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We study the holographic information quantities, including the holographic entanglement entropy
(HEE), the holographic mutual information (HMI) and the minimum cross section of the entanglement
wedge (EWCS), over a special black brane geometry, which has a vanishing ground-state entropy. Thanks
to the zero entropy density at the ground state, we expect to extract novel, even singular informational
properties in the zero-temperature limit. Surprisingly, we do not observe any singular behavior of
entanglement-related physical quantities in the zero-temperature limit. Nevertheless, we find a peculiar
property from this model that in the low-temperature region, the HEE decreases with the temperature,
which is contrary to that in most holographic models. We argue that this novel phenomenon is brought by
the singular property of the zero-temperature limit. In addition, we also compare the features of the
information quantities in this special black brane geometry with those in Reissner-Nordstrom anti–de Sitter
(RN-AdS) black brane geometry. It is shown that the HEE and HMI of this vanishing ground-state entropy
model are always larger than those of RN-AdS geometry, while the EWCS behaves oppositely. Our results
indicate that the HMI and EWCS could have different abilities in describing mixed state entanglement.
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I. INTRODUCTION

Quantum entanglement is playing an increasingly promi-
nent role in modern physics, from condensed matter theory
to the black hole theory. In the context of anti–de Sitter/
conformal field theory (AdS=CFT) correspondence [1–4],
quantum entanglement also plays a key role in the inves-
tigation of how the bulk spacetime emerges from the
entanglement structure [5–9]. The entanglement entropy
(EE) is a measure of quantum entanglement between two
subsystems A and B for a given pure state. In a holographic
framework, EE has a simple geometric description known
as the Ryu-Takayanagi (RT) formula: that EE for a
subregion on the dual boundary is proportional to the
minimal surface in the bulk geometry, which is dubbed the

holographic entanglement entropy (HEE) [10–12]. For
covariant cases, the RT formula is reformulated into the
Hubeny-Rangamani-Takayanagi (HRT) formula [13,14].
Their proposal matches very well with the known results
from the two-dimensional CFT [15–17]. The success of the
RT/HRT formula has inspired many works toward a better
understanding of this topic [18–21] and some important
applications. One of the most important applications of
HEE is that it can characterize phase transition, including
quantum phase transitions and thermodynamic phase tran-
sitions; see for instance Refs. [22–30].
However, EE suffers from UV divergence in general, and

one has to use a regularization method to remove the
divergence. To overcome this regulator-dependent measure
of entanglement, a special linear combination of EE called
mutual information (MI) was proposed, which is a positive
definite quantity guaranteed by the subadditivity and free
from the UV divergences [31–33]. In addition, MI removes
the thermal entropy contribution [34]. Therefore, MI is a
good probe to learn basic properties of any local observable
in a quantum system [32,35]. In the holographic frame-
work, one can directly calculate MI with the use of the RT/
HRT formula, which is called holographic mutual infor-
mation (HMI).
It is well known that HEE is a good measure for a

bipartite pure state, but it is not suitable for measuring
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mixed-state entanglement. In the holographic framework,
the minimum cross section of the entanglement wedge
(EWCS) Ew has been associated with the holographic
duality of some quantum-information-related physical
quantities such as the entanglement of purification
(EoP), logarithmic negativity, reflected entropy, and odd
entropy [36–42]. The progress shows that EWCS
should be closely related to the measures of mixed-state
entanglement.
Most of these works (Refs. [36–39]) are implemented in

three-dimensional AdS spacetime. For higher-dimensional
AdS geometry, we usually resort to numerics. As a first
attempt, the authors of Ref. [43] numerically studied the
properties of EWCS and its evolution behavior for thermo-
field double states dual to the Schwarzschild black hole.
Later, in Ref. [44], the authors have developed an algorithm
to calculate EWCS for symmetric and asymmetric con-
figurations in pure AdS4 and four-dimensional Reissner-
Nordstrom anti–de Sitter (RN-AdS) black hole back-
grounds. The temperature behavior of EWCS and some
important inequalities of EWCS are numerically explored.
Further, the authors in Ref. [45] studied some holographic
informational quantities, including HEE, MI, and EoP, and
they argued that the EWCS may be a better entanglement
measure of the mixed state than MI. In addition, the
connection between EWCS and holographic complexity
of purification (CoP) was also explored for various models
in Ref. [46].
In this paper, we shall study the information quantities,

including HEE, MI, and EWCS, over a type of Einstein-
Maxwell-dilaton (EMD) model with a special dilaton
potential [47]. For simplicity, here we also refer to this
model as Gubser-Rocha model as Refs. [48,49]. The black
brane solution of the Gubser-Rocha model possesses two
important and appealing characteristics—i.e., zero ground-
state entropy density and linear specific heat at low
temperature, which are also the characteristics of a
Fermi gas. The study of the probe fermionic spectrum
over the Gubser-Rocha model also confirms that the system
shares the same property of the degenerate Fermi liquid
[50,51]. Some interesting studies based on the Gubser-
Rocha model have also been implemented; see
Refs. [23,52,53] and references therein. In particular, in
Ref. [52], the ionic lattice background in the framework of
the Gubser-Rocha model was constructed, and the optical
conductivity of the dual field theory on the boundary was
studied. In addition, some of us constructed a Q-lattice
deformed Gubser-Rocha model with vanishing ground
entropy density, over which the HEE was explored, and
it was claimed that the first-order derivative of HEE with
respect to Q-lattice parameters could characterize the
quantum phase transition [23].
In contrast with RN-AdS geometry, which has a non-

vanishing ground-state entropy density, the Gubser-Rocha
model provides a novel platform to study the holographic

phenomena. Here, we aim to study the universal properties
of HEE, MI, and EWCS over the Gubser-Rocha model, and
to compare the results from such a model with vanishing
ground-state entropy density with those from RN-AdS
geometry studied in Ref. [44].
Our paper is organized as follows. In Sec. II, we present a

brief review of the Gubser-Rocha model. Then, we numeri-
cally calculate the HEE, MI, and EWCS and discuss the
novel properties of these holographic informational quan-
tities in Sec. III. Conclusions and discussions are presented
in Sec. IV.

