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We consider the generalization of quantum tunneling transitions in the WKB approximation to the time-
independent functional Schrödinger and Wheeler-DeWitt equations. Following a Lorentzian approach, we
compute the transition rates among different scalar field vacua and compare with those performed by
Coleman and collaborators using the Euclidean approach. For gravity, we develop a general formalism for
computing transition rates in Wheeler’s superspace. This is then applied to computing decays in flat space
and then to transitions in the presence of gravity. In the latter case we point out the complexities arising
from having nonpositive definite kinetic terms illustrating them in the simplified context of minisuper-
space. This corresponds to a generalization of the well-known ‘tunneling from nothing’ scenarios. While
we can obtain the leading term for the transitions obtained by Euclidean methods we also point out some
differences and ambiguities. We show that there is no obstruction to keeping the spherically (SOð4Þ)
symmetric closed slicing for the new vacuum after a de Sitter to de Sitter transition. We argue that this is the
natural Lorentzian realization of the Coleman-De Luccia instanton and that a closed universe is also
obtained if the mini-superspace assumption is relaxed. This is contrary to the open universe predicted by
Coleman–De Luccia which relies on an analytic continuation performed after bubble nucleation. Our
findings may have important cosmological implications related to the origin of inflation and to the string
landscape. In particular, they question the widespread belief that evidence for a closed universe would rule
out the string landscape.
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I. INTRODUCTION

Vacuumdecaymaybe the cause of both the beginning and
end of our universe. It is also one of the very few systems in
which the quantum aspects of gravity are crucial in order to
have a proper description of the physical process. Euclidean
methods, developed mostly by Coleman and collaborators
[1–3], have been used to extend the well understood WKB
quantum mechanics techniques to field theory and gravity.
Decay rates have been computed for simple systems,
corresponding to scalar field potentials with several minima,
mostly in the thin-wall approximation. Related investiga-
tions by Brown and Teitelboim involved studying the
nucleation of branes interpolating between vacua of differ-
ent values of the cosmological constant [4]. However,
while the quantum mechanical calculations are well under
control, the extensions to field theory and gravity rely on

extrapolations such as analytic continuations and approx-
imations, such as dilute instantons, that are not fully justified
especially in the presence of gravity (for a review see for
instance [5], and for a recent comprehensive and critical
discussion see [6]).
A Hamiltonian approach to vacuum transitions that

describes them directly without the need to use Euclidean
techniques was developed by Fischler, Morgan and
Polchinski (FMP) [7,8]. Solving the Hamiltonian con-
straints and the Israel matching conditions for the system
of two spacetimes with different cosmological constants,
together with the bubble wall (brane) separating them,
allowed them to compute the transitions from a
Schwarzschild black hole (i.e., spherically symmetric
asymptotically Minkowski) spacetime to a de Sitter (dS)
spacetime, but the formalism applies to all vacuum tran-
sitions considered by Coleman–De Luccia (CDL). The
motivation for their calculation was the series of papers
by Guth and collaborators on the theme of creating an
inflating ‘universe in the lab’ culminating in work of Farhi,
Guth and Guven (FGG) [9]. The latter was based on a
Euclidean instanton construction whose validity was some-
what questionable (as pointed out by the authors of the paper
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themselves). The reason was that this instanton was singular
and the question of whether it should be included in the
Euclidean functional integral became an issue. However the
fact that the Hamiltonian calculation of the decay rate agrees
with the Euclidean approach, implied (as FMP argued) that
the final results for the transition rates are robust despite the
fact that Euclidean singular instanton calculation was not
well defined.
One important difference between the Euclidean and

Hamiltonian approaches is the fact that in the Euclidean
approach a series of analytic continuations (which go
beyond what may be justified by WKB quantum mechan-
ics) are needed in order to find the Lorentzian geometry
after the transition. Even though the starting point may be a
closed universe with SOð4Þ spherical symmetry, the result-
ing geometry (inside the light cone of an observer at the
center of the nucleated bubble) after the transition turns out
to correspond to an open universe with hyperbolic sym-
metry. However in the Hamiltonian approach of FMP there
is no such implication. The entire analysis is done within
the context of a spherically symmetric [SOð3Þ] ansatz
but the calculation does not imply the CDL argument for
an open universe.1 Furthermore the natural Lorentzian
mini-superspace calculation corresponding to the CDL
Euclidean calculation would have SOð4Þ symmetry and
hence necessarily gives rise to a closed universe as we
discuss later. This is an important difference especially if
we consider the possibility that our own universe could be
the result of a vacuum transition. Actually, based on the
CDL result, it has been claimed that this is the only generic
prediction of the string landscape [10,11].2

To the best of our knowledge, the fact that the
Hamiltonian formalism developed by FMP can give rise
to a closed universe has not been emphasized so far.
Probably because the approach of FMP was originally
developed in order to address the question of Minkowski
black hole to dS transition that was posed by [9] in the
Euclidean approach. However, the FMP formalism applies
also to all other potential vacuum transitions (dS to dS,
Minkowski to dS as well as transitions involving anti–
de Sitter (AdS) [14–18]). One limitation of this approach is
that it only describes transitions among two spacetimes
differing by the vacuum energy separated by a brane,
whereas in general the CDL approach is formulated in

terms of scalar potentials with different minima and barriers
between them. However, in actual practice most such
calculations reverted to the thin-wall approximation so
that there was no essential difference to having the spaces
separated by a brane as in the Brown-Teitelboim [4] (BT)
calculation. Furthermore the landscape of string theory
results from transitions due to the nucleation of branes,
which in the effective field theory approach are of string
scale thickness, and hence effectively a thin wall so, as
discussed by Bousso and Polchinski [19] for instance, the
BT process (and hence FGG/FMP) is more relevant for the
landscape of string theory than the scalar field process of
CDL. The latter is more relevant for questions of eternal
inflation and other transitions such as the transition towards
decompactification, however.
A generalization of the FMP formalism to include

explicit scalar field potentials is still an open question.
Here, we are only partially successful in addressing this
since we do it only in a mini-superspace model in which the
metric and scalar field only depend on time. Nevertheless
we find several interesting results essentially extending the
‘tunneling from nothing’ arguments of Hartle-Hawking,
Vilenkin and Linde [20–23], and then compare with the
Euclidean approach.3 We start by revisiting the extension of
the WKB approximation to field theory by solving the
functional, time-independent Schrödinger equation in the
WKB approximation. We reproduce the Euclidean results
for the (exponential term in the) decay rates but within a
totally different method. The prefactor however is different
and there is no problem with negative modes.4 Next we
include gravity albeit in a mini-superspace model and then
we discuss the extension (for the case of a brane) to an
SOð3Þ symmetric situation following FMP and our earlier
work. One of our concrete results is to confirm the fact that
in the Hamiltonian approach, the end result for the
geometry of the remaining universe may be a closed rather
than an open universe. We then study the physical
implications of this result comparing with previous studies
of CDL transitions.
The article is organized as follows:

(a) In Sec. II we develop the formalism to address
quantum transitions in Wheeler’s superspace adapt-
ing the semiclassical WKB approximation in a covar-
iant superspace approach. Given the nature of the
Hamiltonian constraint leading to the Wheeler-DeWitt
equation [25], the corresponding Schrödinger wave
functional is time independent. The transition proba-
bilities are ratios of squares of wave functionals for the
different configurations. Expanding on standard WKB
techniques in quantum mechanics and on previous

1As is well known, dS space allows several foliations including
those that correspond to closed, open and flat slicings. In CDL the
symmetries of the scalar field determine the preferred slicing after
analytic continuation. However the latter cannot be justified by
standard WKB arguments and this argument is not meaningful in
the Hamiltonian formalism.

2For a different view based on the “no boundary wave
function”, see the extensive work of Hawking, Hartle and Hertog
(for example [12] and references therein). In particular in [13]
it has been argued based on a dS=CFT conjecture that the
probability of observing negative curvature on exit from eternal
inflation is exponentially suppressed.

3Of course in the context of the “no boundary wave function”
Hawking and collaborators have long advocated for a landscape
of closed universes. See for example [12] and references therein.

4For a recent discussion of the negative modes issues see for
instance [24] and references therein.
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approaches towards field theory [26–30], we find
general expressions, covariant on a generalized
Wheeler superspace, for the leading and next order
corrections to the wave functions. In particular, we
find a general closed expression for the semiclassical
wave functional with the prefactor given by the analog
of the Van Vleck determinant.

(b) In Sec. III we apply the formalism of Sec. II to the flat
space field theoretical case of a scalar field potential
neglecting the effects of gravity. In particular, follow-
ing the textbook quantum mechanics matching con-
ditions we explicitly compute the S-matrix as well as
the lifetime of the corresponding resonances and
obtain the decay rate. In contrast to the calculations
of Coleman and collaborators [1–3], in our calculation
we find that there is no issue with negative modes or
analytic continuation of a manifestly real amplitude to
get an imaginary part to the energy that can be
interpreted as a decay width. Instead in our calculation
the decay width is identified in the standard way as the
imaginary part of a complex pole in the S-matrix.

(c) In Sec. IV we include gravity but in order to have
explicit results we concentrate on the mini-superspace
model in order to compare with the CDL Euclidean
approach. In this case superspace reduces to a two-
dimensional space with coordinates the scalar field
ϕðtÞ and the metric scale factor aðtÞ. We find a general
expression for the decay rate which in the thin-wall
approximation gives exactly the CDL result but with
an unclear interpretation. Furthermore, the fact that the
metric in superspace is not positive definite allows for
classical paths to connect the two dS minima without
the need to pass through the barrier modifying sub-
stantially the results for the transition rate as compared
with CDL. We argue that both approaches may be
addressing different questions. We emphasize the
difference between the two approaches. Even though
the calculations in both cases can be said to be done in
mini-superspace with an SOð4Þ symmetry, in CDL,
after analytic continuation the standard picture of
vacuum transition with a wall separating the two dS
spacetimes emerges turning the original SOð4Þ sym-
metry into SOð3; 1Þ. Whereas in the Lorentzian
approach the SOð4Þ symmetry remains. We also point
out the main difference; the fact that CDL implies an
open universe whereas we, as with the ‘tunneling from
nothing’ scenarios and FMP, find a closed universe.
Finally we briefly discuss the possibility of purely
classical transitions from one local minimum to
another through an initially contracting phase.

(d) In Sec. V we quickly review the relevant points of
FMP to extend the results of the previous sections
beyond mini-superspace, though with the restriction
that the matter sector includes only the two cosmo-
logical constants and no scalar field. We describe the

trajectory of the wall after nucleation and find it
similar to CDL with the curious fact that the speed
of the wall reaches a maximum which is less than the
speed of light. Then we review the CDL arguments to
obtain an open universe and revise the other implica-
tions for early universe cosmology as addressed for
instance in [10]: impact on CMB, the number of
inflation e-folds, etc. We then concentrate on the
implications of having a closed rather than an open
universe after the transition. We point out the physical
differences not only regarding the potential for meas-
uring the curvature of the universe, but also on how
inflation is obtained after the transition, address the
constrains on the number of e-foldings and the effect
on density perturbations.

(e) Finally we discuss open questions and give a general
outlook in the concluding section.

II. WKB FOR FIELD THEORY
AND QUANTUM GRAVITY

In this section we develop a general formalism to
generalize the WKB formalism for vacuum decay to the
Wheeler-DeWitt (WDW) wave function Ψ in Wheeler’s
superspace. The Wheeler-DeWitt equation [25] is a con-
straint equation on the space of wave functionals that
describe a gravitational system. The ratios of absolute
squares of the WDW wave functionals for the different
configurations M1 and M2 can then be interpreted as
relative probabilities for realizing them [31,32].
This interpretation is still under debate. An alternative

interpretation is to consider a fixed gravitational back-
ground—such as the FRW background—and regard the
WDW equation as a Klein-Gordon equation and interpret
the timelike component of the probability current as the
probability density [25] (see also [33,34]). However this
results in a nonpositive probability density as observed in
[25] unless one picks just the expanding phase. Also this is
necessarily an introduction of time within the limited
context of a given gravitational background ignoring the
back reaction of matter.
Many of the calculations done in the field of quantum

cosmology (including some of the calculations below) are
in fact done in mini-superspace where one might ask
whether it is not appropriate to use the Klein-Gordon
approach to incorporating a notion of time as for instance in
the proposal of [25] and adopted by [35] (see Sec. IV). This
involves (for the case of a scalar field ϕ in minisuperspace
with a scale factor a) factoring the WDW wave function as
Ψða;ϕÞ ¼ ψðaÞχða;ϕÞ. One then picks for ψ, which in
general is a superposition of the expanding and contracting
phase, the purely expanding component. If this is done then
the time component of the probability current would be
positive definite and then χ would have the standard
quantum mechanical interpretation of the probability of
finding the value ϕ at the ‘time’ a.
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However this interpretation will only work for Vilenkin’s
‘tunneling wave function’—where the appropriate boun-
dary condition of an expanding universe in the classical
region is imposed. It will not be appropriate for the more
general case and, in particular, not for the Hartle-Hawking
wave function. Furthermore, it begs the question “what is
the meaning of ψðaÞ?” We prefer therefore to follow the
interpretation originally given in [31,32] and widely
followed by Hawking and collaborators, and other workers
in the field of quantum cosmology, over the past 35 years.
In particular, in discussing the relative probability of
nucleating an entire universe we believe that this interpre-
tation is more appropriate since one looks for a solution of
the coupled gravity matter system in the WKB approxi-
mation but without fixing oneself to a given gravitational
background. In other words one is at least in principle
taking into account the backreaction of matter even
though the quantum corrections are computed to leading
order in ℏ.
In order to be completely general (and in particular not

having to choose between Vilenkin’s proposal and that of
Hartle and Hawking for the wave function of the universe)
we adhere to the interpretation of the WDW wave function
followed by [31,32] and which we use in the form given in
the following equation:

PðM1 → M2Þ ¼
jΨðM2Þj2
jΨðM1Þj2

: ð2:1Þ

In connection with selecting an expanding branch for
background gravity, in order to define time in the sense of
Schrödinger evolution, it also behooves us to mention two
other early papers. In the work of Hajicek [36] it was
pointed out, using the functional integral calculation, that
the Feynman kernel for quantum gravity, as a result of
integrating over the lapse, is in fact a projector onto the
physical states (i.e., states satisfying the constraint). Also in
this paper the Hartle-Hawking wave function is recalcu-
lated and the fact that this has no definite direction of time
(being a superposition of expanding and contracting phases
of the de Sitter spacetime) was pointed out. Further remarks
in this direction have been made by Zeh [37] who showed
that the time parameter introduced via an equation of the
form ∂t ¼ ∇S ·∇ with S being the classical action), has no
absolute meaning in the absence in the wave function of a
factor eiEt referring to absolute time.5

The discussion in the next subsection may be trivially
specialized to the case of (flat space) field theory in which
case the (spatial integral of the) WDW equation is the time
independent Schrödinger equation.

