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We study UðNÞk Chern-Simons theory on lens space in Seifert framing and write down the partition
function as a unitary matrix model. In the large k and large N limit the eigenvalue density satisfies an upper
cap 1

2πλ where λ ¼ N=ðkþ NÞ ¼ fixed. The eigenvalue density of the standard gapped phase saturates the
upper cap at a critical value of λ and ceases to exist beyond that. We find a new phase (cap-gap phase) in this
theory for λ beyond the critical value and see that the on-shell free energy for the cap-gap phase is less than
that of the gapped phase.
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I. INTRODUCTION

Being a topological theory the partition function (PF) of
Chern-Simons (CS) theory in three dimensions is a
topological invariant. At the quantum level topological
invariance is also preserved but at the expense of a choice of
framing [1,2]. The PF of CS theory with gauge group G,
rank k on Seifert manifold Mðg;pÞ can be obtained by
surgery from the expectation value of the Wilson loop in
S2 × S1. Different choices of surgery give different fram-
ings in Mðg;pÞ. The PF on Mðg;pÞ is given by [1]

ZðMðg;pÞ; G; kÞ ¼
X
R

KðpÞ
0R

X
V

S1−2g
0;V SRV : ð1Þ

HereKðpÞ is a surgery/framing dependent matrix, and SRR0

is a modular transform matrix associated with highest
weight representations of affine Lie algebra gk of Gk under
inversion of a modular parameter. The sum in (1) runs over
integrable representations of gk and R ¼ 0 corresponds to
trivial representation. ForKðpÞ ¼ ST −pS (Seifert framing),
where T RR0 is the second modular transform matrix
associated with the translation of the modular parameter,
the PF is given by

ZSFðMðg;pÞ; G; kÞ ¼
X
R

S2−2g
0;R T −p

RR: ð2Þ

Blau and Thompson [3] obtained the above PF using the
method of abelianization [4]. It turns out that their

calculations render the PF in Seifert framing. Using a
non-Abelian localization method one also obtains the PF in
the same framing [5]. We are interested in CS theory on
lens space which is a Seifert manifold with genus g ¼ 0 and
the first Chern class p. For p ¼ 1 the Seifert manifold is S3.
On S3, there exists a canonical framing KðpÞ ¼ S [1,3] in
which the PF is given by ZCanðS3; G; kÞ ¼ S00. Using the
properties of S and T matrices ½S2 ¼ ðST Þ3 ¼ I� one can
show that PF on S3 in canonical and Seifert framings are
related by ZSFðS3; G; kÞ ¼ T 2

00S00. In this paper we focus
on the affine gauge group G ¼ UðNÞk. In the large k and
large N limit keeping

λ ¼ N
kþ N

ð3Þ

fixed, one can compute the PF in Seifert framing (2) under
the saddle point approximation and find the dominant
representation for 0 ≤ λ ≤ 1 [6–9]. But the dominant
representations fail to be integrable for all values of λ. It
was first pointed out in [10]. In this paper we address this
issue in detail. Using the fact that the sum in (2) runs over
integrable representations, we write the PF (for g ¼ 0) as a
unitary matrix model. In the large k, N limit the eigenvalue
density is constrained to have a maximum value 1

2πλ. We
derive the saddle point equation for the eigenvalue density
and find that the saddle point equation admits a gapped
solution for λ > 0. As a consistency check, we compute the
PF on S3 on the gapped solution and see that it is equal to
T 2

00S00 for all values of 0 ≤ λ ≤ 1. Therefore the gapped
phase is equivalent to the dominant representation obtained
in [6–9]. However, the eigenvalue density of the gapped
phase saturates the upper bound at λ ¼ 1=π log cosh π=p≡
λ� and ceases to exists beyond λ� [10]. In this paper we
discover that there exists another phase (we call this phase
cap-gap phase) for λ > λ� for p ≥ 1. We compute the free
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energy of the cap-gap phase and see that it is less than that
of the gapped phase for λ > λ�. Therefore our calculation
shows that the PF of CS theory on lens space (2) admits a
phase transition at λ ¼ λ� in the large k, N limit when we
consider the integrability condition properly. The advan-
tage of converting the PF to a unitary matrix model is that
the dominant representations for both the gapped and cap-
gap phases are integrable by construction.
CS on lens space also enjoys the level-rank duality [11].

We find the Young diagram (YD) distribution for a large k,
N phase and its dual and show that they are related by
transposition followed by a shift. We also check that the
PFs of dual theories are the same in the large k,N limit. The
dual of a gapped phase has an upper cap in the eigenvalue
distribution. On the other hand, the cap-gap phase is dual to
itself. This is similar to the matter CS theories on S2 × S1

studied by [12,13].