II. GUBSER-ROCHA MODEL

We start with the following action [47,54]:

S¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

4
eΦFμνFμν−

3

2
ð∂μΦÞ2þ 6

L2
coshΦ

�
;

ð1Þ

where L is the AdS radius, Φ is the dilation field,
and Fab ¼ ∂aAb − ∂bAa. An analytical charged black
brane solution to the above action has previously been
given in [47]

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ gðzÞðdx2 þ dy2Þ
�
; ð2Þ

AtðzÞ ¼ L
ffiffiffiffiffiffiffi
3Q

p
ð1 − zÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þQ

p
1þQz

; ð3Þ

where

fðzÞ ¼ ð1 − zÞpðzÞ
gðzÞ ; gðzÞ ¼ ð1þQzÞ3=2;

pðzÞ ¼ 1þ ð1þ 3QÞzþ ð1þ 3Qð1þQÞÞz2: ð4Þ

The coordinate system we take is labeled the same as that in
Ref. [52], which is the coordinate transformation based
on the solution presented in Ref. [47]. In our current
coordinate system, the Hawking temperature can be
worked out as

T̂ ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
1þQ

p
4πL

: ð5Þ

The system is determined by the scaling invariant
temperature

T ¼ T̂
μ
¼

ffiffiffi
3

p

4πL
ffiffiffiffi
Q

p ; ð6Þ

where μ is the chemical potential in the dual boundary field
theory, and it is related to the parameter Q as
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μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Qð1þQÞ

p
: ð7Þ

The temperature T is inversely proportional to the param-
eter Q. When Q tends to zero, it goes up to infinity, and the
black brane is a Schwarzschild-AdS black brane. As Q
approaches infinity, it goes down to zero, which corre-
sponds to an extremal black brane.
It is worthwhile to emphasize that this black brane

geometry possesses an appealing characteristic—i.e., the
zero ground-state entropy, in contrast to the usual RN-AdS
black brane, which has finite entropy density even at zero
temperature. For more discussion on the thermodynamics
of this charged black brane, please refer to Ref. [47].
In the high-temperature limit, the geometry of the

Gubser-Rocha model and the RN-AdS model are the same.
This can be seen by taking the Q → 0 limit for the Gubser-
Rocha model and the μ → 0 limit for the RN-AdS model. It
predicts that all the information-related quantities will be
the same. As long as the quantities related to quantum
information are only related to the background geometry,
we can conclude that the quantum information behavior of
the Gubser-Rocha model is consistent with that of the RN-
AdS model in the high-temperature limit. Therefore, we
pay more attention to their finite-temperature and extremely
low-temperature behavior.

III. THE HOLOGRAPHIC
INFORMATION-RELATED QUANTITIES

In this section, we shall study the holographic informa-
tion-related quantities over the Gubser-Rocha model. In
order to demonstrate the peculiar properties of the holo-
graphic information quantities over the Gubser-Rocha
model, we shall also present the corresponding results
from a RN-AdS black brane for comparison throughout this
paper. For RN-AdS black brane geometry, we refer
to Ref. [44].

A. Holographic entanglement entropy

EE, as a measure of entanglement, is one of the hot
topics in quantum information. For a pure-state system
composed of two parts A and B, its EE is described
by von Neumann entropy SA ≡ −TrðρA ln ρAÞ, where
ρA ≡ TrBjψihψ j. Holographically, the von Neumann
entropy can be depicted through the R-T formula as [10]

SA ¼ AreaðγAÞ
4GN

; ð8Þ

where GN is the bulk Newton constant. γA is the minimal
surface which stretches into the bulk and ends at ∂A.
We consider a specific configuration in which the

subsystem A is an infinite strip along the y axis with width
l along the x axis—i.e., A ≔ f0 < x < l;−∞ < y < ∞g
(see Fig. 1). Since the minimum surface is invariant along

the y axis, it is convenient to describe this minimum surface
by the radial coordinate zðxÞ. When we fix the width, the
HEE can be explicitly expressed as

Ŝ ¼ 2

Z
z�

ϵ
dz

gðzÞ32
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞðgðzÞ2 − z4

z4�
gðz�Þ2Þ

q ; ð9Þ

l̂ ¼ 2

Z
z�

ϵ
dz

gðz�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞgðzÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z4�gðzÞ2
z4 − gðz�Þ2

q ; ð10Þ

where z� is the top (alternatively called the turning point) of
the minimum surface. Since the HEE is divergent at the
asymptotic AdS boundary, we have introduced a cutoff ϵ in
the above expression. To subtract out the vacuum contri-
bution to the HEE, we add a counterterm −1=z2 into the
integration of Ŝ, such that we have the regularized HEE as
what follows:

Ŝ ¼ 2

�Z
z�

ϵ

�
gðzÞ32

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞðgðzÞ2 − z4

z4�
gðz�Þ2Þ

q −
1

z2

�
dz −

1

z�

�
:

ð11Þ

Note that here l̂ and Ŝ are the dimensionful width and HEE.
Adopting μ as the scaling unit, we have the scaling-
invariant width and HEE, which are l≡ l̂μ and S≡ Ŝ=μ.
We shall only focus on the scaling-invariant quantities in
the following study.
Before showing the behaviors of HEE, we first study the

behaviors of the turning point z�, which are exhibited in
Fig. 2. It is easy to find that there are some obvious
differences between the behaviors of z� for the Gubser-
Rocha model and RN-AdS geometry. We summarize the
differences and similarities between them as what follows:
(1) In the high-temperature region, z� as the function of

width l shares similar behavior for the Gubser-
Rocha model and RN-AdS geometry. That is to

FIG. 1. Diagram of the extremal surface for an infinite strip
configuration with width l.
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say, z� monotonically increases as l increases. When
l → ∞, z� approaches the horizon of the black hole,
while in the limit of l → 0, z� → 0. It is expected that
in the high-temperature limit, as we have mentioned
in the above subsection, the z� and many informa-
tion-related quantities of the Gubser-Rocha model
are similar to those of the RN-AdS model.

