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Making use of the gauge/string duality, it is possible to study some aspects of the string breaking
phenomenon in the three-quark system. Our results point out that the string breaking distance is not
universal and depends on quark geometry. The estimates of the ratio of the string breaking distance in the
three-quark system to that in the quark-antiquark system would range approximately from 2

3
to 1.

In addition, it is shown that there are special geometries which allow more than one breaking distance.
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I. INTRODUCTION

Since the J=Ψ discovery in 1974, there remains a serious
puzzle concerning triply heavy baryons [1]. On the theo-
retical side, the challenge is to explain the structure and
properties of such baryons, and thus reach the level of
knowledge similar to that of charmonium and bottomo-
nium. It might be expected that, based on the success with
the quarkonium spectroscopy, the potential (quark) models
would be useful in doing so [2]. At that stage, one would
expect to gain important insights into understanding how
baryons are formed from quarks and gluons.
A static three-quark potential is one of the most

important inputs to the potential models and also a key
to understanding the phenomenon of quark confinement in
baryons. The potential as a nonperturbative object has been
studied in the context of lattice gauge theory [3].1 It is
determined from the expectation value of a baryonic
Wilson loop. Such a loop is defined in a gauge-invariant
manner as W3Q ¼ 1

3!
ϵabcϵa0b0c0Uaa0

1 Ubb0
2 Ucc0

3 , where Ui are
the path-ordered exponents along the paths shown in Fig. 1.
In the limit of large T, the expectation value of W3Q can be
written in the form

hW3Qi ¼
X∞
n¼0

wne
−VðnÞ

3Q
T: ð1:1Þ

Here Vð0Þ
3Q is the ground state energy, also called the three-

quark potential, and the remaining VðiÞ
3Q’s are excited state

energies. These are called hybrid three-quark potentials.
The crucial fact underlying the lattice calculations is that

these were performed in SUð3Þ pure gauge theory. Because
of this, the three-quark potential increases as quarks are
pulled apart. By contrast, it is expected that in the presence
of light quarks the potential flattens out. In string models of
hadrons such a phenomenon is interpreted as string break-
ing [5]. It is worth noting that in the QQ̄ system string
breaking was established by numerical simulations [3]. In
particular, the estimates of a scale (string breaking distance)
characterizing this phenomenon were recently obtained for
different light quark masses [6].
The strong decay of a heavy meson into a pair of heavy-

light mesons

QQ̄ → Qq̄þ Q̄q ð1:2Þ

can be interpreted as breaking a single string by light quark-
antiquark pair creation. In the case of light quarks with
equal masses, one way to describe the ground state energy
of the QQ̄ system is to consider a two-state system with a
model Hamiltonian [7]

H ¼
�
EQQ̄ g

g 2EQq̄

�
: ð1:3Þ

Here EQQ̄ is the energy of two separated heavy quark
sources which are connected by a string and 2EQq̄ is the
energy of a noninteracting pair of heavy-light mesons. The
off-diagonal element g describes the mixing between these
two states. The eigenvalues of this model Hamiltonian give
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1For more recent developments, see Ref. [4].
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the energy levels of the QQ̄ system. In this case a
characteristic scale, called the string breaking distance, is
naturally defined by [6,7]

EQQ̄ðlQQ̄Þ ¼ 2EQq̄: ð1:4Þ

In the string models of hadrons one thinks of a baryon as
a system of three quarks connected by a Y-shaped string
configuration [5]. Such a picture implies the existence of
several decay channels

ð1:5Þ

defined by a number of broken strings or, equivalently, by a
number of light quark-antiquark pairs. To formalize the
analogy with the mesonic case, one could consider a model
Hamiltonian

H¼

0
BBB@
E3Q g1 g2 g3
g1 EQQqþEQq̄ g12 g13
g2 g12 EQqqþ2EQq̄ g23
g3 g13 g23 E3qþ3EQq̄

1
CCCA ð1:6Þ

for a four-state system. The E’s represent energies of quark
sources connected by strings. Here we assume that hadrons
are noninteracting, and hence the total energies are the
sums of the energies of the individual hadrons. The off-
diagonal elements describe the mixing between these four
states.
The two important differences from the QQ̄ system are

(i) that it is not clear how to define the string breaking
distance by equating the diagonal elements of the model

Hamiltonian. Indeed, the relative position of the heavy
quarks, placed at vertices of a triangle, is defined by three
parameters, and the equations can only say how the
minimal energy state evolves in the parameter space.
Transitions between such different minimal energy states
occur at critical parameter values. In general, given the
critical values, one cannot determine the critical string
distance without referring to any particular string model.
Though the exceptions exist for some symmetric cases, as
we will see in Secs. III and V, (ii) by equating the diagonal
elements one can get at least five scales. If so, it is not
a priori that the ground state energy depends only on one
of them.
The basic task of this paper is to further advance the use

of effective string models in QCD. Here we continue our
study of the static three-quark potentials [8], elaborating on
the phenomenon of string breaking. So far this issue has not
been discussed in the literature, neither in the context of
lattice gauge theory nor in the context of the gauge/string
duality, particularly in AdS=CFT. The rest of the paper is
organized as follows. For orientation, we begin in Sec. II by
setting the framework and recalling some preliminary
results. Then, in Sec. III, we look at two special geometric
configurations of heavy quarks. An important feature of
those is symmetry which allows one to actually determine
the string breaking distance from the critical values of
parameters without referring to any specific string model.
We continue in Sec. IV with two types of geometries. These
interpolate between a diquark limit, in which two heavy
quarks are very close and the remaining one is far away
from these two, and the geometries of Sec. III. In Sec. V we
provide more details about the special geometries of
Sec. III. Finally, we make concluding remarks in
Sec. VI. Appendix A contains our notation and definitions.
To make the paper more self-contained, we include many
necessary results and technical details in Appendixes B–D.

II. THE MODEL

In the gauge/string duality, the expression for the
expectation value of a baryonic Wilson loop can be put
into a semiclassical form

hW3Qi ¼
X
n

wne−Sn ; ð2:1Þ

where Sn, whose relative weight is wn, is expressed in terms
of an energy of the string configuration En and a time
interval T by Sn ¼ EnT. The En’s are the diagonal elements
of the model Hamiltonian (1.6). That is the key point which
already allowed us to compare the results obtained for the
QQ̄ system in Ref. [9] to those of lattice gauge theory.
For three colors, string configurations are built in

analogy with tree diagrams of φ3 field theory [5]. The
dictionary is as follows. A propagator now means a string
which is represented by a solid line. Avertex means a string

FIG. 1. A baryonic Wilson loop in SUð3Þ gauge theory.
A three-quark state is generated at t ¼ 0 and then annihilated
at t ¼ T.

OLEG ANDREEV PHYS. REV. D 104, 026005 (2021)

026005-2



junction, nowadays called the baryon vertex. The baryon
vertex always has three strings attached to it. Strings also
end on quarks which play the role of sources. An important
ingredient in describing string configurations on AdS5-like
geometries is a gravitational force. This force acts on all
objects. In particular, it bends strings which are now
represented as curves. Heavy quark sources are set on
the boundary of five-dimensional space and light quark
sources in its interior.
To further illustrate these ideas, we employ a particular

effective string model. Though it is not exactly dual to
QCD, our reasons for pursuing this model are as follows:
(i) it would be good to gain some insight into any problems
for which there are no predictions from phenomenology
and the lattice, but which can be solved with the effective
string model already at our disposal; (ii) because the results
provided by this model on the quark-antiquark and three-
quark potentials are consistent with the lattice calculations
and QCD phenomenology [8,10]; (iii) because analytic
formulas are obtained by solving the model; (iv) because
the aim of our work is to make predictions which may then
be tested by means of other nonperturbative methods, e.g.,
numerical simulations.
We will consider only the simplest class of five-

dimensional geometries which is an extension of the
geometry used for successfully modeling the heavy quark
potentials in pure gauge theory. The extension is due to a
scalar field which is responsible for light quarks at string end
points and, as a consequence, for string breaking [9].2 This
background is of the form

ds2 ¼ esr
2 R2

r2
ðdt2 þ dx⃗2 þ dr2Þ; T ¼ TðrÞ; ð2:2Þ

where T is the scalar field. In the absence of it, the above
metric reduces to a one-parameter deformation, with a
deformation parameter s, of that for the Euclidean AdS5
space of radius R. The geometry has two important
features: (i) aside from the boundary at r ¼ 0, there is a
soft wall at z ¼ 1=

ffiffiffi
s

p
which prevents strings from going

deep into the bulk and (ii) a corresponding gravitational
force has only a radial component.
As noted above, we need three basic ingredients. The

first is the fundamental string governed by the Nambu-Goto
action

SNG ¼ 1

2πα0

Z
d2ξ

ffiffiffiffiffiffiffi
γð2Þ

q
: ð2:3Þ

Here γ is an induced metric, α0 is a string parameter, and ξi

are worldsheet coordinates.
The second ingredient is the baryon vertex. In the context

of AdS=CFT correspondence it is a five-brane [12]. At
leading order in α0 its dynamics is described by the action

Svert ¼ T 5

R
d6ξ

ffiffiffiffiffiffiffi
γð6Þ

p
, where T 5 is a brane tension and ξi

are worldvolume coordinates. Since the brane is wrapped
on a five-dimensional internal space X, the vertex looks
point-like in Euclidean space (2.2). Following Ref. [8], we
pick a static gauge ξ0 ¼ t and ξa ¼ θa, with θa coordinates
on X. The action is then

Svert ¼ τv

Z
dt

e−2sr
2

r
; ð2:4Þ

where τv is a dimensionless parameter defined by τv ¼
T 5RvolðXÞ and volðXÞ is a volume of X.
The last ingredient which takes account of light quarks at

string end points is the scalar field. Since we wish to mimic
the u and d quarks of QCD which have equal masses, we
add to the worldsheet action a boundary term Sq ¼

R
dτeT.

Such a term is usual for strings propagating in an open
string tachyon background. The integral is over a world-
sheet boundary parametrized by τ and e is a boundary
metric. As in Ref. [9], we consider only the case of a
constant background T0 and worldsheets whose boundaries
are lines in the t direction. In that case, the action written in
the static gauge is

Sq ¼ m

Z
dt

e
s
2
r2

r
; ð2:5Þ

where m ¼ RT0. This is obviously the action of a particle of
mass T0 at rest.
Finally, let us note that in practice it is not so convenient

to use the constant factors in the above actions as the model
parameters. Instead, we choose the model parameters as
follows: g ¼ R2

2πα0, k ¼ τv
3g, and n ¼ m

g
.

III. A FIRST LOOK AT TWO SPECIAL CASES

To gain an initial intuition about string breaking in the
three-quark system, we consider two simple geometries.
The first is a geometry where the heavy quarks are at the
vertices of an equilateral triangle and the second where the
heavy quarks are on a straight line with equal separation.
The basic reason for considering these particular geom-
etries is that the string breaking distance can be naturally
defined in terms of the quark positions. In this section, we
restrict to the decay mode QQQ → QQqþQq̄. We return
to this question in Sec. V, after describing the string
configuration for qqq.