II. UðNÞ CHERN-SIMONS THEORY ON
SEIFERT MANIFOLD

The affine Lie algebra uðNÞk is the quotient of suðNÞk ×
uð1ÞNðkþNÞ by ZN. Hence uðNÞ representation can be
written in terms of suðNÞ representations and eigenvalues
of a uð1Þ generator:R ¼ ðR;QÞ. We use the notation R for
suðNÞ representations and Q is the eigenvalue of the uð1Þ
generator, given by Q ¼ rðRÞ mod N, where rðRÞ is the
number of boxes in R. Trivial representation R ¼ 0
corresponds to R ¼ 0 and Q ¼ 0. The modular transform
matrix SRR0 for uðNÞk can be written in terms of repre-
sentations of suðNÞ and the uð1Þ charges [11,14,15]

SRR0 ¼ ð−iÞNðN−1Þ
2

ðkþ NÞN2 e
−2πiQQ0
NðNþkÞ detMðR;R0Þ ð4Þ

where, MðR;R0Þ is an N × N matrix with elements,

MijðR;R0Þ ¼ exp

�
2πi

kþ N
ϕiðRÞϕjðR0Þ

�
; ð5Þ

ϕiðRÞ ¼ li −
rðRÞ
N

− i −
1

2
ðN þ 1Þ ð6Þ

and li’s are the number of boxes in ith row in R. The other
modular transformation matrix T RR0 is given by

T RR0 ¼e2πiðhR− c
24
ÞδRR0 ; hR¼

1

2

C2ðRÞ
kþN

; c¼NðNkþ1Þ
kþN

ð7Þ

where C2ðRÞ is the quadratic Casimir of uðNÞk. Since Q ¼
rðRÞ þ Ns for s ∈ Z, uðNÞ representations R can be
characterized by extended YDs by redefining the number
of boxes in the ith row l̄i ¼ li þ s for 1 ≤ i ≤ N − 1 and
l̄N ¼ s. Now l̄is can be negative and the corresponding

YDs will have antiboxes [16]. In terms of these extended
YDs the quadratic Casimir C2ðRÞ is given by

C2ðRÞ ¼
XN
i¼1

l̄iðl̄i − 2iþ N þ 1Þ: ð8Þ

A representationR of uðNÞk is an integrable representation
if 0 ≤ l̄N ≤ � � � ≤ l̄1 ≤ k [11].

III. CHERN-SIMONS THEORY AS UNITARY
MATRIX MODEL

For an integrable representation R the hook numbers
hi¼ l̄iþN− i satisfy 0<hN < � � �<h1≤kþN. Introducing
new variables

θi ¼
2π

N þ K

�
hi −

N − 1

2

�
ð9Þ

we write the CS partition function (2) for g ¼ 0 in terms of
θis½ZSFðMð0;pÞ; UðNÞ; kÞ → Zp

N;k�

Zp
N;k ¼

1

ðN þ kÞN
X
fθig

exp

�
1

2

XN
i≠j

log

�
4sin2

�
θi − θj

2

��

− ip

�
N þ k
π

XN
i¼1

�
θ2i
4
−
π2

12

�
þ πNK

12

��
: ð10Þ

The effective action (argument of the exponential) is
symmetric in θi → −θi. Since the distribution of θis has
a maximum range 2π [from Eq. (9)] any classical con-
figuration will satisfy −π ≤ θi ≤ π. The potential is neither
real nor periodic. However, in order to write a unitary
matrix model for CS theory we demand that θis are perio-
dic with periodicity 2π which essentially means that we
impose periodicity in hook numbers h̄is∶ h̄i ∼ h̄i þ kþ N.
To make the potential real we analytically continue
p → −ip. This allows us to write the above partition
function as a unitary matrix model with potential

∼
P

n>0
ð−1Þ2
2n2 ðTrUn þ TrU†nÞ [17]. Later we see that in

the large k, N limit the on-shell partition function on S3

matches with S00 (up to a phase) when we carefully
replace p → ip.
In the continuum limit we define an eigenvalue

density ρðθÞ ¼ 1
N

P
N
i¼1 δðθ − θiÞ. The partition function

is given by

Zp
N;k ¼

Z
½dθ�e−ðNþKÞ2Seff ½ρ�; where

Seff ½ρ� ¼
pλ
π

Z
ρðθÞ

�
θ2

4
−
π2

12

�
dθ þ πpλð1 − λÞ

12

−
λ2

2

Z Z
�ρðθÞρðθ0Þ log

�
4sin2

�
θ − θ0

2

��
dθdθ0:

