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The first law for entanglement entropy in CFT in an odd-dimensional asymptotically AdS black hole is
studied by using the AdS=CFT duality. The entropy of CFT considered here is due to the entanglement
between two subsystems separated by the horizon of the AdS black hole, which itself is realized as the
conformal boundary of a black droplet in even-dimensional global AdS bulk spacetime. In (2þ 1)-
dimensional CFT, the first law is shown to be always satisfied by analyzing a class of metric perturbations
of the exact solution of a 4-dimensional black droplet. In (4þ 1)-dimensions, the first law for CFT is shown
to hold under the Neumann boundary condition at a certain bulk hypersurface anchored to the conformal
boundary of the boundary AdS black hole. From the boundary view point, this Neumann condition yields
there being no energy flux across the boundary of the boundary AdS black hole. Furthermore, the
asymptotic geometry of a 6-dimensional small AdS black droplet is constructed as the gravity dual of our
(4þ 1)-dimensional CFT, which exhibits a negative energy near the spatial infinity, as expected from
vacuum polarization.
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I. INTRODUCTION

The entanglement entropy of a quantum field in black
hole backgrounds has attracted much attention as the key
concept toward understanding the origin of the Bekenstein-
Hawking entropy (for review, see e.g., [1]). Although it is in
general a Herculean task to calculate an entropy in a curved
background, it is tractable to compute the entropy for
strongly coupled conformal fields in the holographic
setting, or the anti–de Sitter (AdS) conformal field theory
(CFT) correspondence, by using the Ryu-Takayanagi for-
mula [2]. In this formula, the entropy calculation for a
subsystem is reduced to a much simpler task of calculating
the area of a minimal or extremal surface anchored to the
boundary of the asymptotically AdS gravity dual.
In the framework of the AdS=CFT duality, the first law

of the vacuum entanglement entropy was shown for any
ball-shaped subregions when the AdS boundary is flat
Minkowski spacetime [3,4]. Conversely, the bulk linearized
Einstein equations around the pure AdS spacetime can be
derived when the first law is satisfied for the subregions in

the boundary theory [5], being consistent with the basic
idea [6]. In some sense, the first law of the entanglement
entropy could be a guiding principle for a consistent
formulation of quantum gravity, just like the first law of
black hole thermodynamics. Motivated by this, we holo-
graphically explore the first law of the entanglement
entropy for two subsystems of CFT separated by a black
hole horizon in asymptotically AdS spacetime.
In the holographic proof of the first law [5], the Noether

charge formula [7] plays an essential role. This is because
the entanglement entropy for any ball-shaped spatial region
in flat AdS boundary corresponds, through a conformal
transformation, to the horizon area of a zero-mass hyper-
bolic black hole in the bulk. Therefore it is inferred that the
Noether charge formula can also be applied to the deriva-
tion of the first law of the entanglement entropy of a
strongly coupled CFT in black hole backgrounds. In the
standard Noether charge derivation [7] of the first law of the
black hole thermodynamics in D-dimensions, one first
considers a (D − 1)-dimensional spacelike hypersurface
which has two (D − 2)-dimensional boundaries, one at
the black hole horizon (bifurcate surface) and the other at
the spatial infinity, and then computes the Noether charges
at these two boundaries. For asymptotically flat black
holes, one can impose a natural boundary condition for
physical fields at the spatial infinity to be consistent with
the asymptotic flatness and black hole no-hair property, but
for asymptotically AdS black holes, one needs to be more
careful to consider possible boundary conditions at the AdS
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infinity. In the holographic setting, further care may be
needed since one first extends the spacelike hypersurface
into the (Dþ 1)-dimensional bulk spacetime to have a
D-dimensional spacelike hypersurface and, if the extended
hypersurface ends at a bulk boundary (e.g., black hole
horizon isolated from the boundary black hole), then one
also has to take into account the additional contribution to
the Noether charge from such a bulk boundary.
In this paper, we examine the first law of the entangle-

ment entropy of odd-dimensional conformal field theories
(CFT) in AdS black hole backgrounds by using the Noether
charge formula in the holographic setting. Namely,
we consider a D (odd)-dimensional AdS black hole which
is realized as a part of the conformal boundary of the
(Dþ 1)-asymptotically AdS bulk spacetime. Then, as
briefly mentioned above, we evaluate Noether charges at
two (D − 2)-boundaries (i.e., the boundary black hole
horizon and the boundary AdS infinity) as well as those
at (D − 1)-bulk boundaries.
For simplicity, we assume that the bulk geometry

contains neither horizons in the IR isolated from the
AdS boundary nor black funnels in the Hartle-Hawking
state, which connect two or more boundary black holes
[14]. So, the only possible bulk solution dual to the
boundary CFT in an AdS black hole background is the
black droplet solution [14], in which the bulk horizon is
connected to the single boundary black hole. The black
droplet solutions with a boundary black hole in asymp-
totically flat spacetime were eagerly constructed with
numerics, motivated by the investigation of the Hawking
radiation in strongly coupled field theories [8–13] (see also
analytic solutions for lower-dimensional black droplets
[14] or perturbative analytic solutions [15,16]).
In Fig. 1, we show an example of the black droplet

solution in which the bulk horizon is connected to a
boundary black hole in an asymptotically AdS spacetime.
In (2þ 1)-dimensional field theory, we calculate the
perturbation of the black droplet solution with Banados-
Teitelboim-Zanelli (BTZ) black hole on the AdS boundary
[14]. (For a brane model, the first law of the entanglement
entropy was shown [17].) It is shown that the first law of the
entanglement entropy is always satisfied. In (4þ 1)-dimen-
sional field theory, we show that the first law is satisfied for
the Neumann boundary condition at the equatorial plane in
Fig. 1. In the field theory side, the condition corresponds to
the no energy flux condition across the timelike null
infinity. Under the boundary condition, we analytically
construct the asymptotic geometry of such a black droplet
solution from the perturbation of the global AdS spacetime.
It is shown that negative energy appears in asymptotic
region and it decays with r−3 power in the radial coordinate
r. This could be understood as a vacuum polarization effect.
The rest of our paper is organized as follows. In Sec. II,

we briefly review the Noether charge formula [7] and
explain our setup. In Sec. III, we show that the first law of

the entanglement entropy is satisfied in (2þ 1)-dimen-
sional CFT by perturbing the black droplet solution. In
Sec. IV, we derive the Noether charge on the equatorial
plane and explore the boundary condition in which the first
law is satisfied in (4þ 1)-dimensional CFT. We also show
that the energy flux across the AdS boundary is zero when
the first law is satisfied. In Sec. V, a black droplet solution
with a boundary AdS black hole is perturbatively con-
structed from the global AdS spacetime. Section VI is
devoted to summary and discussions. In the Appendix, we
briefly discuss the Noether charge formula (2.4) for general
perturbations in (5þ 1)-dimensional bulk metric (4.2).