2This is an attempt to describe light sea quarks along the lines
of Ref. [11], but in the framework of the worldsheet formalism.
Since such a scalar signals an instability of a fundamental string,
it seems natural to call it a tachyon. If so, it could correspond to an
open string tachyon because its action is given by an integral over
a worldsheet boundary. One difficulty with this interpretation is
that the scalar field has a real mass [11]. So, this tachyon is not the
usual tachyon around the string perturbative vacuum in flat space.
We introduce a single field, because in what follows we will be
interested only in the case of two light quarks of equal mass.
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A. Equilateral triangle geometry

We begin with the equilateral triangle geometry. As
usual, we place the heavy quarks at the boundary points of
the five-dimensional space and consider static string
configurations in which each quark is a string end point.
Strings join at baryon vertices, or are terminated by light
quarks in the interior.

1. String configurations

Since we are interested in a decay mode which is due to
one pair of light quarks, we need to consider only two string
configurations. These are shown in Fig. 2.3

First, let us consider the connected configuration. For the
background geometry (2.2), the energy as a function of
quark separation, can be written in parametric form [8]

l ¼
ffiffiffi
3

s

r
L−ðλ; vÞ;

E3Q ¼ 3g
ffiffiffi
s

p �
E−ðλ; vÞ þ k

e−2vffiffiffi
v

p
�
þ 3c; ð3:1Þ

where v is a parameter and c is a normalization constant
(see Appendix B). The functions L−, E− are defined in
Appendix A. λ is a function of v such that

λðvÞ¼−ProductLog½−ve−vð1−k2ð1þ4vÞ2e−6vÞ−1
2�: ð3:2Þ

Here ProductLog denotes the ProductLog function [13].
The parameter v runs from 0 to v

▵
, where v

▵
is a solution to

λðvÞ ¼ 1 [see also Eq. (4.14) below].
For future reference, note that the large-l behavior of

E3Q is

E3Q ¼
ffiffiffi
3

p
σl − 3g

ffiffi
s

p
I3Q þ 3cþ oð1Þ; ð3:3Þ

with

I3Q ¼ Iðv
▵
Þ − k

e−2v▵ffiffiffiffiffi
v
▵

p ; σ ¼ egs: ð3:4Þ

Here σ is the string tension and I is defined by Eq. (A6). As
one can easily recognize, such a behavior is governed by
the Y-law.4

To get further, consider the disconnected configuration.
In the gauge/string duality it is interpreted as a noninter-
acting pair of hadrons. So, the energy of the configuration is
the sum of EQQq and EQq̄, whose explicit expressions are
given in Appendix D. For our purposes, we will need to
know about its large-l behavior. Using the formulas (D1)
and (D13), we get

EQQq þ EQq̄ ¼ σlþ g
ffiffi
s

p �
QðqÞ þ n

e
1
2
qffiffiffi
q

p − 2IQQq

�

þ 3cþ oð1Þ: ð3:5Þ

Here the function Q is defined by Eq. (A5), q is a solution
to Eq. (D2), and IQQq is given by Eq. (D14). Thus, we see
again that the asymptotic behavior for large l is described
by the Y-law.

2. String breaking

Given the expressions for the energies, we can find a
characteristic scale for this decay mode by solving the
equation E3QðlÞ ¼ EQQqðlÞ þ EQq̄. In general this is a
complicated problem, best done numerically, but what
saves the day is that lc is an infrared scale. If so, then
the equation is linear in very good approximation. To see

FIG. 2. String configurations for the QQQ system with a number of light quarks less than or equal to 2. The heavy quarks are at the
vertices of the equilateral triangle of side l. Left: A connected configuration. Right: A disconnected configuration.

3The configuration shown in the right panel is appropriate only
for large l. A full set of the configurations for the QQq system is
as shown in Fig. 19. For notation, see Appendix A.

4In the context of lattice gauge theory the Y-law was discussed
in Refs. [3,4].
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that this is the case, we plot the energies in Fig. 3. We use
the parameter set L defined below. Indeed, both functions
behave de facto as linear functions for l≳ 0.5 fm. Given
this, the critical value of l is5

lð1Þ
c ¼ 1þ ffiffiffi

3
p

2e
ffiffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ 3I3Q − 2IQQq

�
; ð3:6Þ

as it follows from the Y-laws (3.3) and (3.5). It is finite and
independent of c, as expected.
There is a nontrivial issue concerning the question

of how to define the notion of a string length in five-
dimensional models which is consistent with QCD in four
dimensions. In four dimensions, the string description is
valid at large quark separations, and as a result, the energy
of the QQQ system is described by the Y-law. In this case,
the string length is naturally defined as a distance between
its end points, one of which is attached to a heavy quark and
the other to a string junction. All the strings in question are
straight and the junction is at the Fermat point of a triangle
Q1Q2Q3. The situation becomes less transparent when
dealing with five-dimensional string models motivated by
the gauge/string duality. The problem here is that a baryon
vertex is in the interior, while heavy quarks are on the
boundary of a five-dimensional curved space. To make a
contact with QCD, it is natural to define the string length as
a distance between a string end point attached to a heavy
quark and a projection of the baryon vertex onto the
boundary, i.e., by jQiYj (see Fig. 2). The good reason
for this is that in those models the Y-law is written precisely
in terms of such a defined string length [14].
In the present case, the definition of the string length is

dictated by symmetry. The point Y is always at the
triangle center which coincides with its Fermat point, and

hence jQiYj ¼ l=
ffiffiffi
3

p
. Thus, lð1Þ

3Q ¼ jQiYjc ¼ lð1Þ
c =

ffiffiffi
3

p
.

Explicitly,

lð1Þ
3Q ¼ 3þ ffiffiffi

3
p

6e
ffiffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ 3I3Q − 2IQQq

�
: ð3:7Þ

This is the formula we will need to make some preliminary
estimates of the string breaking distance in Sec. III C.

B. Symmetric collinear geometry

Our second special example is that of the collinear
geometry. Without loss of generality, we may place heavy
quarks on the x axis at points ð−l; 0;lÞ. As before, these
quarks are string end points. The other end points are
terminated at light quarks and vertices in the interior to
form color singlets.

1. String configurations

We begin by considering the configuration of Fig. 4.
It has been previously described in Ref. [8], where the
explicit formula for the energy was derived. When written
in terms of the functions defined in Appendix A, this
formula is

l ¼ 1ffiffi
s

p L−ðλ; vÞ;

E3Q ¼ g
ffiffi
s

p �
2E−ðλ; vÞ þ 3k

e−2vffiffiffi
v

p þQðvÞ
�
þ 3c: ð3:8Þ

Here λ is a function of v which is given by

λðvÞ ¼ −ProductLog
�
−

2ffiffiffi
3

p ve−vð1þ 2kð1þ 4vÞe−3v

− 3k2ð1þ 4vÞ2e−6vÞ−1
2

�
: ð3:9Þ

FIG. 4. A connected collinear configuration. It is symmetric
under reflection through the r axis. So, Q2 is the projection of V
onto the x axis.

FIG. 3. E3Q and EQQq þ EQq̄ vs l in the case of the equilateral
triangle geometry for k ¼ −0.102 and c ¼ 0.623 GeV.

5Here and below, the superscript (1) indicates that the scale is
set by equating E3Q to EQQq þ EQq̄, where 1 stands for one pair
of qq̄.
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The parameter v is varying from 0 to v̄, where v̄ is a
solution to

4

3
v2e2ð1−vÞ ¼ 1þ 2kð1þ 4vÞe−3v

− 3k2ð1þ 4vÞ2e−6v ð3:10Þ
or, equivalently, to λðvÞ ¼ 1.
Just as in the above example, the large-l behavior is

governed by the Y-law which in the present case takes the
form

E3QðlÞ ¼ 2σl − 2g
ffiffi
s

p
Ī3Q þ 3cþ oð1Þ; with

Ī3Q ¼ Iðv̄Þ − 1

2
Qðv̄Þ − 3

2
k
e−2v̄ffiffiffī
v

p : ð3:11Þ

Note that for this geometry the Fermat point is coincident
with Q2.
Now let us consider the disconnected configurations

shown in Fig. 5. Here, unlike the first example, there are
two possible configurations. The configuration shown in
the left panel corresponds to the case when one of the side
strings breaks down, whereas the configuration shown in
the right panel corresponds to the case when the middle
string breaks down. Among of them, the first provides a
dominant contribution to the baryonic Wilson loop as its
energy is smaller. The simple reason for this is that itsQQq
subsystem has a smaller length, l rather than 2l. Since we
assume that hadrons do not interact with each other, the
dominant configuration has the same energy as the dis-
connected configuration shown in Fig. 2. Hence its large-l
behavior is as given by Eq. (3.5).

2. String breaking

We are now in position to estimate the string breaking
distance for this geometry. As before, we do so by solving
the equation E3QðlÞ ¼ EQQqðlÞ þ EQq̄. This problem is
simple because the linear approximation is applicable for
large l, as seen from the plot in Fig. 6. Given a critical

value lð1Þ
c , the string breaking distance is lð1Þ

3Q ¼ lð1Þ
c as

dictated by symmetry. A short calculation, using the
formulas (3.11) and (D13), shows that

lð1Þ
3Q ¼ 1

e
ffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ 2Ī3Q − 2IQQq

�
; ð3:12Þ

which is the analog of Eq. (3.7).

C. Some estimates

Let us make some estimates. In doing so, we use the two
parameter sets suggested in Ref. [9]. The first is mainly a
result of fitting the lattice QCD data to the string model we
are considering. So, we call it L for brevity. The value of s
is fixed from the slope of the Regge trajectory of ρðnÞ
mesons in the soft wall model with the geometry (2.2). This
gives s ¼ 0.450 GeV2 [15]. Then, using Eq. (3.4), we
obtain g ¼ 0.176 by fitting the value of the string tension σ
to its value in Ref. [6]. The parameter n is adjusted to
reproduce the lattice result for the string breaking distance
in the QQ̄ system. With lQQ̄ ¼ 1.22 fm [6], this gives
n ¼ 3.057. In Ref. [8], the value of k is adjusted to fit the
three-quark potential to the lattice data for pure SUð3Þ
gauge theory. So far there is no such data available for QCD
with two dynamical quarks. We will use two different
parameter values: k ¼ −0.102 and k ¼ − 1

4
e
1
4. These param-

eter values are of special interest. The first comes from

FIG. 5. Typical disconnected collinear configurations. In the configurations shown here, l is large enough.