ð11Þ
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The saddle point equation for ρðθÞ, obtained from this
effective action is given by

Z
�ρðθ0Þ cot

�
θ − θ0

2

�
dθ0 ¼ p

2πλ
θ: ð12Þ

From the definition of θis (9) we see that the minimum
separation between θi and θiþ1 is 2π=ðN þ kÞ. This implies
that in the large k, N limit the eigenvalue density ρðθÞ
satisfies an upper bound

ρðθÞ ≤ 1

2πλ
: ð13Þ

Therefore we have to solve the saddle point equation (12)
for ρðθÞ in the presence of this constraint. Note that the YD
distribution can be obtained from the eigenvalue distribu-
tion: uðhÞ ¼ 2πλρðθÞ. Hence, ρðθÞ having an upper cap
1=2πλ means uðhÞ ≤ 1. Before we discuss the large k, N
phases of this theory we take a pause to study the
eigenvalue density of the level-rank dual theory and its
connection to ρðθÞ.

IV. EVEL-RANK DUALITY

N ↔ k duality in UðNÞ CS theory implies that the
dominant YDs in two theories dual to each other are related
by a transposition followed by a shift. In order to prove this
statement we write down the partition function of UðNÞk
CS theory in terms of number of boxes in different columns
in a YD. AYD corresponding to an integrable representa-
tion of uðNÞk can be characterized by v̄μ—the number of
boxes in the μth column of a YD R where 1 ≤ μ ≤ k and
v̄1 ≤ N. fv̄μg is the set of box numbers in different rows of
R̃, where R̃ is the transpose of R. The quadratic Casimir
C2ðRÞ can be written in terms of v̄μ. Also the S modular
transform matrix (4) is invariant under transposition [11].
We introduce new variables

ϕμ ¼
2π

kþ N

�
wμ −

kþ N − 1

2

�
; wμ ¼ v̄μ þ k − μ:

ð14Þ

Since 0 ≤ v̄μ ≤ N, ϕμs are distributed in a range of 2π. The
partition function (2) can be written in terms of ϕμs and it
turns out that the effective action is symmetric under
ϕμ → 2π − ϕμ. Hence for any classical solution ϕμs are
distributed symmetrically about ϕ ¼ π from 0 to 2π. In the
continuum limit we define a distribution function for ϕμs

ρ̃ðϕÞ ¼ 1

k

Xk
μ¼1

δðϕ − ϕμÞ ð15Þ

and the partition function is given by

Zp
N;k ¼

Z
½dϕ�e−ðNþkÞ2S̃eff ½ρ̃� ð16Þ

where

S̃eff ½ρ̃� ¼
pλ̃
π

Z
ρ̃ðϕÞ

�
π2

12
−
ðϕ − πÞ2

4

�
dϕþ pπλλ̃

12

−
λ̃2

2

Z Z
�ρ̃ðϕÞρ̃ðϕ0Þ log

�
4sin2

�
ϕ − ϕ0

2

��
dϕdϕ0

ð17Þ

and λ̃ ¼ 1 − λ. The saddle point equation for ρ̃ðϕÞ is given
by

Z
� −2π

0 ρ̃ðϕ0Þ cot
�
ϕ − ϕ0

2

�
dϕ0 ¼ p

2πλ̃
ðπ − ϕÞ: ð18Þ

Comparing (12) and (18) we find

ρ̃ðϕÞ ¼ 1

2πλ̃
−
λ

λ̃
ρðϕþ πÞ: ð19Þ

This relation establishes the fact that under N ↔ k duality
the dominant YDs in UðNÞk and UðkÞN CS theories are
related by a transposition with a shift Nþk

2
. Using (19) we

also see that S½ρ� ¼ S̃½ρ̃�. The relation (19) is similar to what
was found in [10,12] in the context of matter CS theory
on S2 × S1.

