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We study quantum gravity effects on the density of states in statistical mechanics and its implications for
the critical temperature of a Bose Einstein condensate and fraction of bosons in its ground state. We also
study the effects of compact extra dimensions on the critical temperature and the fraction. We consider both
neutral and charged bosons in the study and show that the effects may just be measurable in current and
future experiments.

DOI: 10.1103/PhysRevD.104.026014

I. INTRODUCTION

Quantum mechanics (QM) and general relativity (GR)
successfully describe observable phenomena in micro-
scopic and macroscopic regimes respectively. However,
there is no simple way of combining these two theories to
describe phenomena in regimes where both theories are
applicable. Candidate theories of quantum gravity (QG),
which aim to accomplish this, such as string theory and
loop quantum gravity, have made significant progress. Yet,
there has not been a single experiment or observation which
support or refute any QG theory. Since the immensity of the
QG or the “Planck scale,” about 1016 TeV, prevents such
tests directly in colliders, it is important to look for indirect
signatures of these theories in accessible, low energy
laboratory based experiments [1,2]. Potential QG signa-
tures in condensed matter, atomic and molecular experi-
ments have been explored by various authors [3–10].
However, QG effects in statistical mechanical systems
have not been studied extensively, although there has been
some work done in the search for QG signatures in BECs
[11–13] and that of compactified extra dimensions on
BECs [14–16]. We also study QG effects in BEC in this
paper, although our approach is different and we obtain a
number of new results. Furthermore, we will study the
feature that most QG theories predict, namely a minimum
measurable length and the related generalized uncertainty
principle (GUP) [5,17–25].
We will work with the general form of the GUP,

incorporating both linear and quadratic terms in momenta,
and which imply a minimum measurable length and a
maximum measurable momentum, is given by [5]

½xi;pj� ¼ iℏ

�
δij − α

�
pδij þ

pipj

p

�
þ βðp2δij þ 3pipjÞ

�
:

ð1Þ

In the above, xi and pj are the position and momentum
operators respectively and p¼ ffiffiffiffiffiffiffiffiffi

pipi
p

. Also, α≡α0=ðMPcÞ,
β≡ β0=ðMPcÞ2, where α0 and β0 are the linear and
quadratic GUP parameters and MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=G
p

is the
Planck mass. It is sometimes assumed that α0; β0 ¼ Oð1Þ.
However, we will make no such restriction and compute
QG effects for arbitrary α0 and β0. Note that this implies
intermediate length scales α0lPl and

ffiffiffiffiffi
β0

p
lPl between the

electroweak length scale (≈10−18 m) and the Planck scale,
lPl ≈ 10−35 m. The only restrictions that these impose are
α0 < 1017 and β0 < 1034, the bounds implied indirectly by
LHC experiments, since no new fundamental length (or
energy) scale has been observed therein.
The above, when applied to statistical mechanics,

modifies the energy levels of a particle in a box, and
hence the corresponding phase space volume of a quan-
tum particle in a box [26]. This when applied to the
statistics of a BEC, modifies its critical temperature Tc
and the fraction of bosons in the ground state at any
0 < T < Tc. Using the above, in this paper we present a
new approach to computing QG corrections to observ-
ables in BEC, such as the critical temperature and fraction
of bosons in the ground state. This approach modifies
the density of states by approximating it to first order
in α and β.
This paper is organized as follows. In Sec. II, we present

the standard results of the BEC, which is followed by a
discussion about the role of compact dimensions in BEC in
Sec. III. QG effects on observables in BEC and their
potential measurability are discussed in Sec. IV. We
summarize the work in Sec. V.
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II. STANDARD BOSE-EINSTEIN CONDENSATION

The phenomenon of BEC occurs when a dilute gas of
bosons is cooled below a certain temperature, such that
more and more bosons start occupying the ground state.
This temperature is known as the critical temperature Tc.
Since Bose-Einstein (BE) statistics (see Eq. (A4) in the
Appendix A) allows for an arbitrary number of bosons in
any state, there could theoretically be an infinite number of
bosons in the ground state. We review a few important
results related to a BEC that will be used in the rest of the
paper. Note that results in this section for Tc are valid for
arbitrary d spatial dimensions.
The critical temperature Tc is the threshold at which one

still has all the bosons in the excited states. As the gas
temperature T is decreased from Tc, they start dropping
to the ground state. Furthermore, the chemical potential
μ → 0 at T ¼ Tc in the nonrelativistic case, which we
consider first. In d-dimensional space, with d ≥ 3 (since
it can be shown that there can be no nonrelativistic BEC
in 1 and 2 dimensions [15]), the critical temperature takes
the form

Tc ¼
2πℏ2

kBmζðd
2
Þ2=d n

2=d; ð2Þ

from which one can see that the critical temperature of a
nonrelativistic BEC will be higher for high boson densities
and light boson masses. The second important observable
in BEC is the fraction f0 of bosons in the ground state. If n0
is the number density of bosons in the ground state, nðTÞ
the number density in the excited states at temperature
T < Tc and n the total number density, then these are
related by

n¼n0þnðTÞ¼n0þn

�
T
Tc

�
d=2

⇒f0¼
n0
n
¼1−

�
T
Tc

�
d=2

:

ð3Þ

From Eq. (3) we can see, that at T ¼ Tc, all bosons are still
in the excited states, since f0 ¼ 0. The bosons start to
occupy the ground state for T < Tc, when f0 > 0 and
completely fill the ground state at T ¼ 0 K, when f0 ¼ 1.
The critical temperature and fraction of bosons in the

ground state for the relativistic case can be found in a
similar manner. We consider two cases of relativistic
bosons. The first, when they are considered neutral, is
associated with the following critical temperature

Tc ¼
1

kB

�
2d−1πd=2ℏdcdΓðd

2
Þ

ΓðdÞζðdÞ
�1=d

n1=d ð4Þ

for arbitrary d ≥ 2 spatial dimensions [27,28]. Note that
while it is dependent on the number density of bosons, it
does not depend on boson mass, unlike the nonrelativistic

result given in Eq. (2). However, it continues to depend on
the boson number density, albeit with a different (positive)
power. In this case, the fraction of relativistic neutral
bosons in the ground state turns out to be

f0 ¼
n0
n

¼ 1 −
�
T
Tc

�
d
: ð5Þ

The second relativistic case includes both bosons and
antibosons. The distribution function for this case is obtained
by subtracting two BE distributions, one for bosons μðTcÞ¼
mc2 and one for antibosons μðTcÞ¼−mc2, to compute the
total charge density n (in previous cases this was just the
number density). The relativistic boson-antiboson critical
temperature can be expressed in arbitrary dimensional
Euclidean space d ≥ 3 as [27,28]

Tc ¼
1

kB

�
2d−2πd=2ℏdcd−2Γðd

2
Þ

mΓðdÞζðd − 1Þ
�1=ðd−1Þ

n1=ðd−1Þ: ð6Þ

Note that the above depends on the boson mass, and the
number density. The critical temperature increases with
increasing number density and decreasing boson mass.
The fraction of bosons in the ground state in this case turns
out to be

f0 ¼
n0
n

¼ 1 −
�
T
Tc

�ðd−1Þ
: ð7Þ

Note the different power of T=Tc when compared
with Eq. (5).
To summarize, we have seen in this section that the

BEC critical temperature in all cases is a function of boson
mass m and boson number density n, with different powers
for different cases. Similarly, the fraction of bosons in the
ground state depends on different powers of T=Tc for the
different cases.