II. PRELIMINARIES: HOLOGRAPHIC SETTING
AND NOETHER CHARGE FORMULA

In this section we explain our setup and the strategy
before exploring the first law of the entanglement entropy.
Our holographic setup is the following: We consider a
(Dþ 1)-dimensional asymptotically (locally) anti–de Sitter
(AlAdS) spacetime ðM; gMNÞ which satisfies the vacuum

FIG. 1. A schematic diagram of a time slice of our black droplet
in asymptotically AdS bulk spacetime of (Dþ 1)-dimension. The
black circle describes a (D − 1)-dimensional sphere as a time
slice of the D-dimensional conformal boundary of the Einstein
static cylinder or an asymptotically, globally AdS spacetime in
(Dþ 1)-dimension. The conformal boundary of our black droplet
itself is a D-dimensional asymptotically AdS black hole (illus-
trated in Fig. 2), whose (D − 1)-dimensional time slice (dashed
blue half-circle) therefore covers only half of the (D − 1)-dimen-
sional sphere. Note that the boundary D-dimensional black hole
has two asymptotic regions (corresponding to A and B of Fig. 2),
but the lower half circle (dashed blue half-circle) shows only one
of them, say the region A of Fig. 2. We take our hypersurface Σ as
the lower half of this time slice (shaded region) enclosed by part
of the AdS boundary (part of the dashed blue curve, which
corresponds to the region A), black droplet horizon (black curve)
and χ ¼ π=2 (red dotted line). The contribution to the Noether
charge arises from part (red dotted line, χ ¼ π=2) of ∂Σ, as well
as from the bulk horizon and the lower half of the AdS boundary.
As we will discuss, we consider a reflection boundary condition
at χ ¼ π=2 (red dotted line).
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Einstein equations and whose conformal boundary
ð∂M; g̃μνÞ is locally conformally mapped to the D-dimen-
sional static Einstein cylinder. On the conformal boundary
∂M, we consider a D-dimensional static, asymptotically
AdS black hole, whose spatial section is conformally
embedded in the half of the (D − 1)-sphere—i.e., a spatial
section of the static Einstein cylinder—as shown by the
dashed blue curve in Fig. 1. On such a D-dimensional AdS
black hole realized in our holographic setting, we consider
the entanglement entropy for the subregion A on a space-
like hypersurface S separated by the horizon (see Fig. 2).
The entropy is obtained by tracing over the degrees of
freedom located in the subregion B.
From the bulk point of view, there is a static black droplet

solution in which the horizon is connected to the boundary
horizon of the boundary AdS black hole. We assume that
there are no bulk black holes disconnected from the AdS
boundaries or black funnels connecting two or more
boundary horizons. According to the Ryu-Takayanagi
formula [2], the entanglement entropy between A and B
is obtained by the area of the bulk minimal surface
anchored to the bifurcate surface C between A and B.
Since the bulk spacetime is static, there is a bifurcate
Killing horizon in the bulk anchored to the bifurcate surface
C on the AdS boundary. So, the entanglement entropy
corresponds to the area of the bifurcate surface of the
Killing horizon of the black droplet solution.
We examine the first law of entanglement entropy in the

boundary field theory by applying the Noether charge
formula to the bulk Einstein gravity in a (Dþ 1)-
dimensional AlAdS spacetime [7]. Let ξM be a Killing
vector fieldwith respect to the bulkmetric gMN . TheNoether
charge (D − 1)-form Q associated with ξM is given by

Q ¼ −
1

16π
ϵM1M2���MD−1NL∇NξL; ð2:1Þ

where here and hereafter we set the (Dþ 1)-dimensional
gravitational constant equal to one and we omit the indices
M1M2 � � � when writing differential forms, as in the lhs
above. For an arbitrary small deviation δgMN from the bulk
geometry ðM; gMNÞ, the symplectic potential D-form Θ is
defined as

Θðg; δgÞ ¼ 1

16π
ϵNM1M2���MD

gNJgLKð∇LδgJK −∇JδgLKÞ:
ð2:2Þ

As shown in Ref. [7], the exterior derivative of the
variation of the Noether charge is expressed by the
symplectic potential Θ as

dδQ ¼ dðξ ·ΘÞ; ð2:3Þ

where the “centered dot” in the rhs of Eq. (2.3) denotes the
contraction of the Killing vector field ξM into the first index
of the form Θ. Integrating this over a D-dimensional
spacelike hypersurface Σ, we obtain

Z
∂Σ
ðδQ − ξ ·Θðg; δgÞÞ ¼ 0; ð2:4Þ

where ∂Σ is the (D − 1)-dimensional boundary of the
hypersurface Σ. Applying this equation to a black hole
spacetime with a bifurcate Killing horizon with respect to
ξM, one can obtain the first law.
In the Fefferman-Graham expansion, the bulk metric is

represented by

ds2 ¼ gMNdxMdxN ¼ L2

z2
ðdz2þ g̃μνðz;xÞdxμdxνÞ;

g̃μνðz;xÞ ¼ g̃ð0ÞμνðxÞþ z2g̃ð2ÞμνðxÞþ � � �þ zDg̃ðDÞμνðxÞþ � � � ;
xM ¼ ðz;xμÞ ðμ¼ 0;1;…;D− 1Þ; ð2:5Þ

where L is the AdS curvature length.
For D ¼ 3 and D ¼ 5 cases we are interested in, there is

no conformal anomaly, and hence there is no logarithmic
term in (2.5) [18]. Since the background bulk solution gMN

is static, there is a timelike Killing vector field, ð∂tÞM on
M, and let us take ξM ¼ ð∂tÞM. We assume that δgMN is a
solution to the linearized equations of motion satisfying the
Dirichlet boundary condition at the conformal boundary of
the bulk AdS M,

δg̃ð0Þμν ¼ 0: ð2:6Þ

Since g̃ðnÞμνð0 < n < DÞ is the function of g̃ð0Þμν [18], the
leading order of the metric perturbation is

S
A

B

AdS black
hole horizon AdS

null Infinity

C

D

spacetime singularity

FIG. 2. The Penrose diagram of an AdS black hole on the
boundary theory. The Noether charge generically appears on the
bulk hypersurface anchored to D.
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δgμν ¼ OðzD−2Þ: ð2:7Þ

When ∂Σ is the bifurcation surface of a bulk black hole,
the second term in Eq. (2.4) disappears on ∂Σ and the first
term yields the variation of the black hole area (entropy). In
the black droplet solutions, the horizon extends to the AdS
boundary, and hence the area diverges towards the boun-
dary. Note however that the variation should be finite for
the Dirichlet boundary condition (2.6). When ∂Σ is taken as
a part of the boundary of Σ at the AdS conformal boundary,
the formula (2.4) provides the variation of the holographic
energy E [19], defined by

E ¼
Z
∂Σ

Tμνξ
μnν; ð2:8Þ

where Tμν is the stress-energy tensor of the boundary field
theory, nμ is the unit normal vector to ∂Σ, and the volume
element of ∂Σ with respect to the conformal metric gð0Þ is
understood in the integral. Applying the holographic stress-
energy formula [18], Tμν is given in terms of the coefficient
g̃ðDÞμν as

Tμν ¼
DLD−1

16π
g̃ðDÞμν; ð2:9Þ

in odd dimensional cases.
Our setup for holographic derivation of the first law for

entanglement entropy in CFT is as follows. As our spatial
hypersurface Σ for evaluating the Noether charge formula,
we take the lower half of the time slice enclosed by part of
the AdS boundary, black droplet horizon and χ ¼ π=2
(shaded region in Fig. 1). Our hypersurface Σ has the
asymptotic boundary S ⊂ ∂Σ, which itself admits its
boundary (D − 2)-sphere denoted by D in Fig. 2. Thus,
the hypersurface Σ admits the boundaries and corners. We
will impose the reflecting (Neumann) boundary condition
at χ ¼ π=2 (red dotted line in Fig. 1). We will discuss in
Sec. IV that this condition is necessary for the purpose of
avoiding any additional contributions to the first law from
the upper side half-moon-shaped region. In the next
section, in more concrete setting, we consider the
Noether charge at the boundaries ∂Σ and also study an
additional contribution to the Noether charge from the
corner.

