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Many of the useful features of supergravities, such as admitting supersymmetric bosonic backgrounds
governed by first-order Bogomol’nyi–Prasad–Sommerfield equations, can be realized in a much broader
setting by relaxing the requirement of closure of the superalgebra beyond the level of quadratic fermion
terms. The resulting pseudo-supersymmetric theories can be defined in arbitrary spacetime dimensions. We
focus here on the N ¼ 1 pseudo-supersymmetric extensions of the arbitrary-dimensional bosonic string
action, which were constructed a few years ago. In this paper, we recast these in the language of double
field theory. More precisely, we construct the action and the corresponding pseudo-supersymmetry
transformation rules in terms of OðDÞ × OðDÞ covariant derivatives, and we discuss consistent truncations
on manifolds with generalized G structure. We thereby obtain a natural generalization of the previously
known results for N ¼ 1 supersymmetric double field theory in D ¼ 10 to arbitrary dimensions. As
explicit examples, we discuss Minkowski ×G vacuum solutions and their corresponding pseudo-
supersymmetry. We also briefly discuss squashed group manifold solutions, including an example with
a Lorentzian signature metric on the group manifold G.
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I. INTRODUCTION

Supersymmetry provides a powerful tool for probing
aspects of physics that would otherwise be beyond the
limits of computability. One important example is that the
second-order nonlinear field equations of Einstein gravity
or supergravity can be reduced to first-order equations
in certain circumstances, namely when there exist super-
symmetric bosonic backgrounds that admit one or more
Killing spinors. Beyond the classical level, supersymmetry
severely restricts quantum corrections and allows some
nonperturbative results to be obtained.
A feature of supersymmetry is that it implies restrictions

on the dimension of the spacetime. In particular, beyond
11 dimensions, it is not possible to find any supersym-
metric extension of gravity without adding higher spin
fields, and this rules out having a Lagrangian description.
One might, therefore, conclude that supersymmetry would,
in general, be of no help in the study of theories in arbitrary

higher dimensions. However, these theories can still pos-
sess a pseudo-supersymmetry [1–4], which is a weaker
notion of supersymmetry that only involves fermionic
terms up to second order, in the action and the trans-
formation rules. This is, in fact, sufficient in order to be
able to derive many of the useful features of conventional
supersymmetric theories, including the existence of
pseudo-Killing spinors in certain backgrounds. Thus,
pseudo-supersymmetry still allows the second-order field
equations for the bosonic fields to be reduced into first-
order Bogomol’nyi–Prasad–Sommerfield (BPS) conditions
in such backgrounds. Hence, it can provide a powerful tool
in the study of solutions of theories of gravity coupled to
matter in arbitrary dimensions.
A well-established framework for exploring the land-

scape of supergravity vacua is provided by (exceptional)
generalized geometry [5–10] and the closely related
double or exceptional field theory (DFT/ExFT) [11–28].1
Particularly interesting for our work are the supersymmetric
extensions of bosonic DFT [33–40]. All these approaches
share one defining property, namely the unification of local
diffeomorphisms with form-field gauge transformations
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1There has been a considerable amount of original work in this
field, and therefore, we only reference a few key contributions
here, which is, of course, highly subjective. We refer to the
reviews [29–32] for a complete list of references.
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into one unified symmetry group. In the most basic setup,
the metric and the 2-form B-field potential of a bosonic
string action are combined into the generalized metric,
giving rise to the Oðn; nÞ symmetry of DFT. Equivalently,
this structure is captured by the generalized tangent bundle
TM ⊕ T�M of generalized geometry. Note that, in general,
DFT is capable of capturing backgrounds that go beyond
supergravity and generalized geometry [41,42]. Here,
however, we shall be concerned with the most conservative
case, where the section condition is satisfied globally. In
this case, DFT is just a rewriting of supergravity, and it is
completely equivalent to generalized geometry. Still, there
are two important advantages of this rewriting: First,
supersymmetry variations have a much simpler form,
and second, Abelian T-duality becomes a manifest sym-
metry of the string’s low-energy effective target space
action. A natural question in this context is whether
pseudo-supersymmetry permits a similar treatment. We
answer this question in the affirmative and demonstrate that
it is possible to extend the existing results of supersym-
metric DFT from 10 dimensions to arbitrary dimensions.
It is worth emphasizing at this point that it is somewhat

nontrivial that an extension of the N ¼ 1 supersymmetric
DFT to arbitrary higher dimensions is possible. First
of all, the fact that one can extend 10-dimensional N ¼ 1
supersymmetric supergravity to a pseudo-supersymmetric
theory in an arbitrary spacetime dimension [4] is itself
rather remarkable; the demonstration of the pseudo-
supersymmetry of the Lagrangian depends upon the
detailed properties of the spinor representations and the
Dirac matrices in the different dimensions. Furthermore,
not every supergravity theory admits an arbitrary-
dimensional pseudo-supergravity extension. For example,
although the 10-dimensional N ¼ 1 supergravity admits
the extension as in [4], it appears not to be possible to
obtain a pseudo-supersymmetric extension of 10-
dimensional N ¼ 2 supergravity in higher dimensions.
(One reason for this was discussed in [1].)
Similar remarks apply to the incorporation of N ¼ 1

pseudo-supersymmetry within the framework of double
field theory. The generalization of the DFT describing the
bosonic string to an arbitrary dimension is, of course,
well known and completely straightforward. However,
the fact that it is possible to generalize the DFT of the
10-dimensional N ¼ 1 string to an arbitrary dimension is
somewhat nontrivial, and indeed, establishing that this is
possible is one of the main purposes of the present paper.
We have presented some of the details of the calculations
in Appendix B. As with the construction of the pseudo-
supersymmetric extension of the arbitrary-dimensional
bosonic string Lagrangian in [4], this depends upon the
properties of the spinor representations and the Dirac
matrices in the different dimensions.
An important application of this work is in the con-

struction of pseudo-supergravity vacua. In particular, we

combine the technique of consistent truncations with
pseudo-supersymmetry to show how the field equations
in arbitrary dimensions can be simplified significantly.
More precisely, in the examples we consider, the consistent
truncation renders the field equations algebraic but still
quadratic. Clearly, this is already a major simplification, but
still quadratic equations with multiple variables can be hard
to solve. A similar problem arises in the classification
of Lie algebras, whose Jacobi identity is a quadratic
constraint. In low dimensions, it is possible to solve it,
and this gives rise to a complete classifications of real Lie
algebra up to six dimensions [43]. Beyond that, solving the
quadratic constraint becomes forbiddingly complicated. A
similar situation is encountered in the prototypical example
of consistent truncations in DFT, namely in generalized
Scherk-Schwarz reductions [44–49]. Compared to a stan-
dard geometric reduction on a group manifold with
isometry group GL ×GR, which retains the singlets under
eitherGL orGR, the consistent reductions in DFTallow one
to retain all the gauge bosons of the complete isometry
group. This is a much more complicated reduction because
of the potentially dangerous trilinear coupling of massive
spin-2 modes to bilinears constructed from the GL ×GR
Yang-Mills bosons [50]. The existence of a consistent
reduction of the ðnþDÞ bosonic string to aD-dimensional
group manifold keeping all of the GL ×GR gauge bosons
was conjectured in [51], with further supporting evidence
found in [52]. A complete proof of the consistency was
obtained in [53], utilizing the OðD;DÞ formulation of
ðnþDÞ-dimensional bosonic string [54]. Combining a
generalized Scherk-Schwarz reduction with pseudo-
supersymmetry, we show how the quadratic field equations
for the remaining fields can be reduced, in appropriate
backgrounds, to linear equations. Because of the less
restrictive nature of pseudo-supersymmetry, in comparison
to ordinary supersymmetry, this can be done in arbitrary
spacetime dimensions.
The paper is organized as follows. In Sec. II, we give