III. BOSE-EINSTEIN CONDENSATION IN
COMPACT DIMENSIONS

Compact extra dimensions are interesting from the point
of view of QG, since they are an essential component in
string theory, where they are normally assumed to be tiny,
and in fact most often, of the order of the Planck length
[29]. In this section, we examine whether compact dimen-
sions have an effect on the BEC critical temperature, in
which case they may be measurable. Interestingly, we find
that there is indeed such an effect. We start with the
expression for the charge density n of relativistic particles
in d noncompact dimensions and N compact dimensions
with a topology of Rd × SN [14],
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n ¼
X∞
l¼0

dl

Z
∞

0

ddk
ð2πÞd

�
1

eβð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2k2c2þm2c4þℏ2ω2

l

p
−μÞ − 1

−
1

eβð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2k2c2þm2c4þℏ2ω2

l

p
þμÞ − 1

�
; ð8Þ

where

dl ≡ ð2lþ N − 1ÞΓðlþ N − 1Þ
l!ΓðNÞ and

ω2
l ≡ c2

R2
lðlþ N − 1Þ ðfor l ∈ N ∪ f0gÞ; ð9Þ

are the degeneracy factors and energy contributions from
compact dimensions respectively, and R is the radius of the
compact SN . We consider the case which is currently the
only one which is experimentally measurable, namely a
nonrelativistic BEC, with kBT ≪ mc2. In this case, Eq. (8)
reduces to

n ≃
X∞
l¼0

dl
1

ð2πℏ2Þd=2 ðkBTcÞd=2
1

cd

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ω2

l þm2c4
q �

d=2

×
X∞
n¼1

1

nd=2
e
−nβc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ω2

lþm2c4
p

−mc2
�
: ð10Þ

If we further consider a regime where the radius of the
compact dimension is very small, and the boson mass is
much less than its inverse mass scale (the Planck scale),
such that the inequality ðmc=hÞR ≪ 1 holds, we see that
all terms except for l ¼ 0 are exponentially suppressed by
the Boltzmann factor. The second sum in Eq. (10) reduces
to the polylogarithm function Lid=2ðexp ð−βc ℏc

R

ffiffiffiffi
N

p ÞÞ (see
Eq. (A6) in Appendix A), where we have used the
condition ℏωl ≫ mc2, which follows directly from
the previous one for small mass regimes. Now, for a
small argument of the polylogarithm, one can write
Lid=2ðexp ð−βc ℏc

R

ffiffiffiffi
N

p ÞÞ ≈ exp ð−βc ℏc
R

ffiffiffiffi
N

p Þ [30]. Using
this, with additionally including only the l ¼ 1 term, we
get the number density of bosons including the correction
term due to compact dimensions from Eq. (10)

n ≃
�
mkBTc

2πℏ2

�
d=2

�
ζ

�
d
2

�
þ ℏd=2Nðdþ4Þ=4

Rd=2md=2cd=2
e−βc

ℏc
R

ffiffiffi
N

p �
: ð11Þ

We can see from the above that the first term agrees with
standard theory, while the second term is the remnant from
the extra dimensions, which as expected is very small
due to the Boltzmann suppression factor. This term goes to
zero as R → 0. We are interested in the critical temperature
Tc, which we extract from Eq. (11), using a perturbative

approach and defining Tc ¼ Tð0Þ
c þ ΔTðRÞ. The critical

temperature with corrections due to extra compact dimen-
sions then takes the form

Tc≃
2πℏ2

kBmζðd
2
Þ2=dn

2=d−
4πℏðdþ4Þ=2Nðdþ4Þ=4e−β

ð0Þ
c

ℏc
R

ffiffiffi
N

p

kBdRd=2mðdþ2Þ=2cd=2ζðd
2
Þð2þdÞ=dn

2=d;

ð12Þ

where βð0Þc ¼ 1=ðkBTð0Þ
c Þ. From Eq. (12), we see that the

first term is identical to Eq. (2) and the magnitude of the
correction term increases with increasing number density
and decreasing boson mass. We can also see the nontrivial
dependence of the correction term on the compact dimen-
sion. We discuss this in terms of the relative magnitude of
the correction, expressible from Eq. (12) as

				ΔTðRÞ
Tð0Þ
c

				¼2ℏd=2Nðdþ4Þ=4e−β
ð0Þ
c

ℏc
R

ffiffiffi
N

p

dRd=2md=2cd=2ζðd
2
Þ ≡10−r <10−q: ð13Þ

In the above, r and q take positive values and 10−q denotes
the precision at which the BEC critical temperature can be
measured, and the inequality stems from the fact that the
above ΔTðRÞ has not been observed in the laboratory so
far. This subsequently puts bounds on the extra dimensions,
as we shall see below. The important point to note here is
that the rhs of Eq. (13) contains the compact dimension
radius R in the denominator as well as in the numerator, via
the exponential Boltzmann factor. Therefore, interestingly,
as one spans the range of R from very small to larger values,
the correction term first increases and then starts to
decrease. This behavior is shown in Fig. 1. The blue line
therein depicts the relative correction given in Eq. (13),
suitably normalized for ease of comparison with the
horizontal orange line, signifying a hypothetical precision,
expected to be attainable in the future (a line corresponding
to current accuracies would lie well above the blue curve).
Note that the curves intersect at two points, corresponding
to R1 and R2 on the horizontal axis. Therefore, if no trace of

FIG. 1. Relative correction as a function of radius R of the
compact dimension for a heliumgas, usingm¼mHe, n¼1023 m−3,
d ¼ 3 and N ¼ 1 (blue), and a hypothetical precision of the
experiment (orange).
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the compact dimension is found in experiments, in terms of
the above corrections, it would mean that the relative
precision is either on the left of R1 or right of R2. In other
words, one obtains an upper as well as a lower bound on
the size of the compact radius R. More precisely, the peak is

located at Rmax ¼ 2βð0Þc ℏc
ffiffiffiffi
N

p
=d and the two bounds

always satisfy R1 < Rmax and R2 > Rmax for lower and
upper bound respectively. While upper bounds on the
size of compact dimensions have been imposed from a
number of theoretical and experimental standpoints, We are
not aware of any other experiment or observation which
puts both an upper and a lower bounds on R. We can also
see that Eq. (13) is implicitly dependent on the number

density n through the inverse critical temperature βð0Þc ,
since the latter depends on n. Therefore, if we increase
n, the exponential factor increases and the relative correc-
tion increases. Therefore, the magnitude of the correction,
signified by the quantity r, which one hopes to minimize, is
given in terms of R, the number of compact dimensions N,
the boson mass m and implicitly on the boson density n as

r¼ rd;NðR;mÞ¼ log

�
dRd=2md=2cd=2ζðd

2
Þ

2ℏd=2Nðdþ4Þ=4 eβ
ð0Þ
c

ℏc
R

ffiffiffi
N

p �
: ð14Þ

The above gives us an estimate of what the precision of the
temperature measurements must be, to detect such a
deviation from the standard theory and obtain signatures
of extra dimensions. The second observable, the fraction of
bosons in the ground state, including corrections due to
extra compact dimensions, takes the form

f0 ¼
n0
n

¼ 1 −
�
T
Tc

�
d=2

�
1þ ℏd=2Nðdþ4Þ=4

Rd=2md=2cd=2ζðd
2
Þ

×
�
e−βc

ℏc
R

ffiffiffi
N

p ðTcT Þ − e−βc
ℏc
R

ffiffiffi
N

p ��
; ð15Þ

from where we can see, that without the correction term
(R → 0) the fraction is the same as in standard theory in
Eq. (3). The correction term in square brackets in Eq. (15)
vanishes for T ¼ Tc, as expected.
In this analysis, we considered a spherical topology of

the compact dimensions Rd × SN , where there is only one
radius, no matter how many compact dimensions N we
consider. If the topology of the compact dimensions is
toroidal instead, say Rd × TðNÞ, then each of the N
compact dimensions could have distinct radii. For such a
spatial topology, the above calculations would be similar,
with the difference that the energy contribution in Eq. (9)
would be a function of all N radii, instead of just R.
However, for N ¼ 1, we do not expect any difference
between the two topologies.