III. THE FIRST LAW OF ENTANGLEMENT
IN THE EXACT DROPLET SOLUTION IN

(3 + 1)-DIMENSION

A. The exact droplet solution in (3 + 1)-dimension

Let us first quickly review the exact solution of a black
droplet [14] constructed by the analytic continuation of the
(3þ 1)-Schwarzschild-AdS solution,

ds24 ¼ −FðρÞdτ2 þ dρ2

FðρÞ þ ρ2ðdθ2 þ sin2θdΦ2Þ;

FðρÞ ¼ ρ2

L2
þ 1 −

μ

ρ
; μ ¼ ρ30

L2
þ ρ0; ð3:1Þ

where ρ0 is the horizon radius. The double Wick rotation

τ ¼ iχ; Φ ¼ it̃ ð3:2Þ

and the coordinate transformation r̃ ≔ cos θ yields
the following warped product type metric including
2-dimensional de Sitter spacetime,

ds2 ¼ FðρÞdχ2 þ dρ2

FðρÞ þ ρ2
�
−ð1 − r̃2Þdt̃2 þ dr̃2

1 − r̃2

�
:

ð3:3Þ

By the rescaling of the coordinates ðχ; r̃; t̃Þ,

t̃ ¼ r0
l2
t; r̃ ¼ r0

r
; χ ¼ L

l
r0φ; ð3:4Þ

one obtains the following bubble solution:

ds2¼ dρ2

FðρÞþ
ρ2r20
l2r2

�
−
r2− r20
l2

dt2þ l2dr2

r2−r20
þL2r2FðρÞ

ρ2
dφ2

�
;

ð3:5Þ

where φ circle has a period 2π. The S1 circle along ∂φ

shrinks to zero size at the bubble radius, ρ ¼ ρ0, i. e.,
Fðρ0Þ ¼ 0. By imposing a regularity condition at the
bubble radius, r0 is expressed by ρ0 as

r0 ¼
2ρ0lL

3ρ20 þ L2
: ð3:6Þ

Note that the boundary metric [i.e., 3-dimensional metric in
the square brackets in Eq. (3.5)] is conformal to the static
BTZ black hole with the horizon radius r ¼ r0 [20]. Note
also that in the 4-dimensional bulk, there is a bulk horizon
which extends from the bubble radius ρ0, deep inside the
bulk spacetime to the boundary BTZ black hole horizon. In
this way, this bulk metric describes a black droplet as
illustrated in Fig. 1.
Let us change the coordinates in Eq. (3.5) into the

Fefferman-Graham coordinate system (2.5) by
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1

ρðη; zÞ ¼ z

�
1

ηL
þ α2ðηÞz2 þ α3ðηÞz3 þ � � �

�
;

rðη; zÞ ¼ r0ðηþ β2ðηÞz2 þ β4ðηÞz4 þ � � �Þ;

α2 ¼ −
η2 − 2

4Lη3
; α3 ¼ −

μ

6L2η4
;

β2 ¼
η2 − 1

2η
; β4 ¼

η4 − 1

8η3
; � � � : ð3:7Þ

Then, we obtain the stress-energy tensor (2.9) on the
boundary field theory by

Ttt ¼ −
μLr20ðη2 − 1Þ

16πl4η3
;

Tηη ¼
μL

16πη3ðη2 − 1Þ ;

Tφφ ¼ −
μLr20
8πl2η

: ð3:8Þ

Since the BTZ black hole is in odd-dimensions, the trace
anomaly vanishes; i.e., Tμ

μ ¼ 0, as seen in Eq. (3.8). So,
while even-dimensional black droplet solutions have infin-
ite energy due to the anomaly [21], the holographic energy
E in Eq. (2.8) converges to a finite value. When one applies
the formula (2.4) to the black droplet solution (3.5), one
should note that the 2-dimensional surface ∂Σ consists of
three parts: a part at the AdS boundary, z ¼ 0, a part of the
bulk bifurcate Killing horizon, r ¼ r0, and a part of the
timelike surface at r ¼ ∞. In the next subsection we
evaluate Eq. (2.4) on part of the timelike surface at infinity.

B. Perturbation of the (3 + 1)-dimensional
black droplet solution

We consider metric perturbations hMN ≔ δgMN of
the black droplet solution (3.5). For convenience we
express our coordinate system as xM ¼ ðya; xiÞ with
ya ≔ ðρ;φÞ; xi ≔ ðt; rÞ and denote by γ̃ij the 2-dimensional
de Sitter metric spanned by xi in (3.5). We can impose the
following gauge condition:

hai ¼ 0; hij ∝ γ̃ij: ð3:9Þ

This condition may immediately be justified by, e.g.,
applying the scalar-type perturbations of [22] to the
4-dimensional Schwarzschild-AdS solution (3.1) with the
scalar harmonics SkðxiÞ and taking the gauge fa ¼ 0;
HT ¼ 0 in the terminology of [22]. Note however that
when applying the formalism of [22] to the present case, the
scalar “harmonics” SkðxiÞ corresponds to the solutions of
the Klein-Gordon equation on the Lorentzian sphere (i.e.,
de Sitter space with the metric γ̃ij), rather than the standard
eigenfunction of the laplace operator with respect to the
unit two-sphere metric.

Now we assume that our perturbations hMN satisfy the
symmetry along ∂φ. Under the gauge choice (3.9), the
variation of the Noether charge (2.1) and the symplectic
two form (2.2) for the Killing vector ξ ¼ ∂t are calculated
for t ¼ const: and r ¼ ∞ surface for the metric (3.5) as

Z
r¼∞

δQ ¼ 1

32π

Z
ϵρφtrðhaa − hiiÞgttgrr∂rgtt

−
1

16π

Z
ϵρφtrgttgrrð∂thrt − ∂rhttÞ; ð3:10Þ

and

Z
r¼∞

ξ · Θ ¼ −
1

16π

Z
ϵρφtrgrrgtt

×

�
1

2
hii∂rgtt − gtt∂rhaa þ ∂thrt − ∂rhtt

�
;

ð3:11Þ

where we denote the partial traces by haa ¼ hρρ þ hφφ;
hii ¼ htt þ hrr. Note that as usual, the indices of hμν are
raised and lowered by the background metric gμν and its
inverse, e.g., hμν ≔ hμλgλν. Then, the combination of
Eq. (3.10) and (3.11) yields

Z
r¼∞

ðδQ−ξ ·ΘÞ¼ 1

16π

Z
ϵρφtrgrrgtt

�
1

2
haa∂rgtt−gtt∂rhaa

�
:

ð3:12Þ

With the condition (3.9) and the perturbed vacuum Einstein
equations, we can find that the partial trace haa vanishes in
4-dimensional bulk [22], i.e.,

haa ¼ hφφ þ hρρ ¼ 0: ð3:13Þ

Thus, the rhs of Eq. (3.12) vanishes on t ¼ const: and r ¼
∞ surface. It follows from the holographic interpretation
[23] that the first law of the entanglement entropy S is
satisfied:

δE ¼ TδS ð3:14Þ

in the black droplet solution, where T denotes the temper-
ature computed from the surface gravity of the bifurcate
Killing horizon. This result is peculiar to the 4-dimensional
bulk case, because Eq. (3.13) is satisfied only for D ¼ 3
case. In the other dimensions, we need to impose boundary
conditions for bulk metric perturbations to derive the first
law, as we will see in the next section.
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IV. THE FIRST LAW IN (4 + 1)-DIMENSIONAL
FIELD THEORY IN ADS BLACK HOLE

BACKGROUND

In this section, we examine the first law of the entangle-
ment entropy for CFT in D ¼ 5-dimensions by using the
holographic principle and applying the Noether charge
formula as in the previous section. For the use of the
holographic ideas, it would be most convenient if there is,
as the gravity dual, any known exact solution of the
(5þ 1)-dimensional black droplet that possesses the boun-
dary D ¼ 5-dimensional metric

ds25 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
3; fðrÞ ≔ 1 −

M
r2

þ r2

L2
;

ð4:1Þ

where dΩ2
3 ≔ σmndθmdθn is the metric of 3-dimensional

unit sphere with angular coordinates θm (m ¼ 1, 2, 3).
Unfortunately there is no such an analytic solution avail-
able in (5þ 1)-dimension. But, fortunately, with the
Noether charge formula at our hand, all we need for our
purpose is the asymptotic behavior of the gravity dual near
the boundary rather than the entire structure of the
explicitly written exact solution. In fact, in the D ¼ 3 case
examined in III B, we have the exact gravity dual (3.5)
available, but we need not use the explicit expression of
(3.5) to derive the first law (3.14) for the boundary CFT.
Therefore, in this section, we simply assume that the
desired gravity dual exists. We will attempt to justify this
assumption by perturbatively constructing a 6-dimensional
black droplet solution in the next section.
Since our 5-dimensional boundary (4.1) itself is an

asymptotically AdS spacetime with a 4-dimensional time-
like surface as its conformal boundary [that is, r → ∞ in
(4.1): see point D in Fig. 2 and also compare ρ ¼ ∞;
χ ¼ π=2 in Fig. 1], by analyzing the asymptotic behavior of
the gravity dual, we can holographically study the asymp-
totic fall-off behavior of our 5-dimensional CFT at
large distances r → ∞. By doing so we can estimate the
energy flux—if it exists—across the 4-dimensional boun-
dary r → ∞ and discuss conditions—if necessary—for the
first law to hold. In Subsec. IVA, we holographically study
possible energy flux at the boundary r → ∞ and derive the
condition for having no energy flux across the boundary.
For this purpose, it is sufficient to examine the metric
perturbations of the (5þ 1)-dimensional pure AdS space-
time since the asymptotic behavior of the gravity dual near
the boundary (ρ → ∞; χ → π=2 of Fig. 1) should be
approximately well described by metric perturbations of
the pure AdS background spacetime near the corresponding
boundary [see also Eq. (4.2) below]. Then, in Subsec. IV B,
by considering metric variations of the (5þ 1)-dimensional
static black droplet—which is assumed to exist as the

gravity dual, just mentioned above—we derive the first law
under the no flux condition.

A. The energy flux on the perturbed AdS geometry

We consider, as our background, the (5þ 1)-dimen-
sional AdS bulk with the metric of the form:

ds26 ¼ −F0ðρÞdt2 þ
dρ2

F0ðρÞ
þ ρ2dΩ2

4; F0ðρÞ ≔ 1þ ρ2

L2
;

ð4:2Þ

where dΩ2
4 denotes the standard metric of the 4-dimen-

sional unit sphere. We use the perturbation formalism of
[24], which is most convenient for the current purpose and
is also useful in the next section. Accordingly we use
coordinates ya ≔ ðt; ρÞ to express the 2-dimensional AdS
metric gab given by the first two terms in (4.2), and angular
coordinates xi ¼ ðχ; θmÞ with 0 ≤ χ ≤ π to the metric γij of
the 4-dimensional unit sphere Ωð4Þ:

dΩ2
4 ¼ γijdxidxj ≔ dχ2 þ sin2 χdΩ2

3

¼ dχ2 þ sin2 χσmndθmdθn: ð4:3Þ

Note that the coordinate χ is later changed to r.
On this background, we consider the metric perturba-

tions, which can in general be classified into three types:
the scalar-, the vector-, and the tensor-type according to
their tensorial behavior on the 4-dimensional sphereΩð4Þ as
explained in [24]. The tensor-type perturbations are char-
acterized as the transverse and trace-free part of δgij, and in
particular, δgtχ ¼ 0, and therefore there is no contribution
to the energy flux Ttr from the tensor-type perturbations.
We discuss the vector-type perturbations in the Appendix.
In the following we focus on the scalar-type metric
perturbations.
It is convenient to introduce the harmonic functions SðlÞ

on the unit four-sphere Ωð4Þ, which satisfy

DiDiSðlÞ þ lðlþ 3ÞSðlÞ ¼ 0; l ¼ 0; 1; 2;…; ð4:4Þ

with Di being the covariant derivative with respect to the
metric γij. Then the scalar-type metric perturbations can be
expressed in terms of SðlÞ as

δgab ¼
X
l

HðlÞabSðlÞ; δgai ¼
X
l

HðlÞaDiSðlÞ;

δgij ¼
X
l

HðlÞLγijSðlÞ þHðlÞT

�
DiDj −

1

4
γijDkDk

�
SðlÞ;

ð4:5Þ

where HðlÞab, HðlÞa, HðlÞL, and HðlÞT are functions of the
coordinates ya ¼ ðt; ρÞ. Hereafter, for brevity we omit the
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indices (l) labeling the mode, unless otherwise stated. We
introduce the following perturbation variables Z and Zab:

Z ¼ 4

�
HL þ lðlþ 3Þ

4
HT þ 2ρðDaρÞXa

�
;

Zab ¼ ρ2ðHab þDaXb þDbXaÞ þ
3

4
Zgab;

Xa ≔ −Ha þ
1

2
ρ2Da

�
HT

ρ2

�
; ð4:6Þ

where Da is the covariant derivative with respect to the
2-dimensional unperturbed metric gab. Note that the two
variables Z and Zab are gauge-invariant. The perturbed
Einstein equations can be expressed in terms of Z and Zab
and furthermore reduced to the following equation for a
single scalar field Φ on the 2-dimensional AdS spacetime
with the metric gab:

DaDaΦ −
2þ lðlþ 3Þ

ρ2
Φ ¼ 0; ð4:7Þ

in terms of which Z and Zab are expressed as

Zab ¼
�
DaDb −

1

L2
gab

�
ðρ2ΦÞ;

Z ¼ Za
a ¼

�
DaDa −

2

L2

�
ðρ2ΦÞ: ð4:8Þ

Now, using the gauge degrees of freedom, we can choose
the following gauge:

Hρ ¼ Hρρ ¼ Htρ ¼ 0: ð4:9Þ

In this gauge, Xρ, Xt, and HT are determined by the second
and third lines in Eqs. (4.6) as