FIG. 6. E3Q and EQQq þ EQq̄ vs l for the symmetric collinear
geometry, plotted here for the parameter set L with k ¼ −0.102
and c ¼ 0.623 GeV.
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matching to the Lipkin rule EQQ ¼ 1
2
EQQ̄ [16], but at the

same time it is rather close to the value of −0.083 used in
Ref. [8] to describe the lattice data for the static three-quark
potentials in SUð3Þ pure gauge theory [4]. The reasons for
the second value are due to the particular model we are
using here.6

In Ref. [6], the calculations were done at the unphysical
pion mass mπ ¼ 280 MeV. Because of this and in view of
possible applications to phenomenology, we now consider
the second parameter set denoted by P. In that case, the
values of s and g are extracted from the quarkonium
spectrum obtained by using the heavy quark potential
derived from the model we are considering [10]. This is
self-consistent, and gives s ¼ 0.15 GeV2 and g ¼ 0.44
[17].7 Then we determine n from the conditionEQqq−EQq̄¼
MΛþ

c
−MD0≈420MeV. It results in n¼1.589. We use k ¼

−0.102 and k ¼ − 1
4
e
1
4, as before.

Having set the parameters, one can use Eqs. (3.7) and
(3.12) to estimate the string breaking distance lð1Þ

3Q . The
results are summarized in Table I.
We conclude this subsection by making a few remarks.
(i) We have used the different parameter sets to assess the

robustness of the conclusion that, in contrast to the string
tension, the string breaking distance is not universal. In the
QQQ system it may be smaller than that in the QQ̄ system
and, moreover, it may depend on geometry, i.e., on the
positions of the three heavy quarks in space.
(ii) We included the results of Ref. [9] for the string

breaking distance in the QQ̄ system because it is of
physical interest to compare both systems. The explicit
formula reads

lQQ̄ ¼ 2

e
ffiffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ I0

�
; ð3:13Þ

where the constant I0 is defined in Appendix A. Note that it
allows one to get rid of the explicit dependence of s and g

in the ratio
lð1Þ
3Q

lQQ̄
. So, in contrast to the triangle geometry, a

stronger k dependence is seen for the collinear geometry.
(iii) It is interesting to make an estimate of the quark mass

in our model. In Ref. [11], it was assumed that the quark
mass is simply related to the parameter T0 in Eq. (2.5),
namelym ¼ T0. However, T0 does not enter explicitly in the
formulas for the string breaking distance because it is
combined with R to form a dimensionless product. The
unknown parameter R makes a direct estimate impossible.
Yet what saves the day in the casewith theL parameter set is
that in Ref. [6] the sum of the quark masses (mu=d þms) is
approximately equal to its physical value.8 This allows us to
estimate the value of R and hence the quark masses. The
details are as follows. First, we extend the model by adding
the strange quark. Then, using Eq. (3.13), we get ns ¼ 3.239
by fitting the value of the string breaking distance associ-
ated with a pair of strange quarks to 1.29 fm from Ref. [6].
Finally from the expression n ¼ R

gm specialized to the u=d

and s quarks, we immediately find mu=d¼mu=dþms

nþns
n. With

mu=dþms¼ 96MeV, this givesmu=d ¼ 46.6 MeV.What is
an appropriate value ofmu=d for the P set? Suppose that the
ratio R

g
is universal. In that case, the mass will be

mu=d ¼ 23.5 MeV. This is of course a crude estimate, but
it is in agreement with the fact that the string breaking
distance for the P set is smaller than that for the L set. One
maywonder about the interpretation ofm. The answer could
be that it is a running quark mass in the IR regime at the
energy scale of order ΛQCD. The reason for this is that the
worldsheet action (2.5) was introduced to describe the IR
phenomenon of string breaking. Of course, further work is
needed to clarify this issue.
(iv) This is not the whole story because of the other

modes in Eq. (1.5). These modes are discussed in Sec. V,
but with the same conclusion.

TABLE I. Results for the string breaking distance lð1Þ
3Q obtained from the L and P parameter sets at two values of k.

Geometry s (GeV) g n k lð1Þ
3Q (fm) lQQ̄ (fm)

lð1Þ
3Q

lQQ̄

Triangle 0.450 0.176 3.057 −0.102 0.910 1.220 0.746
Triangle 0.450 0.176 3.057 − 1

4
e
1
4 0.911 1.220 0.747

Triangle 0.150 0.440 1.589 −0.102 0.810 1.074 0.754
Triangle 0.150 0.440 1.589 − 1

4
e
1
4 0.810 1.074 0.754

Collinear 0.450 0.176 3.057 −0.102 1.100 1.220 0.902
Collinear 0.450 0.176 3.057 − 1

4
e
1
4 1.180 1.220 0.967

Collinear 0.150 0.440 1.589 −0.102 0.934 1.074 0.870
Collinear 0.150 0.440 1.589 − 1

4
e
1
4 1.070 1.074 0.996

6We discuss them in Sec. V.
7At first glance, the difference between these parameter sets is

significant. However, what is relevant for making the estimates of
string breaking distances is the value of the string tension (3.4).
With the L set, it is about 0.215 GeV2, while with P it is about
0.285 GeV2. So, the values are different but not greatly so. 8We thank F. Knechtli for pointing this out.
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IV. MORE GENERAL GEOMETRIES

Now we will describe two types of geometries that allow
us to see how lð1Þ

3Q decreases from the value lQQ̄ to the
values we found in the previous section. The basic idea is to
start from a special case in which two heavy quarks are very
close and one is far away from these two, or in other words
from the diquark limit. In this limit the equation E3Q ¼
EQQq þ EQq̄ can be easily solved. From heavy quark-
diquark symmetry [18], it follows that E3Q ¼ EQQ̄ þ EQQ

and EQQq ¼ EqQ̄ þ EQQ. After substituting those into the
equation, we find EQQ̄ ¼ EQq̄ þ EqQ̄ whose solution is lQQ̄.
This implies that in the diquark limit l3Q ¼ lQQ̄. Then we
depart from this limit by separating the neighboring quarks
more and more until we reach one of the geometries of
Sec. III. Importantly, the decay mode QQQ → QQqþQq̄
is dominant as long as the separation is not large enough. In
other words, the two remaining strings are short and,

therefore, do not break down. So, one can identify lð1Þ
3Q

with the string breaking distance seen from the ground state
energy because this scale is the only possible measure for
string breaking.

A. Isosceles triangle geometry

First consider a geometry in which the heavy quarks are
at the vertices of an isosceles triangle. Without loss of
generality, we can place the triangle in the xy plane as
shown in Fig. 7. The base angle γ runs from π

3
to π

2
. The

former corresponds to the equilateral triangle geometry we
discussed in the previous section, and the latter to the
diquark limit, but with small enough l. For convenience,
we list the formulas

l ¼ 2 cos βjQ1Yj; h ¼ sin βjQ1Yj þ jQ3Yj;

tan γ ¼ tan β þ 1

cos β
jQ3Yj
jQ1Yj

; ð4:1Þ

all of which are simple, but useful.

1. Connected string configurations

We are interested in the situation when a string con-
nected toQ3 breaks down. For this to be the case, the string
should be long enough. In practice, this means that the
string is of the type shown in Fig. 15 on the right. If so, then
there are only two possible string configurations. These are
illustrated in Fig. 8. Such configurations have not been
studied in the literature, except for the diquark limit [8]. So,
it is convenient to begin with this limiting case and then go
further by increasing the base length l. If so, then the
corresponding configuration is that shown in the figure on
the left.
Given the configuration, we can use the general formulas

(B9) and (B14) to write the distances between the pointsQi
and Y as

FIG. 7. An isosceles triangle of base length l and height h.

FIG. 8. Connected string configurations in which Q3 is away from Q1 and Q2. These are symmetric under reflection in the yr plane.
Left: The case α1 ≥ 0. Right: The case α1 ≤ 0. Here α1 is a tangent angle at V for the string stretched between Q1 and V.
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jQ1Yj ¼ jQ2Yj ¼
1ffiffiffi
s

p Lþðα1; vÞ;

jQ3Yj ¼
1ffiffiffi
s

p L−ðλ3; vÞ: ð4:2Þ

By symmetry, the shape of strings connected to Q1 and Q2

is the same. This implies that α1 ¼ α2.
The string energies can be read off from the expressions

(B12) and (B16). Combining those with the gravitational
energy of the vertex, we find the total energy of the
configuration

E3Q ¼ g
ffiffi
s

p �
2Eþðα1; vÞ þ E−ðλ3; vÞ þ 3k

e−2vffiffiffi
v

p
�

þ 3c: ð4:3Þ
With the help of the relation (B17) and gluing conditions

(C2), the angles α1, α3, and β are explicitly written as

sinα1¼
1

2
ð3kð1þ4vÞe−3vþ½1−cos2α3�12Þ;

cosα3¼
v
λ3
eλ3−v; sinβ¼ 1

2
cosα3½1− sin2α1�−1

2: ð4:4Þ

So the result for E3Qðl; hÞ can be conveniently expressed in
terms of two parameters ðv; λ3Þ.
Now we wish to look at the behavior of E3Q in the

diquark limit: small l and large jQ3Yj. This case was
discussed in relation to the static quark-quark potential in
Ref. [8]. A starting point is that one has to analyze the
parametric equations in a small region near the point (0,1).
We do not need all the results of the analysis. What is
important for us to know is the behavior of l. It behaves as

l ¼
ffiffiffi
v
s

r
ðl0 þ oð1ÞÞ: ð4:5Þ

Here l0 ¼ 1
2
ξ−

1
2Bðξ2; 3

4
; 1
2
Þ, ξ ¼

ffiffi
3

p
2
ð1 − 2k − 3k2Þ12, and

Bðz; a; bÞ is the incomplete beta function.
As we saw in Sec. III, to analyze string breaking, it helps

to know that this phenomenon occurs in the IR limit in
which the linear approximation (B23) turns out to be quite
accurate. Since we assume that the string ending on Q3

breaks down, we should take the limit λ3 → 1. In that limit,
Eq. (4.3) for the energy becomes