a short review of the N ¼ 1 pseudo-supersymmetric
theory. In Sec. III, we reformulate it in terms of gene-
ralized geometry and then spell out the conditions for
the existence of a consistent truncation. In Sec. IV,
we explicitly construct solutions of the form
ðMinkowskiÞD−dimG ×G, including a description in the
framework of generalized geometry. In Sec. V, we discuss
their pseudo-supersymmetry, both in standard field theory
and in generalized geometry. In four appendices, we record
some relevant properties of spinors in general dimensions;
we present some details of the calculations showing that the
N ¼ 1 pseudo-supersymmetric string can be recast in a
DFT framework; we give some useful representations for
Dirac matrices in dimensionally reduced spacetimes; and
we construct an example of a ðMinkowskiÞD−dimG × G
background, for G ¼ SOð5Þ, where the metric on the
group is squashed. It turns out to have Lorentzian signature,
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and the squashed background breaks all the pseudo-
supersymmetry.

II. PSEUDO-SUPERSYMMETRISED
BOSONIC STRING

As described in [4], one can construct a pseudo-
supersymmetric fermionic extension of the bosonic string
Lagrangian in a completely arbitrary dimension D. That is
to say, there exist supersymmetry-like transformation rules
that leave the Lagrangian invariant, modulo terms beyond
the quadratic order in fermions. In practice, many of the
desirable features of supersymmetry, such as the existence
of Killing spinors in bosonic backgrounds, BPS conditions,
and first-order equations, do not directly depend upon the
full closure of the transformations. This means that all the
useful consequences of having fermionic symmetries in
bosonic backgrounds will equally well arise in the much
larger arena of pseudo-supersymmetric theories.

A. Lagrangian and pseudo-supersymmetry
transformation rules

The Lagrangian for the pseudo-supersymmetric exten-
sion of the bosonic string in an arbitrary dimension was
constructed in [4], where it was presented both in the
Einstein frame and in the string frame. Here, we reproduce
the result from [4] in the string frame, with the following
notational changes. Firstly, we denote the spacetime
dimension by D rather than d, since in this paper, d will
be reserved to denote the generalized dilaton of DFT.
Secondly, in order to harmonize our notation with some of
the DFT literature, we perform the rescalings,

ψμ →
ffiffiffi
2

p
ψμ; λ →

ffiffiffi
2

p
λ; ϵ →

ffiffiffi
2

p
ϵ; ð2:1Þ

on the fermion fields and pseudo-supersymmetry param-
eter, and finally, we make the replacement Γa → −Γa,
which, of course, preserves the Clifford algebra. With these
replacements, the D-dimensional pseudo-supersymmetric
Lagrangian of [4], in the string frame, becomes

e−1L ¼ e−2Φ
�
Rþ 4ð∂ΦÞ2 − 1

12
H2 − ψ̄μΓμνρDνψρ

þ λ̄=Dλ − 2i
ffiffiffi
β

p
λ̄ΓμνDμψν − 2ψ̄μΓμψρ∂ρΦ

þ 2iffiffiffi
β

p ψ̄μΓνΓμλ∂νΦþHνρσ

�
1

24
ψ̄μΓμνρσλψλ

þ 1

4
ψ̄νΓρψσ −

1

24
λ̄Γνρσλþ i

12
ffiffiffi
β

p ψ̄μΓμνρσλ

��
;

ð2:2Þ

and the pseudo-supersymmetry transformation rules are
given by

δψμ ¼ Dμϵ −
1

8
HμνρΓνρϵ;

δλ ¼ i
ffiffiffi
β

p �
Γμ∂μΦ −

1

12
ΓμνρHμνρ

�
ϵ;

δeaμ ¼ −
1

2
ψ̄μΓaϵ;

δΦ ¼ −
i

4
ffiffiffi
β

p ϵ̄λ;

δBμν ¼ ϵ̄Γ½μψν�: ð2:3Þ

Note that δψμ may be reexpressed in terms of a torsionful
connection as δψμ ¼ Dμðω−Þϵ, where

ωab
μ� ≡ ωab

μ � 1

2
12Hμ

ab: ð2:4Þ

The constant β, which is either þ1 or −1 depending on
the dimension D and the spinor representation, character-
izes the symmetry property of the gamma matrices,

ΓT
μ ¼ βCΓμC−1: ð2:5Þ

It is listed for each dimension and representation in Table I
in Appendix A. Many further properties of spinors in
diverse dimensions are summarized in our notation in [4].
All coefficients in (2.2) and (2.3) were determined by the
requirement that the Lagrangian be invariant under the
pseudo-supersymmetry transformations, provided that
one neglects fermionic terms that would arise from
higher fermionic powers in the Lagrangian or pseudo-
supersymmetry transformations.

TABLE I. Γ-matrix symmetries and spinor representations in
diverse dimensions. S denotes symmetric, A denotes antisym-
metric, M denotes Majorana, and S-M denotes symplectic
Majorana.

D mod 8 CΓð0Þ CΓð1Þ CΓð2Þ CΓð3Þ CΓð4Þ CΓð5Þ Spinor β

0 S S A A S S M þ1
S A A S S A S-M −1

1 S S A A S S M þ1

2 S S A A S S M þ1
A S S A A S M −1

3 A S S A A S M −1

4 A S S A A S M −1
A A S S A A S-M þ1

5 A A S S A A S-M þ1

6 A A S S A A S-M þ1
S A A S S A S-M −1

7 S A A S S A S-M −1

DOUBLE FIELD THEORY AND PSEUDO-SUPERSYMMETRY PHYS. REV. D 104, 026008 (2021)

026008-3



It was shown in [4] that, just like in the case of the
supersymmetry transformations for 10-dimensionalN ¼ 1
supergravity, the integrability conditions obtained by taking
commutators of the pseudo-supersymmetry transforma-
tions on a bosonic background are satisfied if the full
set of field equations for the D-dimensional bosonic string
are satisfied.

B. Adding a conformal anomaly term

As was shown in [4], one can also add a “conformal
anomaly” term to the Lagrangian. In the string frame,
after performing the rescalings (2.1) and the replacement
Γa → −Γa detailed above, the additional terms in the
Lagrangian take the form,

e−1Lc ¼ e−2Φ
�
−
m2

2
−

m
2
ffiffiffiffiffi
2β

p ðψ̄μΓμνψν

þ 2
ffiffiffiffiffiffi
−β

p
ψ̄μΓμλ − λ̄λÞ

�
: ð2:6Þ

There are associated additional terms in the fermion
transformation rules, given by

δextraψμ ¼ 0; δextraλ ¼
i

2
ffiffiffi
2

p mϵ: ð2:7Þ

Note that the fermionic extension of the conformal anomaly
term in (2.6) really requires a doubling of the fermionic
degrees of freedom. This is most easily stated in dimen-
sions D ¼ 2mod8, where we can choose β ¼ −1, and the
basic spinors of the pseudo-supersymmetrised bosonic
string would be both Majorana and Weyl (with ψμ and ϵ
being chiral, and λ antichiral). The fermionic terms in (2.6)
would vanish under these conditions but will be non-
vanishing if the chirality constraints on the fermions are
removed. In cases where β ¼ þ1, the first two fermionic
terms in (2.6) will vanish identically if the spinors are
Majorana or symplectic-Majorana. In these cases, one can
still pseudo-supersymmetrize the conformal anomaly term
if one doubles the number of fermions by adding an
additional doublet index,

ψμ → ψα
μ; λ → λα: ð2:8Þ

All the previous fermion bilinears in the Lagrangian will
now have α and β indices contracted with δαβ. The terms
in Lc, on the other hand, will have the α and β indices
contracted with ϵαβ. An ϵαβ should also be inserted in the
extra terms (2.7) in transformation rules for ψμ and λ.