Xρ ¼
1

2
ffiffiffiffiffiffi
F0

p
Z

dρ
ρ2

� ffiffiffiffiffiffi
F0

p
Zρρ −

3Z
4

ffiffiffiffiffiffi
F0

p
�
;

Xt ¼ F0

Z
dρ
ρ2F0

ðZtρ þ iωρ2XρÞ;

HT ¼ 2ρ2
Z

dρ
ρ2

Xρ; ð4:10Þ

where as previously introduced F0 ¼ 1þ ρ2=L2. From the
third line of Eqs. (4.6), Ht is expressed as

Ht ¼ −Xt −
1

2
iωHT; ð4:11Þ

where we have assumed that all the metric functions depend
on t as e−iωt.
Let us expand the master variable Φ near the AdS

boundary ρ → ∞ as

Φ ¼ a0 þ
a1
ρ
þ a2

ρ2
þ � � � : ð4:12Þ

The boundary condition (2.6) imposes a0 ¼ 0 and sets the
integral constants in Eqs. (4.10) to zero. Then the stress-
energy tensor on the boundary theory (2.9) is proportional
to the coefficient a1.
The perturbed metric is transformed to the Fefferman-

Graham coordinate (2.5) by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=L2

p
z

�
1þ L2ðL2 − r2Þ

4ðL2 þ r2Þ z2

þ L4ðL4 − 4L2r2 þ r4Þ
16ðL2 þ r2Þ2 z4 þ � � �

�
;

L tan χ ¼ r
4þ L2z2

4 − L2z2
: ð4:13Þ

Then, expanding the metric component δgtr as a series in z,
Ttr in (2.9) can be read from the coefficient of z3 as

Ttr ∼
a1

ð1þ r2=L2Þ3=2 ∂rS: ð4:14Þ

Therefore in the boundary theory side, the energy flux
across the AdS boundary r ¼ ∞ (see χ → π=2 in Fig. 1)
becomes

J ∼ lim
r→∞

Z
Ttμnμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

L2

r
r3dΩ3dt ∼ a1 lim

r→∞
r2∂rS;

ð4:15Þ

where nμ is the unit normal to the timelike AdS boundary
hypersurface at r ¼ ∞. From the harmonic equation (4.4),
S behaves near the boundary as

S ≃ Aþ B
r
: ð4:16Þ

By Eq. (4.15), the condition for no energy flux is

B ¼ 0: ð4:17Þ

In terms of the angle coordinate χ, this condition is
equivalent to imposing

lim
χ→π=2

∂χS ¼ 0; ð4:18Þ

for the harmonic functions. It is easily checked from
Eq. (4.4) that this is satisfied only for even l. In the next
subsection, we will check that the first law of the entan-
glement entropy is satisfied under the above no-energy flux
conditions.
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B. The first law of the 6-dimensional
black droplet solution

As mentioned before, throughout this section, we assume
that there is a static black droplet solution whose conformal
boundary is the D ¼ 5 asymptotically AdS, static SOð4Þ
symmetric black hole with the metric gμνðz ¼ 0; xÞ given by
(4.1). Such a black droplet solution should admit the
Fefferman-Graham expansion (2.5) with D ¼ 5 metric
gμνðz; xÞ conformal to the boundary metric (4.1). In this
subsection, as the radial coordinate in the D ¼ 5-boundary,
we use χ instead of r, so that xμ ¼ ðt; χ; θmÞ.
Now, to derive the first law applying the Noether

charge formula, let us consider metric perturbations

hμν ¼ δgμν. For simplicity, we assume that the perturbed
metric satisfies SOð4Þ symmetry, in which the only
off-diagonal term appeared is htχ . Since our background
boundary metric is the 5-dimensional static black hole,
such a SOð4Þ symmetric perturbation corresponds to
monopole or mass perturbation for the boundary
black hole. We briefly comment on possible contri-
butions to the Noether charge formula from general
perturbations without SOð4Þ symmetry in the
Appendix.
On our assumptions, the Noether charge (2.1) and

the symplectic form (2.2) are evaluated at t ¼ const: and
χ ¼ π=2 hypersurface as

Z
χ¼π=2

δQ ¼ −
1

16π

Z
ϵz123tχgttgχχ

�
∂thχt − ∂χhtt þ ð∂χgttÞ

�
htt þ hχχ −

1

2
hμμ

��
; ð4:19Þ

Z
χ¼π=2

½ξ · Θ�z123 ¼ −
1

16π

Z
ϵz123tχgχχ

�
gtt∂thχt þ

1

2
httgtt∂χgtt −

1

2
hmlgmn∂χgnl

þ 1

2
hχχðgtt∂χgtt þ gmn∂χgmnÞ − gtt∂χhtt − gmn∂χhmn þ hmngml∂χgnl

�
; ð4:20Þ

where we emphasize that the indices l,m, n represent the angular coordinates on the unit three-sphere: θm ∈ Ω3. Each term
includes the off-diagonal term δgtχ , but this vanishes in the combination of Eqs. (4.19) and (4.20) as follows:

Z
χ¼π=2

ðδQ − ξ · ΘÞ ¼ 1

16π

Z
ϵz123tχgχχ

�
−
1

2
gtthmm∂χgtt −

1

2
gmnhml∂χgnl −

1

2
hχχgmn∂χgmn þ gmn∂χhmn

�
: ð4:21Þ

From the expression above (4.21), we immediately find that
if both the background and perturbed metrics satisfy the
Neumann boundary condition

lim
χ→π=2

∂χgμν ¼ lim
χ→π=2

∂χhμν ¼ 0; ð4:22Þ

then Eq. (4.21) vanishes. This also shows the first law of the
entanglement entropy (3.14) in the D ¼ 5 case, as in the
D ¼ 3 case.
As shown in the previous subsection, the latter condition

corresponds to the no-energy flux condition (4.18) or (4.17)
for the scalar-type perturbations. As for the vector- and
tensor-type perturbations, it is not obvious from the above
expression alone that one has no contributions to (4.21).
Nevertheless, one can show, at least for the present SOð4Þ
symmetric case, that the energy flux caused by the
perturbation hμνðz; xÞ vanishes on χ ¼ π=2 as follows:
The perturbed boundary stress energy tensor δTμν satisfies
the conservation law [18]

∇νδTμ
ν ¼ 0; ð4:23Þ

where ∇μ is the covariant derivative with respect to the
conformal boundary metric g̃ð0Þμν in Eq. (2.5) under the
boundary condition (2.6). The χ-component of (4.23) is
written as

∂νδTχ
ν − Γα

νχδTα
ν þ Γν

ναδTχ
α ¼ 0: ð4:24Þ

Since the only nonzero off-diagonal term of δTμ
ν is δTχ

t (or
δTt

χ), and the background metric is static diagonal as
assumed, the last two terms in Eq. (4.24) must vanish on
χ ¼ π=2 by the boundary condition (4.22). Thus,
Eq. (4.24) leads to

lim
χ→π

2

∇νδTχ
ν ¼ lim

χ→π
2

ð∂tδTχ
t þ ∂χδTχ

χÞ ¼ 0: ð4:25Þ

The boundary condition (4.22) implies limχ→π=2 ∂χ g̃μν ¼
limχ→π=2 ∂χ h̃μν ¼ 0. The fifth-order of the Fefferman-
Graham expansion of the perturbed metric h̃ð5Þμν ¼ δg̃ð5Þμν
satisfies ∂χ h̃ð5Þμν ¼ 0 at χ ¼ π=2, and therefore it follows
from the holographic stress-energy tensor formula (2.9) that
limχ→π=2 ∂χδTχ

χ ¼ 0. Then, since ∂th̃μν ¼ −iωh̃μν on the
linearized perturbation, Eq. (4.25) yields
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lim
χ→π=2

δTχ
t ¼ 0: ð4:26Þ

This is nothing but the no energy flux condition, as observed
in Eq. (4.17).