IV. BOSE-EINSTEIN CONDENSATION
WITH QG CORRECTIONS

QG effects in standard QM systems are implied by the
GUP, defined by the commutator in Eq. (1). The phase
space integrals in statistical mechanics are normalized by a
phase space volume of a particle in a box, so this is where
the QG corrections appear in the analysis. Such a modi-
fication also modifies the density of states, which is used to
calculate the QG corrected number density of bosons
and by extension, the critical temperature and fraction of
bosons in the ground state. To apply the GUP in Eq. (1) to a
quantum particle in a box, we modify the dispersion
relation between energy and momentum of a particle,
which is the Hamilton operator in QM

H ¼ p2

2m
þ VðxÞ; ð16Þ

where p is the physical momentum of the particle, p ¼ jpj,
m its mass and VðxÞ the potential of a particle in a box
(VðxÞ ¼ 0 inside the box and VðxÞ ¼ ∞ outside the box).
We notice that we cannot use the standard operator for
momentum pi ≠ −iℏ∂xi , because the commutation relation
is modified as in Eq. (1). However, we can define a set of
canonical operators x0i and p0i, which satisfy a standard
commutation relation ½x0i; p0j� ¼ iℏδij. Therefore, we can
write p0i ¼ −iℏ∂x0i . In terms of x0i and p0i, we get

xi ¼ x0i; pi ¼ p0ið1 − αp0 þ 2βp2
0Þ; ð17Þ

where p0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0kp0k

p
. We will use the above to compute

QG corrections to the nonrelativistic and relativistic
Hamiltonians, and examine its consequences for a BEC
in the following subsections. Note that the physical
momentum is still pi.

A. Nonrelativistic

In this case, we use the nonrelativistic kinetic term and
choose the potential inside a three dimensional box with
edges Lx, Ly and Lz to be VðxÞ ¼ 0, and the potential
outside this box VðxÞ ¼ ∞. As usual, we choose the
boundary conditions ψð0; y; zÞ ¼ ψðx; 0; zÞ ¼ ψðx; y; 0Þ ¼
ψðLx; y; zÞ ¼ ψðx; Ly; zÞ ¼ ψðx; y; LzÞ ¼ 0. To compute
the QG corrected energy spectrum of a nonrelativistic
particle in a three dimensional box, we first write the
QG corrected Hamiltonian by replacing p in terms of p0 as
given in Eq. (17)

H ¼ p2

2m
¼ p2

0

2m
−

α

m
p3
0 þ

5β

2m
p4
0 ≡H0 þH1 þH2; ð18Þ

where H0 ¼ p2
0

2m, H1 ¼ − α
mp

3
0 and H2 ¼ 5β

2mp
4
0. We will

compute corrections to the energy spectrum due to H1 and
H2 to linear order in β and quadratic order in α (note that
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these are of a similar order or magnitude). As we know, the
eigenfunctions of an unperturbed Hamiltonian H0, for a
particle in a three dimensional box are given as [31]

ψnðx0Þ ¼ ψnx;ny;nzðx0; y0; z0Þ

¼
ffiffiffiffi
8

V

r
sin

�
πnx
Lx

x0

�
sin

�
πny
Ly

y0

�
sin

�
πnz
Lz

z0

�
;

ð19Þ

where V ¼ LxLyLz is the volume of the box and
nx; ny; nz ∈ N are quantum numbers. In a Hilbert space
H ¼ fψn;n ∈ N3g we can write a general wave function
as Ψðx0Þ ¼

P
n cnψnðx0Þ, where cn ∈ C. The energy

spectrum of a three dimensional particle in a box, consid-
ering an unperturbed Hamiltonian H0 is

εð0Þn ¼ εð0Þnx;ny;nz ¼ hψnðx0ÞjH0jψnðx0Þi

¼ ℏ2π2

2mL2
ðn2x þ n2y þ n2zÞ; ð20Þ

where we assumed L ¼ Lx ¼ Ly ¼ Lz without loss of
generality. To get the QG correction to the energy spectrum
in Eq. (20), we use the time independent, first order
perturbation theory to compute the linear (see
Appendix B) and quadratic terms of the perturbation H1

and H2 respectively as

Δεð1ÞLinn ¼ hψnðx0ÞjH1jψnðx0Þi

¼ −
αℏ3π3

mL3
ðn2x þ n2y þ n2zÞ3=2 ð21Þ

Δεð1ÞQuadn ¼ hψnðx0ÞjH2jψnðx0Þi

¼ 5βℏ4π4

2mL4
ðn4x þ n4y þ n4z þ 2n2xn2y

þ 2n2xn2z þ 2n2yn2zÞ; ð22Þ

so that the energy spectrum of a particle in a three
dimensional box, up to quadratic order of the QG param-
eters, is just the sum of Eqs. (20)–(22)

εn ¼ ℏ2π2

2mL2
ðn2x þ n2y þ n2zÞ −

αℏ3π3

mL3
ðn2x þ n2y þ n2zÞ3=2

þ 5βℏ4π4

2mL4
ðn4x þ n4y þ n4z þ 2n2xn2y þ 2n2xn2z þ 2n2yn2zÞ

¼ ℏ2

2m
k2n −

αℏ3

m
k3n þ

5βℏ4

2m
k4n; ð23Þ

where k2n ¼ π2

L2 ðn2x þ n2y þ n2zÞ in the third line. From the
above we can see that the QG corrections to the energy
spectrum of a particle in a three dimensional box are also
dependent on quantum numbers nx, ny and nz, but with

different powers. An exact procedure to obtain the QG
corrected energy spectrum of a particle in a one dimen-
sional box, without using perturbation theory is described
in [32].
Considering the QG corrected energy spectrum for a

particle in a three dimensional box, given by Eq. (23), we
calculate the QG corrected density of states in the con-
tinuum limit εn → ε (see Appendix C) as

gðεÞ ¼ Vð2mÞ3=2ε1=2
4π2ℏ3

ð1þ 16α
ffiffiffiffi
m

p
ε1=2 − 25βmεÞ; ð24Þ

from which we see that it reduces to the usual density of
states, given by Eq. (A2) in Appendix A, when α, β → 0.
A more general procedure, described in Appendix D can
also be used to obtain the QG corrected density of states.
However, its use is currently limited to the nonrelativistic
case with quadratic corrections only, due to the complexity
of calculations.
The number of particles in the system is calculated using

Eq. (A1) of Appendix A and the QG corrected density of
states in Eq. (24). We evaluate the integral at Tc (μ → 0)
and divide it by V to get the QG corrected boson number
density

n ¼ NBE

V
¼

ffiffiffi
2

p
m3=2

2π2ℏ3

�Z
∞

0

ε1=2

eβcε − 1
dε

þ 16α
ffiffiffiffi
m

p Z
∞

0

ε

eβcε − 1
dε − 25βm

Z
∞

0

ε3=2

eβcε − 1
dε

�

¼
ffiffiffi
2

p
m3=2

4π3=2ℏ3

�
ðkBTcÞ3=2ζ

�
3

2

�
þ 16π3=2

3
α

ffiffiffiffi
m

p ðkBTcÞ2

−
75

2
βmðkBTcÞ5=2ζ

�
5

2

��
; ð25Þ

where we again see that it reduces to the usual number
density, given by Eq. (A11) (as μ → 0) in Appendix A,
when α, β → 0. Note that we cannot extract a closed form
expression of Tc from Eq. (25), and therefore we use a

perturbative approach. We define Tc¼Tð0Þ
c þΔTðαÞ þ

ΔTðβÞ, to express the QG corrected Tc, where ΔTðαÞ∝α
and ΔTðβÞ ∝ β. It is easy to see that the uncorrected critical

temperature Tð0Þ
c is equal to that in Eq. (2) for d ¼ 3. The QG

corrected critical temperature Tc is then

Tc¼
2πℏ2

kBmζð3
2
Þ2=3n

2=3−α
32

ffiffiffi
8

p
π3ℏ3

9kBmζð3
2
Þ2nþβ

100π2ℏ4ζð5
2
Þ

kBmζð3
2
Þ7=3 n4=3;