A. Semiclassical expansion for the WDW equation

The WKB approximation for the WDW equation has
been considered by many authors beginning with the
original work of DeWitt [25] (see also [33,34]).
We assume that spacetime can be foliated into a family of

nonintersecting spacelike three-slices that can be seen
(at least locally) as the level surfaces of a scalar function
t. The function t can be interpreted as a global time
function. Given a line element of the generic form

ds2 ¼ ð−N2
t þ NiNiÞdt2 þ 2Nidtdxi þ γijdxidxj; ð2:2Þ

where Nt, Ni are lapse and shift, while γij is the spatial
three-dimensional metric, the gravitational contribution to
the Lagrangian of the system can be written as

Lg ¼
Z

d3xNt
ffiffiffi
γ

p ðKijKij − K2 þ ð3ÞRÞ; ð2:3Þ

where Kij ¼ 1
2Nt

ð∂iNj þ ∂jNi − ∂0γijÞ is the extrinsic

curvature, K ¼ γijKij and ð3ÞR is the intrinsic curvature
of the three-dimensional slice. We denote the canonically
conjugate momentum to a field ΦM by πM. The primary
constraints of the system arising from Eq. (2.3) are
πNt

≈ 0; πNi
≈ 0, where ≈ means that they are constraints

on the classical solutions. In the quantum case we corre-
spondingly have constraints on the space of wave func-
tionalsΨðΦÞ, whereΦ collectively denotes the three-metric
and matter fields (and their spatial derivatives up to second
order) present in the system. Note that the classical
constraints πNt

≈ 0; πNi
≈ 0 imply that the wave function

Ψ is independent of Nt, Nr. The full system is described by
Lg þ Lmat where Lmat is the Lagrangian that describes the
matter present in the system.
The Hamiltonian constraint takes the general form

H ¼ 1

2
GMNðΦÞπMπN þ f½Φ� ≈ 0; ð2:4Þ

where GMN is the metric on the d-dimensional field space,
including all the components of γij and the matter fields,
and can be read from the kinetic terms of Lg þ Lmat. At the
same time, the momentum constraint Pi ≈ 0 has to hold.
Up to operator ordering ambiguities which are fixed by
demanding the derivatives with respect to the components
ΦM of Φ are covariant with respect to the metric GMN
(which we emphasize is not positive definite in the presence
of gravity), we have for the WDW equation (replacing
πM → −iℏ∇M)

HΨðΦÞ¼
�
−
ℏ2

2
GMNðΦÞ∇M∇Nþf½Φ�

�
ΨðΦÞ¼ 0: ð2:5Þ

As usual we can write

5We thank an anonymous referee for pointing out these
arguments and for these and several other references to the early
literature on these subjects.
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Ψ½Φ� ¼ e
i
ℏS½Φ�; ð2:6Þ

and define the semiclassical expansion

S½Φ� ¼ S0½Φ� þ ℏS1½Φ� þOðℏ2Þ: ð2:7Þ

Substituting Eq. (2.6) and Eq. (2.7) in the WDW equation
we can in principle determine recursively the semiclassical
expansion coefficients. The lowest two orders give

1

2
GMN δS0

δΦM

δS0
δΦN þ f½Φ� ¼ 0; ð2:8Þ

2GMN δS0
δΦM

δS1
δΦN ¼ iGMN∇M∇NS0: ð2:9Þ

In Hamilton-Jacobi theory, which corresponds to the
classical limit of the quantum calculation, πM ¼ ∂S

∂ΦM.

Observe that at a turning point πM ¼ δS0
δΦM ¼ 0 for all M,

and the semiclassical expansion breaks down since S1
cannot be determined.
Let us now introduce on the selected spatial slice a set of

integral curves, parametrized by s, on the field manifold

CðsÞ dΦ
N

ds
¼ GMN δS0

δΦM : ð2:10Þ

Given the constraints, the classical action (on a classical
trajectory) becomes

S0½Φs� ¼
Z

Φs
Z
X
πMdΦM

¼
Z

s
ds0

Z
X

δS0
δΦM

dΦM

ds0

¼
Z

s
ds0C−1ðs0Þ

Z
X

δS0
δΦM GMN δS0

δΦN

¼ −2
Z

s
ds0C−1ðs0Þ

Z
X
f½Φs0 �: ð2:11Þ

We have used Eq. (2.10) in the third line and Eq. (2.8) in the
fourth. Similarly from Eq. (2.8) after integrating over the
spatial slice X we have

dS1
ds

¼
Z
X

dΦN

ds
δS1
δΦN ¼ i

2
C−1ðsÞ

Z
X
∇2S0 ð2:12Þ

giving

S1½Φs� ¼
i
2

Z
s
ds0C−1ðs0Þ

Z
X
∇2S0½Φs0 �: ð2:13Þ

For a given parametrization CðsÞ one can in principle solve
the first order differential equation in Eq. (2.10) [with S0
given by Eq. (2.11) to get Φs as a function of s and

substituting in Eq. (2.13) the semiclassical correction S1 is
determined away from any turning points (caustics)].
One can also choose a parameter τ to be the distance

function along the trajectories, defined as

dτ2 ≡
Z
X
δΦMGMNδΦN; ð2:14Þ

we get using Eq. (2.10) and Eq. (2.8)

�
dτ
ds

�
2

¼
Z
X

δΦM

ds
GMN

δΦN

ds
¼−2C−2ðsÞ

Z
X
f½Φ�: ð2:15Þ

Solving this for CðsÞ we have from Eq. (2.11) for the
classical action S0 (with an arbitrary parametrization of the
integration trajectory)

S0½Φs� − S0½Φ0� ¼
Z

s

0

ds0
�Z

X

dΦM
s0

ds0
GMN

dΦN
s0

ds0

�
1=2

×

�Z
X
ð−2f½Φs0 �

�
1=2

: ð2:16Þ

The classical path along which this has to be evaluated is
of course the one which extremizes this action with the end
points fixed. The variational derivative may be worked out
easily by observing that the variation of the first factor gives
the left-hand side of the geodesic equation on superspace.
Introducing the metric compatible connection on super-
space (Vilkovsky connection) D=Dτ ¼ dΦM

dτ ∇M we get

GPNΣ½Φτ�
D
Dτ

�
Σ½Φτ�

dΦN
τ

dτ

�
þ δf½Φτ�

δΦP ¼ 0; ð2:17Þ

where after doing the variation we have set s ¼ τ and
defined Σ½Φτ�≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

R
X f½Φτ�

p
. Or defining the affine

parameter σ by dσ ¼ dτ=Σ½Φτ� [note that this corresponds
to s if we choose CðsÞ ¼ 1 in Eq. (2.15)] we have the
classical equations of motion [that would follow also
directly from the Hamiltonian in Eq. (2.4)]

D
Dσ

dΦN
σ

dσ
þGNP δf½Φσ�

δΦP ¼ 0: ð2:18Þ

We remark in passing that this equation of motion does not
have an obvious interpretation as Lorentzian or Euclidean
since in the presence of gravity (as we stressed before) the
superspace metric GMN is not positive definite. We will see
the consequences of this explicitly when we discuss the
minisuperspace example. Now going back to Eq. (2.15) and
putting s ¼ τ,

C2ðτÞ ¼ −2
Z
X
f½Φ�: ð2:19Þ
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Hence in terms of τ we have

S0½Φτ� ¼
Z

τ
dτ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

Z
X
f½Φτ0 �

s
:

S1½Φτ� ¼
i
2

Z
τ
dτ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

R
X f½Φτ0 �

p Z
X
∇2S0½Φτ0 �; ð2:20Þ

B. Wave function and van Vleck determinant

In the corresponding multidimensional quantum
mechanical case the expression for S1 is given by the
VanVleck determinant [38] (see also [39]). To see the
connection we first observe (essentially generalizing an
argument in [30]) the following:
Changing to the coordinates defined with respect to the

orthonormal basis we have for a variation around a
trajectory

δΦMðxÞ ¼ δτtMðxÞ þ δλP̄
∂ΦM

∂λP̄ ; ð2:21Þ

where tM ¼ ∂ΦM=∂τ, while
∂
∂λP̄ ¼

Z
X

∂ΦM

∂λP̄
∂

∂ΦM : ð2:22Þ

The vectors defined in Eq. (2.22) are orthogonal to the
vector ∂=∂τ ¼ R

X ð∂ΦM=∂τÞ∂=∂ΦM.
Let us denote the components in the original coordinates

(including the spatial position x which is to be treated as an
index as A ¼ fM; xgÞ. In other words it is convenient to use
DeWitt’s condensed notation treating the set of fields
(including metric components) fΦMg as a set of “coor-
dinates” i.e., qi → ΦMx where the spatial variable x is
treated as an index with the understanding that sums over x
are integrals and Kronecker deltas are replaced by Dirac
delta functions. The superspace metric in the new coor-
dinate system ðĀ ¼ τ; λP̄Þ is

ḠĀ B̄ ¼ ∂ΦA

∂λĀ GAB
∂ΦB

∂λB̄ ; ð2:23Þ

therefore

GAB∇A∇BS0 ¼ GĀ B̄∇Ā∇B̄S0 ¼
1ffiffiffiffi
Ḡ

p ∂Āð
ffiffiffiffi
Ḡ

p
GĀ B̄∂B̄S0Þ

¼ 1ffiffiffiffi
Ḡ

p ∂Ā

�∂λĀ
∂ΦA

ffiffiffiffi
Ḡ

p
GAB∂BS0

�

¼ 1ffiffiffiffi
Ḡ

p ∂Ā

�∂λĀ
∂ΦA

ffiffiffiffi
Ḡ

p
CðτÞ ∂Φ

A

∂τ
�

¼ 1ffiffiffiffi
Ḡ

p ∂Ā

� ffiffiffiffi
Ḡ

p
CðτÞ ∂λ

Ā

∂τ
�

¼ 1ffiffiffiffi
Ḡ

p ∂τð
ffiffiffiffi
Ḡ

p
CðτÞÞ: ð2:24Þ

In the second line we used Eq. (2.10). From Eq. (2.12)
we have

dS1
dτ

¼ i
2
∂τ ln ðCðτÞ

ffiffiffiffi
Ḡ

p
Þ

¼ i
2
∂τ ln

�
CðτÞ det ∂Φ

A

∂λĀ
ffiffiffiffi
G

p �
: ð2:25Þ

Noting that the line element on superspace may be
rewritten as

ds2 ¼ ḠĀ B̄dλ
ĀdλB̄

¼ dτ2 þ GAB
dΦA

dλN̄
dΦB

dλM̄
dλN̄dλM̄; ð2:26Þ

we have [using also Eq. (2.20)]

S1½Φτ� ¼
i
2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

Z
X
f½Φτ�

s
þ i
2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
detGAB

dΦA

dλN̄
dΦB

dλM̄

�
τ

s

þ constant: ð2:27Þ

Thus the integral in the second term of Eq. (2.20) for S1 is
in fact the log of the determinant of the superspace metric in
the orthogonal directions to the trajectory defined by ∂=∂τ.
Thus the semiclassical wave function may be written as

Ψ½Φτ� ¼
½−2 RX f½Φ0��1=4
½−2 RX f½Φτ��1=4

ðdetGAB
dΦA

dλN̄
dΦB

dλM̄
Þ1=4
0

ðdetGAB
dΦA

dλN̄
dΦB

dλM̄
Þ1=4
τ

× e
i
ℏðS0½Φτ �−S0½Φ0�ÞΨ½Φ0�; ð2:28Þ

with S0 given by Eq. (2.20). This formula generalizes one
obtained for many particle quantum mechanics and canoni-
cal QFT in [26–28,30].
Alternatively, we can rewrite the expression for this in

terms of the (generalization of) the VanVleck determinant.
To see this we go back to Eq. (2.12) and choose the
parameter s such that CðsÞ ¼ 1. Then the calculation in
Eq. (2.24) shows that

S1½Φs� − S1½Φ0� ¼
i
2
ln

�
det

δΦA

δλĀ

ffiffiffiffi
G

p �
: ð2:29Þ

Assuming that the complete integral of the Hamilton-Jacobi
equation depends on a set of parameters αĀ, we can identify
the conjugate variables with our parameters λĀ, i.e.,

λĀ ¼ δS0½Φs; α�
δαĀ

: ð2:30Þ

The VanVleck matrix can then be written as
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�
δ2S0

δΦAδαĀ

�
¼

�
δλĀ

δΦA

�
¼

�
δΦA

δλĀ

�−1
: ð2:31Þ

Therefore,

S1½Φs� ¼ −
i
2
ln

�
det

�
δ2S0

δΦAδαĀ

� ffiffiffiffi
G

p �
s
þ constant: ð2:32Þ

Finally, the wave function with semiclassical corrections
take the form

Ψ½Φs� ¼
1

P0

ffiffiffiffiffiffi
Gs

4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det

�
δ2S0

δΦAδαĀ

�
s

s
e

i
ℏS0½Φs�Ψ½Φ0�;

S0½Φs� ¼
Z

s

o
ds0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

Z
X
f½Φs0 �ds0

s
þ constant; ð2:33Þ

with the constant 1=P0 fixed such that the left-hand side at
s ¼ 0 agrees with the right-hand side at s ¼ 0.
A formula similar to this in the context of flat space field

theory has been given by Bitar and Chang [29]. However
the prefactor was obtained there, not by following theWKB
method for getting it, but by switching to a functional
integral over the fluctuations around the classical path. This
gives them a prefactor which is the inverse of the VanVleck
prefactor above. Furthermore these authors (in contrast to
those of [28,30]) claim agreement with the prefactor in the
Euclidean instanton analyis of Coleman et al. [1–3].
However we fail to see this. For instance the latter
depended on the dilute gas approximation and relied
crucially on the presence of a single negative mode in
the fluctuations around it. Clearly in the above formula the
issue of negative modes do not play a special role. In the
next two sections we will elaborate on these differences.

III. WKB IN FLAT SPACE

In this section we will recall how to use WKB for the
study of vacuum decay in field theory, in flat space. We will
analyze two different situations, corresponding to the two
potentials in Fig. 1. The left panel corresponds to the
process of vacuum decay from a false vacuum to a true

vacuum characterized by a lower energy density. In this
context, we will show explicitly how the leading order final
result corresponds to the CDL bounce, and how the analytic
continuation is well justified by the fact that there is an
under-the-barrier integral, which is equivalent to analyti-
cally continuing time to an imaginary variable. In this case,
the WKB formalism can be used to compute the trans-
mission coefficient T2 ¼ jψðϕBÞj2

jψðϕAÞj2, that gives a measure of the
decay rate. In the case corresponding to the right panel of
Fig. 1 we are able to be more precise; as the potential
asymptotically goes to zero, we can define the S-matrix for
such a system and we will show how to compute the decay
rate exactly from the interpretation of a resonance as a
complex pole of the S-matrix.
Consider the potential in Fig. 1. We need to solve the

flat space version of Eq. (2.5). Now we have a global
constraint—classically it is a constraint on the Hamiltonian
(rather than the density),

H ¼
Z
X

�
π2ϕ
2
þ 1

2
ð∇xϕÞ2 þ VðϕÞ

�
¼ E; ð3:1Þ

and hence the Schrödinger equation

Z
X

�
−
ℏ2

2

δ2

δϕðxÞ2þ
1

2
ð∇xϕÞ2þVðϕÞ

�
Ψ½ϕ� ¼EΨ½ϕ�: ð3:2Þ

Using Gϕϕ ¼ 1 in Eq. (2.8) and Eq. (2.9)

Z
X
f½ϕ� ¼

Z
X

�
1

2
ð∇xϕÞ2 þ VðϕÞ

�
− E≡U½ϕ� − E; ð3:3Þ

so Eq. (2.11) becomes

S0½ϕ� ¼ −2
Z

s
ds0C−1ðsÞ½U½ϕs0 � − E�: ð3:4Þ

Note that in order to make these expressions well defined
we choose the field configuration ϕ such that at large jxj it
goes asymptotically to ϕA rapidly enough to make all the
integrals above finite. Alternatively as we will do in the

FIG. 1. Potential.
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next section, we can work in a compact space such as a
three-sphere.
At this point we can write, in general

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E −U½ϕðτÞ��

p
; for E > UðϕðτÞÞ; ð3:5Þ

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½U½ϕðτÞ� − E�

p
; for E < UðϕðτÞÞ: ð3:6Þ

The leading order wave functionals in the classically
nonallowed and allowed regions respectively are deter-
mined by the WKB matching conditions. Consider the case
in which the classically forbidden region is located at
τ > τ0, then the wave functionals in the classically allowed
and in the classically forbidden regions are respectively

Ψ½ϕ� ¼ 2Affiffiffi
k

p cos

�Z
τ0

τ
kðϕðτÞÞdτ − π

4

�

−
Bffiffiffi
k

p sin

�Z
τ0

τ
kðϕðτÞÞdτ − π

4

�
;

Ψ½ϕ� ¼ Affiffiffi
κ

p exp
�
−
Z

τ

τ0

κðϕðτÞÞdτ
�

þ Bffiffiffi
κ

p exp
�Z

τ

τ0

κðϕðτÞÞdτ
�
; ð3:7Þ

If the classically forbidden region is located at τ < τ0, the
wave functionals are

Ψ½ϕ� ¼ Affiffiffi
κ

p exp

�
−
Z

τ

τ0

κðϕðτÞÞdτ
�

þ Bffiffiffi
κ

p exp

�Z
τ

τ0

κðϕðτÞÞdτ
�
;

Ψ½ϕ� ¼ 2Affiffiffi
k

p cos

�Z
τ0

τ
kðϕðτÞÞdτ − π

4

�

−
Bffiffiffi
k

p sin

�Z
τ0

τ
kðϕðτÞÞdτ − π

4

�
: ð3:8Þ

In the above we have only kept the prefactor corresponding
to longitudinal fluctuations of the field i.e., corresponding
to the first term in Eq. (2.27). The second term coming from

transverse fluctuations is not explicitly written since it plays
no role in the further discussion.
Now recall that the classically allowed and forbidden

regions are defined in terms of the potential U½ϕ�, that
depends on the specific path in the field space chosen to
perform the integration. Hence they cannot be visualized in
the potentials of Fig. 1. However, we can expect that for a
generic path in field space, it would take a form that is
similar to that shown in Fig. 1, with a finite barrier in the
middle and infinite barriers on both sides for the case of the
left panel of Fig. 1, and on the left side only for the case of
the right panel of Fig. 1, (see Fig. 2). At this point we will
distinguish between the two cases.