V. LARGE N PHASES

The unitary matrix model (11) was studied in [10,18]. It
was observed that the system has a gapped phase in the
large k, N limit and the eigenvalue distribution is given by

ρðθÞ ¼ p
2π2λ

tanh−1
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
e−

2πλ
p

cos2 θ
2

s #
: ð20Þ

Since ρðθÞ ≥ 0, this implies eigenvalues are distributed
over the range

−2 cos−1 e−
πλ
p < θ < 2 cos−1 e−

πλ
p : ð21Þ

See Fig. 1 for the eigenvalue distribution. We calculate the
PF (10) on S3 (i.e. for p ¼ 1) on this solution (20) and
check that after suitable analytic continuation p → ip
(before setting p ¼ 1) the PF exactly matches with
T 2

00S00 for all values of 0 ≤ λ ≤ 1. Hence this phase is
equivalent to the dominant phase obtained in [6–9].
However, due to the constraint (13) on ρðθÞ the eigen-
value density saturates the upper bound at λ ¼
1=π log coshðπ=pÞ≡ λ� [10]. Therefore the gapped phase
is not valid anymore for λ > λ� for any p ≥ 1.
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VI. CAP-GAP PHASE

For λ > λ� the eigenvalue density develops a cap about
θ ¼ 0. To find that phase we take the following ansatz for
ρðθÞ:

ρðθÞ ¼
� 1

2πλ for − θ2 < θ < θ2

ρ̂ðθÞ for − θ1 < θ < −θ2 and θ2 < θ < θ1:

ð22Þ
Using the map z ¼ eiθ, the saddle point equation for ρ̂ðθÞ is
given byZ
�ρ̂ðz0Þ zþ z0

z − z0
dz0 ¼ p logðzÞ

2πiλ
−

1

2πλ

Z
1

z0
zþ z0

z − z0
dz0: ð23Þ

Following [12] we define a resolvent function ΦðzÞ

ΦðzÞ ¼
Z

ρ̂ðz0Þ
iz0

zþ z0

z − z0
dz0 ¼ hðzÞHðzÞ; where

hðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 − 2z cos θ1 þ 1Þðz2 − 2z cos θ2 þ 1Þ

q
: ð24Þ

From the normalization of eigenvalue density it follows that

Φðz → ∞Þ ∼ 1 −
1

2πλ

Z
dω
iω

: ð25Þ

The resolventΦðzÞ has a branch cut in the complex z plane.
The eigenvalue density ρ̂ðzÞ is obtained from the disconti-
nuity of ΦðzÞ

ΦþðzÞ −Φ−ðzÞ ¼ 4πρ̂ðzÞ: ð26Þ
Following [19] the function HðzÞ can be evaluated as

HðzÞ ¼ i
I

dw
2πi

p logðwÞ
2πiλ − 1

2πλ

R
1
s
wþs
w−s ds

hðwÞðw − zÞ : ð27Þ

Plugging this expression in (24) we expand the right-hand
side for large z and comparing the expression with (25) we
find the following two constraints:

p
2πλ

I
dz
2πi

logðzÞ
hðzÞ þ i

πλ

Z
dω
hðωÞ ¼ 0;

1þ p
2πλ

I
dz
2πi

z logðzÞ
hðzÞ þ i

πλ

Z
ωdω
hðωÞ ¼ 0: ð28Þ

Using the formula given in the Appendix, we numerically
solve these two equations to find the endpoints θ1 and θ2.
From the discontinuity ΦðzÞ we compute the eigenvalue
density

ρ̂ðθÞ ¼ −
j sinϕj
π2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin2 ϕ

2
− sin2 θ2

2
Þðsin2 θ1

2
− sin2 ϕ

2
Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ cos θ2Þð1 − cos θ1Þ

p
×

�
2pðcos2 θ1

2
Πðψ ; n1; m1Þ − cos2 ϕ

2
Fðψ ; m1ÞÞ

ð1þ cosϕÞðcosϕ − cos θ1Þ

−
4ðΠðn2; m2Þ − sin2 ϕ

2
Kðm2ÞÞ

sin2ϕ

�
ð29Þ

FIG. 2. ρðθÞ for cap-gap phase.FIG. 1. ρðθÞ for one-gap phase.

FIG. 3. Free energy of CS on S3 as a function of λ. The solid
blue line is the free energy for the gapped phase for λ < λ�. The
dashed blue line is the extension of the same beyond λ�. The red
line depicts the free energy for the cap-gap phase.
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where m1; m2; n1; n2;ψ are given in (A3). The eigenvalue
density in cap-gap phase is plotted in Fig. 2. The free
energies for these two phases (for p ¼ 1) as a function of λ
are plotted in Fig. 3. From this figure we see that the cap-
gap phase has free energy less than that of the gapped phase
and hence is dominant over the gapped phase for λ > λ�.
However the on-shell S3 PF on the cap-gap phase differs
from T 2

00S00.