ð26Þ

where we can see that the QG corrections increase with
increasing number density n and decreasing boson mass m.
We also see that higher order QG corrections have a stronger
dependence on n. This is a direct consequence of the
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presence of higher order terms Tc in Eq. (25). The
magnitude of the relative correction is then

				 ΔT
Tð0Þ
c

				 ¼ α0
16

ffiffiffi
8

p
π2ℏ

9MPcζð32Þ4=3
n1=3 − β0

50πℏ2ζð5
2
Þ

ðMPcÞ2ζð32Þ5=3
n2=3;

ð27Þ

which increases with increasing n, but does not depend
on the boson mass. This is presented in Fig (2), where the
black line represents the current experimental accuracy
which will evidently continue to improve with time.
Equation (27) differs from a similar result in [11,12],
where the relative correction decreases with increasing n

as jΔT=Tð0Þ
c j ∝ α0=n1=3. Note that as the particle number

increases in a given volume, the total energy gets closer
to the Planck energy scale, thus magnifying the QG effects
[33]. This shows that our result is perfectly reasonable.
The second important observable is the fraction of

bosons in the ground state. Using the same procedure as
for Eq. (3), we calculate this fraction using Eq. (25) as

f0 ¼
n0
n

¼ 1 −
�
T
Tc

�
3=2

þ α
16π3=2

3ζð3
2
Þ

ffiffiffiffiffiffiffiffiffi
mkB

p �
T3=2

Tc
−

T2

T3=2
c

�

− β
75

2

ζð5
2
Þ

ζð3
2
ÞmkB

�
T3=2

T1=2
c

−
T5=2

T3=2
c

�
; ð28Þ

where we see that a standard result in Eq. (3) is recovered
for α, β → 0. Furthermore, we see that at T ¼ Tc, the QG
corrections vanish and f0 ¼ 0, as expected, even when α,
β ≠ 0. This means that a deviation in fraction of bosons in
the ground state due to QG effects, should be observed at
temperatures T < Tc.
The corrections terms from Eq. (28) are presented in

Fig. 3 for a helium gas. We see that the correction has a

maximum between absolute zero and the critical temper-
ature Tc at

Tm ¼ 9

16
Tc −

β

α

2025

256

ζð5
2
Þ ffiffiffiffiffiffiffiffiffi

mkB
p

π3=2
T3=2
c : ð29Þ

This suggest that experiments able to measure the fraction of
bosons in the ground state with high accuracy would most
likely observe QG corrections near this temperature Tm.

B. Relativistic

For this case we follow the procedure outlined in [34] to
obtain the QG corrected energy spectrum of a relativistic
boson in a three dimensional box. This is then used to
obtain the relativistic density of states, the QG corrected
critical temperature Tc, and fraction of bosons in the
ground state f0 for a relativistic BEC. We consider two
distinct cases. In the first case, we consider neutral bosons,
and in the second case we consider charged bosons and
antibosons.
Relativistic bosons (spin zero) are described by the

Klein-Gordon equation, which as shown in [34,35] gives
rise to the following effective Hamiltonian in the Feshbach-
Villars formalism

H ¼ ðτ3 þ iτ2Þ
p2

2m
þ τ3mc2; ð30Þ

where τi (i ¼ 1, 2, 3) are the Pauli matrices. The corre-
sponding wave function satisfies the equation iℏ∂tΨ¼HΨ.
The eigenfunctions Ψ of the effective Hamiltonian in
Eq. (30), are given by

Ψ ¼
�
φ

χ

�
: ð31Þ

FIG. 2. Relative temperature correction as a function of the number density n, for a helium gas, for different values of parameter α0,
where β0 ¼ α20 and the black line represents the experimental accuracy.
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It is straightforward to show that ψ ¼ φþ χ satisfies the
Klein-Gordon equation

1

c2
∂2ψ

∂t2 −∇2ψ þm2c2

ℏ2
¼ 0: ð32Þ

It turns out that the time dependent solutions for φ and χ of
the effective Hamiltonian in Eq. (30) are

φ�
n ðxÞ ¼

ffiffiffiffi
8

V

r
φ�
0 ðpÞe∓

E
ℏt sin

�
πnx
Lx

x

�

× sin

�
πny
Ly

y

�
sin

�
πnz
Lz

z

�

χ�n ðxÞ ¼
ffiffiffiffi
8

V

r
χ�0 ðpÞe∓

E
ℏt sin

�
πnx
Lx

x

�

× sin

�
πny
Ly

y

�
sin

�
πnz
Lz

z

�
; ð33Þ

where V ¼ LxLyLz is the volume of the box, nx; ny; nz ∈ N
are quantum numbers and ðφ�

0 Þ2 − ðχ�0 Þ2 ¼ �1 where
� denotes particle and antiparticle solutions. We notice
that the solutions in Eq. (33) are similar to those in the
nonrelativistic case in Eq. (19). They differ only by the
relativistic, momentum-dependent functions φ�

0 ðpÞ and
χ�0 ðpÞ. To compute the QG corrected energy spectrum
of a relativistic particle in a box, we modify the effective
Hamiltonian, using the transformation in Eq. (17), as

HQG ¼ ðτ3 þ iτ2Þ
p2
0

2m
þ τ3mc2 − ðτ3 þ iτ2Þ

α

m
p3
0

þ ðτ3 þ iτ2Þ
5β

2m
p4
0 ¼ H0 þH1 þH2; ð34Þ

whereH0 ¼ ðτ3 þ iτ2Þ p2
0

2m þ τ3mc2,H1 ¼ −ðτ3 þ iτ2Þ α
mp

3
0

and H2 ¼ ðτ3 þ iτ2Þ 5β
2mp

4
0. The energy spectrum of a three

dimensional relativistic particle in a box, considering an
unperturbed effective Hamiltonian H0 is

εð0Þn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ℏ2π2

L2
ðn2x þ n2y þ n2zÞ þm2c4

r
; ð35Þ

where we assumed L ¼ Lx ¼ Ly ¼ Lz, without loss of
generality and � signifies the particle and antiparticle
solutions. We obtained the energy spectrum in Eq. (35),
by computing the eigenvalues of theH0 operator. To get the
QG correction to the energy spectrum in Eq. (35), we
consider the complete QG corrected, effective Hamiltonian
HQG from Eq. (34) and use the result from Appendix B.
The QG corrected energy spectrum is then