A. WKB for decay in a two-vacua potential

In the case of the left panel of Fig. 2, we can identify five
different regions, three of which are classically disallowed
(1, 3, and 5) while two are classically allowed (2 and 4). We
impose that in region 1 the decaying component of the
wave functional is absent, hence B1 ¼ 0 and

Ψ1½ϕ� ¼
A1ffiffiffi
κ

p exp

�
−
Z

a

τ
κdτ

�
: ð3:9Þ

Using Eq. (3.8) we can easily find that

A2 ¼ ðcos θe−iπ=4 þ sin θeiπ=4ÞA1;

B2 ¼ ðcos θeiπ=4 þ sin θe−iπ=4ÞA1; ð3:10Þ

where θ ¼ R
b
a kdτ, so that

Ψ2½ϕ� ¼
A2ffiffiffi
k

p exp

�
i
Z

τ

b
kdτ

�

þ B2ffiffiffi
k

p exp

�
−i

Z
τ

b
kdτ

�
: ð3:11Þ

The connection between regions 2 and 4 can be easily found
by using the following connection formula, (see [40])

FIG. 2. Potential.
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�
A4

B4

�
¼ 1

2

� 1
2λ þ 2λ ið 1

2λ − 2λÞ
−ið 1

2λ − 2λÞ 1
2λ þ 2λ

��
A2

B2

�
; ð3:12Þ

where λ ¼ exp ðR c
b κdτÞ. We find that

A4 ¼ eiπ=4
A2

2λ
ðsin θ − 4i cos θλ2Þ;

B4 ¼ eiπ=4
A2

2λ
ð−i sin θ þ 4 cos θλ2Þ;

so that the wave functional takes the form

Ψ4½ϕ� ¼
A4ffiffiffi
k

p exp

�
i
Z

τ

c
kdτ

�

þ B4ffiffiffi
k

p exp

�
−i

Z
τ

c
kdτ

�
: ð3:13Þ

Using Eq. (3.7) we find that

A5 ¼
A4eiω þ B4e−iω

2
; B5 ¼ iðA4eiω − B4e−iωÞ;

where ω ¼ R
d
c kdτ, so that

Ψ5½ϕ� ¼
A5ffiffiffi
κ

p exp
�
−
Z

τ

d
κdτ

�
þ B5ffiffiffi

κ
p exp

�Z
τ

d
κdτ

�
: ð3:14Þ

Of course,we need to require that the rising component of the
wave functional is absent in region 5, namely that B5 ¼ 0.
This implies

−4λ2ð1þ ie2iωÞ cos θ þ ið1 − ie2iωÞ sin θ ¼ 0;

which is satisfied if

cos θ ¼ 0 and ω ¼ −
π

4
þ nπ ðn ∈ ZÞ; or

sin θ ¼ 0 and ω ¼ π

4
þ nπ ðn ∈ ZÞ:

However, note that if we require that sin θ ¼ 0, the coef-
ficients A4 and B4 in Eq. (3.13) would be enhanced with
respect toA2 andB2 by a factor∝ λ. If the initial condition of
the process is a homogeneous configuration with the field in
the false vacuum, we expect that the coefficients A4 and B4

are suppressed with respect to A2 and B2, therefore we need
to impose cos θ ¼ 0. Note that the leading order of the

transmission coefficient T2 ¼ jΨ4½ϕ�j2
jΨ2½ϕ�j2 is given by the factor

1=λ2 and gives a measure of the decay rate, despite in this
case it is not possible to formally define it in terms of the
S-matrix (unlike the case discussed in the next section).
At leading order then

Γ ∼ T2 ∼
1

λ2
¼ exp

�
−2

Z
c

b
κdτ

�
; ð3:15Þ

which is equivalent to the CDL result.
It is particularly interesting to notice that the result in

Eq. (3.15) is equivalent to the Euclidean action evaluated
on the bounce solution, upon subtraction of the background
action. Let us make this statement more explicit: between
the two turning points b and c, the potential energy is larger
than the total energy E of the system. As the total energy is
given by the sum of kinetic energy and potential energy, the
kinetic energy has to be negative. This can be achieved by
rotating the time variable to the Euclidean time, that gains
an imaginary unit and makes the kinetic energy negative.
Hence, in the under-the-barrier region (between b and c) it
is totally justified to rotate to Euclidean time s ¼ it, where t
is the usual Lorentzian time. The Euclidean action is

SE½ϕðsÞ�

¼
Z

ds
�Z

d3x
�
1

2

�
dϕðsÞ
ds

�
2
�
þ U½ϕðsÞ�

�
: ð3:16Þ

The Euclidean energy is conserved, which implies

Z
d3x

�
1

2

�
dϕðsÞ
ds

�
2
�
−U½ϕðsÞ� ¼ −E; ð3:17Þ

where we take E ¼ U½ϕA�6 (despite the fact that the WKB
argument holds for a general E), assuming that the initial
state is a homogeneous field configuration ϕ ¼ ϕA. Using
Eq. (3.17), and noting that, in the under-the-barrier region

dτ
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðU½ϕðsÞ� −U½ϕA�Þ

p
; ð3:18Þ

the Euclidean action in Eq. (3.16) becomes simply

SE½ϕðsÞ� ¼
Z

ds

�Z
d3x

�
1

2

�
dϕðsÞ
ds

�
2
�
þU½ϕðsÞ�

�

¼
Z

ds½2ðU½ϕðsÞ� − U½ϕA�Þ� þ
Z

dsU½ϕA�

¼
Z

c

b
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðU½ϕðsÞ� − UðϕAÞÞ

p
þ SbackE ; ð3:19Þ

where SbackE is the background Euclidean action evaluated
on the homogeneous solution ϕ ¼ ϕA. Therefore

SE½ϕðsÞ� − SbackE ¼
Z

c

b
dτκ; ð3:20Þ

which shows the equivalence between the Euclidean
action evaluated on the bounce solution (upon subtracting

6Note that in the case of the left panel of Fig. 1, E¼U½ϕA�¼0.
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the background action) and the usual WKB factor of
Eq. (3.15).
Of course, the resort to the use of the Euclidean action is

just a trick that sometimes makes the computation easier
and is completely justified quantum mechanically, as it
reproduces exactly the WKB result. However, there is no
intrinsic reason to use the bounce solution for the post-
nucleation phase; up to Eq. (3.15) we have not introduced
Euclidean time and the Euclidean action, and these are
actually not needed to get to the final result. The quantum
mechanics problem only knows about the symmetries that
are put in the problem from the very beginning; for instance
one can require from the start that the problem has a
spherical Oð3Þ symmetry. There is no way for the post-
nucleation solution to gain a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − jxj2

p
dependence, as it is

usually obtained by naively rotating back to Lorentzian
signature the bounce solution.

B. WKB for decay in run-away potential

In the case of the right panel of Fig. 1 we can give an
explicit definition of the decay rate, as we can discuss the
question in terms of an S-matrix. We have in mind a state
which comes in from the right, tunnels through the barrier,
is reflected off the wall on the left and tunnels through
the barrier back to give an outgoing state to the right. The
resonances that can be formed in this process constitute the
decaying state that we are interested in. The S-matrix is a
phase (S ¼ A4=B4) with complex poles corresponding to
the bound states in region 2. To identify the decay widths of
the corresponding resonances we first identify the bound
states; these correspond to

cos θ ¼ 0 ⇒ θ ¼
�
nþ 1

2

�
π ðn ∈ ZÞ: ð3:21Þ

Note that the last expression determines the possible
discrete values of the energy En; in fact the energy appears
both in the limits of integration (as it determines the turning
points) and in the integrand [see Eq. (3.5) and Eq. (3.6)].
Considering the lowest energy state E0 and expanding
around this point we can write (see [40])

cos θ≃ ∓ ðE − E0Þ
�∂θ
∂E

�����
E¼E0

; sin θjE¼E0
≃ 1;

and get

S≡ A4

B4

¼ E − E0 − i½1=ð4θ2ð∂θ∂EÞjE¼E0
Þ�

E − E0 þ i½1=ðð4θ2ð∂θ∂EÞjE¼E0
Þ�

≡ e2iϕ ¼ E − E0 − iΓ=2
E − E0 þ iΓ=2

: ð3:22Þ

with the decay width given by

Γ ¼ 1

2λ2

�∂θ
∂E

�
−1
����
E¼E0

; ð3:23Þ

where as defined earlier λ ¼ exp ðR c
b κdτÞ. The phase shift

ϕ has then the standard form

tanϕ ¼ Γ=2
E − E0

;

with the lifetime of the resonance given by

Γ−1 ¼ 2λ2
�∂θ
∂E

�����
E¼E0

¼
� ∂
∂E

Z
b

a
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − UðτÞ

p
Þ
����
0

�

× 2 exp

�
2

Z
c

b
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðUðτÞ − E

p
Þ
�
: ð3:24Þ

Note that 2ð∂θ∂EÞjE¼E0
is the classical period for oscillations

between a to b and one could have divided the transition
probability i.e., the WKB factor in Eq. (3.15) to get this
formula heuristically, while here we have derived it purely
from quantum mechanical considerations.

C. Comparison to Coleman’s formula

We showed above that the exponential term in the lifetime
of the false vacuum (for the particular case where the energy
corresponds to the energy at theminimumof the potential) is
the same as in Coleman’s calculation [see Eq.. (3.20)]. On
the other hand the prefactor is quite different from that in the
well-known formula derived by Coleman [1,2].
(a) The tunneling rate Γ given above is proportional to the

frequency of oscillation of the field (with energy E0) in
the local minimum of the potential. In Coleman’s
picture the probability of tunneling has a infinite factor
of time coming from the zero mode corresponding to
time translations of the instanton which is then divided
out to give a tunneling rate per unit time. Such a
picture does not appear to come out of this direct WKB
calculation.

(b) Similarly in Coleman’s calculation there is an infinite
(for noncompact space) volume factor which is also
divided out to get a transition probability per unit
volume. The above calculation has no such factor—
what we have instead is the analog of the decay rate of
a resonance. For a compact space it gives the prob-
ability for the decay of the entire space—not the
probability for bubble nucleation.

(c) The ground state energy E0 of the resonance (false
vacuum) is greater than the energy of the (local)
minimum of the potential due to zero point fluctuations.

However the derivation in Coleman’s papers is not quite
a straightforward application of WKB quantum mechanics,
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but involves a series of additional assumptions whose status
we discuss below.

1. Some issues with Coleman’s argument

Let us summarize some of the problematic aspects of
Coleman’s original approach.7

(a) The Hamiltonian H is Hermitian; its eigenvalues are
necessarily real. Coleman makes essential use of the
heuristic interpretation of Γ as the imaginary part of an
eigenvalue of H and the dilute gas approximation in
order to get the decay rate. The calculation leading to
Eq. (3.24) used no such interpretation—Γ is extracted
from the S-matrix for the scattering of a field con-
figuration from a potential which can accommodate
quasibound states (resonances).

(b) Coleman’s calculation disagrees in the prefactor
from the standard WKB calculation (i.e., essentially
Eq. (3.24) with U now being the quantum mechanical
potential). In particular Coleman’s formula for the
decay rate Γ involves dividing by the (infinite) trans-
lation symmetry of his instanton i.e., the prefactor
for the transition probability contains a factor T → ∞
that is divided out to get the rate. In the calculation
above there is no such factor and effectively the
division is by the classical period for oscillations in
the potential well.

(c) The last factor of Eq. (3.24) is the square of the
standard WKB decay amplitude and naturally is the
same as in Coleman’s formula with the identification
of the exponent as the difference between the Euclid-
ean classical action for a classical solution with the
appropriate boundary conditions, and the action for a
particle whose position is localized in the well (at its
minimum).

(d) In the field theory case Coleman gives an argument
for the dominant contribution to this last factor to
come from a Euclidean four-sphere configuration.
However in the actual evaluation of the decay ampli-
tude the thin-wall approximation is used in which
the under-the-barrier region effectively shrinks to a
brane. On the other hand propagation in the classi-
cally allowed region to the right of the barrier is
described in terms of the analytic continuation of this
Euclidean instanton. The justification for the latter is
unclear.

(e) Of course one would like to have a quantum field
theory argument for a physical picture of a first order
phase transition with bubble nucleation and percola-
tion. Coleman’s argument is clearly motivated by this
and indeed it would be nice to have a rigorous QFT
justification for this. Unfortunately we do not see at
this point how to achieve this.