V. THE PERTURBATIVE APPROACH IN
(5 + 1)-DIMENSIONAL BLACK DROPLET

SOLUTION

In this section, we will construct the asymptotic geom-
etry of the 6-dimensional black droplet solution under the
boundary condition (4.22) in order to justify our analysis
based on the holographic method in the last section. We
will also examine the energy density of the boundary field
theory. When the boundary black hole mass parameterM in
Eq. (4.1) is small compared with the AdS scale, i.e.,
M ≪ L2, the asymptotic metric can be constructed from
the static perturbation of the pure AdS spacetime (4.2). As
shown below, a negative energy appears near the asymp-
totic region, inconsistent with the D ¼ 3 result (3.8). We
also show that the holographic energy (2.8) is finite. This is
because there is no trace anomaly in odd-dimensions, being
different from the even-dimensional case [21].
We require that the conformal boundary metric of the

perturbed bulk metric coincides with the metric (4.1)
asymptotically in the sense that

ds25 ¼ −fðrÞdt2 þ 1

fðrÞ ð1þOðr−6ÞÞdr2

þ r2ð1þOðr−6ÞÞdΩ3
2; ð5:1Þ

where fðrÞ ¼ 1 −M=r2 þ r2=L2 as previously introduced
by (4.1).

In the static perturbation with ω ¼ 0, Ztρ ¼ Htρ ¼ Ht ¼
Xt ¼ 0. Adopting the gauge choice

Hρ ¼ Hρρ ¼ 0; ð5:2Þ

Xρ, HT are determined by the gauge-invariant variables
Zρρ, Z by Eqs. (4.10). One can always set

lim
ρ→∞

Htt

ρ2
¼ 0 ð5:3Þ

by choosing the integral constant in the first line in
Eqs. (4.10) appropriately. To construct the boundary metric
(5.1) by perturbing the bulk metric (4.2), we find that the
angle coordinate χ in Eq. (4.2) and the radial coordinate r of
the boundary metric (5.1) should be related as

dχ ¼ dr
LfðrÞ : ð5:4Þ

This is integrated and approximately expressed at large r as

tan χ ¼ r
L

�
1 −

ML2

5r4
þ 3ML4

35r6
þ � � �

�
: ð5:5Þ

Then, hrr ¼ δgrr at Oðρ2Þ can be expanded as

lim
ρ→∞

hrr
ρ2

¼ 1

L2fðrÞ2
X
k¼0

αk
r2k

: ð5:6Þ

Therefore the leading order of the bulk perturbed metric
with Oðρ2Þ becomes

ds26 ≃
dρ2

F0ðρÞ
þ ρ2

L2fðrÞ
��

1þ
X
k¼0

αk
r2k

�
dr2

fðrÞ þ fðrÞf−dt2 þ L2ðsin2 χ þ hLÞdΩ2
3g
�
þOðρ0Þ; ð5:7Þ

where hL is the function of χ, arising from the perturbation.
If both the conditions

α0 ¼ α1 ¼ α2 ¼ 0; ð5:8Þ

and

fðrÞL2ðsin2 χ þ hLÞ ¼ r2 þOðr−4Þ; ð5:9Þ

are satisfied, our bulk metric is conformal to the 5-
dimensional Schwarzschild-AdSmetric (5.1), up toOðr−4Þ.
As shown below, both the conditions (5.8) and (5.9) are
satisfied for a suitable superposition of the first three even
mode harmonic functions, SðlÞ (l ¼ 2, 4, 6) in Eq. (4.4),

which satisfy the boundary condition (4.22). From now on
we show the indices (l) labeling the mode.
The analytic solution of Eq. (4.7) that satisfies the

regularity at ρ ¼ 0 is given by the hypergeometric function
F with the argument F0ðρÞ ¼ 1þ ρ2=L2 (see [24]):

ΦðlÞ ¼ a0ðlÞ

�
F0ðρÞ− 1

F0ðρÞ
�
1þl=2

·

�
F

�
lþ 2

2
;
lþ 2

2
;
1

2
;

1

F0ðρÞ
�

− 2

�
Γðlþ3

2
Þ

Γðlþ2
2
Þ
�
2 1ffiffiffiffiffiffiffiffiffiffiffiffi

F0ðρÞ
p ·F

�
lþ 3

2
;
lþ 3

2
;
3

2
;

1

F0ðρÞ
��

:

ð5:10Þ

This equation enables us to describe a1ðlÞ by a0ðlÞ as
follows:
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a1ðlÞ ¼ −2L
�
Γðlþ3

2
Þ

Γðlþ2
2
Þ
�
2

a0ðlÞ: ð5:11Þ

The first three even mode harmonic functions SðlÞ are
given by

Sð2ÞðχÞ ¼
3

4
ð5 cos2 χ − 1Þ;

Sð4ÞðχÞ ¼
5

8
ð1− 14 cos2 χ þ 21 cos4 χÞ;

Sð6ÞðχÞ ¼
7

64
ð−5þ 135 cos2 χ − 495 cos4 χ þ 429 cos6 χÞ:

ð5:12Þ

By Eqs. (4.10), the leading term of HðlÞT becomes

HðlÞT ¼ cðlÞρ2 þOð1Þ; ð5:13Þ

where cðlÞ is the integral constant for HðlÞT in Eqs. (4.10).
Then, from (4.5), we find that δgχχ is asymptotically,
ρ → ∞, described by

hχχ ¼
X

l¼2;4;6

��
HðlÞL þ lðlþ 3Þ

4
HðlÞT

�
SðlÞðχÞ

þHðlÞT∂2
χSðlÞðχÞ

�

¼
X

l¼2;4;6

�
3a0ðlÞ
L2

SðlÞ þ cðlÞ∂2
χSðlÞ

�
ρ2 þOð1Þ; ð5:14Þ

where Eq. (4.4) is used in the first line. As for the second
line, we first write Zab; Z in Eqs. (4.8) and Xρ in Eq. (4.10)
using Eq. (5.10) and obtain the expression of HL, HT ,
which we then insert in the first line. Note that when
evaluating Xρ, one has to integrate the rhs of the first line of
Eq. (4.10) and choose the integration constant so that the
condition (5.3) is satisfied, as mentioned before. Then, one
finds in the leading order,

XðlÞρ ∼ −
a0ðlÞ
ρ

þOð1=ρ3Þ: ð5:15Þ

Together with

ZðlÞ ∼ 4a0ðlÞ
ρ2

L2
þOð1Þ; ð5:16Þ

one obtains

HL þ lðlþ 3Þ
4

HT ¼ Z
4
− 2ρðDaρÞXa ∼ 3a0ðlÞ

ρ2

L2
þOð1Þ;