VII. DISCUSSION

In order to obtain a real saddle point equation (12) we
use an analytic continuation in p. However if we use an
analytic continuation in λ [10], we would also get a real
saddle point equation for YD distribution uðhÞ in the h
plane with a coth kernel similar to that considered in [8].
The solution of this equation renders a YD distribution
which crosses the maximum value 1 for p > 2 only. Hence
one can exhibit a phase transition only for p ≥ 3. The YD
distribution is different from the one-gap eigenvalue dis-
tribution obtained in this paper. But with a proper analytic
continuation of p and λ one can relate the two [10].
However, the YD distribution obtained in [6,8,10] violates
the integrability bound for some value of λ between 0 and 1.
In strictly k → ∞ limit the sum over R in (2) is unre-
stricted. Hence one should not expect any phase transition
in the system. But when we consider the level and rank to
be large but finite and take the double scaling limit properly
we observe the phase transition. In the double scaling limit
θis are defined in such a way (9) that they have a range
between 0 and 2π and the dominant representations are
always integrable. But this change of variables imposes a
cap on the eigenvalue distribution which triggers a phase
transition in the theory.
The ’t Hooft expansion of the PF of SUðNÞ CS theory on

S3 is proposed to be dual to topological closed string theory
on the S2 blow up of the conifold geometry [20] for
arbitrary λ and all orders of 1=N. In canonical framing the
CS PF is equal to S00 and an exact function of λ which
matches with the string theory side. In Seifert framing, we

observe that the PF of CS theory in the gapped phase is
equal to that in the string theory side. But the PF in cap-gap
phase differs from S00 for λ > λ�. Dependence of phase on
the choice of framing is a bit puzzling here. The question is
why a new phase pops up in the theory when we take the
double scaling limit. The saddle equation (12) also admits
multicut solutions, which were related to some nonpertur-
bative D-instantons [21]. These multi-cut solutions are
different than the cap-gap phase (29) studied in this paper. It
would be interesting to understand the meaning of this new
phase in the string theory side as well.
We explicitly check the level-rank duality in CS theory

on S3. The theory admits three types of phases. For λ < λ�
one has a gapped phase and a capped phase. These two
phases are level-rank dual to each other. For λ > λ� the
theory admits a cap-gap phase which is level rank dual to
itself. There is a third order phase transition at λ�. The phase
structure is similar to that of CS-matter theory on S2 × S1

[10,12] except that here we do not have any gapless phase.
The partition function of q-deformed UðNÞ Yang-Mills

on a generic Riemann surface with zero θ term is equal to
the PF of CS theory on Mðg;pÞ up to a phase factor for

q ¼ e
2πi
Nþk and k; p ∈ Z [11]. Thus our analysis shows that

the q-deformed Yang-Mills undergoes a phase transition
even for p ¼ 1 unlike [8].
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APPENDIX: USEFUL FORMULA

We use the following useful results in our calculations:

I
dz
2πi

logðzÞ
hðzÞ ¼ 2Fðψ ; m1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ cos θ2Þð1 − cos θ1Þ

p ;

I
dz
2πi

z logðzÞ
hðzÞ ¼ 2 cos θ1Fðψ ; m1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ cos θ2Þð1 − cos θ1Þ

p þ 2βv04ðβÞ
v4ðβÞ

þ 1

2
log

�ð1 − cos θ1Þð1þ cos θ2Þ
4K2ðm1Þ

�
− log

�
v1ð2βÞ
v01ð0Þ

�
ðA1Þ

where,

β ¼ Fðψ ; m1Þ
2Kðm1Þ

; q ¼ e−π
K0ðm1Þ
Kðm1Þ ; K0ðm1Þ ¼ K

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

1

q 	
;

Z
eiθ2

e−iθ2

dω
hðωÞ ¼

2iKðm2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − cos θ1Þð1þ cos θ2Þ
p ;

Z
eiθ2

e−iθ2

ωdω
hðωÞ ¼

2ið2Πðn;m2Þ − Kðm2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − cos θ1Þð1þ cos θ2Þ
p ; ðA2Þ
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ψ ¼ sin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ1

2

r
; m1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcos θ2 − cos θ1Þ

ð1þ cos θ2Þð1 − cos θ1Þ

s
; m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cos θ2Þð1þ cos θ1Þ
ð1 − cos θ1Þð1þ cos θ2Þ

s
;

n ¼ cos θ2 − 1

1þ cos θ2
; n1 ¼

2ðcosϕ − cos θ1Þ
ð1 − cos θ1Þð1þ cosϕÞ ; n2 ¼

ð1 − cos θ2Þð1þ cosϕÞ
ð1þ cos θ2Þð1 − cosϕÞ : ðA3Þ
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