IV. VACUUM DECAY IN CURVED SPACE

A. Review of Coleman-De Luccia

The application of Coleman’s arguments to the case
involving gravity are even more problematic. Apart from
the issues highlighted above there is the problem that the
notion of time (and hence that of transition probability per
unit time) needs to be reinterpreted given that the WDW
equation does not admit the usual notion of time. Let us
first discuss the Euclidean minisuperspace case as given
by CDL for the case dS → M and generalized to dS → dS
by Parke [41]. Putting t ¼ iτ and aðtÞ ¼ ρðτÞ and gauge
fixing to N ¼ 1 we have the metric ds2 ¼ dτ2 þ ρ2ðτÞdΩ2

3.
The relevant Euclidean equation of motion then is the
ττ component of the Einstein equation which reads
(ρ0 ¼ dρ=dτ)

ρ02 ¼ 1þ 1

3

�
1

2
ϕ02 − VðϕÞρ2

�
: ð4:1Þ

The Euclidean action is

SE ¼ −2π2
Z

τmax

0

dτ

�
3ρþ 3ρρ02 − Vρ3 − ρ3

1

2
ϕ02

�

¼ −12π2
Z

τmax

0

dτ

�
ρ −

1

3
Vρ3

�
: ð4:2Þ

In the last step we used the equation of motion in Eq. (4.1).
In this Euclidean argument this is supposed to be the
instanton (bounce) action with ϕð0Þ ¼ ϕB i.e., the value of
the field at the so-called true minimum and ϕð∞Þ ¼ ϕA, the
value of the field in the false minimum. Of course there is
complete symmetry between the two so the bounce action
is the same for going from A → B or B → A. The difference
between up-tunneling (true to false vacuum) and down-
tunneling (false to true) just comes from the fact that the
background action which is subtracted to get the tunneling
amplitude is different. So in the case of down-tunneling that
we will consider here (i.e., A → BÞ the tunneling amplitude
is given by eB=2 where,

B
2
¼ SE − SAE ð4:3Þ

where the second term is the action for ϕ remaining at the
false minimum ϕA. i.e.,

SAE ¼ −12π2
Z

τmax

0

dτ

�
ρ −

1

3
VAρ

3

�
;

where VA ¼ VðϕAÞ. Hence we have7See [6] for related critical comments.
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B
2
¼−12π2

Z
τmax

0

dτ

�
ρ−

1

3
Vρ3

�
þ12π2

Z
τmax

0

dτ

�
ρ−

1

3
VAρ

3

�

¼−12π2
Z

τ̄−δτ

0

dτ

�
ρ−

1

3
VBρ

3

�
þ2π2ρ̄3T

þ12π2
Z

τ̄−δτ

0

dτ

�
ρ−

1

3
VAρ

3

�
: ð4:4Þ

In the second line we have assumed that beyond the point
τ̄ þ δτ, V ≃ VA so that the contribution from τ̄ þ δτ to τmax
in the first term of the first line cancels against the second
term. Also T in the middle term is defined by

ρ̄3T ¼ 2

Z
τ̄þδτ

τ̄−δτ
dτρ3ðVðϕðτÞ − VAÞ: ð4:5Þ

In the second line of Eq. (4.4) we have taken the path in τ
such that for 0 < τ ≤ τ̄ − δτ, ϕ is held fixed at ϕB while in
the interval τ̄ þ δτ ≤ τ < τmax, ϕ ¼ ϕA. So in the first and
third terms in Eq. (4.4) we can replace the integral over
dτ ¼ dτ

dρ dρ using the Euclidean Eq. (4.1) with ϕ fixed.8 This

gives dτ
dρ ¼ �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VB;Aρ

2
q

in the first and third terms9 so

these integrations can be done giving us (in the thin-wall
limit δτ → 0),

B
2
¼ −12π2

�
�ð1 − 1

3
VAρ̄

2Þ3=2 − 1

VA
∓ ð1 − 1

3
VBρ̄

2Þ3=2 − 1

VB

�
þ 2π2ρ̄3T: ð4:6Þ

ρ̄ is then determined by extremizing B. Upon substituting
this value into the above one then gets the usual expressions
which we will quote later after rederiving the above without
invoking Euclidean arguments with their corresponding
interpretational issues.

B. Vacuum transitions in minisuperspace

An instructive exercise, that helps understanding the
formalism outlined in Sec. II and shows the differences
between the Lorentzian and Euclidean appproaches, con-
sists in studying vacuum transitions in a minisuperspace
setup that includes a real scalar field. This calculation is a
generalization of the ‘tunneling from nothing’ scenario
[20–23]. For a recent discussion see for instance [42–44].
The metric is

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞðdr2 þ sin2 rdΩ2
2Þ: ð4:7Þ

The action (setting Mp ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1) is given by the
sum S ¼ Sg þ Sm, where

Sg ¼ 2π2
Z

1

0

dtð−N−13a _a2 þ 3kaNÞ; ð4:8Þ

Sm ¼ 2π2
Z

1

0

dt

�
N−1 1

2
a3 _ϕ2 − Na3VðϕÞ

�
: ð4:9Þ

Here k ¼ �1, 0 depending on whether the three-spatial
slice is positively (negatively) curved or flat. Of course in
the open k ¼ 0;−1 cases the factor 2π2 would have to be
replaced by an appropriate compactified volume factor and
the spatial metric in Eq. (4.7) would need to be replaced by
a flat or hyperbolic metric. Here we will focus on the k ¼
þ1 case and for convenience we will drop the 2π2 factor in
the calculations below and restore it in the expressions for
the classical action. We will make some remarks at end on
the other two cases. The canonical momenta are

πN ¼ 0; πa ¼ −N−16a _a; πϕ ¼ N−1a3 _ϕ; ð4:10Þ
and the Hamiltonian constraint is

H ¼ N
�
−

π2a
12a

þ π2ϕ
2a3

− 3aþ a3VðϕÞ
�
≈ 0: ð4:11Þ

Comparing with Eq. (2.4) we have

Gaa ¼ −
1

6a
; Gϕϕ ¼ 1

a3
; ð4:12Þ

fða;ϕÞ ¼ −3aþ a3VðϕÞ: ð4:13Þ
Consider a scalar potentialwith two dSminima inϕA andϕB,
with VðϕAÞ≡ VA > VB ≡ VðϕBÞ. Then the general shape
of the function −fða;ϕÞ in Eq. (4.13) is plotted in Fig. 3.
As we emphasized before, the superspace metric is not

positive definite in the presence of gravity and this
introduces significant differences to WKB type tunneling
arguments. As can be seen from this constraint equation in
the absence of the scalar field (this is the ‘tunneling from

0

FIG. 3. The function −fða;ϕÞ for a potential with two dS
minima ϕA and ϕB and where VðϕAÞ > VðϕBÞ.

8Although not explicitly stated this seems to have been
assumed also in [41].

9In [41] only the positive sign is kept here.
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nothing’ model of [20–23]), one has a barrier at fixed ϕ for
the scale factor awhen a <

ffiffiffiffiffiffiffiffiffi
3=V

p
whereas if the geometry

is fixed (as in the original investigations of Coleman et al.)
then there is a barrier for ϕ when V is greater than its
value at the point where πϕ becomes zero. However it is
clear that these simple situations are not the only possibil-
ities when both a and ϕ are present. The following is to our
knowledge the first time this more complex situation is
discussed.

C. Recovering Coleman-De Luccia

It is instructive to try and recover the CDL expression in
Eq. (4.6) using the formalism of Sec. II. Hopefully, this
might help us in better understanding CDL. Let us choose
the deformation parameter s (in analogy with the Euclidean
time τ) such that from some initial value (say at s ¼ 0) to
the point s̄ − δs the field ϕ remains very close to ϕB and for
points smax>s>s̄þϵ, ϕ becomes close to ϕA. It should be
emphasized here that s has nothing to do with real time—it
is simply a deformation parameter that parametrizes the
path of integration. The range s̄ − ϵ < s < s̄þ ϵ is the
transitional region where in effect CDL used the thin-wall
approximation. Thus the classical action [see Eq. (2.11)] is

S0ða0;ϕB; amax;ϕAÞ

¼ −12π2
Z

smax

0

ds0C−1ðs0Þ
�
−aþ a3

VðϕÞ
3

�

¼ −12π2
Z

s̄−δs

0

ds0C−1ðs0Þ
�
−aþ a3

VB

3

�

− 12π2
Z

s̄þδs

s̄−δs
ds0C−1ðs0Þ

�
−aþ a3

VðϕÞ
3

�

− 12π2
Z

smax

sþδs
ds0C−1ðs0Þ

�
−aþ a3

VA

3

�
: ð4:14Þ

Here in the first term we have used the fact that ϕ
remains constant and equal to ϕB while in the last term it
remains equal to ϕA.
This path corresponds to the Euclidean path chosen by

CDL and Parke. Thus in the Lorentzian case this action
corresponds to ‘tunneling from nothing’, as in Hartle-
Hawking/Vilenkin-Linde [20,21,23] wave function of the
universe arguments, essentially keeping ϕ fixed, to the
potentially emergent state B (the true vacuum in CDLs
language), then making a transition to the state A (where
both ϕ and a can change), that then emerges as the classical
background space time. This is then to be compared to the
situation where the state A emerges from a ‘tunneling from
nothing’ process. The latter gives an action

S0ðamax;ϕA; a0;ϕAÞ

¼ −12π2
Z

s

0

ds0C−1ðs0Þ
�
−aþ a3

VA

3

�
: ð4:15Þ

Now we have from Eq. (2.15)

�
dτ
ds

�
2

¼ −6a
�
da
ds

�
2

þ 2a3
�
dϕ
ds

�
2

¼ −2C−2ðsÞð−3aþ a3VðϕÞÞ: ð4:16Þ

Thus as long as a2 < 3=Vðϕ), for a “timelike” trajectory in
field spaceC2 ¼ −1. In particular this would be the case for
dϕ=ds ¼ 0. For the moment though we will leave this
undetermined.
The transition probability is given by (ignoring the

prefactors for the moment),

PðA → BÞ ¼
����Ψða0;ϕB;amax;ϕAÞ
Ψða0;ϕA; amax;ϕAÞ

����2

¼
���� αeiS0ða0;ϕB;amax;ϕAÞ þ βe−iS0ða0;ϕB;amax;ϕAÞ

αeiS0ða0;ϕA;amax;ϕAÞ þ βe−iS0ða0;ϕA;amax;ϕAÞ

����2
≡ e−B: ð4:17Þ

The dominant term in this ratio will be exponentially larger
than the subdominant terms so the latter may be safely
ignored.

B
2
¼ iS0ða0;ϕB;amax;ϕAÞ − iS0ða0;ϕA; amax;ϕAÞ

¼ −12π2i
Z

s̄−δs

0

ds0C−1ðs0Þ
�
−aþ a3

VB

3

�

− 12π2i
Z

s̄þδs

s̄−δs
ds0C−1ðs0Þ

�
−aþ a3

VðϕÞ
3

�

− 12π2i
Z

smax

s̄þδs
ds0C−1ðs0Þ

�
−aþ a3

VA

3

�

þ 12π2i
Z

smax

0

ds0C−1ðs0Þ
�
−aþ a3

VA

3

�
; ð4:18Þ

where we have chosen to keep C so the choice of phase is
so far undetermined. After some cancellations this may be
rewritten as

�B
2
¼ −12π2i

Z
s̄−δs

0

ds0C−1ðs0Þ
�
−aþ a3

VB

3

�

þ 12π2i
Z

s̄−δs

0

ds0C−1ðs0Þ
�
−aþ a3

VA

3

�
þ 2π2ā3T; ð4:19Þ

where we have defined the tension T in analogy with
Eq. (4.5), as the contribution to the action coming from the
portion of the path such that dϕ=ds ≠ 0

2π2ā3T¼12π2i
Z

sþδs

s̄−δs
ds0C−1ðs0Þ

�
a3

VðϕÞ−VA

3

�
: ð4:20Þ
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Note that, despite the contribution in Eq. (4.20) is similar to
Eq. (4.5), there is no physical wall in the process that
we are considering, that preserves the full Oð4Þ symmetry
of the minisuperspace model. So far we have not made any
approximation. The terms in the first line of Eq. (4.19) will
now be evaluated (as in the corresponding Euclidean case)

keeping ϕ constant. So, we may use da
ds0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VA;B

3
a2

q
[see Eq. (4.16) with dϕ=ds ¼ 0 which implies C2 ¼ −1].
We will also assume that the last term of Eq. (4.19) is also
integrated over a timelike path in field space so that we can
choose C2 ¼ −1 along this path as well, which requires of
course that da=ds is nonzero along this path. Hence

SA;B0 ¼ �i12π2
Z

a

0

daa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − a2

VA;B

3

�s

¼ ∓i12π2
1

VA

��
1 − a2

VA;B

3

�
3=2

− 1

	
ð4:21Þ

Thus we have [putting aðs̄� δsÞ ¼ ā� δa]

�B
2
¼ 12π2

�
1

VB

��
1 − ðā − δaÞ2 VB

3

�
3=2

− 1

�

−
1

VA

��
1 − ðā − δaÞ2 VA

3

�
3=2

− 1

�	
þ 2π2ā3T: ð4:22Þ

D. Concrete cases

Let us now consider several cases to identify the
transition amplitudes using our formalism.
(a) Thin-wall CDL Let us try to recover the CDL result in

the thin-wall approximation. We can evaluate the last
equation in the thin-wall approximation. In this case
the potential essentially reduces to a brane so that
effectively we may write the argument of the integral
in Eq. (4.20) in the limit δs → 0 as a delta function.
Then the logarithm of the transition amplitude be-
comes

�B
2
¼ 12π2

�
� 1

VB

��
1 − ā2

VB

3

�
3=2

− 1

�

∓ 1

VA

��
1 − ā2

VA

3

�
3=2

− 1

�	
þ 2π2ā3T: ð4:23Þ

This is the same expression as Eq. (4.6). It is also clear
that this is the sum of two Hartle-Hawking/Vilenkin-
Linde terms and10 and a term coming from the portion

of the path where dϕ=ds ≠ 0, that in the CDL
computation corresponds to the wall tension contri-
bution. However, notice that we recovered the CDL
expression for the tunneling probability, Eq. (4.23)
without having to go to Euclidean space, but just using
WKB quantum mechanics and assuming that, for the
path that extremizes the action, C−1 in Eq. (4.20) is
imaginary. Extremizing Eq. (4.23) gives the standard
(generalized) CDL expression for transitions between
two dS spaces (or AdS with appropriate sign changes).
The extremum is at

1

ā2
¼ VB

3
þ 1

4

�
2

T
ΔV
3

þ T
2

�
2

¼ VA

3
þ 1

4

�
2

T
ΔV
3

−
T
2

�
2

; ð4:24Þ

where ΔV ¼ VA − VB. Note that this expression
shows that ā is less than the horizon radius of both
A and B. Putting this into Eq. (4.23) gives the final
expression (with H2 ≡ V=3)

B ¼ �8π2
�fðH2

A −H2
BÞ2 þ T2ðH2

A þH2
BÞgā

4TH2
AH

2
B

−
1

2
ðH−2

B −H−2
A Þ

�
: ð4:25Þ

This is of course the well-known result. However its
derivation and interpretation is quite different from
that of CDL (and subsequent work which generalized
the CDL result). Firstly we did not explicitly use
Coleman’s tunneling formula—instead we directly
solved the WDW equation in the classical approxi-
mation, as a deformation of the solution where
the initial configuration is one in which the fields
correspond to a dS space (with vacuum energy VA and
compared it to the undeformed configuration). How-
ever, there are a few puzzles posed by this calculation
as we discuss next.