εn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2c2k2n − 2αℏ3c2k3n þ 5βℏ4c2k4n þm2c4

q
; ð36Þ

which is obtained by calculating the eigenvalues of the
effective Hamiltonian HQG. In the above, we again used

k2n ¼ π2

L2 ðn2x þ n2y þ n2zÞ and the sign plays no role in further
considerations, since we use the square of Eq. (36).
Considering the QG corrected energy spectrum for a
particle in a three dimensional box, given by the relativistic
relation in Eq. (36), we calculate the QG corrected density
of states in the continuum limit kn → k and εn → ε (see
Appendix C) as

gðεÞ ¼ Vε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −m2c4

p

2π2ℏ3c3

�
1þ 4α

1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −m2c4

p

−
25

2
β
1

c2
ðε2 −m2c4Þ

�
: ð37Þ

FIG. 3. Fraction correction as a function of the condensate temperature T, for a helium gas, for different values of parameter α0, where
β0 ¼ α20 and the black line represents the experimental accuracy.
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Wesee that it reduces to the usual relativistic density of states,
given by Eq. (A3) in Appendix A, when α, β → 0. It may be
noted that the integrals which take the form of Eq. (A1) in
Appendix A are nonanalytical when using the relativistic
density of states in Eq. (37). They can be expressed in a
closed form only in the ultrarelativistic (UR) limit, where

ε ≫ mc2. The number of particles in the system is calculated
using Eq. (A1) in Appendix A and the QG corrected density
of states in Eq. (37).We evaluate the integral at Tc (μ → 0) in
the UR limit and divide it by V to get the QG corrected
number density for the neutral boson case

n ¼ NUR−B
BE

V
¼ 1

2π2ℏ3c3

�Z
∞

0

ε2

eβcε − 1
dεþ 4

α

c

Z
∞

0

ε3

eβcε − 1
dε −

25

2

β

c2

Z
∞

0

ε4

eβcε − 1
dε

�

¼ 1

π2ℏ3c3

�
ðkBTcÞ3ζð3Þ þ

2π4

15

α

c
ðkBTcÞ4 − 150

β

c2
ðkBTcÞ5ζð5Þ

�
ð38Þ

and for the charged boson case

n ¼ NUR−BB̄
BE

V
¼ m

2π2ℏ3ckBTc

�Z
∞

0

ε2

cosh ðβcεÞ − 1
dεþ 4

α

c

Z
∞

0

ε3

cosh ðβcεÞ − 1
dε −

25

2

β

c2

Z
∞

0

ε4

cosh ðβcεÞ − 1
dε

�

¼ m
3ℏ3c

�
ðkBTcÞ2 þ

72

π2
α

c
ðkBTcÞ3ζð3Þ − 10π2

β

c2
ðkBTcÞ4

�
; ð39Þ

where we see, that for both cases the results return the
number densities as in the standard theory [27], when α,
β → 0. Again using the perturbative approach as for the
nonrelativistic case, we find the critical temperatures for the
neutral boson case to be

TB
c ¼ π2=3ℏc

kBζð3Þ1=3
n1=3 − α

2

45

π16=3ℏ2c

kBζð3Þ5=3
n2=3

þ β50
π2ℏ3c
kB

ζð5Þ
ζð3Þ2 n ð40Þ

and for the charged boson case, it is given by

TBB̄
c ¼ 1

kB

�
3ℏ3c
m

�
1=2

n1=2 − α108
ℏ3ζð3Þ
π2kBm

n

þ β15
π2

kB

�
3ℏ9

m3c

�
1=2

n3=2; ð41Þ

where we can see that the QG corrections increase with
increasing number density n for both cases. In the charged
boson case the QG corrections increase with decreasing
boson mass m, while the neutral boson case is independent
of boson mass. We also notice that higher order QG
corrections have a stronger dependence on n, as also seen
in the nonrelativistic case. For α, β → 0 in Eqs. (40), (41),
we recover the standard results from Eqs. (4), (6). The
magnitude of the relative corrections of the critical temper-
ature for the neutral boson case is

				ΔTB

Tð0Þ
c

				 ¼ α0
2π14=3ℏ

45MPcζð3Þ4=3
n1=3 − β0

50π1=2ℏ2ζð5Þ
ðMPcÞ2ζð3Þ5=3

n2=3;

ð42Þ

while for the charged boson case, it is given by

				ΔTBB̄

Tð0Þ
c

				¼α0
108ℏ3=2ζð3Þffiffiffi
3

p
π2MPc

ffiffiffiffiffiffiffi
mc

p n1=2−β0
15π2ℏ3

ðMPcÞ2mc
n: ð43Þ

From the above we can see that the relative correction
increases only with increasing n and does not depend on m
for the neutral bosons and increases with increasing n and
decreasing m for the charged bosons. The relative correc-
tions are presented in Fig. 4. We see that the QG corrections
for the charged boson case require a higher α0 (about 5
orders of magnitude) to achieve the same magnitude of the
QG correction as the neutral boson case. In other words, the
corrections are much smaller for the charged boson case.
This is due to the higher power of the Planck constant in the
charged boson case, which significantly decreases the
magnitude of the correction.
The fraction of bosons in the ground state for the neutral

boson case turns out to be

fB0 ¼ n0
n

¼ 1 −
�
T
Tc

�
3

þ α
2π4

15ζð3Þ
kB
c

�
T3

T2
c
−
T4

T3
c

�

− β150
ζð5Þ
ζð3Þ

k2B
c2

�
T3

Tc
−
T5

T3
c

�
; ð44Þ

while for the charged boson case
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fBB̄0 ¼ n0
n

¼ 1 −
�
T
Tc

�
2

þ α
72ζð3Þ
π2

kB
c

�
T2

Tc
−
T3

T2
c

�

− β10π2
k2B
c2

�
T2 −

T4

T2
c

�
: ð45Þ

From the above we see that for α, β → 0, the standard
results from Eqs. (5), (7) are recovered. We again see that at
T ¼ Tc, the QG corrections vanish and f0 ¼ 0, as expected
in standard theory, even when α, β ≠ 0. Therefore, as in the
nonrelativistic case, the fraction of bosons in the ground
state undergoes QG corrections for any T < Tc.
The corrections terms from Eqs. (44), (45) are presented

in Fig. 5. Since only the charged boson case is dependent
on the boson species, we used helium gas to plot it. We
again see that the correction has a maximum between the
absolute zero and the critical temperature Tc at

TB
m ¼ 3

4
Tc −

β

α

3375ζð5Þ
π4

kB
c
T2
c ð46Þ

for the neutral case and

TBB̄
m ¼ 2

3
Tc −

β

α

5π4

54ζð3Þ
kB
c
T2
c ð47Þ

for the charged case. This suggests that experiments able to
measure the fraction of bosons in the ground state for a
relativistic BEC with high accuracy would most likely
observe QG corrections near this temperature Tm.

C. Experimental implications

There are six observables, for which we made theoretical
predictions that include QG effects. The observables in the
nonrelativistic and relativistic regimes are the three critical

FIG. 5. Fraction correction as a function of the condensate temperature T, for a helium gas, for different values of parameter α0, where
β0 ¼ α20. The solid lines represent the neutral case and the dashed lines represent the charged case.