(2) However, in the low-temperature region, z� exhibits
some obvious differences between the Gurbser-
Rocha model and RN-AdS geometry. From the top-
left plot of Fig. 2, we see that for the Gubser-Rocha
model, there is a domain of l where z� is almost
zero. As l increases and passes beyond some
critical value, z� gradually climbs up and finally
approaches the black hole horizon. But for the RN-
AdS geometry, there is no such domain of l (see the
top-right plot). Correspondingly, for the Gubser-
Rocha model, there is a domain of T where z�
almost vanishes (see the lower-left plot of Fig. 2)
when l is smaller than some critical value. But
conversely, for a RN-AdS background, z� is finite
for nonzero l in the limit of zero temperature (see
the lower-right plot). In the low-temperature region
of the Gubser-Rocha model, it is seen that for a
fixed width l, one has l̂ ¼ l=μ → 0, which means
that the minimum surface will only stay at the near
boundary region. This explains why z� for the
Gubser-Rocha model is significantly smaller than
that for the RN-AdS model in the low-temperature
region.

We would like to point out that to find the difference of
z� between the Gubser-Rocha model and RN-AdS

background, we have implemented a numerical computa-
tion with higher precision. This is not an easy and
straightforward work, because in the limit of zero temper-
ature, z� for the Gubser-Rocha model also tends to zero,
such that much higher precision and precaution are needed
in the numerics. In addition, in the following numerical
calculations, the numerical precision depends crucially on
the precision of the z� value.
We move on to study the behaviors of HEE. The HEE

as a function of width l for fixed temperature and as a
function of temperature T for fixed l are exhibited in
Fig. 3. Qualitatively, the behaviors of HEE for the
Gubser-Rocha model are similar to those for a RN-
AdS background. That is to say, for fixed and finite
temperature, as the width l decreases, the HEE decreases
and tends to negative infinity in the limit of l → 0, while
for fixed width l, as the temperature rises, the HEE
increases. However, if we take a closer look at the relation
between the temperature and the HEE, we find that in the
high-temperature region, the values of HEE for the
Gubser-Rocha model and the RN-AdS background are
almost the same. But in the low-temperature region, the
HEE for the Gubser-Rocha model is larger than that for
the RN-AdS background. It means that the degree of
freedom in the Gubser-Rocha model is more entangled
than that in the RN-AdS model in the low-temperature
region.
Further, in more detail, we compare the Gubser-Rocha

model and the RN-AdS model with different widths in
Fig. 4. We find that the HEE of the Gubser-Rocha model
in the low-temperature region exhibits a nonmonotonic
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FIG. 2. The turning point z� as the function of width l for fixed temperature (plots above) and as the function of temperature T for fixed
l (plots below). The left plots show the case for the Gubser-Rocha model, and the right plots for the RN-AdS background.
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behavior such that the HEE decreases first and then
increases with the increase of the temperature. This is
in contrast to the case of the Gubser-Rocha model, for
which the HEE for the RN-AdS background increases as
the temperature goes up even in the region of low
temperature. For a detailed analysis for the case of a
RN-AdS background, we can refer to Ref. [44]. Another
interesting property of the Gubser-Rocha model is that the
HEE seems to flatten out at extremal low temperatures
(Fig. 4). For this peculiar behavior, we shall give some
analytical understanding in what follows.

In the case of the RN-AdS model in Ref. [44], we can
analytically obtain the expression of the HEE at low
temperature by expanding the HEE with z → 0. However,
the expansion is valid only if any other quantity is finite
compared with z. For the Gubser-Rocha model, there are two
limits when implementing the analytical deduction. The first
one is the zero-temperature limit Q → ∞ for T → 0. The
second one is z → 0 for any minimum surface with finite
width, since μ → ∞will render a small dimensional width l̂.
Given the above two limits, one cannot expand with z → 0
or Q → ∞ solely.

0.5 1.0 1.5 2.0 2.5 3.0
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− 40

− 20
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40
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FIG. 3. HEE as a function of the width l for fixed temperature (left plot), and as a function of temperature T for fixed l (right plot). The
solid lines are for the Gubser-Rocha model, and the dotted lines are for the RN-AdS background.
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FIG. 4. HEE as a function of the temperature for different widths l. The blue line is for the Gubser-Rocha model, and the orange line is
for the RN-AdS background.
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Assuming that Qz and Qx are finite, the expression of the area reads

S ¼ 1

μ

Z
C

ffiffiffiffiffiffi
gyy

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxdx2 þ gzzdz2

q

¼
Z
C

1

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQzþ 1Þ3
3QðQþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dz2