(b) Hartle-Hawking interpretation As the last term in
Eq. (4.23) is positive, it increases the absolute value of
B and hence decreases the tunneling probabilty. On the
other hand, one can simply ask what is the relative
probability of ‘tunneling from nothing’ to the state B
compared to ‘tunneling from nothing’ to the state A. In
other words one might compute the following ratio

B
2
¼ jΨða0;ϕB; amax;ϕBÞj2

jΨða0;ϕA; amax;ϕAÞj2
; ð4:26Þ

with amax ≥ maxð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=VAÞ
p

;
ffiffiffiffiffiffiffiffiffiffiffi
3=VB

p Þ. The result
would then be given by the top line of Eq. (4.23)
(i.e., the two Hartle-Hawking—Vilenkin-Linde terms)
with no tension term. Note that, even though the

10Note that in the thin-wall approximation the integrals in
Eq. (4.5) and Eq. (4.20) imply that in the region around s̄ the
potential takes the form a3ðsÞðVðϕðsÞÞ − VAÞ ¼ 2ā3Tδðs − s̄Þ.
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integration of Eq. (4.23) in this case extends till amax,
only the integrals up to

ffiffiffiffiffiffiffiffiffiffiffi
3=VA

p
and

ffiffiffiffiffiffiffiffiffiffiffi
3=VB

p
contrib-

ute to the real part of B. Hence, for instance, the factor

ð1 − ā2VB
3
Þ3=2 evaluated at ā2 > 3=VB gives no con-

tribution to B and analogously for the term containing
VA in Eq. (4.23). Hence the relative probability is now
given by P ¼ e−B with

B ¼ 24π2
�
∓ 1

VB
� 1

VA

	
: ð4:27Þ

This is simply the ratio of the Hartle-Hawking—
Vilenkin-Linde (depending on the choice of sign)
probabilities for tunneling from ‘nothing’ to the state
B compared to tunneling from ‘nothing’ to the state A.
Note that Eq. (5.11) might be interpreted as the
tunneling rate for the transition dS A →‘nothing’ →
dS B (or the opposite, depending on the choice of the
signs). Interestingly, it seems that this would give a
greater probability for transition than the CDL calcu-
lation. In this connection it should be pointed out that
in the Hartle-Hawking case the wave function in the
classical region is indeed a superposition of wave
functions for expanding and contracting universes.
The process we are envisaging may then be thought of
as the contracting branch with the field sitting at the A
minimum tunneling to ‘nothing’ and then re-emerging
as an expanding branch in the B minimum or the
reverse.

(c) CDL vs Hartle-Hawking In the Lorentzian analog of
the CDL calculation on the other hand, it is not clear
how the true vacuum (i.e.,B) emerges into the classical
region. In CDL, the tunneling rate is computed exactly
with the same integral as in Eq. (4.18). However, in
CDL this is interpreted as the action for a Euclidean
configuration given by a compound state that joins two
portions of four-spheres (corresponding to dS B and
dS A) along a three-sphere (the wall); the SOð5Þ
symmetry of the Euclidean four dimensional dS is
broken to SOð4Þ by the presence of the ‘Euclidean’
wall. Afterwards, as described in the Appendix, one of
the angular variables that implements the SOð4Þ
symmetry, is analytically continued and becomes
the usual Lorentzian time, breaking the symmetry to
SOð1; 3Þ. In this way, the initial under-the-barrier
Euclidean configuration (the compound state) be-
comes the real three-dimensional equal-time slice of
the nucleated spacetime. As the continued angular
variable is one that preserves the Euclidean SOð4Þ
symmetry, the nucleated spacetime is still a compound
state of dS A and dS B; both dS spacetimes enter
the classical region and keep evolving according to the
classical equations of motion. In our computation, the
integral of Eq. (4.18) (that we chose in order to recover
the same CDL expression, and try to give it a

Lorentzian interpretation) is associated with a particu-
lar path in field space that, starting from the configu-
ration ða0;ϕBÞ (‘B nothing’) leads to the nucleation of
a full dS A sphere, i.e., the configuration ðamax;ϕAÞ.
This has to be contrasted, as described in Eq. (4.17)
with the path that, starting from the configuration
ða0;ϕAÞ leads to the same full dS A sphere as above.
Essentially we are comparing three-geometries, which
is all one can do in the context of quantum gravity as
described by the WDWequation. In our procedure we
neither need a dilute gas approximation nor a single
negative mode in the spectrum of fluctuations as in the
CDL flat space argument. Furthermore, there is no
notion of bubble nucleation. Both the numerator and
the denominator in Eq. (4.17) correspond to spacetime
configurations that preserve the SOð4Þ symmetry. To
be more explicit, the portion of the path that corre-
sponds to the dS B is always under the barrier in the
Lorentzian case; the computation relies on the fact that
ā in Eq. (4.23) after extremizing is located in the
under-the-barrier region, so that the integrands of
Eq. (4.21) give an imaginary contribution and the
resulting B is real. In the Lorentzian approach, the dS
spacetime B never sees the light of the classical region.
Hence, in the present case built on the CDL argument
how B emerges as a classical spacetime is not at all
clear. Our computation relies on the fact that the path
in field space extremising the action can be split as
described in Sec. IV C, and that it is such that C−1 in
Eq. (4.20) is imaginary. If the latter condition holds,
the portion of the path such that dϕ=ds ≠ 0 contrib-
utes to the imaginary action, bringing a term which is
analogous to Eq. (4.5) in the Euclidean computation.
In general, this is not necessarily the case and one
should compute the value of the action for the path that
solves the equation of motion. In order to compute the
contribution to the imaginary part of the action of a
given path, it is sometimes more convenient to use the
distance on field space as the parameter s, in which
case the action for the wave function in the numerator
of Eq. (4.17) can be written as

S0½a0;ϕB; amax;ϕA�

¼ 2π2
Z

amax;ϕA

a0;ϕB

½−6ada2 þ a3dϕ2�1=2

×

�
6a

�
1 −

a2VðϕÞ
3

��
1=2

: ð4:28Þ

Hence, only the portions of the path such that the
product of the two square roots in Eq. (4.28) is
imaginary contribute to the imaginary part of the
path, and hence to the tunneling rate.
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E. Classical transitions in minisuperspace

This subsection is somewhat orthogonal to the main
thrust of this paper but we include it for completeness
since it suggests additional possibilities for populating the
landscape.
(a) Standard classical paths. We find it is interesting to

notice that, due to the presence of a nonpositive definite
superspace metric, it is possible to find a classical
solution that connects two dS spacetimes A and B.
To illustrate this point, consider first the usual Hartle-
Hawking transition, as a special case of Eq. (4.28). If we
include the scalar field, the model becomes richer. In
fact, the first bracket in Eq. (4.28) is proportional to the
kinetic terms of Eq. (4.11) and can become negative
without resorting to an imaginary parameter

1

2
ð−6a _a2 þ a3 _ϕ2Þ ¼ −

π2a
12a

þ π2ϕ
2a3

¼ 3a

�
1 −

a2VðϕÞ
3

�
: ð4:29Þ

Below, we show an example in which we observe
a classical transition from dS A to dS B in the potential
of the left panel of Fig. 4. The initial conditions are
given by að0Þ¼ ffiffiffiffiffiffiffiffiffiffiffi

3=VA

p
,ϕð0Þ¼ϕA¼−0.01, _ϕð0Þ¼0.2,

so that the field goes over the barrier and start oscillating
in the dS B minimum at ϕB ¼ 0.01, with decreasing
amplitude. In the example, the maximum of the barrier
is located at ϕmax ≃ −0.00375 and the value of the
potential is Vmax ≃ 0.1068. The initial speed necessary
for the field to classically overcome thebarrier andmake
the transition possible is roughly given by the height
of the barrier ΔV ¼ Vmax − VA ≃ 0.0068, so that
1
2
_ϕ2 ≳ ΔV. This is analogous to the recently proposed

‘fly-over’ scenario [45].11 Asymptotically, the dS B

solution is recovered. In the examplewe used VA ¼ 0.1
and VB ¼ 0.05. In Fig. 5 we report the values of the
brackets in Eq. (4.28), showing that they change sign at
the same time even though the parameter s of the
evolution is always kept real.

(b) Non-standard classical paths. The Hamiltonian and
momentum constraints can be expressed as the stan-
dard FLRW equation

�
_a
a

�
2

¼ 8πG
3

�
1

2
_ϕ2 þ VðϕÞ

�
−

1

a2
: ð4:30Þ

and the scalar field equation

ϕ̈þ 3

�
_a
a

�
_ϕþ V 0ðϕÞ ¼ 0: ð4:31Þ

We want to explore if there are paths in the ϕ; a space
that can connect the two sides of the barrier for a scalar
potential with more than one minimum. A simple path
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FIG. 4. The potential in the left panel is a quartic polynomial in which four parameters are fixed by requiring two minima as described
in the main text, while the remaining parameter fixes the height of the barrier. The right panel shows the trajectory of the field that starts
in the A minimum and oscillates around the B minimum with decreasing amplitude. Asymptotically it goes to rest in the B
minimum at ϕ ¼ 0.01.
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FIG. 5. The black line represents the term 1
2
ða3 _ϕ2 − 6a _a2Þ,

while the blue line represents 1 − a2VðϕÞ
3

.

11We can equally get Hawking-Moss configurations after
adjusting some of the parameters.
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can be starting with a ¼ constant. In this case the
FLRW equation (Hamiltonian constraint) becomes

1

2
_ϕ2 þ VðϕÞ ¼ 3

8πGa2
≡ E; ð4:32Þ

which is the same as the energy conservation equation
for a particle of energy E. As long as E > V the field
passes through classically over the barrier with no
need of tunneling. Note that this happens only for a
closed universe. Note also that the scalar field equation
is satisfied automatically as usual for energy conser-
vation. This is Einstein’s static universe solution. For
nonstatic cases, the standard classical solution would
correspond to an initial velocity _ϕ to be big enough so
that the kinetic energy can overcome the difference in
potential energies to cross the barrier. In cosmological
setting this would correspond to the standard scenarios
such as Hawking-Moss and the fly-over of the
previous bullet point. However considering trajecto-
ries in the aðtÞ;ϕðtÞ space can be more general than
this. Due to the negative signature of the superspace
metric there is no need to climb the potential energy
barrier but we can move in the 2d ða;ϕÞ space. For
this, note that in Eq. (4.30) the curvature term adds a
negative term to the scalar potential and therefore if the
scale factor decreases with time the initial speed
needed to cross the barrier is smaller than that required
to compensate for the potential difference. This can
also be seen from Eq. (4.31) since for a contracting
universe H < 0 the ‘friction’ term 3H _ϕ has the
opposite sign, accelerating the field ϕ rather than
slowing it down. This means that the classical path
would have a contracting phase while the scalar field
climbs through the barrier and then starts expanding
after the transition. A sequence of contracting and
expanding classical paths connecting different vacua
would seem to be generic in a multi-minima scalar

potential and could provide the basis of a novel
scenario for early universe cosmology beyond old
and new inflation. For a recent discussion of bouncing
cosmologies see for instance [46].

1. A numerical example

Let us consider the scalar potential of Fig. 4 with
different initial conditions. Taking ϕð0Þ ¼ ϕA, að0Þ ¼
6.5 and _ϕð0Þ ¼ 0.1, we find using the Friedmann equation
that _að0Þ ≃�0.69. Let us then consider a contracting
universe as initial condition; _að0Þ ≃ −0.69. In this case,
we get the scale factor and field evolutions in Fig. 6 and
Fig. 7. Note that this is a different scenario with respect to
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FIG. 6. In the left panel we plot the scale factor which is initially shrinking but then start growing. In the right panel we plot the value
of the scalar field with respect to t. Initially the field starts oscillating around the higher vacuum, then it bounces between the two vacua
and finally it settles in the lower vacuum.
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FIG. 7. We show the evolution of the system in field space: after
a contracting phase (blue), the scale factor starts expanding (red)
and the system gets trapped in the vacuum B. The black line
corresponds to the locus a2 ¼ 3=VðϕÞ, hence it is the locus where
the function fða;ϕÞ ¼ 0, see Fig. 3.
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standard paths through the barrier such as Hawking-Moss
and ‘fly-over’ decay, as the initial kinetic energy
(1
2
_ϕ2 ≃ 5 × 10−3 in the present example) is smaller than

the barrier height (ΔV ≃ 6.8 × 10−3). This illustrates
explicitly our claim that due to the nonpositive nature of
the superspace metric there are more configurations con-
necting the two different vacua. Of course to compare these
classical paths to the quantum tansitions which are the main
focus of this paper one should also discuss (as for example
in [45]) what initial distribution of field velocities would be
justified and we leave that to future work.

V. OPEN OR CLOSED UNIVERSE?

As we have seen in the previous sections, following a
Lorentzian approach the spacetime geometry is established
from the beginning. For simplicity and computational
control we started with a closed universe and the end
result is then also a closed universe with k ¼ 1 LFRW
metric12

ds2 ¼ −dt2 þ a2ðtÞdΩ2
3; ð5:1Þ

which differs clearly from the open universe conclusion of
CDL. This metric is by construction Lorentzian and has the
Oð4Þ symmetry corresponding to a closed universe with no
need of any analytic continuation. For a ∝ coshðλtÞ this
corresponds to the SOð4; 1Þ invariant closed dS universe in
global coordinates. In this case the natural foliation
corresponds to horizontal surfaces of constant time.
Here it is important to remark that dS space allows open,

flat and closed slicings, see Fig. 8. Therefore, geometrically
all slicings are equally allowed. Which foliation is preferred

depends on the coupling to matter. For instance slices of
constant inflaton field would naturally determine the proper
time slicing and fix the curvature of the expanding universe
within the nucleated bubble. In CDL this fixes the open
universe but only after analytic continuation for which the
original Oð4Þ symmetry becomes Oð3; 1Þ of the open
slicing. In the Lorentzian minisuperspace approach that
we have followed here, the original Oð4Þ symmetry
remains and implies the closed slicing. Next we will see
that this remains true beyond minisuperspace as in the FMP
Hamiltonian approach to quantum transitions.

A. Beyond minisuperspace

We have seen that our Lorentzian treatment led naturally
to a closed slicing of dS space contrary to the CDL
arguments. However, this may be an artefact of using
the minisuperspace approximation in which the metric is
only a function of time and there is no concrete description
of the emergence of a bubble. In the Euclidean approach,
even though the original calculations are also in minisuper-
space, the presence of the bubble and its spacetime
trajectory after tunneling is obtained from the proposed
analytic continuation. In the Lorentzian approach there is at
present no explicit formalism to describe the quantum
transitions between different vacua of a scalar field poten-
tial. However, in the thin wall approximation in which the
relevant quantities are the vacuum energy of the two vacua,
the Hamiltonian formalism developed by Fischler, Morgan
and Polchinski [8] can be used. In this case the spherically
symmetric metric depends on both time and the radial
coordinate. This allows us to describe the dynamics of the
wall and its trajectory. Here we recall the basics of this
approach, which like the Lorentzian minisuperspace model,
naturally implies a closed universe slicing of the spacetime
as seen by an observer inside the bubble.
The spherically symmetric metric takes the form:

ds2 ¼ −N2
t ðt; rÞdt2 þ L2ðt; rÞðdrþ Nrðt; rÞdtÞ2

þ R2ðt; rÞdΩ2
2; ð5:2Þ

FIG. 8. Penrose diagrams for dS space with slicing corresponding from left to right to closed, flat and open slicings, respectively.
Notice that the horizontal closed universe slicing is global.