FIG. 4. Relative correction as a function of the number density n, for a helium gas, for different values of parameter α0, where β0 ¼ α20.
The solid lines represent the neutral case and the dashed lines represent the charged case.
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temperatures from Eqs. (26), (40), (41) and three fractions
of bosons in the ground state from Eqs. (28), (44), (45). Out
of these theoretical possibilities, only the nonrelativistic
BEC can currently be realized in the lab, and with ever-
improving measurement accuracies, we hope that some of
our predicted effects may be observable in this system. We
also hope that relativistic BECs can also be produced in the
lab in the future, which will further open up the window for
measuring potential QG effects.
In the most optimistic scenario at present, where the

detection threshold for critical temperatures is of the order
∼10−10 K, the QG effects should be large enough to be
observed for α0 ≳ 1019 when β0 ¼ α20 (the same holds when
β0 ∼ 0) and for β0 ≳ 1046 when only quadratic QG correc-
tions are considered (i.e., α0 ¼ 0). In the worst case the
experiments do not observe any deviations from the standard
theory, but we can still constrain the QG parameters to α0 <
1019 for β0 ¼ α20 (or β0 ∼ 0) and β0 < 1046 for α0 ¼ 0.
The fraction of bosons in the ground state is measured by

integrating the velocity distribution in the ranges of
velocities, where the gas is in the condensate state [36].
The precision of such a measurement is around 10−2, i.e.,
about 1% [37,38] and continually improving. We therefore
expect this precision to increase with time as well, and
reach a stage in the foreseeable future where our predicted
effects will either be measurable, or one will be able to
put strict bounds on the QG parameters. The bounds on
QG parameters obtained by considering the precision of
measuring the fraction of bosons in the ground state are
α0 < 1025 for β0 ¼ α20 (or β0 ∼ 0) and β0 < 1052 for
α0 ¼ 0. These bounds are not as good as the ones obtained
using critical temperature and are therefore phenomeno-
logically not yet as interesting.

V. CONCLUSION

Bose-Einstein condensation is an interesting phenome-
non, which has a variety of theoretical and experimental
implications. The remnant effects of compactified dimen-
sions and QG effects, due to GUP, on a BEC could be
observable through their effects on the critical temperature
and the fraction of bosons in the ground state for a BEC,
with a high enough sensitivity of the experimental setup.
The effects which arise from the presence of compactified

dimensions are many orders of magnitude smaller than the
current experimental capabilities, but they imply interesting
bounds on the dimensions of compact spaces. If such high
accuracies were to be achieved, we would get an upper and
lower bound simultaneously for the radius of compact
dimensions, given the topology Rd × SN. This can be seen
if Fig. (1), for d ¼ 3 and N ¼ 1. To our knowledge, this is
the first time that such constraints on both the upper and
lower bounds simultaneously has been found. Therefore this
could have potentially far-reaching implications in the
search for extra dimensions, which is a important ingredient
in certain theories of QG such as string theory.

By considering QG effects due to GUP, the number
densities for nonrelativistic and relativistic gases get
modified, which we use to compute the critical temperature
and fraction of bosons in the ground state. We notice that
both linear and quadratic corrections increase with increas-
ing number density n, for all three cases, but only the
charged boson case has a dependence on mass m. For each
of the cases, the powers of n, the number density of bosons,
are different. Although a relativistic BEC has not been
experimentally realized so far in the laboratory, our
theoretical predictions should be useful when such a state
is finally achieved. Therefore, as of now, the only case that
can be experimentally tested is the nonrelativistic one. In
this, increasing the number density of a boson gas
influences the magnitude of the QG corrections, and for
sufficiently high densities, this increase may be by one or
more orders of magnitude, as seen from Figs. (2 and 4).
We have obtained the QG corrections to the critical

temperatures in Eqs. (26), (40), (41) and fractions of
particles in the ground state in Eqs. (28), (44), (45), by
considering the linear and quadratic GUP corrections
separately. If both corrections are considered simultane-
ously, the calculations would be much more complicated,
but the results in Eqs. (26), (40), (41), (28), (44), (45) would
change only by a numerical factor of order ∼Oð1Þ in front
of the quadratic correction.
Finally, as shown in our paper, it is not necessary for the

minimum measurable length scale that follows from QG
theories to be of the order of the Planck scale. In fact, it can
be a potentially observable intermediate scale, between the
electroweak and Planck scales. Our results are valid for any
such intermediate scale. If no QG effects are observed in
BEC on the other hand, we can still constrain the QG
parameters to α0 < 1019, assuming β0 ¼ α20 (or β0 ∼ 0) and
β0 < 1046, assuming α0 ¼ 0, given the experimental accu-
racy. While this is slightly worse than the bounds that
follow for example from experiments at the LHC, which
gives α0 < 1017, β0 < 1034, our bounds will continue to
improve with ever increasing experimental accuracies.
Furthermore, we do expect the predicted QG effects to
be present, and detectable in the future. We hope to report
on the further ramifications of our results elsewhere.
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APPENDIX A

When we calculate predictions of any physical observ-
able in statistical mechanics, we have to compute averages,
because in systems with many particles we can only
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measure macroscopic observables of the whole system,
such as temperature, pressure and volume. To compute an
ensemble average of a physical, single particle quantity Y
over the whole energy range ε ∈ ½0;∞Þ, for a gas of bosons
or fermions, we use the ensemble average

hYi ¼
Z

∞

0

YðεÞgðεÞfBEðFDÞðεÞdε; ðA1Þ

where

gðεÞ ¼ Vð2mÞ3=2ε1=2
4π2ℏ3

ðA2Þ

is the density of states for nonrelativistic bosons,

gðεÞ ¼ Vε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −m2c4

p

2π2ℏ3c3
ðA3Þ

is the density of states for relativistic bosons and

fBEðFDÞðεÞ ¼
1

eβðε−μÞ ∓ 1
; ðA4Þ

is the BE distribution (−) or FD distribution (þ). In the
above β ¼ 1

kBT
, kB is the Boltzmann constant, T the

temperature, ε the energy of the particle and μ the chemical
potential. For any single particle quantity YðεÞ, all integrals
given by Eq. (A1), which we calculate using the BE
distribution in Eq. (A4) (using −), are of the following form

Iνðβ; βμÞ ¼
Z

∞

0

εν

eβðε−μÞ − 1
dε ¼ Γðνþ 1Þ

βνþ1
Liνþ1ðeβμÞ;

ðA5Þ

where ν is the power of the energy in the integral, Γðνþ 1Þ
is the gamma function evaluated at νþ 1 and

LiνðxÞ ¼
X∞
k¼1

xk

kν
ðA6Þ

is the polylogarithm function. For x ¼ 1, which corre-
sponds to the case μ ¼ 0, the polylogarithm function in
Eq. (A6) reduces to the well known Riemann zeta function

ζðνÞ ¼
X∞
k¼1

1

kν
: ðA7Þ

On the other hand, all integrals, which we calculate using
the FD distribution in Eq. (A4) (using þ), are of the
following form

Jνðβ; βμÞ ¼
Z

∞

0

εν

eβðε−μÞ þ 1
dε ¼ −

Γðνþ 1Þ
βνþ1

Liνþ1ð−eβμÞ:

ðA8Þ

For x ¼ −1, corresponding to μ ¼ 0, the polylogarithm
function in Eq. (A6) reduces to

Liνð−1Þ ¼ −ηðνÞ; ðA9Þ

where

ηðνÞ ¼
X∞
k¼1

ð−1Þk−1
kν

ðA10Þ

is the Dirichlet eta function. The values for the Riemann
zeta and Dirichlet eta, as a function of ν (where defined) can
be found numerically.
As the simplest example we can compute the number of

particles in a gas of bosons, contained in a volume V, using
the BE distribution and Eqs. (A1), (A2), as

NBE ¼
Z

∞

0

gðεÞfBEðεÞdε

¼ Vð2mÞ3=2
4π2ℏ3

Z
∞

0

ε1=2

eβðε−μÞ − 1
dε

¼ Vð2mÞ3=2
4π2ℏ3

ðkBTÞ3=2Γ
�
3

2

�
Li3=2ðeβμÞ

¼ V
8ℏ3

�
2mkBT

π

�
3=2

Li3=2ðeβμÞ; ðA11Þ

where we used Eq. (A5) to evaluate the integral in line two.
As the temperature approaches Tc, the chemical potential
vanishes μ → 0, which reduces the polylogarithm function
in Eq. (A11) to the Riemann zeta function ζð3

2
Þ ≃ 2.612.