ð1 − zÞð1þ zþ 3Qzþ z2 þ 3Qz2 þ 3Q2z2Þ

s
; ð12Þ

where
R
C indicates the integral of the line element along the geodesic. Now, we rescale the coordinate with z̃≡Qz; x̃≡Qx,

and this results in

S ¼
Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz̃þ 1Þ3ðdx̃2 − dz̃2

ð z̃Q−1Þð z̃
2

Q2þ3z̃2
Q þ z̃

Qþ3z̃2þ3z̃þ1ÞÞ
r

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
1
Q þ 1

q
z̃2

¼
Z
C

1

z̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz̃þ 1Þ3
3ð1Q þ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx̃2 −

dz̃2

ð z̃Q − 1Þð z̃2Q2 þ 3z̃2
Q þ z̃

Q þ 3z̃2 þ 3z̃þ 1Þ

vuut
¼ S0 þ

S1
Q

þOðQ−2Þ; ð13Þ

with

S0 ¼
Z
C

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz̃þ 1Þ3

p
ffiffiffi
3

p
z̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx̃2 þ dz̃2

3z̃2 þ 3z̃þ 1

s �
; ð14Þ

S1 ¼ −
Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz̃þ 1Þ3

p
ðð−3z̃3þ3z̃2þ3z̃þ1Þz0ðxÞ2

ð3z̃2þ3z̃þ1Þ2 þ 1Þ
2

ffiffiffi
3

p
z̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ðxÞ2

3z̃2þ3z̃þ1
þ 1

q dx̃2: ð15Þ

We expand S up to the second order of 1=Q. The leading
term S0 is a constant depending on the specific value of the
width. The subleading term follows S1=Q ∼ T2. Therefore,
we have

S ¼ S0 þ S1T2 þOðT4Þ: ð16Þ

Thisexplains theflatbehaviorofSvsT in thezero-temperature
limit, since ∂TSjT→0 ¼ 0. Obviously, the S in the zero-
temperature limit only involves even orders of T, since it
can be expanded with 1=Q. When the width is small and
satisfies z̃ ≤ 1.70241suchthat−3z̃3 þ 3z̃2 þ 3z̃þ 1 > 0,we
can find from Eq. (15) that S1 < 0, and hence the decreasing
behavior between S and T can be proved. However, for z̃
outside this region, so far we cannot determine the monoto-
nicity analytically.
Further, we improve the numerical precision such that

we can obtain the HEE at the extremal low temperature (the
red dots in Fig. 5). Using the command FindFit in

Mathematica, we can give the optimal fitted results, which
are shown in Fig. 5 (blue lines). The power exponent δ ≃ 2
(Table I). This verifies the analytical result [Eq. (16)].
In addition to the relation between HEE and the temper-

ature, another interesting scaling relation between z� and
the temperature can also be deduced from Eq. (13).
Noticing that the leading term of Eq. (13) only involves
z̃≡Qz, one finds that S is invariant under the following
rescaling:

Q → Q=ξ; z → ξz; x → ξx; μ → μ=ξ; ð17Þ

where ξ is a constant. Therefore, given a minimum surface
zðxÞ at width l, we can directly derive that the rescaling of
the solution z̃ðx̃Þ ¼ ξzðξxÞ is still a minimum surface. Now,
we arrive at the conclusion that

z� ∼ 1=Q ∼ T2: ð18Þ

We also numerically verify the above analytical results.
Figure 6 shows the turning point z� as a function of the
temperature T for different l in double-log coordinates. We
see that z� linearly decreases with the temperature in these
double-log coordinates. Further, by numerical fitting, we
find that the power exponent γ ≃ 2 for different l (see
Table II). Therefore, we confirm the robustness of the
temperature behavior of z�.
To summarize, the HEE of the Gubser-Rocha model

exhibits some interesting peculiar behaviors—for example,
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nonmonotonic behavior at low temperatures and then flat-
tening-out behavior in the zero-temperature limit. These
peculiar properties can be attributed to the singular property
of the Gubser-Rocha model in the limit of zero temperature.
As far as we know, it has not been reported elsewhere. There
are other models exhibiting vanishing entropy density at zero
temperature; for example, see Refs. [55,56], where the
background solution is numerically constructed. It shall

be interesting to further explore the HEE behavior at low
temperature over this background geometry [55,56].

B. Mutual information

In this subsection, we study the mutual information (MI)
from the Gubser-Rocha model. HEE suffers from the
divergence from the asymptotic AdS boundary, and so
we need to introduce a cutoff, just as was done as the
previous subsection. This issue can be avoided in MI.
To proceed, we consider two disjoint subsystems A and

C, which are separated by the subsystem B. Then, the MI
between A and C can be defined as

IðA;CÞ ¼ SA þ SC − SA∪C: ð19Þ

A non-trivial MI requires SðA ∪ CÞ ¼ SðBÞ þ SðA ∪ B
∪ CÞ. Obviously, MI is a linear combination of EE. Due
to this appropriate combination, the UV divergence of HEE
is removed in MI. In addition, MI partly removes the
thermal entropy contribution [34]. Therefore, it is a more
relevant quantity to describe quantum entanglement.

TABLE I. The HEE behaviors can be fitted by the formula
αþ βTδ. Using the command FindFit in Mathematica, we
can give the optimal fitted results, which give the power
exponent δ ≃ 2.

l 0.1 0.3 0.5 1

δ 1.969 1.992 1.994 1.994

5.× 10−5 1.× 10−4 5.× 10−4 10−3
T

10−8

10−7

10−6

10−5

z
*

l=0.1

l=0.3

l=5

l=1

FIG. 6. The turning point z� versus temperature T in double-log
coordinates.