12Note that this is also the starting point in the Hartle-Hawking
and Vilenkin approaches towards defining the wave function of
the universe. The fact that closed universes are finite whereas
flat and open universes have infinite volume makes closed
universes better suited to define the probabilities associated to
wave functions.
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with Nt, Nr the lapse and shift functions respectively and
dΩ2

2 the line element for the two-sphere. The system
consists of two dS spaces with cosmological constants
ΛI, ΛO separated by a wall of tension σ at r ¼ r̂. The bulk
and boundary actions are the standard gravitational ones
and the matter action is given by the two cosmological
constants, so the total action is

S ¼ 1

16πG

Z
M

d4x
ffiffiffiffiffiffi
−g

p
R

þ 1

8πG

Z
∂M

d3y
ffiffiffiffiffiffi
−h

p
K þ SM þ SW; ð5:3Þ

where K is the extrinsic curvature of the wall and

SM ¼ −4π
Z

dtdrLNtR2ðΛOθðr − r̂Þ þ ΛIθðr̂ − rÞÞ;

SW ¼ −4πT
Z

dtdrδðr − r̂Þ½N2
t − L2ðNr þ _̂rÞ2�: ð5:4Þ

In the above we defined T ≡ 4πGσ. Following the standard
Dirac prescription for this Hamiltonian system, the
Hamiltonian and momentum constraints can be found
and the matching conditions at the wall lead to an equation
for the wall trajectory of the form

_̂R
2 þ V ¼ −1; V ¼ −

R̂2

R2
0

; ð5:5Þ

where R̂ ¼ Rðr̂Þ and R0 is the turning point

R2
0 ¼

4T2

½ðH2
O −H2

I Þ2 þ 2T2ðH2
O þH2

I Þ þ T4� ; ð5:6Þ

with H2
I;O ¼ 8πGΛI;O=3. The classical trajectory of the

wall is then given by

RðtÞ ¼ R0 cosh
t
R0

: ð5:7Þ

The quantum probabilities are determined from the sol-
utions of the WDW equation HΨ ¼ 0 with P the relative
probability of the configuration of the two dS spaces and
the wall compared to that for just one dS,

PðdS → dS=dS ⊕ WÞ ¼ jΨðdS=dS ⊕ WÞj2
jΨðdSÞj2 : ð5:8Þ

The detailed calculation using theWKBmethod including a
discussion of the matching of the under-the-barrier wave
function to that in the classical region is given in [16] and the
result reproduces the standard exponential factor e−B withB
given by Eq. (4.25). This provides yet another Lorentzian
way to derive the same decay rate. But contrary to the
minisuperspace approach, the presence of the wall and its
classical trajectory after the transition is made quite explicit

Ψ ¼ aeI þ be−I; ð5:9Þ
where, given a configuration with action S, we have denoted
the combination iS ¼ I and the action S is evaluated on a
classical solution. The total action away from the turning
point (but still under the barrier) is

Itot ¼
π

4H2
I

�
1 − ϵðR̂0

−Þ
2

π

�
cos−1

�
R̂
Ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

IR
2
O

q ���
R2
o − R̂2

R2
o − R̂2ð1 −H2

IR
2
oÞ

�
3=2�

−
π

4H2
O

�
1 − ϵðR̂0þÞ

�
2þ 2

π
cos−1

�
R̂
Ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

OR
2
o

q ���
R2
o − R̂2

R2
o − R̂2ð1 −H2

OR
2
oÞ

�
3=2�

þ R̂3

2Ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
o − R̂2

q �ðH2
O −H2

I þ T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2−R̂

2
p −

ðH2
O −H2

I − T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2þR̂2

q �

−
�
H2

O −H2
I þ T2

4TH2
I

−
H2

O −H2
I − T2

4TH2
O

�
Rosin−1

�
R̂
Ro

�
: ð5:10Þ

The background action is obtained by setting r̂� ¼ 0 in
the above expressions (corresponding to having the com-
plete dS space with Hubble parameter HO), giving us

Ī ¼ −
π

2GH2
O
½ð1 −H2

Oa
2
OÞ3=2 − 1�; ð5:11Þ

which gives the Hartle-Hawking (under-the-barrier) wave
function when substituted into Eq. (5.9) with b ¼ 0 and
gives the Vilenkin version when b ¼ 2ia.

Now as pointed out in [47] when the background
geometry is a black hole there are two classically allowed
(I and III) and one classically forbidden regions (II) as in
the usual tunneling problem in quantum mechanics, as
discussed for instance in Sec. III. Classically, the wall
expands (or contracts) up to a classical turning point and
then recollapses (or re-expands), but quantummechanically
it can tunnel under the barrier and resurface after the second
turning point. In the dS to dS case however there is no
region I [15,16] and the situation as discussed in more
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detail in [16] is similar to tunneling from ‘nothing’. In
either case the WDW equation has two independent
solutions as in Eq. (5.9) in each of these regions that need
to be matched at the classical turning points. In the dS to dS
case there is just the one turning point, the coefficients a
and b will determine the two coefficients in region III
through WKB matching conditions. In ‘tunneling from
nothing’ discussions one usually imposes an additional
boundary condition, either the outgoing wave condition
of Vilenkin or the real wave function (coming from the
so-called ‘no-boundary’ condition’) of Hartle and
Hawking. However, if no such condition is imposed, in
general one of the two solutions in Eq. (5.9) will dominate
in each region, depending on the sign of the real part of the
action I.
The ratio

PðB → N Þ ¼
����ΨN

ΨB

����2; ð5:12Þ

gives the probability of finding the system in the
‘nucleated’ state N versus being in the ‘background’ state
B, Notice that the two states B and N do not always have
the meaning of ‘initial’ and ‘final’ states (see Sec. I): the
transition can be clearly interpreted as happening in time if
there is an initial classical motion of the bubble wall. In the
cases in which there is no initial classical motion of the wall
the interpretation is less clear. For this reason we will refer
to the state B as the ‘background’ spacetime, instead of
initial spacetime. Given that this is a relative probability, it
does not have to be smaller than one, and we avoid the
problem of the normalization of wave functionals.
The semiclassical wave function in the region III (i.e., the

classical region where the brane spontaneously emerges
from ‘nothing’) is obtained by analytically continuing the
expression in Eq. (5.10). The denominator in Eq. (5.12)
corresponds to the emergence from ‘nothing’ of dS space
with the ‘background’ radius H−1

O and the relative proba-
bility is given by

PoutðB → N Þ ¼ jΨout
N j2

jΨout
B j2 ¼

jaþ i b
2
j2e2ReðIoutðR̂ÞÞ þ ja − i b

2
j2e−2ReðIoutðR̂ÞÞ þ 2Re½ðaþ i b

2
Þða� − i b

�
2
Þ�e2iImðIoutðR̂ÞÞ

jaþ i b
2
j2e2ReðIoutð0ÞÞ þ ja − i b

2
j2e−2ReðIoutð0ÞÞ þ 2Reððaþ i b

2
Þða� − i b

�
2
ÞÞe2iImðIoutð0ÞÞ : ð5:13Þ

As argued in [16] the dominant contribution comes from
the ratio of the first terms in the numerator and denominator
and gives precisely the expression that was obtained by the
generalizations of CDL [5] and by Brown and Teitelboim
[4], namely the expression in Eq. (4.25).
However it is important to emphasize that even though

the final exponential term for the relative probability is the
same as that obtained by the Euclidean instanton/dilute-
instanton-gas method the expression before minimizing
with respect to the wall radius i.e., Eq. (4.23) is very
different from the (analytic continuation of) expression in
Eq. (5.10). This suggests that the Lorenzian continuation of
the CDL or BT Euclidean argument is strictly speaking just
the minisuperspace calculation of Sec. IV B whilst the next
in order of complication—namely the spherically (S2)
symmetric Lorentzian calculation [16] based on [8] gives
a completely different amplitude—even though the expo-
nential term is in agreement. Furthermore as pointed out in
Sec. III even in the flat space case the direct WKB
calculation gives a different prefactor.
Finally, it is interesting to remark that in the Hamiltonian

approach of [7,8], in order to compare their results with the
Euclidean approach of FGG [9], they describe a canonical
Euclideanization of their approach by working on a static
path and determine the relevant functions as R, L in terms
of the bubble location R̂. Then they use R̂ as the parameter
that plays the role of Euclidean time in the Euclidean
formalism. By doing this they successfully explain the
Euclidean results of FGG in terms of a singular instanton

that in the Hamiltonian approach corresponds to well
behaved geometries. This Euclideanization essentially
corresponds to the standard t → it Wick rotation and does
not correspond to the analytic continuations performed
by CDL.

B. Classical bubble trajectory after nucleation

Now we want to determine the Penrose diagram for the
trajectory of the bubble after nucleation.
The equations of motion for the wall are given by the

junction conditions which are obtained by embedding the
wall coordinates in dS spacetime. Assuming rotational
invariance the metric of the wall is given by

ds2Σ ¼ −dτ2 þ R2ðτÞdΩ2: ð5:14Þ

We will first choose static coordinates for dS,

ds2 ¼ −ð1 −H2r2Þdt2 þ dr2

1 −H2r2
þ r2dΩ2

2; ð5:15Þ

where H−1 is the radius of dS. In these coordinates the
wall radius is given by rðτÞ ¼ RðτÞ. The junction con-
ditions are

ðKþÞij − ðK−Þij ¼ −4πGσδij; ð5:16Þ

where K�
ij is the extrinsic curvature at each side and σ is the

tension of the wall. In order to compute the extrinsic
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curvature it is helpful to use Gaussian normal coordinates in
which Kab takes the simple form

Kab ¼ −Γn
ab ¼ −

1

2
∂ngab ¼ −

1

2
nμ∂μgab; ð5:17Þ

where nμ denotes the unit vector orthogonal to the wall
and gab is the induced metric at the wall. The whole
computation then boils down to calculate the normal vector
nμ in an appropriate coordinate systems, from which we
can compute the extrinsic curvature on the two sides of the
wall and then enforce the junction conditions. To do so let
us first denote the four-velocity of a point on the wall asUμ.
In the static patch coordinate system, due to the spherical
symmetry of the wall we have

Uμ
S ¼ ð_tdS; _R; 0; 0Þ; ð5:18Þ

where _ denotes the derivative with respect to proper
time. Note that the normalization of the four-velocity
gμνU

μ
SU

ν
S ¼ −1 implies the following relation between

_tdS and _R:

ð1 −H2R2Þ_t2dS ¼ 1þ ð1 −H2R2Þ−1 _R2: ð5:19Þ

To compute the normal vector to the wall first notice that
this is orthogonal to the four-velocityUμ, i.e., gμνnνU

μ
S ¼ 0.

Using this condition and that gμνnμnν ¼ 1 implies

nμ ¼ ðð1 −H2R2Þ−1 _R;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2 þ _R2

p
; 0; 0Þ: ð5:20Þ

One can now compute the junction condition. The θ
component gives,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2þR2 þ _R

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

−R2 þ _R2

q
¼ 4πσR; ð5:21Þ

where the subscript � indicates the side of the wall where
we are evaluating. After some manipulation this equation
leads to Eq. (5.5), and so to a solution for the radius of the
wall R. One also has the τ component of the extrinsic
curvature, Kττ ¼ UμUν∇νnμ ¼ −nμUν∇νUμ, which can be
interpreted as the normal acceleration of the wall. This
implies that the trajectory followed by the wall is not a
geodesic unless Kττ vanishes. This can be evaluated in the
static patch coordinates,

Kττ ¼ −
R̈ −H2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −H2R2 þ _R2
p ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

p
R0

; ð5:22Þ

where in the last step we have used Eq. (5.5). This last
equation implies that the normal acceleration is a non-
vanishing constant (since R0H < 1).

1. Global slicing13

Wewill now embed the wall in global coordinates, which
are described in Eq. (A3). The metric is given by

ds2 ¼ 1

H2 cos2 T
ð−dT2 þ dρ2 þ sin2 ρdΩ2Þ; ð5:23Þ

where T is conformal time that varies from −π=2 at I−
to π=2 at Iþ. Embedding the wall metric in Eq. (5.14)
into the global coordinates implies that TðτÞ and RðτÞ ¼
H−1 secTðτÞ sin ρðτÞ. Also, plugging this back into
Eq. (5.23) we have,

− _T2 þ _ρ2 ¼ −H2 cos2 T; ð5:24Þ

where dots are derivatives with respect to proper time.
Using this relation we find

_T2 ¼ H2cos2T
1 − ρ02

; _ρ2 ¼ H2cos2T
1 − ρ02

ρ02; ð5:25Þ

with ρ0 ≡ dρ=dT. To describe the trajectories of the wall in
global coordinates we would like to find an expression for
ρðTÞ. Let us start by noticing that

_R ¼ 1

H
dT
dτ

ðtanT secT sin ρþ secT cos ρρ0Þ

¼ tanT sin ρþ cos ρρ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ02

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ρ
H2R2

0 cos
2 T

− 1

s
; ð5:26Þ

where we have used Eq. (5.25) and in the last step Eq. (5.5).
The last equality is a first order nonlinear differential
equation which determines the wall trajectory in conformal
coordinates. The solution turns out to be remarkably
simple; cosðρÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

p
cosT as the reader may

easily verify.
In practice it turns out that to obtain this solution it is

more convenient to use Eq. (5.22). This is straightforward
since it is also possible to write R̈, in terms of ρ, T and
derivatives of ρ with respect to T. After substituting into
Eq. (5.22) we get14

Kττ ¼ −
cosðTÞρ00 − sinðTÞρ03 þ sinðTÞρ0

ð1 − ρ02Þ3=2 H; ð5:27Þ

given that Kττ is constant this is a second order ordinary
differential equation for ρ as a function of T. Furthermore

13This part follows the last part of Appendix C of [47].
14Alternatively we can use that is possible to write Kττ ¼ − _β

_R
,

with

β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2 þ _R2

p
¼ cos ρþ sin ρ tanTρ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ρ02
p :
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this expression does not depend explicitly on ρ and can be
easily integrated if we rewrite it as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

p
HR0

¼ cos2ðTÞ d
dT

�
secTρ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ02

p �
; ð5:28Þ

which leads to

ρ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

p
sinðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2R2
0 þ ð1 −H2R2

0Þ sin2ðTÞ
p ; ð5:29Þ

where to fix one integration constant we have imposed
ρ0 ¼ 0 at T ¼ 0, which comes from Eq. (5.5). We will keep
the positive signs as it means that the wall speed increases.
Notice that ρ0 < 1 and that at Iþ, ρ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

p
< 1.

This expression can be integrated to obtain

cosðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

q
cosT; ð5:30Þ

where we have used that at T ¼ 0, R0 ¼ cosðρð0ÞÞ.
Equation (5.30) determines the trajectory of the wall in
global coordinates. Now let us analyze this expression, first
note that this the trajectory never crosses the light cone
ρ ¼ T since T < arccosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −HR2

0

p
cosTÞ ¼ ρ. Also note

that all trajectories end at ρ ¼ π=2, since at T ¼ π=2,
cos ρ ¼ 0. Moreover the world sheet of the trajectory is a
timelike hyperboloid having SOð3; 1Þ invariance. To see
this we can substitute Eq. (5.30) into the equations for the
embedding of global dS from Eq. (A3). Hence the equation
for the brane world volume in embedding coordinates is

X0 ¼ H−1 tanT;

X1 ¼ H−1 cos ρ
cosT

¼ H−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

q
;

X2
2 þ X2

3 þ X2
4 ¼ R2 ¼ sin2 ρ

H2 cos2 T

¼ 1

H2 cos2 T
−
1 −H2R2

0

H2
: ð5:31Þ

Hence we have the equation for the world sheet of the
brane,

−X2
0 þ X2

2 þ X2
3 þ X2

4 ¼ R2
0: ð5:32Þ

This is the equation of a hyperboloid with SOð3; 1Þ
symmetry,15 in other words it is three dimensional dS space

with radius R0 and corresponds to the Lorentzian rotation
of Coleman’s [3] Euclidean bounce solution.
In summary we have explicitly found a closed expression

for the classical trajectory of the wall after nucleation given
by Eq. (5.30). It corresponds to an SOð3; 1Þ symmetric
hyperboloid. The speed is determined by Eq. (5.29) which
even though it increases it never reaches the speed of
light (jρ0j < 1). However it can easily be seen that if
gravity is decoupled (G → 0) the turning point goes as
R0 → 3σ=ðΛO − ΛIÞ but H → 0 and then ρ0 → 1 repro-
ducing the flat space results [48]. In general, the limiting
speed differs from the speed of light by a small amount of
orderM2=M2

P withM the reference scale of the scalar field
potential. Finally, from the Penrose Diagram in Fig. 9 it can
be seen that the trajectory is such that a signal from the
center of the bubble cannot reach the wall but in principle
radiation from the wall can reach the observer at the center.