III. GENERALIZED GEOMETRY AND
PSEUDO-SUPERSYMMETRY

It is possible to simplify the Lagrangian (2.2) consid-
erably by introducing the generalized dilaton d and its
superpartner ρ:

d ¼ Φ −
1

2
log e; ρ ¼ Γμψμ þ

iffiffiffi
β

p λ: ð3:1Þ

Furthermore, we unify the frame field and the B field
by introducing the generalized frame field with the
components,

EðþÞ
a ¼ 1ffiffiffi

2
p ðeμa∂μ þ eμadxμ − ιeaBÞ;

Eð−Þ
a ¼ 1ffiffiffi

2
p ðeμa∂μ − eμadxμ − ιeaBÞ; ð3:2Þ

and ιeaB ¼ eμaBμνdxν. Each of these 2D components is a
generalized vector on the generalized tangent space
TM ⊕ T�M. After this identification and the redefinitions
above, the pseudo-supersymmetry transformation rules
(2.3) and (2.7) can be written in the compact form,

δψμ ¼ ∇ð−Þ
μ ϵ; δextraψμ ¼ 0;

δρ ¼ Γμ∇ðþÞ
μ ϵ; δextraρ ¼ −

1

2
ffiffiffiffiffi
2β

p mϵ;

hEð−Þ
b ; δEðþÞ

a i ¼ −
1

2
ϵ̄Γbψa;

δd ¼ −
1

4
ϵ̄ρ; ð3:3Þ

where the OðDÞ × OðDÞ covariant derivatives ∇ð�Þ
μ play a

crucial role. They are defined by [8,34]

∇ð−Þ
μ ϵ ¼

�
Dμ −

1

8
HμνρΓμν

�
ϵ;

Γμ∇ðþÞ
μ ϵ ¼

�
ΓμDμ −

1

24
HμνρΓμνρ − Γμ∂νΦ

�
ϵ; ð3:4Þ

and, as we will see in the next subsection, they also
have very nice properties when it comes to consistent
truncations.
Like the pseudo-supersymmetry transformation rules,

also the action (2.2) simplifies considerably once written in
string frame and after applying the redefined fields and the
adapted covariant derivatives,

e2dLD ¼ Rþ 4ð∂ϕÞ2 − 1

12
H2

ð3Þ − ψ̄aΓb∇ðþÞ
b ψa

− βρ̄Γa∇ðþÞ
a ρþ 2ψ̄a∇ð−Þ

a ρ; ð3:5Þ

where β is defined by the use of charge conjugation matrix
C in (2.5). All details of the computation relating (3.5)
and (2.2) for arbitary target space dimensions D is given in
Appendix B.
In 10 dimensions, this Lagrangian matches the one of

N ¼ 1 double field theory [34] after implementing the
solution of the section condition, which removes the
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dependence on the coordinates conjugate to string
winding modes and choosing the parameter β ¼ −1. The
interesting observation here is that this result even holds in
arbitrary dimensions once we drop the additional con-
straints imposed by supersymmetry in favor of pseudo-
supersymmetry.
The conformal anomaly terms (2.6) can also be formu-

lated in the language of generalized geometry,

e2dLc ¼ −
m2

2
−
m

ffiffiffi
β

p

2
ffiffiffi
2

p ðρ̄ρ − βψ̄μψ
μÞ: ð3:6Þ

To satisfy the pseudo-supersymmetry property, it follows
from (2.7) that the variation rule of ρ needs to be modified
by δextra in (3.3).

A. Consistent truncations

The crucial observation for constructing consistent
truncations in the N ¼ 1 pseudo-supersymmetric theory
is that all relevant quantities, like the Lagrangian, the
pseudo-supersymmetry transformation rules, and the field
equations, can be written in terms of covariant derivatives

∇ð�Þ
μ . Therefore, the insights from constructing consistent

truncations in the purely bosonic theory carry over to our
pseudo-supersymmetric setup. Here, we review the crucial
ingredients of the construction presented in [55] to establish
notation that we shall require later. One starts with an
OðD;DÞ structure, which is defined by the invariant metric,

ηAB ¼
�
ηab 0

0 −ηā b̄

�
and ηAB ¼

�
ηab 0

0 −ηā b̄

�
;

ð3:7Þ

(ηab ¼ ηā b̄ is the invariant metric of OðDÞ or its Lorentzian
counterpart), which is also used to raise and lower
“doubled” indices A; B;…. The group OðD;DÞ can further
be broken to OðDÞ × OðDÞ by requiring a second invariant
metric, the generalized metric,

HAB ¼
�
ηab 0

0 ηā b̄

�
and HAB ¼

�
ηab 0

0 ηā b̄

�
: ð3:8Þ

It encodes the metric and the B field once it is pulled to the
generalized tangent space TM ⊕ T�M, where it reads

HIJ ¼
�
gij − BikgklBlj −Bikgkj

gikBkj gij

�
: ð3:9Þ

Note that we here have switched from using Greek indices,
μ; ν;…, for spacetime coordinates to Latin indices i; j;….
We do this because in DFT, there is a need for capital,
doubled indices as well as lowercase, standard indices, and
the Greek alphabet does not lend itself to this distinction.

The metrics (3.8) and (3.9) are related by the generalized
frame,

HIJ ¼ EA
IEB

JHAB; with EA
I

�
dxi

∂i

�
¼
 
EðþÞ
a

Eð−Þ
ā

!
:

ð3:10Þ

In order to construct consistent truncations, one restricts

the form of the covariant derivative ∇A ¼ 1ffiffi
2

p ð∇ðþÞ
a ;∇ð−Þ

ā Þ
to

∇AVB ¼ DAVB þ ωAC
BVC; ð3:11Þ

where DA is a second covariant derivative, which admits
some invariant tensors and thus, defines a generalized G
structure [55]. G can be any subgroup of OðDÞ × OðDÞ;
we present some examples later, but for the moment,
we keep the discussion general. To obtain ∇A from DA,
the tensor ωAB

C has to be fixed. This is done by
imposing four constraints on ∇A (see for example [56]):
First, ∇ is compatible with the η- and the generalized
metric, implying that the connection ωABC is antisymmetric
in its last two indices. Moreover, it gives rise to integration
by parts,

Z
e−2d∇AVA ¼ 0; fixing

ωB
BA ¼ 2DAd − ∂IEA

I ≔ FA: ð3:12Þ

Finally, it has vanishing generalized torsion, further con-
straining the connection by

3ω½ABC� ¼ −T ABC ≔ FABC; ð3:13Þ

where T ABC is the generalized torsion of DA. Still, these
constraint do not fix ωAB

C completely. However, all
physically relevant quantities, like the action, the field
equations, and the pseudo-supersymmetry transformations,

use ∇ð�Þ
μ in such a way that the undefined contributions

drop out. To present the partially fixed ωAB
C, it is

convenient to introduce the projectors,

PAB ¼ 1

2
ðηAB þHABÞ and P̄AB ¼ 1

2
ðηAB −HABÞ;