ð5:17Þ

which provides the expression of (5.14). This hχχ can be
expanded as a series in 1=r by using Eq. (5.5). The result is

lim
ρ→∞

hχχ
ρ2

¼ 5

32
ð48cð2Þ − 112cð4Þ þ 189cð6ÞÞ −

3

64L2
ð48a0ð2Þ − 40a0ð4Þ þ 35a0ð6ÞÞ

þ 5

64r2
f144a0ð2Þ − 336a0ð4Þ þ 567a0ð6Þ − 16L2ð12cð2Þ − 154cð4Þ þ 567cð6ÞÞg

þ 5

32r4
f−72a0ð2Þ þ 420a0ð4Þ − 1323a0ð6Þ þ L2ð96cð2Þ − 2576cð4Þ þ 19089cð6ÞÞg þO

�
1

r6

�
: ð5:18Þ

From this expansion, the coefficients αk in Eq. (5.6) can be
determined. Then, under the condition (5.8), each coef-
ficient cðlÞ can be obtained as

cð2Þ ¼
864a0ð2Þ þ 240a0ð4Þ þ 245a0ð6Þ

5280L2
;

cð4Þ ¼
−144a0ð2Þ þ 240a0ð4Þ þ 115a0ð6Þ

2080L2
;

cð6Þ ¼ −
576a0ð2Þ þ 600a0ð4Þ − 6895a0ð6Þ

90090L2
: ð5:19Þ

Similarly, hL in Eq. (5.7) is expanded in terms of the
harmonic functions SðlÞ as

hL ¼
X

l¼2;4;6

�
3a0ðlÞ
L2

sin2 χSðlÞ þ cðlÞ sin χ cos χSðlÞ;χ

�
:

ð5:20Þ

Substituting Eq. (5.5) into Eq. (5.9), we determine each
coefficient a0ðlÞ (l ¼ 2, 4, 6) in terms of the small parameter
M as

a0ð2Þ ¼ −
4M
297

; a0ð4Þ ¼ −
16M
585

; a0ð6Þ ¼ −
64M
5005

:

ð5:21Þ
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Therefore the asymptotic bulk geometry is completely
determined by the coefficients.
Due to the gauge choice (5.2), the coordinate trans-

formation

ρ ¼ L
2

�
1

z
− z

�
ð5:22Þ

leads to the Fefferman-Graham coordinate (2.5) in the
original conformally static Einstein frame, xμ ¼ ðt; χ; θmÞ,
m ¼ 1, 2, 3. Then, under the boundary condition (5.3), h̃tt
in Eqs. (4.5) can be expanded as a series in z,

h̃tt ¼
X

l¼2;4;6

4 − lðlþ 3Þ
L2

�
3

8
þ 3

8
½1 − lðlþ 3Þ�z2

þ 4lðlþ 3Þ
5

�
Γð3þl

2
Þ

Γðlþ2
2
Þ
�
2

z3
�
a0ðlÞSðlÞ þOðz4Þ; ð5:23Þ

where we used Eq. (5.11). So, according to the AdS=CFT
dictionary, the energy density Ttt in the static Einstein
universe can be read off from the z3 coefficient as

Ttt ≃ −
3285L2M
1024

þO

�
χ −

π

2

�
2

ð5:24Þ

combined with the result (5.21). Note that the
Schwarzschild-AdS metric on the boundary (5.1) is
obtained by a conformal transformation from the static
Einstein frame by

gμν → e2σgμν; eσ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
: ð5:25Þ

Then, the stress-energy tensor is obtained from the trans-
formation

Tμν → e−3σTμν: ð5:26Þ

The asymptotic energy density in the 5-dimensional
Schwarzschild-AdS metric is obtained by

Ttt → TttfðrÞ−3=2 ∼ r−3: ð5:27Þ

Thus, the holographic energy (2.8) becomes finite.
Since the negative energy density (5.24) in the asymp-

totic region is proportional to the mass parameter M in
the Schwarzschild AdS black hole (4.1), this reflects the
curvature of the black hole. So, one may say that the
negative energy density is caused by the vacuum polari-
zation effect, as explained in [9]. This behavior is quali-
tatively the same as the case of 5-dimensional small black
droplet numerical solutions [21] with an AdS black hole on
the boundary.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have derived the first law of the
entanglement entropy for two subsystems separated by
an AdS black hole for odd-dimensional CFTs by using the
holographic method and applying the Noether charge
formula. We have seen that the nonvanishing contribution
to our Noether charge generically arises not only at the
bifurcate horizon and the asymptotic infinity but also at a
spacelike hypersurface which terminates at the “equatorial
plane" on the boundary static Einstein universe (see the
dotted red line in Fig. 1). This is because the boundary AdS
black hole covers only one-half of the global AdS
boundary.
For (2þ 1)-dimensional CFT, we have, as its gravity

dual, the exact black droplet solution [14], and therefore by
perturbing it, we have holographically shown that the first
law is satisfied without imposing any additional conditions.
As for (4þ 1)-dimensional CFT, restricted to the SOð4Þ
symmetric perturbations, we have shown in Sec. IV that the
first law is satisfied when there is no energy flux across
the timelike conformal boundary, which corresponds to the
Neumann boundary condition on the spacelike bulk hyper-
surface at χ ¼ π=2. We give a brief discussion on the
analysis of generic perturbations in the Appendix. We
believe that an analysis for general perturbations without
SOð4Þ symmetry would also show the first law, but in the
present paper, we have not been able to fully clarify
this issue.
We would like to emphasize again that in our holo-

graphic setup, in order to compute the Noether charge, we
have taken Σ as the lower half shaded region in Fig. 1 and
imposed, in particular, the reflection (Neumann) boundary
condition at χ ¼ π=2. The reflection boundary condition at
χ ¼ π=2 is necessary to avoid additional contributions to
the first law from the upper side of Fig. 1. One may think of
what happens if one takes Σ as the entire time slice. For
example, if Σ is taken as the union of the single black
droplet in the lower half and the regular (no black droplet)
region in the upper half of Fig. 1, then the reflection
condition at χ ¼ π=2 is no longer satisfied, and hence there
is no guarantee that the first law can be derived. First of all,
if Σ is taken as the entire time slice, then the corresponding
boundary CFT would live in a spatially compact universe,
rather than in an asymptotically AdS boundary spacetime,
and the notion of a boundary black hole itself is no longer
clearly defined.
In Sec. V, under the Neumann boundary condition for

no-energy flux, we have constructed the asymptotic geom-
etry of a small black droplet solution from scalar-type of the
linear metric perturbations of the pure AdS spacetime. For
this purpose, we have expanded the metric perturbations by
scalar harmonics on the sphere and also set the boundary
black hole mass M as the small parameter. To satisfy the
Neumann boundary condition, only even modes of the
scalar harmonics are permitted.
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In Ref. [25], quantization of conformally coupled scalar
fields in anti–de Sitter spacetime was considered in various
schemes. One is the “transparent” boundary condition in
which each positive frequency classical solution propagates
beyond the timelike boundary at spatial infinity, and hence
the Klein-Gordon inner product is defined on the whole
Einstein static cylinder, by adding another “virtual” AdS
spacetime. In this case, observers living in an asymptotically
AdS spacetime would recognize that some information or
energy is lost through the timelike boundary. Another
boundary condition is the “reflective” boundary condition
in which each positive frequency classical solution is
reflected at the timelike boundary at infinity, and therefore
information or energy loss does not occur on the boundary.
In this paper, by adapting the latter “reflective” boundary
condition, we have shown the first law of the entanglement
entropy for D ¼ 5 CFT in asymptotically AdS spacetime.
Conversely, if the first law is satisfied in asymptotically AdS
spacetime, the “reflective” boundary condition is derived for
the holographic stress-energy tensor. On the other hand, in
the D ¼ 3 case, the Noether charge at the infinity is always
zero, being irrespective of the boundary conditions in the
holographic model we consider. It would be interesting to
explore whether the first law of the entanglement entropy is
satisfied for various quantizations of a free scalar field in
BTZ background.
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APPENDIX: NOETHER CHARGE FORMULA
FOR GENERAL PERTURBATIONS OF 6-