E3Q ¼ σjQ3Yj − g
ffiffiffi
s

p �
IðvÞ − 2Eþðα1; vÞ − 3k

e−2vffiffiffi
v

p
�

þ 3cþ oð1Þ; ð4:6Þ
and similarly Eq. (4.4) for the auxiliary angles becomes

sin α1 ¼
1

2
ð3kð1þ 4vÞe−3v þ ½1 − v2e2ð1−vÞ�12Þ;

cos α3 ¼ ve1−v; sin β ¼ 1

2
ve1−v½1 − sin2α1�−1

2: ð4:7Þ

The parameter v varies from 0 to v
▴
, where v

▴
is a solution

to the equation

3kð1þ 4vÞe−3v þ ½1 − v2e2ð1−vÞ�12 ¼ 0: ð4:8Þ
The solution v

▴
has a clear meaning. The angle α1 precisely

vanishes at v ¼ v
▴
. As a result, for larger values of v the

string configuration becomes as shown in Fig. 8 on the
right. What is, however, important for our purposes is that
lðvÞ is an increasing function of v. Thus the transition
between these two types of configurations gives rise to
larger values of l.
Similarly, we may also analyze the remaining configu-

ration. From Eq. (B14) it follows that

jQ1Yj ¼ jQ2Yj ¼
1ffiffi
s

p L−ðλ1; vÞ;

jQ3Yj ¼
1ffiffi
s

p L−ðλ3; vÞ: ð4:9Þ

Because of the reflection symmetry, λ2 is equal to λ1.
The expression for the energy is simply obtained by

replacing Eþ with E− in Eq. (4.3). So,

E3Q ¼ g
ffiffi
s

p �X3
i¼1

E−ðλi; vÞ þ 3k
e−2vffiffiffi
v

p
�
þ 3c: ð4:10Þ

Combining the formulas (B17) and (B18) with the gluing
conditions (C2) gives

λ1 ¼ −ProductLog
�
−ve−v

�
1 −

1

4

�
3kð1þ 4vÞe−3v þ

�
1 −

v2

λ23
e2ðλ3−vÞ

�1
2

�
2
�
−1
2

�
; sin β ¼ λ1

2λ3
eλ3−λ1 : ð4:11Þ

All of this allows one to write E3Qðl; hÞ in parametric form
with the same parameters v and λ3 as before.
Since we are interested in the situation when the string

connected to Q3 is long enough, we have to consider the
behavior near λ3 ¼ 1. If so, then the expression for the
energy takes the form

E3Q ¼ σjQ3Yj − g
ffiffi
s

p �
IðvÞ − 2E−ðλ1; vÞ − 3k

e−2vffiffiffi
v

p
�

þ 3cþ oð1Þ; ð4:12Þ

whereas the expressions for λ1 and β take the form
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λ1 ¼ −ProductLog
�
−ve−v

�
1 −

1

4
ð3kð1þ 4vÞe−3v þ ½1 − v2e2ð1−vÞ�12Þ2

�
−1
2

�
; sin β ¼ 1

2
λ1e1−λ1 : ð4:13Þ

Here the parameter v runs from v
▴
to v

▵
, where v

▵
is a

solution to the equation λ1ðvÞ ¼ 1. We denote this solution
by v

▵
because it is the same as that in the case of the

equilateral triangle geometry. One way to see this is to
rewrite the equation λ1ðvÞ ¼ 1 as

kð1þ 4vÞe−3v þ ½1 − v2e2ð1−vÞ�12 ¼ 0: ð4:14Þ

In the limit v → v
▵
, the angle β tends to π

6
, and hence Y

tends to the Fermat point of the triangle.9 Moreover, as
jQ1Yj=jQ3Yj → 1 the isosceles triangle approaches the
equilateral one. This is the IR limit of the QQQ system
such that all the quarks are away from each other. The
energy is then given by

E3Q ¼ σjQ3Yj þ
2ffiffiffi
3

p σl − 3g
ffiffi
s

p
I3Q þ 3cþ oð1Þ ð4:15Þ

which is nothing but the Y-law (3.3) expressed in terms of
jQ3Yj and l.
Thus, we started from the diquark limit at v ¼ 0 and

finally reached the equilateral triangle geometry at v ¼ v
▵

by separating the neighboring quarks Q1 and Q2.

2. Disconnected configuration and string breaking

For the decay mode under consideration the correspond-
ing disconnected configuration is that of Fig. 2 but with Q3

placed at y ¼ h. Under the assumption of noninteracting
hadrons, its energy is the same sum of EQQq and EQq̄.
Now, we want to find a critical value of jQ3Yj by solving

the equation E3Q ¼ EQQq þ EQq̄. That gives the string
breaking distance

lð1Þ
3Q ¼ jQ3Yjc ð4:16Þ

meaning that for fixed l, the disconnected configuration
dominates in the expectation value of the Wilson loop for
jQ3Yj > jQ3Yjc. Since both functions E3Q and EQQq are
defined piecewise so that each subinterval has a size
depending on a value of k, for definiteness we restrict to
k ¼ −0.102.10 We also choose the parameter set L. A
straightforward but somewhat tedious calculation, using the
linear approximations (4.6) and (4.12), shows that the
equation E3Q ¼ EQQq þ EQq̄ is solved by

lð1Þ
3Q ¼

8>>>>><
>>>>>:

l0 þ 2
e
ffiffi
s

p ðEþðα0; v0Þ − Eþðα1; vÞÞ if 0 ≤ l ≤ 0.248 fm;

l1 þ 2
e
ffiffi
s

p ðEþðα0; v0Þ − Eþðα1; vÞÞ if 0.248 ≤ l ≤ 0.779 fm;

l1 þ 2
e
ffiffi
s

p ðEþðα0; v0Þ − E−ðλ; vÞÞ if 0.779 ≤ l ≤ 1.110 fm;

l1 þ 2
e
ffiffi
s

p ðE−ðλ0; v0Þ − E−ðλ; vÞÞ 1.110 ≤ l ≤ 1.577 fm;

ð4:17Þ

with

l0 ¼
1

e
ffiffi
s

p
�
2QðqÞ −Qðv0Þ þ 2n

e
1
2
qffiffiffi
q

p þ 3k

�
e−2v

0

ffiffiffiffi
v0

p −
e−2vffiffiffi
v

p
�
þ IðvÞ

�
;

l1 ¼
1

e
ffiffi
s

p
�
QðqÞ þ n

�
e
1
2
qffiffiffi
q

p þ e
1
2
v0ffiffiffiffi
v0

p
�
þ 3k

�
e−2v

0

ffiffiffiffi
v0

p −
e−2vffiffiffi
v

p
�
þ IðvÞ

�
: ð4:18Þ

Here v is the parameter for the QQQ configuration. The
functionα1ðvÞ is defined byEq. (4.7) and λðvÞ by Eq. (4.13).
The parameter v0 refers to the QQq configuration. The
corresponding functions α0ðv0Þ and λ0ðv0Þ are defined by
Eqs. (D6), (D9), and (D12). The base length is expressed by
the two functionsl ¼ lðvÞ andl ¼ lðv0Þwhich are defined

in the previous subsection and Appendix D. Because of this,
the parameters are not independent. Note that the value l ¼
1.577 fm corresponds to lð1Þ

3Q ¼ 0.910 fm obtained for the
equilateral triangle geometry in Sec. III.
Given the parametric equations lð1Þ

3Q ¼ lð1Þ
3Q ðvÞ and

l ¼ lðvÞ, we can eliminate the parameter and find

lð1Þ
3Q ¼ lð1Þ

3Q ðlÞ numerically. The result is presented in

10Results for other values of k are similar.

9βðvÞ is an increasing function of v which takes values on the
interval ½0; π=6�. Thus, for a general v the point Y is different from
the Fermat point.
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Fig. 9 on the left. We see that lð1Þ
3Q does decrease with

increasing the base length of the triangle.
There is certainly more that we could say about this

geometry. The point is that for small enough l the decay
mode we are considering is dominant. This means that the
ground state is determined in terms of two states,QQQ and

QQqþQq̄, and the scale lð1Þ
3Q is the only scale in question.

One way to roughly estimate the upper bound for l is to
accept that the QQq system becomes unstable for l≳ lQQ̄

[19]. If so, then we expect that only one string breaks down
if the separation between Q1 and Q2 (length of the
triangle’s base) is less than 1.22 fm. For larger separations,
the other decay modes become relevant which makes the
whole picture of string breaking quite complicated.
In order tomake comparisonwith other approaches easier,

we introduce a critical height hð1Þc ¼ jQ3Yjc þ 1
2
tan βl.

Similarly to lð1Þ
3Q , we can also eliminate v and find hð1Þc ¼

hð1Þc ðlÞ numerically. The result of this is shown in Fig. 9 on

the right. In contrast to lð1Þ
3Q , the critical height behaves in a

more complicated way. It is nearly lQQ̄ for l below 0.2 fm
and then, after a small decrease, starts to linearly increase
with l for l above 0.3 fm.
Now consider the diquark limit so that l → 0. It is useful

to write the first expression in Eq. (4.17) as

lð1Þ
3Q ¼ lQQ̄ þ

1

e
ffiffi
s

p
�
2Eþðα01; v0Þ − 2Eþðα1; vÞ

þ 3k

�
e−2v

0

ffiffiffiffi
v0

p −
e−2vffiffiffi
v

p
�
−Qðv0Þ − 1ffiffiffi

v
p

þ
Z ffiffi

v
p

0

du
u2

ðeu2 ½1 − u4e2ð1−u2Þ�12 − 1Þ
�
; ð4:19Þ

with lQQ̄ given by Eq. (3.13). The terms inside the square
brackets vanish as l → 0. This immediately follows from
the fact that this limit corresponds to v → 0 and v0 → 0.

If so, then at leading order v ¼ v0 and cos α1 ¼ cos α01 ¼ffiffi
3

p
2
ð1 − 2k − 3k2Þ12. So, one obtains lð1Þ

3Q ¼ lQQ̄, as expected
from quark-diquark symmetry.
The behavior for large enough l is

lð1Þ
3Q ¼

�
1 −

2ffiffiffi
3

p
�
l

þ 1

e
ffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ 3I3Q − 2IQQq

�
; ð4:20Þ

as it follows from Eqs. (4.15) and (D13). For γ ¼ π
3
, where

l ¼ ffiffiffi
3

p
lð1Þ
3Q , it reduces to the expression (3.7) obtained for

the equilateral triangle geometry. With the help of this
expression, one finds the asymptotic behavior of the critical
height

hð1Þc ¼
�
1 −

ffiffiffi
3

p

2

�
l

þ 1

e
ffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ 3I3Q − 2IQQq

�
: ð4:21Þ

We conclude this discussion with one more remark. If
one assumes that the string breaking distance is universal,
i.e., lð1Þ

3Q ¼ lQQ̄, then the behavior of the critical height for
large l is

hð1Þc ¼ 1

2
ffiffiffi
3

p lþ lQQ̄: ð4:22Þ

This suggests thathð1Þc increasesmore rapidly for largevalues
of l (see Fig. 9). Hopefully, it will be possible eventually to

determine hð1Þc ðlÞ reliably by computer simulations.

B. Collinear geometry

Now let us consider the second type of geometry. It can
be obtained from the diquark limit in which Q1 sits on top

FIG. 9. Left: lð1Þ
3Q as a function of l. Right: hð1Þc as a function of l. The dashed lines are the asymptotic behaviors obtained from

Eqs. (4.20) and (4.21), and the dotted line from Eq. (4.22).
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of Q2 by moving Q1 along the axis connecting Q2 and Q3

in the direction away from Q3. As a result, we get the
collinear geometry.

