figures the comparison of the
model results with experimental data presented with only
statistical errors and does not take into account the exper-
imental systematic uncertainty and our additional normali-
zation coefficients.
The behavior of the imaginary and real parts of the

elastic scattering amplitudes at different energies is pre-
sented in Fig. 11. The imaginary parts have a small energy
dependence and their momentum transfer dependence is
practically the same in this energy interval. We see different
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situations for the real parts of the elastic scattering
amplitudes. A particularly large difference is shown for
low energies. It comes from the non-asymptotic terms of
the scattering amplitude.
In Fig. 12, the elastic scattering amplitude ibΓðs; bÞ is

presented in the impact parameter representation at energiesffiffiffi
s

p ¼ 7.8; 19.4; 25.6; 300:; 3000: GeV. The imaginary part
of the scattering amplitude essentially growswith energy and
its maximum moves to the biggest value of the impact
parameter. It reflects the growth of the radius of the hadron
interaction. Of most interest is the impact parameter depend-
ence of the real part of the scattering amplitude. If at low
energy (

ffiffiffi
s

p ¼ 7.8) its maximum practically coincides with
the maximum of the imaginary part (approximately at
2.5 GeV−1), then at high energies (

ffiffiffi
s

p ¼ 25.6 GeV) the
positions of the maximum are different. The maximum of
the imaginary part moves approximately at 3.5 GeV−1), but
the maximum of the real part moves at 5.5 GeV−1). Such a
large difference probably shows the changes of the hadron

(a)

(b)

FIG. 7. (a) The dσ=dt of the πþp elastic scattering at
ffiffiffi
s

p ¼
19.4 GeV ([top] full region of examined t (the corresponding part
of the total χ2 given these data is χ2=n ¼ 198=212 ¼ 0.93) and
(b) [bottom] small region of t (the corresponding part of the total
χ2 given these data is χ2=n ¼ 79.2=79 ¼ 1.). the circles and
squares—the experimental data [54–58]).

FIG. 8. The differential cross sections of the π−p elastic cross
sections at

ffiffiffi
s

p ¼ 25.4 GeV (the dashed line is the model
calculations for the πþp elastic cross sections at this energy,
points -the data [61]) (the corresponding part of the total χ2 given
these data is χ2=n ¼ 69=57 ¼ 1.2).

(a)

(b)

FIG. 6. The dσ=dt of the π−p elastic scattering at
ffiffiffi
s

p ¼
19.4 GeV ([top] full region of examined t (the corresponding
part of the total χ2 given these data is χ2=n ¼ 442=294 ¼ 1.5)
and [bottom] small region of t (the corresponding part of the total
χ2 given these data is χ2=n ¼ 166=132 ¼ 1.26). [On these figures
and others the comparison of the experimental data with
theoretical calculations is shown with additional normalization
coefficient equal to unity and with only statistical experimental
errors] the circles and squares—the experimental data [54–58]).
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potential of the interactions at large distances with growing
interaction energy.
The experimental data of σtotðsÞ—the total cross sections

and ρðs; tÞ—the ratio of the real to imaginary parts of the
elastic scattering amplitude at t ¼ 0 are not included in
the fitting procedure. These data were extracted from the
differential cross sections with some simple model repre-
sentations. Hence, the inclusions of these data in our fitting
procedure will be double account. Let us see what gives the
model for these values. In Fig. 13, the energy dependence
of the ρðs; t ¼ 0Þ—ratio of the real to imaginary parts of
π�p elastic scattering is shown. It can be seen that the
model difference between ρðs; t ¼ 0Þπ−p and ρðs; t ¼ 0Þπþp
is not large. The model calculations coincide with the
experimental data at low energy but show less difference
between the reactions at high energy. Probably, this is due
to the possible simplification of accounting for the con-
tribution from the second region. However, in general, the
model calculations of ρðs; t ¼ 0Þ show a good energy
dependence for both reactions. In Figs. 14(a) and 14(b), the
energy dependence of σtot for these reactions is presented at
low energies [Fig. 14(a)] and high energies [Fig. 14(b)].

FIG. 10. The differential cross sections of the elastic scattering
of the πþp elastic cross sections at

ffiffiffi
s

p ¼ 5.18 GeV (the line is
the model predictions, the points are the experimental data [67]).

(a)

(b)

FIG. 11. (a) [top] The energy and momentum transfer depend-
ence of the imaginary part of the elastic scattering amplitude of
π−p and (b) [bottom] the real part of the elastic scattering
amplitude π−p (the dashed, solid and dotted-dashed lines
correspond to the

ffiffiffi
s

p ¼ 25.3; 19.4 and 7.8 GeV).