TABLE II. We fit the temperature behavior of the turning point
z�. The fit function is z� ∼ Tγ . The power exponent γ ≃ 2 for
different l, which is in agreement with the analytical result in
Eq. (18).

l 0.1 0.3 0.5 0.7 1

γ 2.0000 1.9997 2.0000 2.0000 2.0000

0.005 0.006 0.007 0.008
T

− 13.4950
− 13.4948
− 13.4946
− 13.4944
− 13.4942
− 13.4940

S l=0.1

0.005 0.006 0.007 0.008
T

− 3.9304

− 3.9302

− 3.9300

− 3.9298

− 3.9296

− 3.9294

S l=0.3

0.005 0.006 0.007 0.008
T

− 2.0192

− 2.0190

− 2.0188

− 2.0186

− 2.0184

S
l=0.5

0.005 0.006 0.007 0.008
T

− 0.5814

− 0.5812

− 0.5810

− 0.5808

S
l=1

FIG. 5. The HEE at extremal low temperature for different widths l. The red dots are the numerical results, while the blue solid lines
are fitted by the formula αþ βTδ. Here, α, β, and δ are the constants.
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We again consider an infinite strip configuration along
the y axis for the subsystems and focus on the symmetric
case, which is described as

A ≔ f0 > x > l;−∞ < y < ∞g;
B ≔ fl > x > lþD;−∞ < y < ∞g;
C ≔ flþD < x < 2lþD;−∞ < y < ∞g: ð20Þ

l is the size of the subsystem, and D is the separation scale.
The intersecting surface of this configuration is shown
in Fig. 7.
The left plot in Fig. 8 exhibits MI over the Gubser-Rocha

model as a function of the separation scale D for fixed
subsystem size l and different temperatures (solid lines).
We find that for fixed temperature and subsystem size l, MI
decreases as the separation scale D increases. If we further
increase the separation scale such that it is beyond a certain
critical value, MI vanishes, which indicates disentangling

between two subsystems. We also exhibit the behavior of
MI as a function of the system size l for fixed D and
different temperatures in the right plot in Fig. 8. We find
that MI decreases with the decrease of l and vanishes when
l is below some value. This result is qualitatively in
agreement with that over a neutral black hole [34] and
also over a RN-AdS background (dotted lines). But note
that quantitatively, the value of MI over RN-AdS is smaller
than that over the Gubser-Rocha model. Further, Fig. 9
shows the parameter space ðl; DÞ, in which the shaded
region denotes nonzero MI. An obvious characteristic is
that for the fixed temperature, when the subsystem size l
increases, the critical lines tend to be a constant. It indicates
that if we want to have a nonzero MI, the separation scaleD
shall be constrained in a certain region.
In addition, we also note that the MI of the Gubser-

Rocha model is always larger than that of the RN-AdS
model. This observation is consistent with that of the HEE,
which has been found in the above section. This consis-
tency is reasonable, because the MI is directly related to the
HEE. It would be interesting to test whether another
entanglement measure, the EWCS, would give the same
behavior. We shall discuss this question in the next
subsection.
In the left plot in Fig. 10, we show the result of how MI

depends on the temperature for the Gubser-Rocha model
(solid lines). We see that as the temperature rises, MI falls
and finally vanishes when the temperature is beyond some
critical value. Therefore, when we heat up the system, a
disentangling transition happens. This observation is con-
sistent with that in Refs. [34,57]. To make a comparison,
we also show MI as a function of the temperature over a
RN-AdS background (dotted lines in Fig. 10). We again
confirm that the value of MI over a RN-AdS background is
smaller than that over the Gubser-Rocha model.
In the above study, we consider that the configuration is

symmetric—i.e., the sizes of the subsystems A and C are
equal. Next, we turn to explore the properties of MI with
nonsymmetrical configuration—i.e., the sizes of A and C
are unequal, as shown in Fig. 11. We denote the sizes of the

FIG. 7. A diagram of MI and Ew for symmetric configuration.
A nontrivial MI equals the difference between the area of
connected configuration (blue curves) and the area of the
disconnected configuration (red curves). The vertical dashed line
Γ represents the minimal cross section connecting the tops of Cb
and Ca;b;c. l denotes the size of the subsystems, and D is the
separation scale.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
D0

5

10

15

20
MI

l=1

T=0.1

T=0.3

T=0.5

0.5 0.6 0.7 0.8 0.9
l

0.5

1.0

1.5

2.0

2.5

3.0
MI

D=0.3

T=0.1

T=0.3

T=0.4

T=0.5

FIG. 8. Left plot: MI as a function of separation scaleDwith fixed system size l for different temperatures. Right plot: MI as a function
of system size lwith fixed separation scale D for different temperatures. The solid lines are for the Gubser-Rocha model, and the dotted
lines are for the RN-AdS background.
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subsystems A and C as a and c and the separation size as b.
Figure 12 exhibits MI as a function of the temperature over
the Gubser-Rocha model for a nonsymmetrical configura-
tion. Qualitatively, the picture of MI for a nonsymmetrical
configuration is consistent with that for symmetrical
configuration. In particular, the value of MI over RN-
AdS geometry is also smaller than that over the Gubser-
Rocha model, which indicates that this behavior is robust
and independent of the configuration.
Finally, we also see the difference δMI as the function of

T between the Gubser-Rocha model and the RN-AdS

background, which is shown in the insets in Figs. 10
and 12. For most configurations, as the temperature rises,
δMI first increases, and then decreases when the temper-
ature further rises. Therefore, for these configurations, the
MIs of the Gubser-Rocha and AdS-RN models approach
one another at high temperatures. This picture is consistent
with that of HEE and Ew, which shall be studied in the next
subsection. However, we would like to point out that for
some configurations—for example, l ¼ 0.6 in the right plot
of Fig. 10 and a ¼ 0.5, b ¼ 0.3, c ¼ 1 in the right plot of
Fig. 12—we cannot see the turning point of the temper-
ature, after which δMI decreases as the temperature rises.
This is because, as the temperature is increased beyond
some critical temperature, there is a disentangling phase
transition that MI reduces to zero.