C. Cosmological implications

Let us now compare the cosmological differences between
CDL and a closed universe after the tunneling transition. This
revives the old question regarding the spatial curvature of the
universe. After inflation this issue is considered less urgent
since whatever the original curvature is, a short period of
inflation is enough to render the universe essentially flat.
However at least as a question of principle, especially

FIG. 9. Penrose diagram for the FMP dS to dS transition. The
lower part is the universe before the transition. The upper part is
the universe after the transition composed of two regions with
different vacua separated by a wall, which is the red line. The
equation of the wall is given by Eq. (5.30). The pale blue region is
the part of the universe with the true vacuum, where the green
dotted lines are open universe constant time slices and the blue
dotted lines are closed universe constant time slices.

15In fact one could have guessed the solution simply by
demanding that X1 is a constant since that is the simplest choice
for the embedding given that R2 cannot be set to a constant, and
then fixing the constant from the fact that at T ¼ 0 ¼ X0,
R ¼ R0.
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concerning the question of whether the universe is infinite or
finite (assuming that it does not have a nontrivial topology)
and also potential observational effects, it is still relevant to
address these differences. See for instance references [49–54]
for a recent debate regarding current observations.

1. Initial conditions and Inflation

Vacuum decay offers a unique physical mechanism to
provide the initial conditions for the evolution of the
universe. The initial conditions for the classical cosmo-
logical evolution are the configurations of ϕðtÞ and aðtÞ
right after tunneling that we will define as t ¼ 0.
(a) Open Universe:16 The Lorentzian equations of motion

after CDL tunneling are those for an open k ¼ −1
LFRW model with the standard cosmological evolu-
tion for a scalar field with canonical kinetic terms and
potential VðϕÞ,

�
_a
a

�
2

¼ 8πG
3

�
1

2
_ϕ2 þ VðϕÞ

�
þ 1

a2
;

0 ¼ ϕ̈þ 3H _ϕþ V;ϕ: ð5:33Þ

Initial conditions consistent with the smoothness of
the CDL instanton are

_ϕð0Þ ¼ ϕð0Þ ¼ 0; aðtÞ ¼ tþOðt3Þ:

Here að0Þ ¼ 0 is a coordinate singularity. It is clear
from Eqs. (5.34) that _a could not be chosen to vanish
at t ¼ 0 for positive potentials. We can see that
initially the dynamics is dominated by the curvature
term 1=a2. The friction (3H) diverges at t → 0, and
then the initial _ϕ does not increase by much. From
Eq. (5.34) we obtain the _H equation for k ¼ −1:

_H ¼ ä
a
−
�
_a
a

�
2

¼ −4πG _ϕ2 −
1

a2
< 0; ð5:34Þ

which guarantees in general that there is no local
minimum value for aðtÞ ( _a ¼ 0 ⇒ ä < 0) and that
there should be at least one point for which a ¼ 0 (the
coordinate singularity). After a critical time of order
t� ∼ ðαVÞ−1=2 with α−1 ¼ 3=8πG ¼ 3M2

p, the poten-
tial starts to dominate, and the curvature term becomes
less important as the universe expands. This could
mark the onset of inflation as long as the slow roll
conditions are satisfied. There are some conditions on
the potential in order to achieve this scenario. In
particular, it is required to have that V 00=V > 1 to be
able to have a solution that satisfies the instanton
boundary conditions [62] (see Fig. 10). This being the

opposite of the slow-roll condition, there has to be a
curvature change in the scalar potential to eventually
give rise to inflation. We may be more quantitative and
follow the scale factor aðtÞ and ϕðtÞ for times smaller
than t�. In this case we can expand around the initial
points Vðϕð0Þ þ δϕÞ ∼ Λþ βδϕ with β ¼ V 0ðϕð0ÞÞ
and find

aðtÞ ¼ sinhðλtÞ
λ

; λ2 ¼ αΛ ¼ Λ
3M2

p
; ð5:35Þ

and the scalar field

ϕðtÞ ¼ β

3λ2

�
coshðλtÞ − 1

coshðλtÞ þ 1
þ log

�
coshðλtÞ þ 1

2

��
:

ð5:36Þ

From here we can explicitly verify that for the domain
of validity of this regime (t ≤ t�) the scale factor
starts at zero and then increases linearly with time
whereas the scalar field increases as ϕðtÞ≲ βt2. For
t > t� ≡ 1=

ffiffiffi
λ

p
, Λ dominates as long as β is small

enough (β < Λ=Mp) such that Λ dominates over both

βϕ and _ϕ2. In that case the universe starts a standard
inflationary period, otherwise the field rolls fast and
depending on the potential there may or may not be a
standard period of inflation.

(b) Closed Universe. In the closed universe after tunneling
the equations are17

FIG. 10. The scalar field potential has a false vacuum at ϕf and
an inflationary region on the right of ϕT . In the standard CDL
picture the field tunnels from ϕa to ϕb.

16See [10,55–61] for related discussions.

17For relatively recent discussions on the cosmology of closed
universes see for instance [63–70].
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�
_a
a

�
2

¼ 8πG
3

�
1

2
_ϕ2 þ VðϕÞ

�
−

1

a2
;

0 ¼ ϕ̈þ 3H _ϕþ V;ϕ: ð5:37Þ

The negative sign in the first equation due to the
positive curvature (k ¼ 1) changes the picture sub-
stantially. First note that the initial conditions
can be fixed by imposing that at the turning point
πa; πϕ ¼ 0. This implies that the right-hand side of the
Friedmann equation above vanishes and the natural
initial conditions can be [making a convenient choice
for ϕð0Þ]18

_ϕð0Þ ¼ ϕð0Þ ¼ 0; _að0Þ ¼ 0: ð5:38Þ

Contrary to the open case, there is no curvature
dominated period since the curvature term has at
best to balance the energy density term in order to
have ð _a=aÞ2 ≥ 0. In particular at t ¼ 0 we have
að0Þ ¼ 3=ð8πGVð0ÞÞ ≠ 0. Different from the open
universe case, the scale factor does not vanish. Also,
the equation for _H now reads

_H ¼ ä
a
−
�
_a
a

�
2

¼ −4πG _ϕ2 þ 1

a2
; ð5:39Þ

which, unlike the open and flat cases, can be positive
or negative depending on the relative size of the kinetic
terms and the curvature. Note that a positive curvature
adds a positive contribution to the equation for _H. This
means in particular that even though the universe is
closed it does not necessarily recollapse [71]. Repeat-
ing the quantitative analysis as for the open case,
assuming the energy density is dominated by Λ, we
find

aðtÞ ¼ coshðλtÞ
λ

; λ2 ¼ αΛ ¼ Λ
3M2

p
: ð5:40Þ

Contrary to the open case the scale factor does not
vanish at any point and after nucleation it starts with a
minimum value of order að0Þ ≥ amin ∼Mp=

ffiffiffiffi
Λ

p
which is large enough to be in the regime for which
the classical evolution equations are valid. The scalar
field evolves as

ϕðtÞ ¼ −
β

3λ2
½log coshðλtÞ − sech2ðλtÞ þ 1�: ð5:41Þ

Now the Hubble parameter is H ¼ _a=a ¼ λ tanhðλtÞ,
and

ä
a
¼ 8πG

3
ðΛ − _ϕ2Þ; −

_H
H2

¼ −csch2ðλtÞ: ð5:42Þ

Unlike the open case there is no critical time before
which the curvature term dominates over the Λ
contribution in the Friedmann equation. But in or-
der to have the potential energy to be dominated by Λ
we need βϕ < Λ which happens for times t <
t�ðΛ=βMpÞ2 and for having the kinetic energy sup-

pressed with respect to the potential energy _ϕ2 ≪ Λ
which happens for times t < t�ðΛ=βMpÞ2 after that
the universe stops accelerating. Both of these con-
ditions are satisfied if β ≪ Λ=Mp which is the
equivalent of slow-roll condition. So we have two
different possible outcomes after nucleation depend-
ing on the value of β; a short period of relative fast roll
and a few e-foldings before the standard slow-roll
inflation or an inflationary period right after nucleation
if β ≪ Λ=Mp. The maximum number of e-foldings
from this period would be

Nmax ¼
Z

tc

0

Hdt ¼ log cosh

�
tc
t�

�
∼
tc
t�
∼
2

ϵ
;

tc ¼ t�
�

Λ
βMp

�
2

; ð5:43Þ

where ϵ ¼ M2
PV

2
;ϕ=2V

2 ≃M2
Pβ

2=2Λ2 < 1 is the usual
slow-roll parameter. This is the maximum number of
e-foldings since at t ¼ 0 the nucleation happens at the
minimum value of aðtÞ by imposing _að0Þ ¼ 0, imply-
ing að0Þ ¼ amin ¼ 1=λ [64]. Unlike the flat and open
cases in which the initial value of a at the start of
inflation can be as small as possible, i.e., as small as
the Planck scale lP, in the closed case the existence of
a lower bound for a with amin much bigger than the
Planck length implies a much stronger upper bound in
the number of e-folds in order to fit with the present
value size of the observable universe a0 which could
be estimated if δ ¼ jΩ − 1j ¼ 1=a0H0 is measured;
Nmax ≤ ln a0=amin. Note that this is independent of the
standard argument for N ∼ 60 setting bounds on Ω
today which if measured with enough precision may
differentiate between open or closed universes.

2. Density Perturbations

The magnitude of density perturbations measured by
δρ=ρ ∼H2= _ϕ grows from zero at t ¼ 0 to order

18There are more general initial conditions for GMNπ
NπM ≠ 0

where GMN is the nonpositive metric in superspace. As we have
described before (see Sec. IV D) when this is the case there also
classical solutions that go from the false to the true vacua. In this
case, the field oscillates around the true minima for a finite time
until it reaches the points where _ϕ ¼ _a ¼ 0 that could be used as
initial conditions for the rest of the evolution of the universe.
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δρ=ρ ∼ λ3=β close to t ¼ tc which can be smaller or larger
than standard slow-roll inflation depending on the values of
β and Λ.19

If β does not satisfy the slow-roll condition then
N ¼ R

t�
0 Hdt ¼ log cosh 1 ∼ 1. Therefore, it is clear that

in this case the scalar potential will need to flatten up
through an inflection point in order to have an adequate
period of inflation afterwards. In both cases (slow or fast
roll after bubble nucleation) the fact is that k ¼ 1 not only
provides initial conditions for inflation but also contributes
to the density perturbations since in general the presence of
curvature provides a new scale. It affects the power
spectrum in the sense that the long wavelength modes
which exit the horizon during the early stages of inflation
may carry imprints of the spatial curvature, whereas the
short wavelength modes which exit the horizon later are not
affected by the spatial curvature. This can also be seen if we
compute the power spectrum for the inflationary perturba-
tions. As it is well known the scalar field during inflation
produces an adiabatic power spectrum of scalar and tensor
perturbations. Whereas for flat universes the power spec-
trum is nearly scale invariant, this is not the case for open
and closed universes. As the long wavelength modes leave
the horizon carrying the imprint of the curvature they
deviate from scale invariance at large scales. For small
curvature Ωk ¼ k=ða0H0Þ < 1 the power spectrum can be
written as20 [72,73]

PðqÞ ¼ Asqðns−1Þ−3
�
1 −

19

8

k
q2

�
þOðΩ2

kÞÞ; ð5:44Þ

where As is the amplitude of the scalar fluctuations and q is
the comoving wave number. We have also neglected self-
interactions of the curvature perturbation. From Eq. (5.44)
we can read that at large scales, or smaller q, the power
spectrum is suppressed for a closed universe (k ¼ þ1), but
is enhanced for the same scales for an open universe. These
deviations from scale invariance can have an effect on the
CMB. At large scales the main contribution to the angular
power spectrum Cl is given by the Sachs-Wolfe effect21

lðlþ 1ÞCl ¼
4π

25
As

�
1 −

19

8

kr2L
3ðl − 1Þðlþ 2Þ

�
: ð5:45Þ

Where rL is the radial coordinate of the surface of last
scattering. Then we see that at linear order in the curvature
there is a suppression/enhancement of the low l modes of
the temperature anisotropy of the CMB depending on the
sign of k. Note that this computation assumes that the only
contribution from the curvature comes from inflation and,
although this is not quite accurate, it works as a qualitative
approximation. Another point is that the effect described is
model independent but, as we mentioned before, there are
other signatures that depend on each model that may have
important consequences. For example, for the case of open
inflation after CDL, there is a fast roll phase before slow
roll, by which the authors of [10,59] have argued that
because of an anthropic bound on the duration of inflation
the fast-roll phase translates into a potentially observable
suppression of the low l modes of the CMB. This implies
that a negatively curved universe can have an effect which
is indistinguishable from a positively curved universe, so in
order to break this degeneracy it might be necessary to
study higher order correlation functions of cosmological
observables. At small scales it can be seen from Eq. (5.44)
that the power spectra coincide. This means that the CMB
power spectrum at large angles or small multipoles is
suppressed with respect to the standard flat ΛCDM model.
Since the effect through inflation is only present at large
scales, the power spectrum coincides with the flat case for
large multipoles (l≳ 30). This is the regime that has been
tested most successfully, although recently several articles
have found some evidence for the closed universe infla-
tionary model from the latest CMB observations [50–52].

3. Observational Implications and the String Landscape

The implications of a closed universe after bubble
nucleation may have important observational implications
and would radically affect the dynamics of the string
landscape. Let us list some of them.
(a) General Prediction. Due to the richness of the string

landscape, it has been a serious challenge to identify
concrete and general predictions that could be tested
with the potential to rule out the landscape paradigm.
The standard belief that bubble nucleation after
vacuum decay gives rise only to an open universe,
has been identified as the most concrete general
prediction that could be subject to experimental test
at some point. However, if the outcome is a closed
universe, the prediction would be exactly the opposite.
At the moment we cannot rule out the possibility that
an open universe could also be allowed. Furthermore
note that, in principle, the idea behind the landscape is
that universes are continuously produced from a series
of quantum tunneling among the many different
vacua. If a parent universe is closed and a daughter
universe is open, this chain of universe creation would
not be possible. However if both parent and daughter
universes are closed this is natural. Furthermore as

19Note that in the open universe case, this quantity diverges at
t ¼ 0 since H diverges and _ϕð0Þ ¼ 0 there, and then increases
with time.

20A more appropriate treatment of the power spectrum after
tunneling needs to take into account the fluctuations of the wall.
In the case of open inflation these translate into an excited initial
state which also imply deviations from scale invariance [57]. For
the closed universe solution obtained in Sec. IV B we leave the
analysis of the inflationary perturbations for future work.

21For a derivation of the effect of the primordial power
spectrum over Sachs-Wolfe effect see formula (2.6.19) of [74].
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emphasized before in this work, the string theory
landscape is a result of brane nucleation rather than a
CDL like process, and should be treated as in FMP.

(b) Bubble collisions. In the landscape picture, the con-
tinuous creation of inflationary bubbles may give rise
to the possibility of bubble collisions that may have
left some imprint in the CMB, gravitational waves,
etc., (see for instance [75,76] for an overview). One
important aspect of the treatment of bubble collisions
is the symmetry after the collision. Assuming open
universes, each bubble spatial section has an SOð3; 1Þ
symmetry which breaks to SOð2; 1Þ after the collision.
Numerical relativity techniques have been developed
during the past few years to address this problem (see
for instance [77] and references therein). If the uni-
verse is closed the situation differs substantially, the
finiteness of the volume of spatial sections affects the
probability of collisions and the natural symmetry
breaking would be from the SOð4Þ symmetry of the
corresponding three-spheres to SOð3Þ. This should
modify the description of bubble collisions. A detailed
discussion of this interesting effect lies beyond the
scope of this article.