ð3:14Þ

which project onto the two factors of OðDÞ × OðDÞ,
leaving ηAB and HAB invariant,

PA
B ¼

�
δab 0

0 0

�
and P̄A

B ¼
�
0 0

0 δā
b̄

�
: ð3:15Þ
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The constraints above restrict the form of ωABC to

ωABC ¼
�
1

3
PD

APE
BPF

C þ P̄D
APE

BPF
C þ PD

AP̄E
BP̄F

C

þ 1

3
P̄D

AP̄E
BP̄F

C

�
XDEF; ð3:16Þ

with

XABC ¼ FABC þ 6

D − 1
ηA½BFC�: ð3:17Þ

A consistent truncation arises if the action of ∇A on a
tensor invariant underDA gives rise to another (or the same)
tensor that is invariant under DA. In this case, the set of all
these invariant tensors forms a consistent truncation. By
using the definition of ∇A in (3.11), this requirement
translates to the two constraints,

DAFBCD ¼ 0 and DAFB ¼ 0: ð3:18Þ

IV. MINKOWSKI × G GROUP MANIFOLD
COMPACTIFICATIONS

It was observed in [51] that the d-dimensional bosonic
string with the added conformal anomaly term admits a
vacuum solution of the form ðMinkowskiÞD−dimG ×G,
where G is any semisimple compact dimG-dimensional
Lie group. Here, we shall study the pseudo-supersymmetry
of these vacuum solutions. In order to do this, we first need
to establish some basic notation and results for group
manifold compactifications.

A. Conventions and geometry for group manifolds

The vacuum solution employs the group manifold G
equipped with its bi-invariant metric gmn. This has left-
acting and right-acting Killing vectors of the group G,
which we denote by Km

La and Km
Ra, respectively. They obey

the algebra,

½KLa; KLb� ¼ −cfabcKLc; ½KRa; KRb� ¼ cfabcKRc;

½KLa; KRb� ¼ 0; ð4:1Þ

where fabc are the structure constants, and c is a scale-
setting constant. The Killing vectors may be normalized
so that

gmnKm
LaK

n
Lb ¼ δab; gmnKm

RaK
n
Rb ¼ δab; ð4:2Þ

with δab being proportional to the Cartan-Killing metric,

−facdfbdc ¼ CAδab; ð4:3Þ

where CA is the quadratic Casimir of the group G.
Conversely, one has gmn ¼ Km

LaK
n
Lbδ

ab ¼ Km
RaK

n
Rbδ

ab. It
follows that one may view either theKm

La or theK
m
Ra Killing

vectors as defining a vielbein ea ¼ eamdym. We shall
consider the left-invariant vielbein,

ea ¼ Ka
R ¼ Ka

Rmdy
m: ð4:4Þ

Using (4.1), the 1-forms Ka
L and Ka

R obey

dKa
L ¼ 1

2
cfbcaKb

L ∧ Kc
L; dKa

R ¼ −
1

2
cfbcaKb

R ∧ Kc
R;

ð4:5Þ

The vielbein (4.4), therefore, obeys dea¼−1
2
cfbcaeb∧ec,

and so the torsion-free spin-connection, defined by
dea ¼ −ωa

b ∧ eb and ωab ¼ −ωba, is therefore given by

ωab ¼ −
1

2
cfabcec: ð4:6Þ

Note that since we are taking G to be compact and
semisimple, fabc is totally antisymmetric. The curvature
2-forms Θab ¼ dωab þ ωac ∧ ωcb and the Riemann tensor
(following from Θab ¼ 1

2
Rabcdec ∧ ed) are then given by2

Θab ¼
1

8
c2fabefcdeec ∧ ed; Rabcd ¼

1

4
c2fabefcde:

ð4:7Þ

Finally, we have the Ricci tensor and Ricci scalar, given by

Rab ¼
1

4
c2CAδab; R ¼ 1

4
c2CA dimG: ð4:8Þ

Note that fabc is covariantly constant. The Lorentz-
covariant exterior derivative D acts on Lorentz vector as
DVa ¼ dVa þ ωa

bVb, so

Dfabc ¼ dfabc þ ω½a
dfbc�d; ð4:9Þ

and since the fabc are constants, and the spin connection is
given by (4.6), we have

Dfabc ¼ −
1

2
cf½adefbc�dKe

R; ð4:10Þ

and this vanishes by virtue of the Jacobi identity. Thus,
it follows that in coordinate indices, we also have
∇mfnpq ¼ 0.

2One needs to use the Jacobi identity to show this.
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B. Consistent truncations

Following the discussion in Sec. III A, we now construct
a consistent truncation on the group manifolds G. We first
define an appropriate covariant derivative DA that annihi-
lates the generalized frame field EB

I . This renders the
corresponding generalized geometry parallelizable or,
equally, the generalized structure group trivial. More
specifically, we have

DIEA
J ¼ ∂IEA

J þ ΓIK
JEA

K ¼ 0; ð4:11Þ

thus determining the corresponding connection,

ΓIJK ¼ ∂IEA
JEAK: ð4:12Þ

Its generalized torsion is given by T IJK ¼ 3Γ½IJK�, and
therefore, we obtain from (3.13),

FABC ¼ 3E½AI∂IEB
JEC�J: ð4:13Þ

A consistent truncation requires that (3.18) hold. Thus, we
have to find a generalized frame field EA

I on the group
manifold G, such that

DIFABC ¼ ∂IFABC ¼ 0 ð4:14Þ

holds. Equivalently stated, the generalized torsion in flat
indices must be constant.
This problem does not have a unique solution because

there are an infinite number of admissible generalized
frame fields that satisfy (4.14) on the Lie group G. For
definiteness, we choose here the solution discussed in [53].
It is given by

ffiffiffi
2

p
EðþÞ
a ¼ Km

La∂m − ηabðιKb
L
B − Kb

Lmdx
mÞ;ffiffiffi

2
p

Eð−Þ
a ¼ Km

Ra∂m − ηabðιKb
R
Bþ Kb

Rmdx
mÞ; ð4:15Þ

where KR and KL denote the left- and right-invariant
vectors fields and their respective duals from Sec. IVA,
and ιXB ¼ XmBmndxn for any vector X. Additionally, we
also have to incorporate a B field whose corresponding H
flux yields

dB ¼ −
c
3!
fabcKa

R ∧ Kb
R ∧ Kc

R: ð4:16Þ

For this generalized frame field, we now compute the
generalized torsion (4.13) with the nonvanishing
components,

Fabc ¼
cffiffiffi
2

p fabc and Fā b̄ c̄ ¼
cffiffiffi
2

p fā b̄ c̄: ð4:17Þ

Note that fabc ¼ fabdδdc ¼ fā b̄ c̄ coincides with the struc-
ture coefficients that govern the generators of the Lie

group G. They appear here because of the Killing vectors
algebra (4.1).
We also need to compute the flux FA, which captures the

dilaton, and check that it is constant, as required by the
second equation in (3.18). By combining (3.1) with (3.12),
we obtain

FA ¼ 2DAϕ −DA log det e − ∂IEA
I: ð4:18Þ

This equation splits into two contributions, for Fa and Fā,
respectively. Let us take a closer look at

Fa ¼ 2Km
La∂mϕ − Km

La∂mKb
LnK

n
Lb − ∂mKm

La; ð4:19Þ

where we take into account that eam can be identified with
Ka

Lm. The right-hand side of this relation can be further
simplified by using (4.1), yielding

Fa ¼ 2Km
La∂mϕ − cfabb: ð4:20Þ

The last term vanishes because we takeG to be semisimple.
An analogous argument applies to Fā. Hence, we conclude
that FA ¼ const requires a linear dilaton. Finally, the
Bianchi identity for DI implies that

FAB
CFC ¼ 0 ð4:21Þ

must hold. Since the generalized torsion FABC matches the
structure coefficients of the isometry group GL ×GR, FC is
in one-to-one correspondence with an element in the
center of this group, but because G is semisimple, so is
GL ×GR. Semisimple Lie groups have a trivial center,
and therefore, only FA ¼ 0 is consistent with the
Bianchi identity (4.21). Thus, we conclude that the dilaton
must be constant in order to give rise to a consistent
truncation.