C. Minimum cross section of the entanglement wedge

In this subsection, we turn to explore Ew over the
Gubser-Rocha model [36,37]. We first study the case
of symmetric configuration, for which the EWCS
equals the area of the vertical line Γ connecting
the tops of the minimum surfaces (see Fig. 7). The
EWCS over the Gubser-Rocha model can be specifically
calculated as

Γ ¼
Z

z2lþD

zD

ffiffiffiffiffiffiffiffiffiffiffiffi
gyygzz

p
dz

¼
Z

z2lþD

zD

ð16π2T̂2 þ 3zÞ3=2

4πT̂z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27ðz − 1Þz2 þ 144π2T̂2zðz2 − 1Þ þ 256π4T̂4ðz3 − 1Þ

q dz: ð21Þ

We then numerically integrate the above formula and study
various properties of the EWCS Eω.
The left plot in Fig. 13 exhibits the EWCS as a function

of separation scale D with fixed l ¼ 1 for different temper-
atures. It is obvious that the EWCS decreases with the

increase of D at first, and then, when D is beyond a certain
critical value, the EWCS vanishes. This is expected,
because MI vanishes and the subsystems disentangle.
We also study the EWCS as a function of l with fixed
D ¼ 0.3 in the right plot of Fig. 13, which shows that the

0 1 2 3 4
l0.0

0.2

0.4

0.6

0.8

1.0
D

T=0.1

T=0.2

T=0.3

T=0.4

FIG. 9. Parameter space ðl; DÞ, in which MI is nonzero only in
the shaded region.

0.1 0.2 0.3 0.4
T

0.11
0.12
0.13
0.14
0.15
0.16
0.17

MI

0.1 0.2 0.3 0.4 0.5 0.6
T0.0

0.5

1.0

1.5

2.0

2.5
MI

l=1

D=0.3

D=0.4

D=0.5

0.1 0.2 0.3 0.4
T

0.08
0.09
0.10
0.11
0.12

MI

0.1 0.2 0.3 0.4 0.5 0.6
T0.0

0.5

1.0

1.5

2.0

2.5
MI

D=0.3

l=0.6

l=0.8

l=1

FIG. 10. MI as a function of the temperature for different l andD. The solid lines are for the Gubser-Rocha model, and the dotted lines
are for the RN-AdS background. The inset plot describes the difference δMI as a function of T between the Gubser-Rocha model and the
RN-AdS background.

HOLOGRAPHIC INFORMATIONAL PROPERTIES FOR A … PHYS. REV. D 104, 026016 (2021)

026016-9



EWCS decreases with the decrease of l and vanishes when l
is below some value. At the same time, we show EWCS
over a RN-AdS background as a function of separation
scale D with fixed l ¼ 1 for different temperatures (dashed
lines). We find that, in contrast to the MI behavior, the
EWCS of the Gubser-Rocha model is always smaller than
that of the RN-AdS model. This shows that the MI reveals

the opposite entanglement property from that of the EWCS.
For subsystems with the same temperature and configura-
tion, EWCS shows that the dual quantum system of RN-
AdS entangles more strongly than that of the Gubser-Rocha
model, while MI gives the completely opposite conclusion.
We hope that we can give a good understanding of this
difference between the Gubser-Rocha model and the RN-
AdS background from these two informational quantities in
the future.
The temperature dependence of EWCS over Gubser-

Rocha model is also explored in Fig. 14. We find that as the
temperature rises, the EWCS slowly decreases, and then,
when the temperature is beyond some critical value, the
EWCS suddenly falls to zero. This is because the corre-
sponding MI vanishes and means that both subsystems are
disentangled. For comparison, we also show the temper-
ature dependence of EWCS over a RN-AdS background,
which is exhibited by dashed lines in Fig. 14. Again, this
confirms the observation that the EWCS of the Gubser-
Rocha model is always smaller than that of the RN-
AdS model.
Next, we briefly discuss the EWCS for nonsymmetric

configurations, for which EWCS is no longer the integral
between the two turning points of the subsystems (see

FIG. 11. The diagram of MI and Ew for a nonsymmetric
configuration.

0.1 0.2 0.3 0.4
T

0.10

0.11

0.12

0.13

MI

0.1 0.2 0.3 0.4 0.5 0.6
T0.0

0.5

1.0

1.5

2.0

2.5
MI

a=0.8,c=1

b=0.3

b=0.35

b=0.4

0.0 0.1 0.2 0.3 0.4
T

0.090
0.095
0.100
0.105
0.110
0.115

MI

0.1 0.2 0.3 0.4 0.5 0.6
T0.0

0.5

1.0

1.5

2.0

2.5

MI
b=0.3,c=1

a=0.5

a=0.7

a=0.9

FIG. 12. MI as a function of the temperature for a nonsymmetrical configuration. The solid lines are for the Gubser-Rocha model, and
the dotted lines are for the RN-AdS background.

0.3 0.4 0.5 0.6
D

1

2

3

4

5
Ew

l=1

T=0.1

T=0.3

T=0.5

0.5 0.6 0.7 0.8 0.9 1.0
l

1

2

3

4
Ew

D=0.3

T=0.1

T=0.3

T=0.4

FIG. 13. Left plot: EWCS as a function of separation scale D with fixed system size l ¼ 1 for different temperatures. Right plot:
EWCS as a function of system size l with fixed separation scale D ¼ 0.3 for different temperatures. The solid lines are for the Gubser-
Rocha model, and the dashed lines are for the RN-AdS background.
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Fig. 11). The calculation of the EWCS for a nonsymmetric
configuration is hard work, in particular for low temper-
ature. Reference [44] provides a detailed description on the
numerical technics. We shall follow the method provided in
Ref. [44] to work out the EWCS for a nonsymmetric
configuration. We sum up the results as follows:
(1) When the subsystem size becomes small or the

separation size becomes large, both the subsystems
disentangle (Fig. 15). In the entangling region,

EWCS monotonically increases (decreases) as the
subsystem size (separation size) increases (Fig. 15).