1. Connected string configurations

For this case, the connected configurations were studied
in Ref. [8]. These are shown in Fig. 10. An important
observation which is inferred from moving Q1 is that at
some point the string connected to it changes shape from
that of Fig. 15 on the left to that on the right. In the
meantime the others keep their shape intact. This change
corresponds to a flip of the sign of α1.
We begin with configuration I describing the diquark

limit. Using the formulas of Appendix B for the case α ≥ 0,
we immediately deduce that

l ¼ 1ffiffi
s

p ðLþðα1; vÞ þ Lþðα2; vÞÞ;

L ¼ 1ffiffi
s

p ðL−ðλ3; vÞ − Lþðα2; vÞÞ; ð4:23Þ

and the energy of the configuration is

E3Q ¼ g
ffiffi
s

p �X2
i¼1

Eþðαi; vÞ þ E−ðλ3; vÞ þ 3k
e−2vffiffiffi
v

p
�

þ 3c: ð4:24Þ

In addition, the angles α1 and α2 can be defined
implicitly as functions of v and λ3 by the force balance
equations (C4). We have

cos α1 ¼ cos α2 þ
v
λ3

eλ3−v;

�
1 −

�
cos α2 þ

v
λ3

eλ3−v
�

2
�1

2 þ ½1 − cos2α2�12

−
�
1 −

v2

λ23
e2ðλ3−vÞ�

�1
2 ¼ 3kð1þ 4vÞe−3v: ð4:25Þ

Thus, the energy of the configuration is given in parametric
form by the equations E3Q ¼ E3Qðv; λ3Þ, l ¼ lðv; λ3Þ, and
L ¼ Lðv; λ3Þ. The parameters take values on the interval
[0, 1] and obey the inequality v ≤ λ3.
The behavior of this configuration for small l was

studied in Ref. [8]. But for our purposes, we do not need
all the results of this study. Only the leading term in the
expansion of lðvÞ near v ¼ 0 matters. It is given by
Eq. (4.5), exactly as in the case of the triangle geometry.
On the other hand, we do need to know what happens if

the string ending at Q3 is long enough. Taking the limit
λ3 → 1 in Eqs. (4.24) and (4.25), we get

E3Q ¼ σjQ3Yj þ g
ffiffi
s

p �X2
i¼1

Eþðαi; vÞ þ 3k
e−2vffiffiffi
v

p − IðvÞ
�

þ 3c ð4:26Þ

and

cos α1 ¼ cos α2 þ ve1−v;

½1 − ðcos α2 þ ve1−vÞ2�12 þ ½1 − cos2α2�12 − ½1 − v2e2ð1−vÞ��12
¼ 3kð1þ 4vÞe−3v: ð4:27Þ

The angles α1 and α2 depend only on v which varies from 0
to ṽ, where ṽ is a solution to

½1 − ð1 − ve1−vÞ2�12 − ½1 − v2e2ð1−vÞ��12
¼ 3kð1þ 4vÞe−3v: ð4:28Þ

This parameter value corresponds to the transition between
the configurations of Fig. 10 because α1ðṽÞ ¼ 0.
It is straightforward to obtain the corresponding expres-

sions for configuration II. The only modifications of the
above formulas are due to the string which changes its
shape. Using the formulas of Appendix B for the case
α ≤ 0, we find

FIG. 10. Typical collinear configurations if L ≥ l. Left: The case α1 ≥ 0. Right: The case α1 ≤ 0.
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l ¼ 1ffiffi
s

p ðL−ðλ1; vÞ þ Lþðα2; vÞÞ;

L ¼ 1ffiffi
s

p ðL−ðλ3; vÞ − Lþðα2; vÞÞ; ð4:29Þ

and

E3Q ¼ g
ffiffi
s

p �X
i¼1;3

E−ðλi; vÞ þ Eþðα2; vÞ þ 3k
e−2vffiffiffi
v

p
�

þ 3c: ð4:30Þ

With the help of Eq. (B17), the force balance
equations (C4) can be written as

cos α2 ¼ ve−v
�
eλ1

λ1
−
eλ3

λ3

�
;

�
1 − v2e−2v

�
eλ1

λ1
−
eλ3

λ3

�
2
�1

2

−
�
1 −

v2

λ21
e2ðλ1−vÞ

�1
2

−
�
1 −

v2

λ23
e2ðλ3−vÞ�

�1
2 ¼ 3kð1þ 4vÞe−3v: ð4:31Þ

In general, we are unable to explicitly express one
parameter as a function of two others in the last equation.
In practice it is convenient to choose v and λ3 as
independent parameters and then solve this equation for
λ1 numerically.
In the limit λ3 → 1, the expression for the energy takes

the form

E3Q ¼ σjQ3Yj

þ g
ffiffi
s

p �
E−ðλ1; vÞ þ Eþðα2; vÞ þ 3k

e−2vffiffiffi
v

p − IðvÞ
�

þ 3c; ð4:32Þ

and the equations (4.31) take the form

cos α2 ¼ ve1−v
�
eλ1−1

λ1
− 1

�
;

�
1 − v2e2ð1−vÞ

�
eλ1−1

λ1
− 1

�
2
�1

2

−
�
1 −

v2

λ21
e2ðλ1−vÞ

�1
2

− ½1 − v2e2ð1−vÞ�12 ¼ 3kð1þ 4vÞe−3v: ð4:33Þ

The last equation now determines λ1 as a function of v. The
parameter v runs from ṽ to v̄. The upper bound satisfies
λ1ðv̄Þ ¼ 1. It is the same as that for the symmetric collinear
configuration studied in Sec. II. Thus, starting from the
diquark limit, we reach the symmetric configuration by
separating the heavy quarks Q1 and Q2.

2. Disconnected configuration and string breaking

As before, the relevant disconnected configuration is of
the type shown in Fig. 5 on the left. There is a little
difference between those configurations. The quark Q3 is
now at x ¼ L, with L ≥ l. However, this has no effect on
the total energy of the configuration under the assumption
of noninteracting hadrons. So both configurations have the
same energy EQQq þ EQq̄.
Having understood the string configurations, we can

now find the critical value of jQ3Yj that defines the string
breaking distance lð1Þ

3Q ¼ jQ3Yjc by solving the equation
E3Q ¼ EQQq þ EQq̄. So, at fixed l the disconnected con-
figuration dominates in the expectation value of the Wilson
loop for jQ3Yj > jQ3Yjc. As in the previous subsection, we
take the parameter set L and k ¼ −0.102. Using the linear
approximations (4.26) and (4.32) makes things easy.
So, we get

lð1Þ
3Q ¼

8>>>>><
>>>>>:

l0 þ 1
e
ffiffi
s

p ð2Eþðα0; v0Þ − Eþðα1; vÞ − Eþðα2; vÞÞ if 0 ≤ l ≤ 0.087 fm;

l0 þ 1
e
ffiffi
s

p ð2Eþðα0; v0Þ − E−ðλ1; vÞ − Eþðα2; vÞÞ if 0.087 ≤ l ≤ 0.248 fm;

l1 þ 1
e
ffiffi
s

p ð2Eþðα0; v0Þ − E−ðλ1; vÞ − Eþðα2; vÞÞ if 0.248 ≤ l ≤ 1.110 fm;

l1 þ 1
e
ffiffi
s

p ð2E−ðλ0; v0Þ − E−ðλ1; vÞ − Eþðα2; vÞÞ if 1.110 ≤ l≲ 1.110þ ϵfm;

ð4:34Þ

where l0 and l1 are the same two functions as in
Eq. (4.17). The parameters v and v0 refer respectively to
the connected configurations forQQQ andQQq. These are
not independent because of the relation l ¼ lðvÞ ¼ l0ðv0Þ.
The functions α1ðvÞ, α2ðvÞ, and λ1ðvÞ are defined implicitly
by Eqs. (4.27) and (4.33). As before in Eq. (4.17), α0ðv0Þ
and λ0ðv0Þ are defined by Eqs. (D6), (D9), and (D12). The
last interval in Eq. (4.34) is really small, with ϵ ≈ 0.0003.

The string breaking distance tends to that of the symmetric
configuration as l approaches the upper bound.
One can numerically eliminate the remaining parameter

from the parametric equations lð1Þ
3Q ¼lð1Þ

3Q ðvÞ and l ¼ lðvÞ,
and find a corresponding function lð1Þ

3Q ðlÞ. The result is
shown in Fig. 11 on the left. We see that the string breaking
distance coincides with lQQ̄ at l ¼ 0 and then decreases
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with increasing the separation between the neighboring
quarks. A notable feature is that for separations larger than
0.5 fm it becomes almost the same as that for the symmetric
collinear geometry.
Before proceeding further, we pause here to say that for

small l the decay mode QQQ → QQqþQq̄ is dominant.
So, as before for the isosceles triangle geometry, the ground

state is determined in terms of two states and lð1Þ
3Q is the only

scale. The present case shows that the estimate of the upper
bound for l via the instability of QQq is not so accurate.
It gives 1.22 fm, but l is limited to 1.100 fm which
corresponds to the symmetric case. Thus, another
assumption is needed to determine the upper bound more
accurately.
Now we introduce a critical length Lð1Þ

c ¼ jQ3Yjc −
jQ2Yj that can be useful in looking for possible ways to
make comparisons with other nonperturbative approaches.

The meaning of Lð1Þ
c is that at a given value of l, the

disconnected configuration dominates for lengths longer

than Lð1Þ
c . Like above, we can eliminate v and find

Lð1Þ
c ¼ Lð1Þ

c ðlÞ. The result is presented in Fig. 11. We

see that so defined Lð1Þ
c behaves quite similarly to lð1Þ

3Q .
The small-l behavior of lð1Þ

3Q is determined through the
same steps as before. First, we bring the first expression in
Eq. (4.34) into the following form:

lð1Þ
3Q ¼ lQQ̄ þ

1

e
ffiffi
s

p
�
2Eþðα0; v0Þ −

X2
i¼1

Eþðαi; vÞ

þ 3k

�
e−2v

0

ffiffiffiffi
v0

p −
e−2vffiffiffi
v

p
�
−Qðv0Þ − 1ffiffiffi

v
p

þ
Z ffiffi

v
p

0

du
u2

ðeu2 ½1 − u4e2ð1−u2Þ�12 − 1Þ
�
: ð4:35Þ

Then, from the equation lðvÞ ¼ l0ðv0Þ we obtain that at
leading order v ¼ v0 and α1 ¼ α2 ¼ α0. This implies that

the terms inside the square brackets cancel each other out
as v and v0 go to zero. Thus, we get the desired result

lð1Þ
3Q ¼ lQQ̄.
To see what happens for large l, we consider the double

limit λ1 → 1 and λ0 → 1 such that lnð1−λ1Þlnð1−λ0Þ → 1. The require-

ment implies that l
L → 1.11 Thus this limit gives rise to the

symmetric case. A simple calculation shows that the last
expression in Eq. (4.34) does reduce to that of Eq. (3.12).
The latter is shown in the figure by the dashed horizon-
tal lines.
Finally, let us mention that if one assumes that the string

breaking distance is universal, then the critical length is
simply Lð1Þ

c ¼ lQQ̄. In other words, the so defined critical
length is a constant, which is independent of l. It is shown
in the figure by the dotted line.