This is the regime where the Bose-Einstein condensation
starts to occur.
In the same manner we can compute the number of

particles in a gas of fermions, contained in a volume V,
using the FD distribution and Eqs. (A1), (A2), as

NFD ¼
Z

∞

0

gðεÞfFDðεÞdε

¼ Vð2mÞ3=2
4π2ℏ3

Z
∞

0

ε1=2

eβðε−μÞ þ 1
dε

¼ −
Vð2mÞ3=2
4π2ℏ3

ðkBTÞ3=2Γ
�
3

2

�
Li3=2ð−eβμÞ

¼ −
V
8ℏ3

�
2mkBT

π

�
3=2

Li3=2ð−eβμÞ; ðA12Þ

where we used Eq. (A8) to evaluate the integral in line two.
The above is an exact solution for a Fermi gas at
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temperature T. In the case, when T → 0, the FD distribu-
tion reduces to fFDðεÞ ¼ 1 and we would get a finite so-
called Fermi energy Ef as an upper limit to the integral.
This would represent a degenerate Fermi gas.

APPENDIX B

We take a look at the operator p0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0kp0k

p
, where

p0i ¼ −iℏ ∂
∂x0i. Note that p0 is a scalar operator. Explicitly it

can be written as

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2

� ∂2

∂x20 þ
∂2

∂y20 þ
∂2

∂z20
�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2∇2

0

q
¼ ℏð−∇2

0Þ1=2: ðB1Þ

We conveniently write it as the following, where l is a
nonzero constant and we have added and subtracted a 1
inside the parenthesis. We will interpret l as a length scale
and therefore assume it to be positive. This also ensures that
the eigenvalues of p0 are positive.

p0 ¼
ℏ
l
ð1 − l2∇2

0 − 1Þ1=2: ðB2Þ

We see that the above is of the form ð1þ xÞ1=2, where
x ¼ −l2∇2

0 − 1, which can be represented as a Taylor series

ð1þ xÞ1=2 ¼
X∞
m¼0

cmxm: ðB3Þ

In the above, the expansion coefficients cm correspond to
those in the Taylor series of ð1þ xÞ1=2. However, we do not
need the exact values for the remainder of our proof. Using
the above, we can write Eq. (B2) as

p0 ¼
ℏ
l

X∞
m¼0

cmð−l2∇2
0 − 1Þm: ðB4Þ

Next, use the binomial theorem

ðaþ bÞm ¼
Xm
p¼0

�
m

p

�
am−pbp; ðB5Þ

where ðm
p
Þ ¼ m!

ðm−pÞ!p! and a; b ∈ R to rewrite Eq. (B4) as

p0 ¼
ℏ
l

X∞
m¼0

cm
Xm
p¼0

�
m

p

�
ð−l2∇2

0Þm−pð−1Þp: ðB6Þ

Since the identity operator commutes with every other
operator, and in particular ½1;ð∇2

0Þr�¼0, where r∈N∪f0g,
we can rewrite Eq. (B6) as

p0 ¼
ℏ
l

X∞
m¼0

cm
Xm
p¼0

�
m

p

�
ð−1Þpðl2Þm−pð−∇2

0Þm−p: ðB7Þ

In our analysis we considered eigenfunctions of a three
dimensional particle in a box jψni with eigenvalues of
operator −∇2

0 being

−∇2
0jψni ¼ k2njψni; ðB8Þ

where k2n¼k2nxþk2nyþk2nz¼ π2

L2 ðn2xþn2yþn2zÞ. Therefore, if
we take a square of the operator −∇2

0, we get

ð−∇2
0Þ2jψni ¼ ð−∇2

0Þð−∇2
0Þjψni ¼ ð−∇2

0Þk2njψni
¼ k2nð−∇2

0Þjψni ¼ k2nk2njψni ¼ ðk2nÞ2jψni:
ðB9Þ

Similarly, for all other powers r ∈ N ∪ f0g of the operator
−∇2

0, it can be proven by induction, that

ð−∇2
0Þrjψni ¼ ðk2nÞrjψni: ðB10Þ

Having all necessary information, we can now use the
operator in Eq. (B7) to compute it’s eigenvalue on the
eigenfunction jψni

p0jψni ¼
ℏ
l

X∞
m¼0

cm
Xm
p¼0

�
m

p

�
ð−1Þpðl2Þm−pð−∇2

0Þm−pjψni

¼ ℏ
l

X∞
m¼0

cm
Xm
p¼0

�
m

p

�
ð−1Þpðl2Þm−pðk2nÞm−pjψni

¼ ℏ
l

X∞
m¼0

cm
Xm
p¼0

�
m

p

�
ðl2k2nÞm−pð−1Þpjψni

¼ ℏ
l

X∞
m¼0

cmðl2k2n − 1Þmjψni

¼ ℏ
l
ð1þ l2k2n − 1Þ1=2jψni

¼ ℏ
l
ðl2k2nÞ1=2jψni

¼ ℏðk2nÞ1=2jψni; ðB11Þ

To compute the eigenvalue of the operator p3
0, we use

operators p0 and p2
0 consecutively on the state jψni

p3
0jψni ¼ p2

0p0jψni ¼ p2
0ℏðk2nÞ1=2jψni ¼ ℏðk2nÞ1=2p2

0jψni
¼ ℏðk2nÞ1=2ð−ℏ2∇2Þjψni ¼ ℏðk2nÞ1=2ðℏ2k2nÞjψni
¼ ℏ3ðk2nÞ3=2jψni: ðB12Þ

To our knowledge, this is the first time that the eigen-
functions of the p3

0 operator in three spatial dimensions have
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been found by this method, thereby providing a simple
solution for future research in QG phenomenology involving
a linear GUP.

APPENDIX C

The QG corrected density of states is obtained in a
similar way as it is obtained without QG corrections.
Without QG corrections, in the continuum limit, and for
the dispersion relation εðpÞ, the number of particles, and by
extension the density of states is given by

X
n

≈
Z

d3n ¼ V
ð2πℏÞ3

Z
∞

0

d3p

¼ V
2π2

Z
∞

0

k2dk ¼
Z

∞

0

gðεÞdε; ðC1Þ

where p ¼ ℏk and d3p ¼ 4πp2dpwere used. By using the
modified dispersion relations from Eqs. (23), (36), we
obtain the QG corrected density of states for nonrelativ-
istic and relativistic particles respectively. We modify both
k2 and dk, by expressing k in terms of the particle energy ε
from Eq. (23) for the nonrelativistic case and from
Eq. (36) for the relativistic case, in the continuum limit
(kn → k and εn → ε). We considered the linear and
quadratic GUP separately for convenience. Considering
both contributions simultaneously would make the results
change just by a numerical factor of Oð1Þ in front of the
quadratic term.

1. Quadratic GUP

For the quadratic QG correction (α ¼ 0), k is obtained
from Eq. (23) by solving a quadratic equation for k2ðεÞ and
the solutions are

k21;2¼

8>><
>>:

1
10βℏ2 ½−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ40βmε

p �; nonrelativistic

1
10βℏ2

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ20β

�
ε2

c2−m2c2
�r �

; relativistic

ðC2Þ

Each of the above cases gives rise to 4 solutions. However,
we restrict ourselves to k1;2 ∈ R and to k1;2 > 0, it being
the radius of a sphere in k−space. This reduces the number
of solutions to just 1 each.
To obtain the QG corrected measure dk, we calculated

the derivatives of Eqs. (23), (36) (for α ¼ 0) with respect to
k and expressed dk as

dk ¼
8<
:

dε
ℏ2k
m þ10βℏ4k3

m

; nonrelativistic

εdε
ℏ2c2kþ10βℏ4c2k3 ; relativistic

ðC3Þ

To obtain the density of states with quadratic QG
corrections, we plug the solution for k from Eq. (C2) in
Eq. (C3), such that the measure is now completely
dependent on ε. Finally, we substitute both Eqs. (C2),
(C3) in Eq. (C1) to obtain the QG corrected densities of
states in Eqs. (24), (37) for nonrelativistic and relativistic
particles respectively. Note that a perturbative approach,
dropping terms of order equal to or higher than Oðβ2Þ,
was necessary to obtain the QG corrected densities of
states.