DIMENSIONAL ADS

In this Appendix we consider the Noether charge
formula (2.4) for general perturbations in (5þ 1)-
dimensional pure AdS bulk background metric (4.2).
Note that although the perturbation analysis in Sec. IV B
is restricted to SOð4Þ symmetric case, the background
geometry treated in Sec. IV B is the black droplet solution,
which we assume to exist. In this sense the analysis in
Sec. IV B is more relevant to our purpose for obtaining the
first law than the analysis below.
As introduced in sec. IVA, we use the coordinates

ya ≔ ðt; ρÞ in the 2-dimensional AdS spacetime and the
angular coordinates xi ¼ ðχ; θmÞ. We denote our Killing
vector field by ξM ¼ ðξa; ξiÞ. The integrand of the Noether
charge formula (2.4) is in the present case a 4-form on the
4-sphere ðΩð4Þ; γijÞ. For generic metric perturbations
δgMN ¼ hMN ¼ ðhab; hai; hijÞ, we have

δQ − ξ ·Θðg; δgÞ ¼ −
1

16π
ϵi1���i4

ab

��
1

2
hgac − hac

�
Dcξ

b − hajDjξ
b þDbρ

ρ
hajξ

j

þ 1

2
ðDahbc −DbhacÞξc þ

ρ

2

�
Da

�
hbj
ρ

�
−Db

�
haj
ρ

��
ξj

− ξa
�
Dchbc þDjhbj þ n

Dcρ

ρ
hbc −

Dbρ

ρ
hkk −Dbh

��
: ðA1Þ

The tensor-type metric perturbations hMN are tangential
to ðΩð4Þ; γijÞ with no components along ya direction, and
behave as a transverse-traceless tensor on ðΩð4Þ; γijÞ. It is
straightforward to see that the 4-form (A1) vanishes for
tensor-type perturbations.
Now let us consider the vector-type perturbations. We

introduce the vector harmonics on Ωð4Þ, which satisfy

DiDiV ðlvÞj þ ½lvðlv þ 3Þ − 1�V ðlvÞj ¼ 0; DiV ðlvÞi ¼ 0;

lv ¼ 1; 2; 3;…: ðA2Þ

The vector-type metric perturbations can be expanded in
terms of V ðlvÞi as

δgab ¼ 0; δgai ¼
X
lv

Hð1Þ
ðlvÞaV ðlvÞi;

δgij ¼
X
lv

Hð1Þ
TðlvÞðDiV ðlvÞj −DjV ðlvÞiÞ: ðA3Þ

Hereafter we omit the mode indices ðlvÞ for notational
simplicity. Note that since the gauge transformation of the
vector-type perturbations is generated by a vector field
Xi ¼ Xð1ÞV i with a scalar Xð1Þ on the 2-dimensional AdS
spacetime, one can impose, for instance, the gauge con-

dition Hð1Þ
T ¼ 0.

The gauge invariant variables for the vector-type per-
turbations are given by

Za ¼ Hð1Þ
a − ρ2Da

�
Hð1Þ

T

ρ2

�
: ðA4Þ
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This variable can be expressed by a single master variable
ΦV on the 2-dimensionalAdS spacetime spanned by ðt; ρÞ as

Za ¼
1

ρ2
ϵabDbðρ2ΦVÞ; ðA5Þ

where ϵab is the metric compatible volume element on the
2-dimensional AdS spacetime gab. The master variable
ΦV satisfies

DaDaΦV −
�

2

L2
þ 2þ lvðlv þ 3Þ

ρ2

�
ΦV ¼ 0: ðA6Þ

The normalizable solution ΦV which also satisfies the
regularity condition in the bulk is given by Eq. (154) of
[24] with ν ¼ 3=2; σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lvðlv þ 3Þ þ 9=4
p

. (Note that for
the normalizable solution, the frequencyω is quantized to be
ω ¼ ∓ð2mþ 1þ νþ σÞ, m ¼ 0; 1; 2;….) Then, from
Eq. (154) of [24], one can see the asymptotic behavior of
ΦV as

ΦV ¼ b1
ρ2

þ b2
ρ4

þ � � � : ðA7Þ

It then follows that at large ρ,

Zt ∼−
2b2=L2

ρ3
þOð1=ρ5Þ; Zρ ∼−iωL2

�
b1
ρ4

þ b2
ρ6

þ � � �
�
:

ðA8Þ

For the vector-type perturbations, the Noether charge
formula (A1) is expressed in terms of the gauge-invariant
variable (A5) as

δQ − ξ ·Θðg; δgÞ

¼ −
1

16π
ϵi1���i4

ab

�
−
Za

ρ2
V iDiξb þD½aZb�ξiV i

�
: ðA9Þ

So far, we have not yet used the property that ξM is the
Killing vector. In Sec. IVA, we are concerned with the
static black hole background and our Killing vector is
ξa∂a ¼ ∂=∂t, ξi ¼ 0. Thus, in this case, one can immedi-
ately see that the above formula (A9) vanishes.
Now suppose that a rotating black droplet solution be

available, and let us consider ξi ≠ 0. In that case, one
should be able to choose ξi as a linear combination of the
rotational symmetry generators of Ωð4Þ. It is known that for
the dipole moment lv ¼ 1, V i itself is a Killing vector field
onΩð4Þ, and therefore one can take ξi one of such V i so that
ξiV i ≠ 0. Then, one should, in principle, be able to find a
Killing vector field ξM∂M ¼ ∂=∂tþΩðAÞ∂=∂ψ ðAÞ which
becomes tangent to the null generators of the Killing
horizon of the black droplet solution, where ΩðAÞ are
certain constants corresponding to the angular velocity
of the black hole, and ψ ðAÞ angular Killing parameters for
ξi. For such a Killing vector field ξM, the second-term of rhs
of the above formula (A9) should provide the term propor-
tional to the variation of the angular momenta. In fact,
substituting (A8) into (A9) gives a nonvanishing term
proportional to ΩðAÞðω2L2b1 þ 6b2=L2Þ. For the stationary
case ω ¼ 0, this can be viewed as adding an angular
momentum to the background black hole by the dipole
perturbation.
The analysis of generic perturbations of the scalar-type

appears to be much more involved with more terms in the
Noether charge formula (A1). If we can evaluate the
integration of the above formula (A1) for both the vector-
type and scalar-type perturbations, not only at ρ → ∞;
χ → π=2 but also at the Killing horizon of the (hypothetical)
rotating black droplet as well as other relevant boundaries,
then we expect that the first law with work term should be
obtained. To fully verify this argument is, however, beyond
the scope of the present paper wherewe consider only linear
perturbations and their asymptotic behavior.
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