(2) In the high-temperature region, the subsystems are
disentangling. In the intermediate-temperature re-
gion, as the temperature rises, the EWCS monoton-
ically decreases (Fig. 16). These observations are
consistent with those in other models—for example,
for the RN-AdS background [44] and the holo-
graphic model with momentum relaxation [45,46].

0.1 0.2 0.3 0.4 0.5
T0

1

2

3

4
Ew

l=1

D=0.3

D=0.4

D=0.5

0.1 0.2 0.3 0.4 0.5
T0

1

2

3

4
Ew

D=0.3

l=0.6

l=0.8

l=1

FIG. 14. EWCS as a function of temperature T with symmetric configuration. The left plot is for different separation sizes D and the
fixed system size l ¼ 1. The right plot is for different system sizes l and the fixed separation scale D ¼ 0.3. The solid lines are for the
Gubser-Rocha model, and the dashed lines are for the RN-AdS background.

0.4 0.6 0.8 1.0
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FIG. 15. EWCS as a function of the subsystem size a (left plot) and the separation size b (right plot).

0.25 0.30 0.35 0.40 0.45 0.50
T

0.5

1.0

1.5

2.0

2.5

3.0

Ew

a,c = 0.8,1

b=0.3

b=0.35

b=0.4

0.30 0.35 0.40 0.45 0.50
T

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ew

a,c = 0.3,1

a=0.5

a=0.7

a=0.9

FIG. 16. EWCS as a function of temperature for a nonsymmetric configuration. The solid lines are for the Gubser-Rocha model, and
the dotted lines are for the RN-AdS background.
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(3) The EWCS of the Gubser-Rocha model is also
smaller than that of the RN-AdS model (see Fig. 16).

The above results for a nonsymmetric configuration are
consistent with that for symmetric configuration.
Before closing this section, we argue that the EWCS can

be a better diagnostic tool than the HEE and MI. First, EE
cannot recognize the fact that the direct product state is
entangled, so it is not suitable to be used as a measure of the
entanglement of mixed states. Meanwhile, MI seems to be a
better measure of the entanglement of mixed states, because
it can obtain a value for the direct product state. However, it
should be noted that since the definition of MI is directly
related to MI (in fact, MI is a combination of EE), it can be
expected that in some cases, MI can be directly derived
from the behavior of EE. In this paper, Fig. 4 shows that the
HEE presents a singular nonmonotonic behavior at very
low temperature. As a result, the MI in Fig. 12 also shows
some obvious nonmonotonic behaviors. Moreover, the
nonmonotonic behavior of MI is just opposite to that of
HEE. This is because the dominant term of the behavior
with temperature in the definition of MI is SAB, so the
nonmonotonic behavior of MI is opposite to HEE. In fact,
the key of these nonmonotonic behaviors of HEE and MI
comes from the singular properties of IR fixed points of the
Einstein-Maxwell-dilaton gravity theory in consideration.
The definition of EWCS shows that it connects two
surfaces in the entanglement wedge, so it is unlikely to
be controlled by HEE, the minimum surface ending on the
AdS boundary. In other words, it can capture information
distinct from HEE. Moreover, EWCS can also identify the
zero entanglement of the direct product state. Therefore,
EWCS not only has no dependence on HEE, but it also has
the ability to recognize the zero entanglement of the direct
product states. Furthermore, it can be seen from Figs. 14
and 16 that EWCS does not show the same nonmonoto-
nicity as HEE and MI in the zero-temperature limit. This
verifies the observation that there is no dependency
between HEE and EWCS. In this sense, EWCS can be a
better measure of entanglement of mixed states than EE
and MI.

IV. CONCLUSION AND DISCUSSION

In this paper, we study the information quantities,
including HEE, MI, and EWCS, over the Gubser-Rocha
model. The informational quantities from the Gubser-
Rocha model exhibit some common characteristics of most
holographic models. We summarize these properties as
follows:
(1) As the subsystem size enlarges, both MI and EWCS

monotonically decrease, and then when the subsys-
tem size is beyond certain critical value, MI and
EWCS drop down to zero, and so the subsystems
disentangle.

(2) When the separation size is small, the subsystems
disentangle. As the separation size increases beyond

a certain critical value, both MI and EWCS
have nontrivial values. While the separation size
is further enlarged, both MI and EWCS monoton-
ically increase.

(3) In the high-temperature region, both MI and EWCS
monotonically decrease as the temperature climbs
up, and then when the temperature exceeds some
critical value, MI and EWCS drop down to zero and
a disentangling phase transition happens.

In contrast to most holographic models such as a RN-
AdS background with nonvanishing ground-state entropy
density, the Gubser-Rocha model has vanishing ground-
state entropy density. We expect that some novel, even
singular informational properties in the limit of zero
temperature emerges. However, we have not found any
singular behavior of entanglement-related physical quan-
tities in the zero-temperature limit. A brief comment is
presented as follows: In an AdS-RN black hole system, the
zero-temperature limit means μ →

ffiffiffi
6

p
, where the metric

and the scaling unit are both finite. Therefore, the HEE in
the zero-temperature limit will approach a fixed value.
However, the zero-temperature limit of the Gubser-Rocha
model means Q → ∞ and hence μ → ∞, where the metric
and the scaling unit are both infinite. The HEE behavior
needs to be analyzed carefully. Interestingly, μ → ∞
indicates that any strip with finite width l will have a
vanishing l̂. It seems that the minimum surface should
reside in the near-boundary region, and the behavior of
HEE seems to be determined by the AdS boundary. If this is
true, the HEE will behave as S ∼ −1=l, because in the AdS
case we have Ŝ ∼ −1=l̂, and hence we obtain
S ¼ Ŝ=μ ∼ −1=ðμl̂Þ ∼ −1=l. However, this expectation is
not true, because the zero-temperature limit for the Gubser-
Rocha model also renders the metric divergent.
Nevertheless, we found a peculiar property of these

entanglement-related physical quantities of the Gubser-
Rocha model: that the HEE in the low-temperature region
decreases with the increase of temperature, which is
contrary to the entanglement property of most holographic
models. We argued that this novel phenomenon results
from the singular property of the Gubser-Rocha model in
the limit of zero temperature.
We also found that the HEE, as well as the MI, of the