V. MORE DETAIL ON THE SPECIAL CASES

For completeness, we include the analysis of the remain-
ing decay modes in Eq. (1.5) which respectively contain
two and three pairs of light quarks each. To actually
compute the energies of noninteracting hadrons within
the gauge/string duality formalism, one would have to
consider disconnected string configurations such as those
sketched in Fig. 12. There is an important subtlety that
arises when one tries to construct a static configuration for a
heavy-light baryon Qqq. The analysis of Eq. (D4) shows
that this equation has a solution in the interval [0, 1] if and
only if − e3

15
≤ k ≤ − 1

4
e
1
4 [19]. Clearly, the phenomenologi-

cally motivated value k ¼ −0.102 is out of the interval.
This is one of the limitations of using the model of Sec. II.
We take the upper bound as it is most close to k ¼ −0.102
and leads to the exact solution vk ¼ 1

12
which makes the

calculations simpler.

FIG. 11. lð1Þ
3Q and Lð1Þ

c as functions of l. The dashed horizontal lines represent the value 1.110 fm and the dotted line the value 1.22 fm.
The former corresponds to the value we found in Sec. III and the latter to the value of lQQ̄ from Ref. [6].

11This follows from the asymptotic expansion (B19).

OLEG ANDREEV PHYS. REV. D 104, 026005 (2021)

026005-14



First, let us consider the configuration sketched in the left
panel. It describes the products of the baryon decay into
Qqqþ 2Qq̄. Under the assumption of noninteracting
hadrons, the energy of the configuration is the sum of
energies of individual hadrons. These energies can be read
off from Eqs. (D1) and (D3). So, we have

EQqq þ 2EQq̄ ¼ g
ffiffi
s

p �
4QðqÞ−QðvkÞ þ 4n

e
1
2
qffiffiffi
q

p þ 3k
e−2vkffiffiffiffiffivkp

�

þ 3c; ð5:1Þ

where q and vk are the solutions of Eqs. (D2) and (D4),
respectively.
The right panel represents a string configuration for the

products of the baryon decay into qqqþ 3Qq̄. The novelty
here is a light baryon that has not been discussed in the
literature. In the static limit, it looks like the light quarks sit
on top of the baryon vertex. The total action is therefore
given by

S ¼ T
rv

ðτve−2sr2v þ 3me
s
2
r2vÞ: ð5:2Þ

By varying it with respect to rv, we get

nð1 − vÞ þ kð1þ 4vÞe−5
2
v ¼ 0: ð5:3Þ

This equation says that the gravitational force acting on the
vertex is equilibrated by that acting on the quarks. As a
result, the baryon is at rest. The rest energy is then

E3q ¼ 3g

ffiffiffiffiffiffi
s

v3q

r
ðke−2v3q þ ne

1
2
v3qÞ; ð5:4Þ

where v3q is a solution of Eq. (5.3) on the interval [0, 1].
Combining this with the expression (D1), we find the
energy of the configuration

E3q þ 3EQq̄ ¼ 3g
ffiffi
s

p �
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ k
e−2v3qffiffiffiffiffiffiv3q
p þ n

e
1
2
v3qffiffiffiffiffiffiv3q

p
�

þ 3c: ð5:5Þ

A. Equilateral triangle geometry

With all the diagonal elements of the model Hamiltonian
at our disposal, we can see a more complete picture of
string breaking. We consider first the equilateral triangle
geometry. To this end, in Fig. 13 we plot the diagonal
elements as a function of l. The most interesting obser-
vation is that the three-quark potential (ground state
energy) is, in fact, determined in terms of only two
diagonal elements: E3Q and EQqq þ 2EQq̄. Thus, the string
breaking distance should be defined from the equation
E3Q ¼ EQqq þ 2EQq̄, i.e., theQQQ → Qqqþ 2Qq̄ mode is
dominant. If so, then with the help of Eqs. (3.3) and (5.1),
we find that

lð2Þ
3Q ¼ 1

3e
ffiffi
s

p
�
4QðqÞ−QðvkÞþ4n

e
1
2
qffiffiffi
q

p þ3k
e−2vkffiffiffiffiffivkp þ3I3Q

�
:

ð5:6Þ

Here the superscript (2) indicates that the string breaking
distance refers to the decay mode QQQ → Qqqþ 2Qq̄.
Quite apart from the above observation, it is to be noticed

that the decayQqq → qqqþQq̄ is energetically forbidden
because of Eqqq þ EQq̄ > EQqq. In the string model we are
using, this means that the string stretched along the
radial direction (see the right panel of Fig. 18) does not
break down.
Let us make a simple estimate of lð2Þ

3Q . At k ¼ − 1
4
e
1
4, for L

and P we get correspondingly

lð2Þ
3Q ¼ 0.804 fm; lð2Þ

3Q ¼ 0.700 fm: ð5:7Þ

FIG. 12. Static string configurations for noninteracting hadrons. The ordering does not matter. Left: A heavy-light baryon Qqq and
two heavy-light mesons Qq̄. Right: A light baryon qqq and three heavy-light mesons.
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These values are smaller than those obtained for lð1Þ
3Q in

Sec. III, as also seen from the plots. In addition, we get12

lð2Þ
3Q

lQQ̄

¼ 0.659;
lð2Þ
3Q

lQQ̄

¼ 0.652: ð5:8Þ

Thus, for the equilateral triangle geometry, the string theory
prediction is actually that the three-quark potential is
determined in terms of the energies E3Q and EQqqþ2EQq̄

with a single scale which characterizes the string breaking
effect.

B. Symmetric collinear geometry

Similarly, we can analyze the symmetric collinear
geometry. Under the assumption of noninteracting hadrons,
the energies of the two remaining disconnected configu-
rations are given by Eqs. (5.1) and (5.5). In Fig. 14 we plot

the diagonal elements of H as a function of l. The
noticeable difference from the previous case is that the
ground state energy is determined in terms of three
diagonal elements: E3Q, EQQq þ EQq̄, and EQqq þ 2EQq̄.

13

This fact suggests that a scale set by EQQqðlÞ þ EQq̄ ¼
EQqq þ 2EQq̄ is relevant. In fact, this scale was recently
discussed in the context of the QQq system [19]. It is
given by

lQQq¼
3

e
ffiffi
s

p
�
QðqÞ−1

3
QðvkÞþn

e
1
2
qffiffiffi
q

p þ k
e−2vkffiffiffiffiffivkp þ2

3
IQQq

�
:

ð5:9Þ

The estimates give lQQq ¼ 1.257 fm for the parameter set
L and lQQq ¼ 1.073 fm for P. These values are very close
to those for lQQ̄. All of this suggests that the QQQ system

FIG. 13. Various E vs l plots for the equilateral triangle geometry, shown in the left panel for L and in the right panel for P. Here
k ¼ − 1

4
e
1
4 and c ¼ 0.623 GeV.

FIG. 14. Various E vs l plots for the symmetric collinear geometry. The notation here is the same as in Fig. 13.

12Curiously, both values are close to 2
3
.

13Because the difference between lð1Þ
3Q and lQQq is of

order 0.003 fm for P, it is not visible in the right panel.
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undergoes a cascade of decays. At small l it looks like a

triply heavy baryon. Then, at l ¼ lð1Þ
3Q this baryon decays

into a double-heavy baryon and a heavy light meson.
Finally, at l ¼ lQQq the double-heavy baryon decays into a
pair consisting of a heavy-light baryon and meson. Thus,
for the symmetric collinear geometry, the string model
predicts that the potential is determined in terms of the
energies E3Q, EQQq þ EQq̄, and EQqq þ 2EQq̄ with two scales
which characterize the string breaking effects.
Finally, let us note that small enough deformations of

these special geometries will give similar pictures of string
breaking.

VI. CONCLUDING REMARKS

(i) In this paper, we have initiated a study of the
phenomenon of string breaking in the three-quark system.
Our findings could be an early indication that this phenome-
non is much more complex than one could naively expect
based on the universality of the string breaking distance. The
main finding is that the string breaking distance is not
universal. Moreover, there are special geometries, such as
the symmetric collinear geometry and its small deformations,
which allow more than one characteristic scale.
(ii) Going back to the question of universality, we see

from Eq. (B23) that in the IR limit the energy E3Q is14

E3Q ¼ σ
X3
i¼1

jQiYj − 3g
ffiffi
s

p
Iðv

▵
Þ þ 3cþ oð1Þ; ð6:1Þ

where v
▵

is a solution of Eq. (4.14). In this limit, Y
coincides with the Fermat point of the triangle [14]. The
coefficient σ is the string tension which is universal in the
sense that it is the same for all the known examples of
heavy quark systems. The two remaining constant terms
combine to become CIR ¼ 3c − 3g

ffiffiffi
s

p
Iðv

▵
Þ. Using the

fact that in the UV limit (at small separations between the
quark sources) the constant term in the expansion of E3Q is
simply CUV ¼ 3c, we get

CUV − CIR ¼ 3g
ffiffi
s

p
Iðv

▵
Þ: ð6:2Þ

This difference being positive is also scheme and geometry
independent. The latter means that it is universal and not
limited to the particular case of a triangle if its largest angle
is at most 2

3
π. This statement is an extension of that in

Ref. [8], which was formulated for the equilateral triangle.
(iii) Although from the ten-dimensional perspective the

five-dimensional string model used as an example through-
out this paper is oversimplified, it allows us to get the
results on theQQQ system analytically and uses only a few

model parameters. There are, however, some limitations
and caveats for this model, as for any effective model. Let
us mention a couple of them. First, the light quarks are
incorporated along the lines of the hadroquarkonium
picture so that rq denotes an averaged position of a light
quark or a center of a corresponding quark cloud. The
model certainly is far from accounting for all the features of
u and d quarks. Second, it is not clear how to compute the
off-diagonal elements of the model Hamiltonians and thus
reach the level of understanding the quark-antiquark system
in lattice gauge theory.

ACKNOWLEDGMENTS

We would like to thank M. Catillo, P. de Forcrand, M. K.
Marinković, and P. Weisz for discussions and reading the
manuscript. We also thank the Arnold Sommerfeld Center
for Theoretical Physics for hospitality. This research is
supported by Russian Science Foundation Grant 20-12-
00200 in association with Steklov Mathematical Institute.