(a)

(b)

FIG. 9. (a) The differential cross sections of the elastic
scattering of the π−p elastic cross sections at

ffiffiffi
s

p ¼ 9.73 GeV
(the line is the model calculations, the squares and circles are the
experimental data [62–65]) (the corresponding part of the total χ2
given these data is χ2=n ¼ 213=191 ¼ 1.1) and (b) [bottom] the
πþp elastic cross sections at

ffiffiffi
s

p ¼ 7.807 GeV with experimental
data [66] (the corresponding part of the total χ2 given these data
is χ2=n ¼ 8=13 ¼ 0.6).
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Obviously, the model reproduces sufficiently well the
energy dependence of σtot for both reactions. Note that
the last four experimental data (

ffiffiffi
s

p ¼ 22.5–25.4 GeV) for
σtotðπ−pÞ usually lie above the theoretical curves. This leads

to the opinion of the existence of hard Pomeron contribu-
tions [68]. Our HEGS model with only 5 fitting parameters
and without taking into account the data of ρðs; t ¼ 0Þ and
σtotðsÞ in the fitting procedure shows that the hard Pomeron
contributions are not necessary (see Table I). This is
consistent with our conclusion that there is no hard
Pomeron contribution to elastic nucleon-nucleon scattering
[22]. In Fig. 14(b), the model calculations of σtotðπ�pÞðsÞ are
presented with experimental data at very large energies.

(a)

(b)

FIG. 12. The scattering amplitude of π−p elastic scattering in
the impact parameter representation—ibΓðs; bÞ (a) [top]—the
imaginary part and (b) [bottom] the real part (the points, long-
dashed, dotted-dashed, dashed and solid lines correspond to theffiffiffi
s

p ¼ 7.8; 19.4; 25.4; 300 and 3000 GeV).

FIG. 13. The value ρðs; t ¼ 0Þ—the ratio of the real to
imaginary parts of π�p elastic scattering amplitude (curves—
our model predictions, circles, squares, triangles up, and triangles
down—[31–37]).

(a)

(b)

(c)

FIG. 14. The total cross sections of π�p elastic scattering (a) at
low [top], (b) at separate energies [middle], and (c) high energies
[bottom] (curves—our model predictions, circles, squares, tri-
angles up, and triangles down—[69]).
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The errors and distributions of the data are very large.
However, it can be concluded that the model calculations
do not contradict the recent experimental data.
However, in general, the model calculations of ρðs; t ¼ 0Þ

show a good energy dependence for both reactions. In
Figs. 14(a) and 14(b), the energy dependence of σtot for
these reactions is presented at low energies [Fig. 14(a)] and
high energies [Fig. 14(b)]. Obviously, the model reproduces
sufficiently well the energy dependence of σtot for both
reactions. Note that the last four experimental data
(

ffiffiffi
s

p ¼ 22.5–25.4 GeV) for σtotðπ−pÞ usually lie above the
theoretical curves. This leads to the opinion of the existence
of hard Pomeron contributions [68]. Our HEGS model with
only 5 fitting parameters and without taking into account the
data of ρðs; t ¼ 0Þ and σtotðsÞ in the fitting procedure shows
that the hard Pomeron contributions are not necessary (see
Table I). This is consistentwith our conclusion that there is no
hard Pomeron contribution to elastic nucleon-nucleon scat-
tering [22]. In Fig. 14(b), the model calculations of
σtotðπ�pÞðsÞ are presented with experimental data at very
large energies. The errors and distributions of the data are
very large. However, it can be concluded that the model
calculations do not contradict the recent experimental data.

VII. CONCLUSION

Generalized parton distributions reflect the basic proper-
ties of the hadron structure and give a bridge between many

different reactions. We have examined the new form of the
momentum transfer dependence of GPDs of hadrons to
obtain different form factors, including Compton form
factors, electromagnetic form factors, transition form fac-
tor, and gravitomagnetic form factors. Our model of GPDs,
based on the analysis of practically all existing experi-
mental data on the electromagnetic form factors of the
proton and neutron, leads to a good description of the
proton and neutron electromagnetic form factors simulta-
neously. The chosen form of the momentum transfer
dependence of GPDs of the pion (the same as t-dependence
of nucleon) allows us to describe the electromagnetic form
factor of the pion and obtain the pion gravitomagnetic form
factor. The obtained parameters of the form factors of the
pion and nucleon satisfy the quark count. As a result, the
description of different reactions based on the same
representation of the hadron structure was obtained. This
especially concerns high energy elastic hadron scattering.
The meson high energy generalized structure (mHEGS)
model, taking into account the electromagnetic and grav-
itomagnetic form factors of hadrons, describes well the
πþp and π−p elastic scattering in wide energy
(

ffiffiffi
s

p
> 7 GeV) and momentum transfer regions with a

minimum number of fitting parameters, only 5. The
investigation of the nucleon structure shows that the density
of the matter in hadrons is more concentrated than the
charge density. Our calculations show that the ratio of the
radii of the electromagnetic density to the gravitomagnetic
density is approximately the same for the nucleon and pion.
The model opens up a new way to determining the true
form of the GPDs and hadrons structure.
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