Gubser-Rocha model is larger than that of the RN-AdS
model; meanwhile, the EWCS of the Gubser-Rocha model
is smaller than that of the RN-AdS model. This result
suggests that the EWCS exhibits distinct behaviors from
the HEE as well as the MI. By comparing the definitions of
HEE, MI, and EWCS and their numerical behaviors, we
can find that EWCS has different behaviors from HEE and
MI, and is more suitable for measuring the entanglement of
mixed states.
Several directions deserve further study and promotion.

First of all, whether MI or EWCS is more suitable for
describing the mixed-state entanglement is worth
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discussing in more holographic models. Second, the
ground state with vanishing entropy density can be con-
structed based on the Gubser-Rochas model, so it is
worthwhile to explore the mixed-state entanglement of
ground states in these generalized models. Third, more
mixed-state entanglement, such as Renyi entropy or entan-
glement negativity, could be considered in this model and
further compared with HEE, MI, and EWCS. Fourth, as a
supplement and confirmation of our numerical results, we
can also analytically study the related informational quan-
tities in different regions, especially the high/low-temper-
ature limit and the limit of a large/small system scale or
separated scale, following the studies in Refs. [34,58–60].
Finally, we can also study the nonequilibrium dynamics of
related informational quantities to reveal more interesting
properties of our model and further examine more inequal-
ities of MI, EWCS, or reflected entropy. Lots of works
along this direction have been done; see Refs. [61–63] and
references therein.
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APPENDIX: THE METHOD OF
CALCULATING HEE

In this appendix, we derive the expression of HEE in the
static homogeneous background in general as

ds2 ¼ gttðzÞdt2 þ gzzðzÞdz2 þ gxxðzÞdx2 þ gyyðzÞdy2:
ðA1Þ

The induced metric of the minimal surface γA has the form

ds2ind ¼ ðgzzz0ðxÞ þ gxxÞdx2 þ gyydy2: ðA2Þ

Since the configuration is an infinitely long strip in the dual
boundary (see Fig. 1), the area of γA can be expressed as

AreaðγAÞ ¼
ZZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gyyðzÞðgxxðzÞ þ z0ðxÞ2gzzðzÞÞ
q

dxdy;

ðA3Þ
where z0ðxÞ ¼ dz=dx. Because the minimal surface γA is
invariant along the y direction, we can integrate out y. And
then, after ignoring several common factors, the HEE can
be expressed as

Ŝ ¼
Z

l̂

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gyyðzÞðgxxðzÞ þ z0ðxÞ2gzzðzÞÞ

q
dx: ðA4Þ

We see that the HEE can be described by zðxÞ, which is
geodesic in the bulk spacetime.
To solve zðxÞ, usually we can treat Eq. (A4) as an action

and vary it, and we obtain the Euler-Lagrange equation as

2gyygzzz0ðxÞ2g0xx
þ gxx½gyyð−2gzzz00ðxÞ − z0ðxÞ2g0zz þ g0xxÞ
þ gzzz0ðxÞ2g0yy� þ g2xxg0yy ¼ 0: ðA5Þ

We can numerically solve the above equation by the shoot
method or the relaxation method. For the shoot method, we
first assume a set of initial conditions and then adjust the
initial conditions until the shooting point matches the aim
point. The relaxation method is the better one. The differ-
ential equation can be replaced by finite difference equa-
tions on a discrete set of points, and then we can obtain the
solution by iteration. For detailed discussions, we can refer
to Refs. [64–67].
For the static case, there is a simpler way to obtain the

HEE. When we treat Eq. (A4) as an action, one has the
corresponding Hamiltonian, which is given by

H ¼ ∂L
∂z0ðxÞ z

0ðxÞ − L; ðA6Þ

where the Lagrange is

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gyyðzÞðgxxðzÞ þ z0ðxÞ2gzzðzÞÞ

q
: ðA7Þ

Because of the Hamiltonian conservation, we can obtain

z0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gxxðzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxðzÞgyyðzÞ − gxxðz�Þgyyðz�Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxðz�Þgyyðz�ÞgzzðzÞ

p ; ðA8Þ

where we have used the condition dz=dxjz¼z� ¼ 0. From the
above equation, the length l̂ can be obtained in terms of z�:

l̂
2
¼

Z
z�

ϵ
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxðz�Þgyyðz�ÞgzzðzÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
gxxðzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxðzÞgyyðzÞ − gxxðz�Þgyyðz�Þ

p :

ðA9Þ

Then, the HEE can be expressed as

Ŝ ¼
Z

z�

ϵ
dz

gxxðzÞgyyðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
gzzðzÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxðzÞðgxxðzÞgyyðzÞ − gxxðz�Þgyyðz�ÞÞ

p :

ðA10Þ

Therefore, the HEE can be obtained by a direct numerical
integration using NDSolve in Mathematica, which is the
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way we used in this paper. This trick bypasses the explicit
solution zðxÞ. Before closing this section, we would like to
emphasize that given the z� in the region (0,1), we can

obtain the length l̂ by a direct numerical integration.
Conversely, we can also give any value of the z�
corresponding to some l̂.
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