APPENDIX A: NOTATION AND DEFINITIONS

In all figures throughout the paper, heavy and light
quarks (antiquarks) are denoted by Q and qðq̄Þ, and a
baryon vertex and its projection onto the boundary of five-
dimensional space by V and Y. A square indicates that a
light quark sits on top of a vertex. We assume that all strings
are in the ground state. So, these strings are represented by
curves without cusps, loops, etc. When not otherwise
noted, we usually set light quarks (antiquarks) at r ¼ rq
and a vertex at r ¼ rv. For convenience, we introduce two
dimensionless variables q ¼ sr2q and v ¼ sr2v. They take
values on the interval [0, 1] and show how far from the soft
wall these objects are.
To make formulas more compact, we introduce a set of

basic functions. The motivation for that comes from the
analysis of a static string in Appendix B.
The non-negative function Lþ is defined by the integral

Lþðα;xÞ¼cosα
ffiffiffi
x

p Z
1

0

duu2exð1−u2Þ½1−cos2αu4e2xð1−u2Þ�−1
2;

0≤α≤
π

2
; 0≤x≤1: ðA1Þ

This function vanishes if α ¼ π
2
or x ¼ 0. It diverges at (0,1).

The other non-negative function L− is defined as
follows:

L−ðy; xÞ ¼ ffiffiffi
y

p �Z
1

0

duu2eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2

þ
Z

1ffiffi
x
y

p duu2eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2

�
;

0 ≤ x ≤ y ≤ 1: ðA2Þ
14This is valid if the largest angle of the triangle Q1Q2Q3 is at

most 2π=3.
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It vanishes at the origin and diverges at y ¼ 1. At y ¼ x, L−

reduces to Lþ with α ¼ 0.
It is also useful to define two other functions. The first is

given by

Eþðα;xÞ¼ 1ffiffiffi
x

p
Z

1

0

du
u2

ðexu2 ½1−cos2αu4e2xð1−u2Þ�−1
2−1−u2Þ;

0≤α≤
π

2
; 0≤x≤1 ðA3Þ

and the second by

E−ðy; xÞ ¼ 1ffiffiffi
y

p
�Z

1

0

du
u2

ðeyu2 ½1 − u4e2yð1−u2Þ�−1
2 − 1 − u2Þ

þ
Z

1ffiffi
x
y

p
du
u2

eyu
2 ½1 − u4e2yð1−u2Þ�−1

2

�
;

0 ≤ x ≤ y ≤ 1: ðA4Þ

The function Eþ diverges at x ¼ 0 and (0,1), whereas the
function E− diverges at (0,0) and y ¼ 1. Just like for the
L’s, E− reduces to Eþ at y ¼ x.
A special case of Eþ is obtained by taking α ¼ π

2
. In this

case, the integral can be performed explicitly, yielding

Eþ
�
π

2
; x

�
¼ QðxÞ ¼ ffiffiffi

π
p

erfið ffiffiffi
x

p Þ − exffiffiffi
x

p : ðA5Þ

Here erfiðxÞ is the imaginary error function.
Finally, we define a function

IðxÞ ¼ I0 −
Z

1

ffiffi
x

p
du
u2

eu
2 ½1 − u4e2ð1−u2Þ�12;

I0 ¼
Z

1

0

du
u2

ð1þ u2 − eu
2 ½1 − u4e2ð1−u2Þ�12Þ;

0 ≤ x ≤ 1; ðA6Þ

which appears in the limit of sufficiently elongated strings.
For the constant I0, a simple numerical calculation gives
I0 ≈ 0.751.

APPENDIX B: A STATIC STRING
WITH FIXED END POINTS

In this appendix we give a summary of the results on a
static Nambu-Goto string in the curved geometry (2.2).
These results provide the grounds for building string
configurations of Secs. III and IV. Most of the material
can be found in Ref. [8] whose conventions we generally
follow.15 So, we can be relatively brief.

To proceed, choose the static gauge ξ1 ¼ t, giving for the
Nambu-Goto action

SNG ¼ T
2πα0

Z
1

0

dξ2
ffiffiffiffiffiffiffi
γð2Þ

q
; ðB1Þ

with T ¼ R
T
0 dt. Consider now a string stretched between

two points Q and V in the xr plane, as shown in Fig. 15.
This implies the boundary conditions

xð0Þ ¼ 0; xð1Þ ¼ xv; rð0Þ ¼ 0; rð1Þ ¼ rv: ðB2Þ

In this case, the Nambu-Goto action takes the form

SNG¼ gT
Z

1

0

dξ2wðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02þr02

p
; with wðrÞ¼ esr

2

r2
: ðB3Þ

A prime stands for a derivative with respect to ξ2.
Since in what follows we set infinitely heavy quarks at

boundary points, we do not vary the action with respect to
the position of point Q. The variation of the action is
therefore

δSNG¼gT

�Z
1

0

dξ2
�
∂rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02þr02

p
−
�

wr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02þr02

p
�0�

δr

−
�

wx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02þr02

p
�0
δxþwðrvÞcosαδxvþwðrvÞsinαδrv

�
;

ðB4Þ

where ∂r ¼ ∂
∂r. From this formula one can find the string

tension at point V.16 It comes out to be

e ¼ −gwðrvÞðcos α; sin αÞ: ðB5Þ

There is one very simple but useful observation to add at
this point. The magnitude of e equals kek ¼ gwðrvÞ. This
clarifies the role of the fifth dimension in describing strings
with different tensions [20].
In order to keep the string at rest, some external force

must be acting on it. We exert such a force at point V, as
shown in Fig. 15. The force balance equation is then

eþ f ¼ 0: ðB6Þ

Thus, given the string tension, the external force is f ¼ −e.
For further analysis it is convenient to completely fix the

gauge by choosing ξ2 ¼ x. In that case, solving the Euler-
Lagrange equation for x gives

15The only new result presented here is a calculation of the
constant term in the expansion of the energy of long strings.

16For static configurations, the energy is simply E ¼ S=T,
while the components of e are ex ¼ −δE=δxv and er ¼ −δE=δrv.
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I ¼ wðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

p ; ðB7Þ

with I ¼ const. It is easy to see that I is nothing else but the
first integral for the equation for r [21]. For future
reference, we note that

I ¼ wðrvÞ cos α ðB8Þ
at the end point V.

1. The case α ≥ 0

We begin with the case of positive α sketched in the left
panel of Fig. 15. Combining Eqs. (B7) and (B8), we get a
differential equation wðrvÞ cos α ¼ wðrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

p
which can be further integrated over x and r to yield a
string length along the x axis

jQYj ¼ 1ffiffi
s

p Lþðα; vÞ; ðB9Þ

where Lþ and v were defined earlier in Appendix A.
To compute the string energy, we first use Eq. (B7) to

explicitly express the integrand in terms of r and then find
that

ER ¼ SR
T

¼ g

ffiffiffi
s

v

r Z
1ffiffi
s
v

p
ϵ

du
u2

evu
2 ½1 − cos2αu4e2vð1−u2Þ�−1

2: ðB10Þ

Here the ultraviolet divergence at r ¼ 0 is regularized by
placing a lower bound on r so that r ≥ ϵ. This expression
behaves for ϵ → 0 as

ER ¼ g

ϵ
þ EþOðϵÞ: ðB11Þ

After subtracting the 1
ϵ term and letting ϵ ¼ 0, we arrive at

E ¼ g
ffiffi
s

p
Eþðα; vÞ þ c: ðB12Þ

where the function Eþ is defined by Eq. (A3) and c is a
normalization constant.
If we set α ¼ π

2
in Eq. (B12), we get a special case:

E ¼ g
ffiffi
s

p
QðvÞ þ c; ðB13Þ

with the functionQ defined in Eq. (A5). This formula gives
the energy of a string stretched along the r axis.
Thus, the string energy is given in parametric form by

E ¼ EðvÞ and jQYj ¼ jQYjðvÞ. The parameter takes values
on the interval [0, 1]. The string becomes infinitely long at
v ¼ 1, when its end point V touches the soft wall.

2. The case α ≤ 0

It is straightforward to extend the above analysis to the
case of negative α, sketched in the right panel of Fig. 15.
The only novelty, which applies to all expressions below, is
that there are two contributions: one comes from the
interval ½0; x0� and the other from the interval ½x0; xv�.
This is so because one can think of a string with α < 0 as
two strings with α ¼ 0 glued at the turning point.
Taking I ¼ wðr0Þ and integrating the differential equa-

tion wðr0Þ ¼ wðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

p
over x and r, we get for a

string length along the x axis

jQYj ¼ 1ffiffi
s

p L−ðλ; vÞ; ðB14Þ

where L− is the function defined in Appendix A and λ is a
dimensionless parameter defined as λ ¼ sr20. It shows
how close to the soft wall the turning point is. Clearly,
at λ ¼ v the above expression reduces to that of
Eq. (B9) with α ¼ 0. This value also gives the lower
bound 1ffiffi

s
p L−ðv; vÞ ≤ jQYj.

FIG. 15. A static string stretched between two points, one of which lies on the boundary of space. The two forces exerted at point Vare
depicted by the arrows. α is a tangent angle. The string does not cross the soft wall located at r ¼ 1=

ffiffi
s

p
. Left: The case α ≥ 0. Right: The

case α ≤ 0. Here O is a turning point.
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As before, one can compute the string energy by first
expressing the integrand in terms of r and then imposing
the short-distance cutoff on r. This gives

ER ¼ g

ffiffiffi
s

λ

r �Z
1ffiffi
s
λ

p
ϵ

du
u2

eλu
2 ½1 − u4e2λð1−u2Þ�−1

2

þ
Z

1ffiffi
v
λ

p
du
u2

eλu
2 ½1 − u4e2λð1−u2Þ�−1

2

�
: ðB15Þ

Near ϵ ¼ 0 it behaves like that in Eq. (B11). So, subtracting
the 1

ϵ and then letting ϵ ¼ 0 yields

E ¼ g
ffiffi
s

p
E−ðλ; vÞ þ c: ðB16Þ

Here E− is defined by Eq. (A4) and c is the same
normalization constant as in Eq. (B12). The last guarantees
that the string energy is a continuous function of α.
For future reference, it will be useful to explicitly express

λ in terms of v and α. This can be done by using the first
integral (B7). Equating its values at O and V, one finds

eλ

λ
¼ ev

v
cos α: ðB17Þ

From this, λ can be expressed in terms of v and α as

λ ¼ −ProductLogð−ve−v= cos αÞ: ðB18Þ

The ProductLog function is the principal solution for w in
z ¼ wew [13].
To make estimates of the string breaking distance, we

will need to know the behavior of E for large jQYj, or in
other words what happens when the string approaches the
soft wall. In fact, the problem reduces to examining the limit
λ → 1 while keeping v fixed. A calculation along the lines
of Ref. [10] gives the leading terms

jQYj ¼ −
1ffiffi
s

p lnð1 − λÞ þOð1Þ;

E ¼ −ge
ffiffi
s

p
lnð1 − λÞ þOð1Þ: ðB19Þ

Combining these equations results in

E ¼ σjQYj þOð1Þ: ðB20Þ

As expected, at leading order E is linear in jQYj. The
constant of proportionality σ is called the string tension,
given explicitly in Eq. (3.4). It is universal and independent
of v.
To find the constant term in the asymptotic expansion of

E for large jQYj, consider

E − σjQYj ¼ g

ffiffiffi
s

λ

r �Z
1

0

du
u2

ðeλu2 ½1 − λu4e1þλð1−2u2Þ�½1 − u4e2λð1−u2Þ�−1
2 − 1 − u2Þ

þ
Z

1ffiffi
v
λ

p
du
u2

eλu
2 ½1 − λu4e1þλð1−2u2Þ�½1 − u4e2λð1−u2Þ�−1

2

�
þ c: ðB21Þ

Letting λ ¼ 1, we get

E − σjQYj ¼ g
ffiffi
s

p �Z
1

0

du
u2

ðeu2 ½1 − u4e2ð1−u2Þ�12 − 1 − u2Þ þ
Z

1

ffiffi
v

p
du
u2

eu
2 ½1 − u4e2ð1−u2Þ�12

�
þ cþ oð1Þ: ðB22Þ

To this order, the expansion of E is therefore

E ¼ σjQYj − g
ffiffi
s

p
IðvÞ þ cþ oð1Þ; ðB23Þ

where the function I is defined by Eq. (A6).
It is instructive to see how good this linear approximation

actually is. To this end, in Fig. 16 we plot both functions.
We see that the linear approximation is perfect for strings
longer than 0.6 fm. This fact enables one to find expres-
sions for the string breaking distance analytically.