C. The Minkowski × G vacuum

At this point, it is convenient to change the index
labeling conventions and notation a little and rewrite the
Lagrangian in Sec. II using μ̂; ν̂… world indices in the
full D dimensions, and furthermore to place hats on all
D-dimensional fields (and gamma matrices). When needed,
D-dimensional tangent-space indices will be written as
â; b̂;…. We then use world indices μ; ν;… and tangent-
space indices α; β;… in the ðD − dimGÞ-dimensional
spacetime and world indices m; n;… and tangent-space
indices a; b;… in the group manifold G. Thus, μ̂ ¼ ðμ; mÞ
and â ¼ ðα; aÞ, etc.
The D-dimensional bosonic field equations for the

bosonic string, including conformal anomaly term, are
given in the string frame by

R̂ − 4ð∂ΦÞ2 þ 4□̂Φ −
1

12
Ĥ2 −

1

2
m2 ¼ 0; ð4:22Þ
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R̂μ̂ ν̂ þ 2∇̂μ̂∇̂ν̂Φ −
1

4
Ĥμ̂ ρ̂ σ̂Ĥν̂

ρ̂ σ̂ ¼ 0; ð4:23Þ

∇̂μ̂ðe−2ΦĤμ̂ ν̂ ρ̂Þ ¼ 0: ð4:24Þ

We seek a ground-state solution whose metric is a direct
sum of a ðD − dimGÞ-dimensional spacetime of maximal
symmetry (Minkowski, AdS or dS) times the bi-invariant
metric on the group manifold G:

dŝ2 ¼ gμνdxμdxν þ gmndymdyn: ð4:25Þ

The dilaton will be assumed to be constant, and taken,
without material loss of generality, to vanish. The compo-
nents of the 3-form M̂μ̂ ν̂ ρ̂ will also be assumed to vanish
except those lying entirely in the group-manifold, and for
these, we can take

Ĥmnp ¼ −cfmnp: ð4:26Þ

The choice of sign is arbitrary, as far as the bosonic
equations of motion are concerned. Our choice of the
negative sign is for consistency with the pseudo-
supersymmetry; see later. Here, fmnp is constructed from
the structure constants fabc using the vielbein Ka

R in the
obvious way:

fmnp ¼ Ka
RmK

b
RnK

c
Rpfabc: ð4:27Þ

It follows that we shall have

Ĥ2
mn ¼ c2CAgmn; Ĥ2 ¼ c2CA dimG: ð4:28Þ

Plugging the ansatz into the dilaton field equation (4.22)
implies that we can take ϕ̂ ¼ 0 if m is given by

m2 ¼ 1

3
c2CA dimG: ð4:29Þ

The R̂mn components of the R̂MN equation (4.23) then
imply

Rmn ¼
1

4
c2CAgmn; ð4:30Þ

which is precisely satisfied if the metric gmn onG is taken to
be the one considered in Sec. IVA. The Ĥμ̂ ν̂ ρ̂ equation of
motion (4.24) is satisfied identically. Since the equation
for the mixed components R̂μn of the Einstein equation is
satisfied trivially, this leaves only the lower-dimensional
spacetime components R̂μν of the Einstein equation (4.23),
and this gives

Rμν ¼ 0: ð4:31Þ

Thus, we have proved that we indeed have a Minkowski ×
G vacuum solution with ϕ̂ ¼ 0 and Ĥmnp given by (4.26),
provided that the coefficient m2 of the anomaly term is
given by (4.29) and that the metric gmn on the group
manifold G is chosen as described in Sec. IVA.
An identical conclusion arises from the consistent

truncation outlined in the last subsection. It is straightfor-
ward to see that a Minkowski space with a constant dilaton
is captured by FABC ¼ 0 and FA ¼ 0. Hence, solving the
field equations for the product space Minkowski ×G boils
down to solving the field equations,

RAB ¼ 0 and R −
m2

2
¼ 0; ð4:32Þ

in the internal space [15]. Here, RAB denotes the gener-
alized Ricci tensor, and R is the generalized Ricci scalar.
Both admit very simple expressions for the generalized
Scherk-Schwarz truncation we are concerned with, namely

RAB ¼ 8PðACP̄BÞDðFCEGFDFHPEFP̄GH þ FCDEFFPEFÞ;
ð4:33Þ

R ¼ PABPCD

�
P̄EF þ 1

3
PEF

�
FACEFBDF − 2PABFAFB:

ð4:34Þ

According to (4.17), only projections of FABC using
exclusively P or P̄ give nonvanishing contributions. For
this observation, we immediately see that RAB vanishes
(remember FA ¼ 0) as expected. In the same vein, we
obtain

R ¼ 1

6
c2fabcfabc ¼

1

6
c2CA dimG; ð4:35Þ

and therefore, recover (4.29) from the second equation
in (4.32).

V. PSEUDO-SUPERSYMMETRY OF THE
MINKOWSKI × G VACUUM

To check if this background at least partially preserves
pseudo-supersymmetry, we need to plug it into the fer-
mionic pseudo-supersymmetry transformation rules to
see whether δψ̂M and δλ̂ vanish for some subset of the
parameters ϵ̂. The calculations can be set up along the same
lines as those described in [51] for compactifications of
d ¼ 11 supergravity. In particular, it will involve decom-
posing the spinors of the D-dimensional spacetime into
tensor products of spinors in the ðD − dimGÞ-dimensional
spacetime and spinors on the group manifold G. See
Appendix C for a summary of how the Dirac matrices
may be decomposed in the various cases of even or odd-
dimensional spacetime and internal space.
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As a preliminary check, consider the dilatino trans-
formation rule in (2.3), together with the conformal
anomaly contribution in (2.7). In the background we are
considering, with Φ ¼ 0 and the 3-form given by (4.26),
we shall have

δλ̂ ¼ 1

12
cfabcΓ̂abcϵ̂þ i

2
ffiffiffi
2

p ϵ̂: ð5:1Þ

We shall consider the case β ¼ −1, where, as we discussed
before, the conformal anomaly extension is simpler. Using

Γ̂abcΓ̂def ¼ Γ̂abc
def þ 9Γ̂½ab½deδ

c�
f� − 18Γ̂½a½dδ

bc�
ef� − 6δabcdef;

ð5:2Þ

it follows that if we define

Q̂≡ 1

6
fabcΓ̂abc; ð5:3Þ

then

Q̂2 ¼ −
1

6
fabcfabc ¼ −

CA dimG
6

ð5:4Þ

times the identity matrix. By the Cayley-Hamilton theorem,
and noting that trQ̂ ¼ 0, this means that Q̂ has the
eigenvalues,

�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CA dimG

6

r
; ð5:5Þ

with equal numbers of each. Thus, with m given, from
(4.29), by

m ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA dimG

3

r
; ð5:6Þ

we see that if ϵ̂ is any of the eigenvectors with eigenvalue

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CA dimG

6

q
, we shall get δλ̂ ¼ 0. The dilatino transforma-

tions suggest, therefore, that the Minkowski ×G back-
ground preserves one half of the pseudo-supersymmetry.
To confirm this, we now turn to the gravitino trans-

formation rule. Assuming again that β ¼ −1 we have,
from (2.3),

δψ̂ μ̂ ¼ D̂μ̂ϵ̂ −
1

8
Ĥμ̂ ν̂ ρ̂Γ̂ν̂ ρ̂: ð5:7Þ

In the internal group manifold directions, we have

δψ̂m ¼ ∂mϵ̂þ
1

4
ðωabÞmΓ̂abϵ̂þ c

8
fmnpΓ̂npϵ̂;

¼ ∂mϵ̂; ð5:8Þ

after using the expression (4.6) for the spin connection on
the group manifold. Finally, in the Minkowski spacetime
directions, we have

δψ̂μ ¼ ∂μϵ̂: ð5:9Þ

Thus, we see that the pseudo-supersymmetry variations of
both the dilatino and the gravitino vanish, provided that ϵ̂ is

an eigenstate of Q̂with eigenvalue−i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CA dimG

6

q
, and that ϵ̂ is

independent of all the coordinates.
Again, we rederive this result using the relation between

generalized geometry and pseudo-supersymmetry estab-
lished in Sec. III where we consider the transformation
of the gravitino first. Combining (3.3), (3.11), (3.16),
and (4.17) yields

δψ̂ ā ¼ ∇ð−Þ
ā ϵ̂ ¼

ffiffiffi
2

p
Dāϵ̂þ

1ffiffiffi
2

p ωābcΓ̂bcϵ̂ ¼ kmRā∂mϵ̂ ¼ 0;

ð5:10Þ

which tells us that the spinor ϵ̂ has to be constant. In the
same vein, we compute the variation of the generalized
dilatino. It consists of two contributions: First, we evaluate

δρ̂¼ Γ̂a∇ðþÞ
a ϵ̂¼ 1ffiffiffi

2
p ωabcΓ̂aΓ̂bcϵ̂¼ 1

12
cfabcΓ̂abcϵ̂¼ 1

2
cQ̂ ϵ̂;

ð5:11Þ

where we take into account that partial derivatives on ϵ̂ have
to vanish. Second, we include the conformal anomaly term,
which alters the transformation of the generalized dilatino
according to

δextraρ ¼ i

2
ffiffiffi
2

p mϵ̂ ð5:12Þ

for β ¼ −1. Together, (5.11) and (5.12) yield

Q̂ ϵ̂ ¼ −
iffiffiffi
2

p mϵ̂; ð5:13Þ

which leads to the same result as already discussed above.
One may also consider more general vacuum solutions of

the form ðMinkowskiÞD−dimG ×Gs, where Gs is a group
manifold endowed with a “squashed”metric that, while still
being invariant under the left action of the group GL, is no
longer invariant under the right action of the full group GR.
We have looked at examples where G is taken to be SUð3Þ
or SOð5Þ, and although these can indeed give rise to
squashed solutions, we find that there is no surviving
pseudo-supersymmetry in these backgrounds. The details
of the SOð5Þ example are described in Appendix D.
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APPENDIX A: SPINORS IN D DIMENSIONS

Here, we reproduce a table from [4], showing the types
of spinor and the corresponding values of the constant β
that can arise in each dimension.

APPENDIX B: REWRITING OF THE
PSEUDO-SUPERGRAVITY LAGRANGIAN

In this Appendix, we discuss the proof that the pseudo-
supersymmetric DFT Lagrangian (3.5) reduces to the
pseudo-supergravity Lagrangian (2.2) after imposing the
section condition. Most importantly, we do this computa-
tion for arbitrary dimensions D and take into account the
dimension-dependent properties of the spinor representa-
tions (as in Appendix A).
Before we begin, let us review the relevant properties of

the fermionic fields we encounter. All of them are scalars
under OðD;DÞ transformations and generalized diffeomor-
phisms. Furthermore, the gravitino ψa transforms as a vector
under OðDÞL and a spinor under OðDÞR, while the dilatino λ,
the generalized dilatino ρ, and the pseudo-supersymmetric
variation parameter ϵ transform as spinors under OðDÞR.
Moreover, we will frequently use the two relations,

λ̄Γμ1−μnχ ¼ tnχ̄Γμ1−μnλ;
¯Γμ1−μnλ ¼ t0tnλ̄Γμ1−μn ; ðB1Þ

which hold in arbitrary dimensions for both Majorana
and symplectic-Majorana spinors (as appropriate), where

tn ¼ −βn−1ð−1Þnðn−1Þ2 . The first relation arises from the
observation that CΓðnÞ’s symmetry properties are always
opposite for Majorana spinors and symplectic-Majorana
spinors when they share the same value for β (see
Table I). The second relation originates from the definition
of the Majorana conjugate λ̄ ¼ λTC and the property,

ΓT
μ ¼ βCΓμC−1: ðB2Þ

Because the generalized dilatino ρ has the same trans-
formation behavior as the pseudo-supersymmetry variation
parameter ϵ under double Lorentz transformations, we
immediately obtain from (3.4) that

ψ̄a∇ð−Þ
a ρ ¼ ψ̄μDμρ −

1

8
ψ̄μHμνρΓνρρ;

ρ̄Γa∇ðþÞ
a ρ ¼ ρ̄ΓμDμϵ −

1

24
ρ̄HμνρΓμνρρ −

1

24
ρ̄Γμ∂μΦρ;

ðB3Þ

where the last term in the second line vanishes because
of (B1):

ρ̄Γμρ ¼ −ρ̄Γμρ ¼ 0: ðB4Þ

Rewriting the last remaining term in the fermionic part

of (3.5), i.e., −ψ̄aΓb∇ðþÞ
b ψa, is more involved because the

gravitino ψa is a spinor under OðDÞR and a vector under
OðDÞL. Eventually, we find

ψ̄aΓb∇ðþÞ
b ψa ¼ ψ̄μγνDνψμ −

1

24
ψ̄σHμνρΓμνρψσ

−
1

24
ψ̄σΓμ∂μΦψσ −

1

2
Hμνρψ̄

μΓνψρ; ðB5Þ

where the third term on the right-hand side will also vanish
for the same reason as in (B4).
After rewriting the fermionic part of the DFT Lagrangian

(3.5) as

e2dLDF ¼ −Ψ̄μγνDνΨμ þ
1

4
Ψ̄μ=HΨμ þ

1

2
HμνσΨ̄μγνΨσ

− βρ̄γμDμρþ
β

24
ρ̄Hμνσγ

μνσρ

þ 2Ψ̄μDμρ −
1

4
ψ̄μHμνσΓνσρ; ðB6Þ

we start to match it with the fermionic part of pseudo-
supersymmetric Lagrangian (2.2) expressed in terms of ρ
instead of λ,

e2dLF ¼ −Ψ̄μΓμνσDνΨσ − Ψ̄μΓμΓνΓδDνΨδ þ 2Ψ̄σΓσΓμνDμΨν −DρΨ̄μΓμΨρ − Ψ̄μΓμDσΨσ

−DνΨ̄μΓνΓμΓδΨδ − Ψ̄μΓνΓμDνΓδΨδ − βρ=Dρþ β

24
ρ̄ΓνγσρHνγσ þ βρ̄DνΓνΓδΨδ

þ 1

24
ðΨ̄μΓμνγσλΨλ þ β ¯ΓμΨμΓνγσΓδΨδ − 2Ψ̄μΓμνγσΓδΨδÞHνγσ þ Ψ̄μΓμΓνDνρ

− 2βρ̄ΓμνDμΨν þDνΨ̄μΓνΓμρþ Ψ̄μΓνΓμDνρ −
β

24
ρ̄ΓνρσΓδΨδHνρσ

þ 1

12
Ψ̄μΓμνγσρHνγσ þ

1

4
Hνγσψ̄

νΓγψσ −
β

24
¯ΓμΨμΓνγσρHνγσ; ðB7Þ
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where we have substituted λ ¼
ffiffi
β

p
i ðρ − ΓμΨμÞ and per-

formed partial integrations to remove ∂μΦ terms).
Suppressing Γ matrices, numerical factors, and indices,

we may identify the following contributions,

ψ̄ψH; ρ̄Ψ; Ψ̄Ψ; ρ̄ΨH; ρ̄ρ; ρ̄ρH; ðB8Þ

to (B7). We now analyze each of them individually to prove
that (B6) agrees with (B7):