(c) Beyond bubbles and CDL. The natural outcome of a
phase transition, such as vacuum decay, is through the
nucleation of bubbles of the new vacuum. Bubbles are
required if the universe has infinite volume as in flat
and open spacetimes. If the spacetime is closed there is
the possibility that the full space and not only a region
within it can change to the new vacuum with non-
vanishing probability since the volume is finite. Note
also that, as we have seen in the previous section, the
fact that in minisuperspace the kinetic energy for the
scale factor is negative whereas that for the scalar field
is positive [Eq. (4.11)], then the Hamiltonian con-
straint H ¼ 0 allows to pass classically through the
barrier of the scalar potential. This does not appear
without gravity nor in the Euclidean approach nor in
the Hartle-Hawking case without scalar fields. This
would then be the leading contribution to the ratio of
probabilities for the creation of each of the two dS
spaces. Even though these conclusions may be arte-
facts of the minisuperspace approximation they would
affect the structure of the landscape and deserve
further study.

(d) Number of e-folds. For the open universe case,
reference [10] extracted a lower bound on the number
of e-folds during inflation N > 59.5 similar to the
observed bound N > 62 (modulo logarithmic correc-
tions due to the different epochs of matter/radiation
domination after inflation). For k ¼ 1 as we discussed
before, there is an upper bound on the number of
e-folds (again with ΔN ∼ 2e-folds with respect with
the observed one) [66]. The reason being, as men-
tioned above, that for the closed universe, there is a

minimum value of the scale factor amin ∼Mp=
ffiffiffiffi
Λ

p
that already starts large (contrary to the flat and open
cases in which a ∼ 0 before inflation and have in
principle no limit on the maximum number of e-folds
before reproducing the standard cosmology after
inflation). This tends to favor concave models of
inflation and disfavor models, such as chaotic infla-
tion, that may have an essentially unlimited number of
e-folds.

(e) Power suppression. As we have seen, both open and
closed universes introduce a new cosmological scale,
the curvature, and affect the density perturbations
observed from the CMB. The net effect is a suppres-
sion of the power spectrum at large angles or small
multipoles. This effect may have two different origins,
one due to the curvature and the other if there is a
period of fast rolling before inflation.

VI. CONCLUSIONS

We have presented here an extension of the standard
quantum mechanics WKB approximation to field theory
and gravity. Expanding on previous approaches we devel-
oped a general geometric formalism to extend the WKB to
wave functions in Wheeler’s superspace and found explicit
expressions for vacuum transition probabilities interpreted
as ratios of the square of wave functions of the two different
configurations for both field theory and gravity.
In field theory we presented explicitly two different

cases with two vacua. The first is the standard scalar
potential with two minima at finite field value and the
second one with the second minimum corresponding to a
runaway. In both cases we reproduce the standard Coleman
results at leading order. In the second case we found the
(potential) bound states and corresponding resonances to
provide the explicit expression for the decay rate Eq. (3.24)
which agrees with the Euclidean approach at leading order
but differs in the prefactor. We further emphasized our
approach is the natural generalization of the standard
quantum mechanical WKB calculation and does not have
subtle issues such as the handling of negative modes and
trusting the dilute instanton approximation.
In the gravity case, our results can be summarized in two

directions. In one way they confirm the results obtained by
Euclidean methods. In particular we provide a Lorentzian
perspective for the estimation and interpretation of the
decay rates and the wall trajectory after tunneling, illustrat-
ing the validity of the Euclidean techniques at least as far as
getting the leading exponential behavior goes. On the other
hand we point out that there are substantial differences from
the Euclidean approach. In particular for the minisuper-
space case we found that:
(a) Selecting a very particular path we can reproduce

exactly the decay rate as computed by CDL, however
the interpretation of this path is not at all clear.
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(b) The natural transition rate gives simply the ratio of the
two corresponding Hartle-Hawking wave functions,
without a tension term as in Eq. (5.11) which gives
dominant decay rate as compared to CDL. It seems
then that this minisuperspace approach is actually
a generalization of Hartle-Hawking/Vilenkin/Linde
transitions than to CDL.

(c) The fact that the metric in superspace is not positive
definite, as manifested for instance in the Hamiltonian
constraint Eq. (4.11), allows for classical paths to
connect the two dS vacua without the need to pass
through or across the barrier. This will not have an
exponentially suppressed decay rate but it depends on
the initial conditions.

(d) The natural dS foliation corresponds to the global
slicing which leads to a closed universe as in Hartle-
Hawking—Vilenkin-Linde unlike the open universe
claimed by CDL. Here, recall that the driving argument
was based on the analytic continuation triggered by the
argument of the scalar field. Surfaces of constant ϕ
would give rise to the hyperbolic foliation of spacetime.
However, as noted already in [3] in the extreme
thin-wall approximation we only have two values of
the cosmological constant and there is no preferred
dS space foliation. This means that already in the
Euclidean framework described for instance in [4]
horizontal slices of dS could have been chosen for
the regions inside and outside the bubble with a closed
universe.

(e) In minisuperspace there is no way to discuss bubble
nucleation and therefore the transition should be
interpreted between two entire dS spaces. This com-
putation really makes sense only for k ¼ 1 since the
spatial volume in global slicing is finite. A full
description beyond minisuperspace is needed in order
to properly include the bubble. In the Hamiltonian
approach to quantum tunneling developed in [7,8] it is
clear that the geometry inside and outside the bubble is
also of a closed universe [16]. In this approach the
metric depends not only on time but also on the radial
coordinate r. This reinforces our conclusion. This
formalism only compares the transition between two
different cosmological constants without considering a
scalar field with the corresponding potential. This
corresponds to the extreme thin-wall approximation or
brane nucleation in string theory. A full Hamiltonian
approach including the scalar field dynamics is not yet
available.

(f) Our approach and that of [7,8] started with a spheri-
cally symmetric geometry that was natural to describe
the bubble after the transition but in principle we could
have chosen a flat or negatively curved spacetime to
start with. The fact that these spaces have infinite
volume renders the volume integrals problematic.
For instance in Eq. (4.8) the 2π2 factors come from

integrating the volume of the three-sphere which in the
flat and open cases would diverge. This would require
a proper volume regularization before extracting
physical information. Similar volume integrals for
closed slicings appear in the approach of [7,8].
Furthermore, in [7,8] a prescription is provided to
Euclideanize their results, the corresponding analytic
continuation is simply t → it which is not the analytic
continuation proposed by CDL.

(g) We believe that the possibility that the geometry
of the bubble after nucleation corresponds to a closed
FLRW universe, contrary to CDL, should be seriously
considered. Indeed this is the natural implication of
brane nucleation in string theory as we have argued in
this paper. This may have important physical impli-
cations if our universe is described in terms of a bubble
after vacuum transitions as discussed at the end of the
previous section. Besides the deep implications of
having a finite against an infinite universe, with finite
number of stars and galaxies, it may eventually be
tested if there is a definite way of determining the
curvature of the universe. For the string theory land-
scape, it will at least eliminate the standard claim that
detecting a closed universe would rule out the multi-
verse. These are important cosmological questions that
deserve further scrutiny.
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APPENDIX: dE SITTER GEOMETRY

1. Different foliations

dS spacetime can be defined on a hypersurface,

−X2
0 þ X2

1 þ X2
2 þ X3

3 þ X4
4 ¼ Λ2; ðA1Þ

in five dimensional Minkowski

ds2 ¼ −dX2
0 þ dX2

1 þ dX2
2 þ dX3

3 þ dX4
4: ðA2Þ
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a. Global slicing

The entire dS space can be covered by

X0 ¼ Λ sinhðt=ΛÞ;
X1 ¼ Λ coshðt=ΛÞ cosðρÞ
X2 ¼ Λ coshðt=ΛÞ sinðρÞ sin θ cosϕ;
X3 ¼ Λ coshðt=ΛÞ sinðρÞ sin θ sinϕ;
X4 ¼ Λ coshðt=ΛÞ sinðρÞ cos θ; ðA3Þ

and the metric in Eq. (A2) becomes

ds2 ¼ −dt2 þ cosh2ðt=ΛÞðdρ2 þ sin2ðρÞdΩ2
2Þ; ðA4Þ

where constant time slices haveOð4Þ invariance. Unlike the
other foliations this parametrization has the full SOð4; 1Þ
invariance. The global conformal metric in Eq. (5.23) is
related to this by the relation coshðt=ΛÞ ¼ 1= cosðTÞ with
H ≡ 1=Λ.
Causal patch—The geometry as observed by an

observer moving along a constant time hypersurface on
one of the hemispheres, is given by the following foliation,

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − r2

p
coshðτ=ΛÞ;

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − r2

p
sinhðτ=ΛÞ;

X2 ¼ r sin θ cosϕ;

X3 ¼ r sin θ sinϕ;

X4 ¼ r cos θ: ðA5Þ

The metric becomes

ds2 ¼
�
1 −

r2

Λ2

�
dτ2 þ

�
1 −

r2

Λ2

�−1
dτ2 þ r2dΩ2

2; ðA6Þ

where r varies between 0 and Λ and τ goes from 0 to ∞.
Notice that at r ¼ Λ the metric is not singular but there is a
horizon.
Open slicings—Picking the coordinates,

X0 ¼ Λ sinðξ=ΛÞ sinhðχÞ;
X1 ¼ Λ cosðξ=ΛÞ;
X2 ¼ Λ sinðξ=ΛÞ coshðχÞ sin θ cosϕ;
X3 ¼ Λ sinðξ=ΛÞ coshðχÞ sin θ sinϕ;
X4 ¼ Λ sinðξ=ΛÞ coshðχÞ cos θ; ðA7Þ

the metric in Eq. (A2) becomes,

ds2 ¼ dξ2 þ Λ2 sin2ðξ=ΛÞð−dχ2 þ cosh2 χ2dΩ2
2Þ: ðA8Þ

This foliation does not describe the full dS but only the
causal patch of an observer at the center of the hyperboloid.
The region covered is depicted in red in Fig. 11. Note that
the analytical continuation χ → iχ leads to

ds2E ¼ dξ2 þ Λ2 sin2ðξ=ΛÞðdχ2 þ cos2 χ2dΩ2
2Þ; ðA9Þ

which is the euclidean metric of a 4 sphere. This continu-
ation was equivalent to make X0 → iX0. Another useful
foliation is given by,

FIG. 11. Left panel: The green part is the region covered by the static patch of an observer at the south pole. The horizontal dotted lines
are the constant time slices in the global coordinates. Right panel: Penrose diagram for the open slicing metrics in Eq. (A7) and
Eq. (A10). The timelike lines are hypersurfaces of constant ξ and spacelike lines are hypersurfaces of constant χ.
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X0 ¼ Λ coshðξ=ΛÞ;
X1 ¼ Λ sinhðξ=ΛÞ sinhðχÞ;
X2 ¼ Λ sinhðξ=ΛÞ coshðχÞ sin θ cosϕ;
X3 ¼ Λ sinhðξ=ΛÞ coshðχÞ sin θ sinϕ;
X4 ¼ Λ sinhðξ=ΛÞ coshðχÞ cos θ; ðA10Þ

which foliates dS with spacelike hyperboloids. This foli-
ation covers the region that lies between the outside region
of the causal patch and the asymptotic future. It intersects
the region covered by Eq. (A7), at ξ ¼ 0 which are the null
surfaces for the observer on the hemisphere. The metric in
Eq. (A2) becomes

ds2 ¼ −dξ2 þ Λ2 sinh2ðξ=ΛÞðdχ2 þ sinh2 χdΩ2
2Þ; ðA11Þ

which is also pictured as the region in blue in Fig. 11. To
get the Euclidean continuation we need to do the trans-
formations, χ → iχ and ξ → iξ, which lead to Eq. (A9).
finally note that this transformation are equivalent
to X0 → iX0.

2. Analytic Continuation in CDL

Given two vacua ϕF and ϕT such that VðϕFÞ >
VðϕTÞ ≥ 0, according to [3] to calculate the scalar field
that interpolates between the two minima first we need to
consider the Euclidean solution that extremizes the action
in order to derive the remaining geometry inside and
outside the bubble. This was done in several steps:
(a) In field theory, the Euclidean bounce solution is Oð4Þ

invariant in such a way that the scalar field depends on
the Euclidean distance ξ2 ¼ jxj2 þ τ2. Analytic con-
tinuation changes this to a Oð3; 1Þ and ξ2 → jxj2 − t2.
Once gravity is included the corresponding line
element is assumed to share that symmetry.

(b) Starting with theOð4Þ symmetric Euclidean dS metric,

ds2 ¼ dξ2 þ ρ2ðξÞðdψ2 þ sin2 ψdΩ2
2Þ ðA12Þ

and writing ψ → π=2þ iσ we get theOð3; 1Þ invariant
metric,

ds2 ¼ dξ2 þ ρ2ðξÞð−dσ2 þ cosh2 σdΩ2
2Þ ðA13Þ

where σ now runs from −∞ to∞. This spacetime is dS
foliated by timelike hyperboloids. If we fix the angles
and write dξ2 ¼ ρ2ðξÞðdy2Þ we get

ds2 ¼ ρ2ðyÞð−dσ2 þ dy2Þ; ðA14Þ
whose geometry is represented by the causal diamond in
Fig. 12. The wall lies within this region as indicated by
the dotted timelike hypersurface in Fig. 12. An observer
in the hemisphere will see the wall moving at a speed
approaching the speed of light.

(c) This space is not geodesically complete, because for
timelike geodesics it is possible to go past the lightlike
hypersurfaces. To complete the description we can
make a further analytical continuation σ → iπ=2þ χ
and a rotation ξ → it which leads to,

ds2 ¼ −dt2 þ ρ2ð−iξÞðdχ2 þ sinh2 χdΩ2
2Þ: ðA15Þ

This region describes an FRW open space, and covers
the blue patch in Fig. 11. Note that the analytical
continuation σ → −iπ=2þ χ describes the upper right
region of the diagram. Constant time hypersurfaces end
onIþ at ξ ¼ π=2 d. To interpret the diagram in terms of
dynamics of the scalar field, let us assume that the
tunneling points where ϕb and ϕa, as indicated in
Fig. 10. Both points are hemispheres of dS where ρ
vanishes. The wall separating the two regions is inside
the causal diamond as indicated in Fig. 12 by the
dotted line. The left region outside the causal diamond
describes the dynamics after the tunneling while the
right region describes the false vacuum dynamics.
Spacelike hypersurfaces in these region represent
constant field surfaces. Then after the tunneling the
field rolls down to the true vacuum VðϕtÞ at Iþ. After
analytic continuation the surfaces of constant field

FIG. 12. Penrose diagram for the dS to Minkowski transition
mediated by a CdL instanton. The red causal diagram is obtained
after analytically continue the Oð4Þ instanton to Oð3; 1Þ whose
metric is given inEq. (A14). The dotted line is thewallwhich is also
a constant σ slice.The blue region is open FRW with VðϕtÞ ¼ 0
obtained after analytically continue Eq. (A14) past the lightcone. In
this region we also draw the constant radius hypersurfaces.
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values correspond to constant values of jxj2 − t2 which
are hyperbolae. This defines the natural foliation of the
spacetime.

In Fig. 12 we have assumed that the true vacuum is
Minkowski. In the case of dS this only extends up to the
horizontal line at T ¼ π=2.
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