APPENDIX C: GLUING CONDITIONS

The string solutions we discussed in Appendix B are
building blocks of multistring configurations. What is still

FIG. 16. E vs jQYj for jQYj ≥ L−ðv; vÞ= ffiffiffi
s

p
and fixed v. Here

we use the L set with c ¼ 0.623 GeV. The dashed lines represent
the asymptotic expression (B23).
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missing are gluing conditions for such blocks. Our goal
here is to provide those conditions, with particular attention
to the configurations of Secs. III and IV. More detail can be
found, for example, in Ref. [8].
A general force balance equation at a baryon vertex,

takes the form

e1 þ e2 þ e3 þ fv ¼ 0: ðC1Þ

Here e’s are the string tensions and fv is a gravitational force
acting on the vertex. The presence of this force is the main
difference between string models in flat space and those in
curved spaces. In the model we are considering fv has only
one nonzero component which points in the r direction. A
formula for this component can be derived from the action

Svert ¼ TEvert. Explicitly, frv ¼ −δEvert=δr ¼ −τv∂r
e−2sr

2

r ,
where r is the coordinate of the vertex.
Now consider two important examples. The first exam-

ple is illustrated in the left panel of Fig. 17. Using the
formula (B5) for the string tension, it can be shown that in
the present case the tensions are written in components
as e1 ¼ −gwðrvÞðcos β cos α1; sin β cos α1; sin α1Þ, e2 ¼
−gwðrvÞð− cos β cos α1; sin β cos α1; sin α1Þ, and e3 ¼
−gwðrvÞð0;− cos α3; sin α3Þ.17 With this, the resulting
equations for the y and r components take the form

cos α3 − 2 sin β cos α1 ¼ 0;

2 sin α1 þ sin α3 − 3kð1þ 4vÞe−3v ¼ 0: ðC2Þ

The equation for the x component is trivially satisfied
because of symmetry.
As a special case, consider α3 ¼ α1 which corresponds

to an equilateral triangle. The force balance equation now
has only one nontrivial component that gives rise to

sin α1 − kð1þ 4vÞe−3v ¼ 0: ðC3Þ

The second example is illustrated in the right panel of the
figure. The analysis proceeds in a similar manner as above.
The string tensions are written in components as e1 ¼
−gwðrvÞðcos α1; sin α1Þ, e2 ¼ gwðrvÞðcos α2;− sin α2Þ, and
e3 ¼ gwðrvÞðcos α3;− sin α3Þ. So, in component form the
force balance equation reads

cos α1 − cos α2 − cos α3 ¼ 0;

sin α1 þ sin α2 þ sin α3 ¼ 3kð1þ 4vÞe−3v: ðC4Þ

APPENDIX D: SOME STRING
CONFIGURATIONS

In order to make this paper more self-contained, in this
appendix we briefly review some basic results on the static
string configurations with light quarks. For more details on
these results, see Refs. [9,19].

1. The configurations for Qq̄ and Qqq

First, consider the configuration of Fig. 18 on the left. In
the context of the gauge/string duality it provides the
description of a heavy-light meson in the static limit.
The configuration is governed by the action which is the
sum of the Nambu-Goto action SNG and the boundary term
Sq, S ¼ SNG þ Sq.
A short calculation performed in Ref. [9] shows that the

energy E is expressed in terms of q by

EQq̄ ¼ g
ffiffi
s

p �
QðqÞ þ n

e
1
2
qffiffiffi
q

p
�
þ c: ðD1Þ

Here c is a normalization constant. The function Q is as
defined in Appendix A. q is a solution to the equation

e
q
2 þ nðq − 1Þ ¼ 0; ðD2Þ

FIG. 17. Three strings meeting at a baryon vertex in the bulk. The gravitational force fv acting on the vertex is directed in the
downward vertical direction. Left: The nonplanar case with heavy quarks are at the vertices of an isosceles triangle. Right: The planar
case with heavy quarks are on the x axis.

17On symmetry grounds, the angles α1 and α2 are equal.
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which is obtained by varying the action with respect to rq.
A noteworthy fact is that such a solution only exists for
q < 1. The physical meaning of this equation is that it is
nothing else but the force balance equation at the string end
point which says that the net force acting on the light
antiquark is zero.
Now let us discuss the remaining configuration on

the right, which describes a static heavy-light baryon.
This configuration is governed by the action S ¼P

3
i¼1 S

ðiÞ
NG þ 2Sq þ Svert, which is the sum of the

Nambu-Goto actions, boundary actions Sq, and action Svert.
The energy of this configuration can be written in the

form [9]

EQqq ¼ g
ffiffiffi
s

p �
2QðqÞ −QðvkÞ þ 2n

e
1
2
qffiffiffi
q

p þ 3k
e−2vkffiffiffiffiffivkp

�

þ c; ðD3Þ

where vk is a solution to

1þ 3kð1þ 4vÞe−3v ¼ 0: ðD4Þ

The above equation defines the position of the baryon
vertex in the bulk, whereas the equation (D2) defines the
position of the light quarks. At vanishing baryon chemical
potential light quarks and antiquarks are at the same radial

distance from the boundary. Note that the stable configu-
ration exists only for q ≥ v.

2. The configurations for QQq

Finally, we consider the string configurations of Fig. 19.
Those configurations were proposed to model the QQq
system in Ref. [19], whose conventions we follow here.
The important point is that the shape of the configuration
changes with the increase of heavy quark separation.
For small l, the corresponding configuration is labeled

by (S). In this case, the relation between the energy and
heavy quark separation is written in parametric form

lðSÞ ¼ 2ffiffi
s

p Lþðα;vÞ;

EðSÞ
QQq ¼ g

ffiffi
s

p �
2Eþðα;vÞþ n

e
1
2
qffiffiffi
q

p þ3k
e−2vffiffiffi
v

p þQðqÞ−QðvÞ
�

þ2c; ðD5Þ

with the parameter v varying from 0 to q. The value of q is
determined from Eq. (D2). The functions Lþ and Eþ are as
defined in Appendix A. c is a normalization constant. The
tangent angle α can be expressed in terms of v by using the
force balance equation at the vertex, with the result

FIG. 18. Left: A static configuration for a heavy-light meson Qq̄. Right: A static configuration for a heavy-light baryon Qqq.

FIG. 19. Three types of static string configurations that contribute to the ground state of theQQq system. α denotes a tangent angle of
the left string at point V.
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sin α ¼ 1

2
ð1þ 3kð1þ 4vÞe−3vÞ: ðD6Þ

At this point, it is worth mentioning that in the limit

l → 0 the energy reduces to a sum of energies: EðSÞ
QQq ¼

EqQ̄ þ EQQ, as expected from heavy quark-diquark sym-
metry. This limit corresponds to small values of v, where
the function lðvÞ behaves exactly as described by Eq. (4.5).
For intermediate values of l, the configuration is labeled

by (M). It looks like one of the strings is missing so that the
position of the light quark coincides with that of the vertex.
So, one has q ¼ v. The distance l is expressed in terms of v
and α by the same formula as before, only for another
parameter range, whereas the energy is given by

EðMÞ
QQq ¼ g

ffiffi
s

p �
2Eþðα; vÞ þ 1ffiffiffi

v
p ðne12v þ 3ke−2vÞ

�

þ 2c: ðD7Þ

Now v varies from q to vM, where vM is a solution to

nð1 − vÞ þ 3kð1þ 4vÞe−5
2
v ¼ 0: ðD8Þ

The force balance equation in this case gives

sin α ¼ 1

2
ðnð1 − vÞe−1

2
v þ 3kð1þ 4vÞe−3vÞ: ðD9Þ

A noteworthy fact is that αðvMÞ ¼ 0.
For large l, the proper configuration is that labeled by

(L). In fact, what happens in the transition from (M) to (L)
is that the tangent angle changes the sign from positive to
negative. Keeping this in mind makes it much easier to
arrive at the relation between the energy and quark
separation. Replacing Lþ and Eþ by L− and E−, it becomes

lðLÞ ¼ 2ffiffi
s

p L−ðλ; vÞ;

EðLÞ
QQq ¼ g

ffiffi
s

p �
2E−ðλ; vÞ þ 1ffiffiffi

v
p ðne12v þ 3ke−2vÞ

�

þ 2c; ðD10Þ

with the parameter v varying from vM to vL. The upper
bound is found by solving the nonlinear equation

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2e2ð1−vÞ

p
þ 3kð1þ 4vÞe−3v þ nð1 − vÞe−1

2
v ¼ 0

ðD11Þ

on the interval [0, 1]. A function λðvÞ is written explicitly as

λðvÞ ¼ −ProductLog
�
−ve−v

�
1 −

1

4
ð3kð1þ 4vÞe−3v þ nð1 − vÞe−1

2
vÞ2

�
−1
2

�
; ðD12Þ

as it follows from Eq. (B17) with the tangent angle found
from the force balance equation at V. Note that λðvLÞ ¼ 1
which corresponds to the limit of infinitely long strings.
One can summarize all this by saying that the energy as a

function of the heavy quark separation is given in para-
metrical form by the two piecewise functions EQQq ¼
EQQqðvÞ and l ¼ lðvÞ.
For future reference, it is worth noting that the asymp-

totic behavior of EQQqðlÞ for large l is

EQQq ¼ σl − 2g
ffiffi
s

p
IQQq þ 2cþ oð1Þ; ðD13Þ

with

IQQq ¼ IðvLÞ −
1

2
ffiffiffiffiffi
vL

p ðne12vL þ 3ke−2vLÞ ðD14Þ

and the same string tension σ as in Eq. (B23).
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