(1) ψ̄ψH
In this category, the terms,

1

24
ðΨ̄μΓμνρσλΨλ þ β ¯ΓμΨμΓνρσΓδΨδ

− 2Ψ̄μΓμνρσΓδΨδÞHνρσ þ
1

4
Hνρσψ̄

νΓρψσ; ðB9Þ

contribute. Using the relations,

¯Γμψμ ¼ βψ̄μΓμ;

ψ̄μΓμΓνρσΓδψδHνρσ ¼ ψ̄μΓμνρσδψδHνρσ − ψ̄μΓνρσψμHνρσ þ 3ψ̄μΓρσδψδHμρσ þ 3ψ̄μΓμνρψσHνρσ þ 6ψ̄νΓρψσHνρσ;

ψ̄μΓμνρσΓδψδHνρσ ¼ ψ̄μΓμνρσδψδHνρσ − ψ̄μΓνρσψμHνρσ þ 3ψ̄μΓμνρψσHνρσ; ðB10Þ

(B9) can be written as

1

4
ψ̄μ=Hψμ þ

1

2
Hμνσψ̄

μΓνψσ: ðB11Þ

(2) ρ̄Ψ
Here, the terms,

βρ̄DνΓνΓδΨδ þ Ψ̄μΓμΓνDνρ − 2βρ̄ΓμνDμΨν þDνΨ̄μΓνΓμρþ Ψ̄μΓνΓμDνρ; ðB12Þ

contribute. The second term and the last term can be combined to

2Ψ̄μDμρ; ðB13Þ

while the sum of the remaining terms vanishes.
(3) Ψ̄Ψ

There are seven terms what contribute to this category:

−Ψ̄μΓμνρDνΨρ−Ψ̄μΓμΓνΓδDνΨδþ2Ψ̄σΓσΓμνDμΨν−DρΨ̄μΓμΨρ− Ψ̄μΓμDρΨρ−DνΨ̄μΓνΓμΓδΨδ− Ψ̄μΓνΓμDνΓδΨδ:

ðB14Þ

Using the relations,

ΓμΓνΓδ ¼ Γμνδ þ 2ημ½νΓδ� þ Γμηνδ;

ΓσΓμν ¼ Γσμν þ 2ησ½μΓν�; ðB15Þ

one finds that (B14) simplifies to

− Ψ̄μΓμνρDνΨρ − Ψ̄μΓμνδDνΨδ − Ψ̄μΓδDμΨδ þ ψ̄μΓνDνΨμ − ψ̄μΓμDνΨν þ 2Ψ̄σΓσμνDμΨν þ 2Ψ̄σΓνDσΨν

− 2Ψ̄σΓμDμΨσ −Dρψ̄μΓμψρ − Ψ̄μΓμDρΨρ −DνΨ̄μΓνμδΨδ −DνΨ̄νΓδΨδ þDνΨ̄μΓμΨν −DνΨ̄μΓνΨμ

− Ψ̄μΓννδDνΨδ − Ψ̄μΓδDμΨδ þ Ψ̄μΓμDνΨν − Ψ̄μΓνDνΨμ: ðB16Þ

All terms with Γð3Þ,

−Ψ̄μΓμνρDνΨρ − Ψ̄μΓμνδDνΨδ þ 2Ψ̄σΓσμνDμΨν −DνΨ̄μΓνμδΨδ − Ψ̄μΓνμδDνΨδ; ðB17Þ

cancel after using (B1). The remaining terms,
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− Ψ̄μΓδDμΨδ þ ψ̄μΓνDνΨμ − ψ̄μΓμDνΨν þ 2Ψ̄σΓν∇σΨν − 2Ψ̄σΓμDμΨσ −Dρψ̄μΓμψρ − Ψ̄μΓμDρΨρ

−DνΨ̄νΓδΨδ þDνΨ̄μΓμΨν −DνΨ̄μΓνΨμ − Ψ̄μΓδDμΨδ þ Ψ̄μΓμDνΨν − Ψ̄μΓνDνΨμ; ðB18Þ

fall into three different categories:
(a) A Γ matrix contracted with a gravitino,

−Ψ̄μΓδDμΨδ þ 2Ψ̄σΓνDσΨν − Ψ̄μΓδDμΨδ:

ðB19Þ

(b) A Γ matrix contracting with a derivative,

Ψ̄μΓνDνΨμ − 2Ψ̄σΓμDμΨσ −DνΨ̄μΓνΨμ

− Ψ̄μΓνDνΨμ: ðB20Þ

Again, (B1) is used to simplify this expression to

−Ψ̄μγνDνΨμ: ðB21Þ

(c) Finally, a derivative is contracted with a grav-
itino,

− Ψ̄μΓμDνΨν −DρΨ̄μΓμΨρ − Ψ̄μΓμDρΨρ

þ Ψ̄μΓμDνΨν þDνΨ̄μΓμΨν −DνΨ̄νΓδΨδ:

ðB22Þ

All these terms cancel.
(4) ρ̄ΨH

The following terms contribute:

−
β

24
ρ̄ΓνγσΓδΨδHνγσ −

β

24
ΓμΨμΓνγσρHνγσ

þ 1

12
Ψ̄μΓμνγσρHνγσ: ðB23Þ

Using the relations,

Γμλ ¼ t0t1λ̄Γμ ¼ βλ̄Γμ;

ΓμΓνρσHνρσ ¼ ΓμνρσHνρσ þ 3ημνΓρσHνρσ; ðB24Þ

and exploiting the total antisymmetry of Hμνρ, we
find that (B23) is equal to

−
1

4
Ψ̄μΓγσρHμγσ: ðB25Þ

(5) ρ̄ρ
Only one term, −βρ=Dρ, has the required structure.

It does not admit further simplifications.
(6) ρ̄ρH

Again, there is only one term, β
24
ρ̄ΓνρσρHνρσ , with

no need for further simplification.

We conlcude that the fermionic Lagrangians,

LF ¼ LDF; ðB26Þ

match for arbitrary dimensions D. For D ¼ 10, this
match has already been established in [34]. Matching
the bosonic contribution is straightforward if the section
condition is imposed and follows the known calculations in
the literature [14,15].