2. Linear GUP

We follow a similar procedure as in the previous
subsection. For the linear QG correction (β ¼ 0), k is
obtained from Eqs. (23), (36) by solving cubic equations
for kðεÞ, giving rise to 3 solutions for each of the non-
relativistic and relativistic cases

k ¼

8>><
>>:

1
6αℏ ½1 − cos ðφðαÞÞ þ ffiffiffi

3
p

sin ðφðαÞÞ�;
1

6αℏ ½1 − cos ðφðαÞÞ − ffiffiffi
3

p
sin ðφðαÞÞ�;

1
6αℏ ½1þ 2 cos ðφðαÞÞ�;

ðC4Þ

where

φðαÞ ¼

8>>>>>>>><
>>>>>>>>:

1
3
arctan

�
6
ffiffi
6

p
α
ffiffiffiffiffi
mε

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−54α2mε

p
1−108α2mε

�
; nonrelativistic

1
3
arctan

0
B@2

ffiffiffiffi
27

p
α

ffiffiffiffiffiffiffiffiffiffiffiffi
ε2

c2
−m2c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−27α2ðε2

c2
−m2c2Þ

q
1−54α2ðε2

c2
−m2c2Þ

1
CA; relativistic

ðC5Þ

Next, out the 3 solutions of Eq. (C4), only the first is physically relevant, since the second solution is not positive and the
third diverges in the limit α0 → 0. We are therefore left with only 1 solution for each case.
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To obtain the QG corrected measure dk, we calculate the
derivatives of Eqs. (23), (36) (for β ¼ 0) with respect to k
and express dk as

dk ¼
8<
:

dε
ℏ2k
m −3αℏ3k2

m

; nonrelativistic

εdε
ℏ2c2k−3αℏ3c2k2 ; relativistic:

ðC6Þ

To obtain the density of states with linear QG correc-
tions, we plug the solution for k from Eq. (C4) in Eq. (C6)
for the measure to be completely dependent on ε. Finally,
we substitute both Eqs. (C4), (C6) in Eq. (C1) to obtain the
QG corrected densities of states in Eqs. (24), (37) for
nonrelativistic and relativistic particles respectively. Note
that also here a perturbative approach, using Taylor series
expansions, dropping terms of quadratic order or higher.

APPENDIX D

For a particle in a box without any QG corrections, we
can define the “dimensionless energy” ε� as

ε� ≡ n2x þ n2y þ n2z ¼
2mL2ε

ℏ2π2
: ðD1Þ

When we include QG corrections, we need to solve
the quadratic equation, from Eq. (23) (α ¼ 0) for
n2 ≡ n2x þ n2y þ n2z

n21;2 ¼
L2

10βπ2ℏ2
ð−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 40βmεn

p
Þ; ðD2Þ

In what follows, we will only consider theþ sign, since the
right-hand side of Eq. (D2) is negative (and hence n
imaginary, whereas nx; ny; nz ∈ Z) for the solution with
the − sign.
Next, to get the dimensionless energy with no QG

corrections for a gas of N such particles, one adds up
single particle energies εi to get

X3N
r¼1

n2r ¼
2mL2E
ℏ2π2

≡ E�; ðD3Þ

where E¼ ε1þε2þ���þεN and E� ¼ ε�1 þ ε�2 þ � � � þ ε�N .
We follow the same procedure for the QG corrected
dimensionless energy, in which using we use the Taylor
expansion up to second order (

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
≃ 1þ 1

2
x − 1

8
x2) in

Eq. (D2), and evaluate the sum in Eq. (D3) for N particles
to get

X3N
r¼1

n2r ¼
2mV2=3E
ℏ2π2

−
20βV2=3m2E2

s

ℏ2π2
¼ E�; ðD4Þ

where E ¼ εn1
þ εn1

þ � � � þ εnN
, i.e., the sum of energies

of all the particles, E2
s ¼ ε2n1

þ ε2n1
þ � � � þ ε2nN

, i.e., the

sum of its squares and V2=3 ¼ L2. Es is related to the total
energy E through E2 ¼ E2

s þ 2E2
m ¼ ε2n1

þ ε2n1
þ � � � þ

ε2nN
þ 2εn1

εn2
þ 2εn1

εn3
þ � � � þ 2εn2

εn3
� � �, where E2

m is
the sum of all mixed terms.
To compute the number of microstates in a d-

dimensional sphere in E� space up to some arbitrary
energy, we use VdðRÞ ¼ πd=2

Γðd=2þ1ÞR
d and we take n2 ≥ 0,

so we are left with just the upper half of a sphere. Using
d ¼ 3N and R ¼ ffiffiffiffiffiffi

E�p
, the number of microstates becomes

ΣNðE�Þ ¼
�
1

2

�
3N
�

π
3N
2

Γð3N
2
þ 1Þ ðE

�Þ3N2
�
; ðD5Þ

in which we then plug in Eq. (D4) to obtain

ΣðN;V; EÞ

¼
�
1

2

�
3N
�

π
3N
2

Γð3N
2
þ 1Þ

�
2mV2=3E
ℏ2π2

−
20βV2=3m2E2

s

ℏ2π2

�3N
2

�
:

ðD6Þ
The number of microstates in a spherical shell of thickness
Δ is computed as

ΓðN;V; E;ΔÞ

¼ ∂ΣðN;V; EÞ
∂E Δ

¼ Δ
E

π
3N
2

ð3N
2
− 1Þ!

VN

23Nπ3Nℏ3N ½2mE − 20βm2ðE2 − 2E2
mÞ�3N2

×
1 − 20βmðE − 2Em

∂Em∂E Þ
1 − 10βmðE − 2 E2

m
E Þ

: ðD7Þ

To get a number of microstates in an energy shell with
thickness Δ, we can use the phase space integral
ΓðN;V; EÞ ¼ ω=ω0, where ω0 is the normalization of
the phase space integral, which we want to find with
QG corrections and

ω ¼
Z

d3Nx
Z

d3Np

¼ VN

Z
2mðE−1

2
ΔÞ≤

P
3N
i¼1

y2i≤2mðEþ1
2
ΔÞ
� � �

Z
d3Ny

¼ VN Δ
E
ð2πmEÞ3N2
ð3N
2
− 1Þ! ¼ ΓðN;V; EÞω0: ðD8Þ

We compare Eq. (D7) and Eq. (D8) to get

ω0 ¼
ð2πℏÞ3N

½1 − 10βmðE − 2 E2
m
E Þ�

3N
2
−1½1 − 20βmðE − 2Em

∂Em∂E Þ�
;

ðD9Þ
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which is valid for any arbitrary number of particles N. For
the limit, where N→∞, Eq. (D9) reduces to ω0¼ð2πℏÞ3N .
For BEC we are interested in the case where N ¼ 1

ω0 ¼
ð2πℏÞ3

1 − 25βmε
; ðD10Þ

where ε is again a single particle energy. It may be noted
that the density of states derived using the modified
normalization of the phase space integral is identical to
that obtained by using the method in Appendix C for
quadratic GUP.
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