APPENDIX C: DECOMPOSITION
OF DIRAC MATRICES

In a Kaluza-Klein reduction, we need to write the
higher-dimensional Dirac matrices Γ̂A in terms of tensor
products of lower-dimensional spacetime Dirac matrices γα
and internal space Dirac matrices Γa. The way this
works depends upon whether the various space(time)s
are even-dimensional or odd-dimensional. A table of
how the decompositions may be made is given in
Appendix A of [57]:

ðEven; oddÞ∶ Γ̂α ¼ γα ⊗ 1; Γ̂a ¼ γ� ⊗ Γa;

ðOdd; evenÞ∶ Γ̂α ¼ γα ⊗ Γ�; Γ̂a ¼ 1 ⊗ Γa;

ðEven; evenÞ∶ Γ̂α ¼ γα ⊗ 1; Γ̂a ¼ γ� ⊗ Γa;

or Γ̂α ¼ γα ⊗ Γ�; Γ̂a ¼ 1 ⊗ Γa;

ðOdd; oddÞ∶ Γ̂α ¼ σ1 ⊗ γα ⊗ 1; Γ̂a ¼ σ2 ⊗ 1 ⊗ Γa;

ðC1Þ

where the first entry in the pair enclosed in parentheses
indicates whether the lower-dimensional spacetime is
even or odd-dimensional, and the second entry indicates
whether the internal space is even or odd-dimensional. γ�
denotes the chirality operator in even-dimensional lower-
dimensional spacetimes, and Γ� denotes the chirality
operator in even-dimensional internal spaces (with
γ2� ¼ þ1 and Γ2� ¼ þ1). In the (odd, odd) case, the extra
factor involving the Pauli matrices σ1 and σ2 ensures that
the Γ̂A matrices obey the Clifford algebra. They are needed
because the Dirac matrices Γ̂A in this case are twice the size
of the tensor products of the lower-dimensional and the
internal Dirac matrices.

APPENDIX D: SQUASHED GROUP MANIFOLD
SOLUTIONS

It is well known that any compact semisimple group
manifold other than SUð2Þ or SOð3Þ admits at least one
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additional, inequivalent Einstein metric, over and above the
standard bi-invariant metric. This raises the possibility that
there might exist Minkowski ×G vacua in which the metric
on the group manifold G is not the bi-invariant one. Such
solutions would not necessarily involve a squashed Einstein
metric on G, since the form of the 3-form field strength
Hmnp in the squashed vacuum may also change. One
approach to looking for such squashed solutions is to
consider families of squashed metrics on G, with an
associated deformation of the 3-form field. The families
of metrics in question here will be homogeneous, invariant
still under the left-acting copy of G, but no longer invariant
under the full right action of G. Such metrics can be
obtained by rescaling the left-invariant vielbeins by con-
stant factors. A detailed discussion of the construction of
squashed Einstein metrics using this procedure can be
found, for example, in [58].
One can look for squashed vacuum solutions on a case

by case basis. We have checked two examples, one being a
family of squashed metrics on the SUð3Þ group manifold
and the other a family of squashed metrics on the SOð5Þ
group manifold. In neither case do we find any squashed
vacua in the bosonic string for which the squashed metric
on the group manifold is of positive-definite signature. For
the case of SOð5Þ, we do find one squashed example for
which the metric has Lorentzian signature [that is, (1,9)
signature]. Since this may be of some interest, we shall
present some details below.
We make define left-invariant 1-forms LIJ for SOð5Þ,

with I and J ranging over 1 to 5, and LIJ ¼ −LJI , obeying
the exterior algebra,

dLIJ ¼ LIK ∧ LKJ: ðD1Þ

Following [58], we split the indices into I ¼ ð1; 2; iÞ, and
here, we define the “unsquashed” vielbein,

ēi ¼ L1i; ēiþ3 ¼ L2i; ē7 ¼ L34;

ē8 ¼ L35; e9 ¼ L45; ē10 ¼ L12: ðD2Þ

When we need to assign specific numerical values to
tangent-space indices, it is more convenient to put the
index downstairs. We consider metrics,

ds210 ¼ x1ðē21 þ ē22 þ ē23Þ þ x2ðē24 þ ē25 þ ē26Þ
þ x3ðē27 þ ē28 þ ē29Þ þ x4ē210; ðD3Þ

where ðx1; x2; x3; x4Þ are constants. Correspondingly, we
have a vielbein,

e1¼
ffiffiffiffiffi
x1

p
ē1; e2¼

ffiffiffiffiffi
x1

p
ē2;…;e9¼ ffiffiffiffiffi

x3
p

ē9; e10¼
ffiffiffiffiffi
x4

p
ē10:

ðD4Þ

Thus, we have a four-parameter family of homogeneous
metrics on SOð5Þ, which are invariant under the left action
of the full SOð5Þ group but invariant only under an SOð3Þ
subgroup of right-acting transformations. As was discussed
in [58], there are three inequivalent Einstein metrics in this
family, corresponding to (up to overall scale),

ðx1;x2;x3;x4Þ¼ð1;1;1;1Þ; ð14;14;4;19Þ; ð1;2;1;2Þ:
ðD5Þ

The first of these is the standard bi-invariant metric.
In order to obtain a solution of the bosonic string of the

form ðMinkowskiÞ ×Gsquashed, we need also to construct
a 3-form Gð3Þ that is closed and also co-closed (i.e., the
3-form must be harmonic). In the case of the bi-invariant
vacuum, we just used a constant multiple of the structure
constants fabc. In fact, we could write

Gð3Þ ¼
1

3
dēa ∧ ēa ¼ 1

6
fabcēa ∧ ēb ∧ ēc: ðD6Þ

This is manifestly closed, and one can easily verify that it is
also co-closed in the bi-invariant metric.
There must always exist an harmonic 3-form regardless

of whether the metric is bi-invariant or squashed, since the
topological number b3 (the third Betti number) is equal to 1
regardless of the metric. One way to construct the required
harmonic 3-form is by a brute-force Mathematica calcu-
lation, starting with a general 3-form,

Gð3Þ ¼
1

6
Gabcea ∧ eb ∧ ec; ðD7Þ

and solving for the (constant) components Gabc, such that
dGð3Þ ¼ 0 ¼ d � Gð3Þ. In fact, we find that the harmonic
3-form is exactly the same as the one constructed in
Eq. (D6) (i.e., still written using the bi-invariant vielbein
ēa). Of course, when one calculates the Hodge dual and
d � Gð3Þ (or equivalently, the divergence ∇aGabc), the fact
that the metric is squashed enters in the calculation.
Substituting Ĥmnp ¼ �cGmnp and the direct sum of the

Minkowski metric and the squashed SOð5Þ metric (D3)
into the equations of motion for the bosonic string (with
dilaton set to zero), we find two inequivalent solutions.
Up to scaling, they are

ðx1;x2;x3;x4Þ¼ð1;1;1;1Þ; c¼1

3
; m2¼20; ðD8Þ

which is the bi-invariant solution of the kind we found
earlier for a general group G, and

ðx1;x2;x3;x4Þ¼ð1;1;3;−3Þ; c¼1; m2¼56

3
: ðD9Þ
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We see from (D3) that the squashed metric on SOð5Þ in this
solution has Lorentzian (1,9) signature, because x4 is
negative.
It was noted in [58] that although various examples of

squashed group manifolds were checked and many squashed
Einstein metrics were found, all them had either Euclidean
signature or else more than one timelike direction. Our

squashed SOð5Þ bosonic string vacuum (D9) thus provides
a first example of a Lorentzian signature group manifold
metric arising as a solution in a theory of physical interest.We
can, of course, take the flat directions in the vacuum solution
to beEuclidean space rather thanMinkowski spacetime in this
case so that the signature of the entire higher-dimensional
bosonic string spacetime will be ð1; D − 1Þ.
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