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Various gedanken experiments of quantum gravity phenomenology in search of a complete theory of
gravity near the Planck scale indicate a modification of the Heisenberg uncertainty principle to the
generalized uncertainty principle (GUP). This modification leads to nontrivial contributions on the
Hamiltonian of a nonrelativistic particle moving in an arbitrary potential. In this paper we study the path-
integral representation of a particle moving in an arbitrary potential using the most general form of the GUP
containing both the linear and quadratic contributions in momentum. First we work out the action of the
particle in an arbitrary potential and hence find an upper bound to the velocity of a free particle. This upper
bound interestingly imposes restrictions on the relation between the GUP parameters « and . Analysis

shows that # > 4a>. We then deduce the mathematical expressions of classical action and the quantum
fluctuations for both free particle and the harmonic oscillator systems.
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I. INTRODUCTION

General relativity (GR), proposed by Einstein in 1915
[1], can explain and predict a large number of physical
phenomena in astrophysics and cosmology. On the other
hand, quantum mechanics (QM) is the most successful
candidate to describe the dynamics of a particle in the
microscopic world. Since GR is a classical theory, it fails to
characterize the universe near the Planck scale. Though
these two fundamental theories (GR and QM) are very
successful in their own domain, a complete quantum theory
of gravity to explore the universe close to the Planck epoch
is absolutely essential. Interestingly substantial investiga-
tion of various theories of quantum gravity such as string
theory [2], loop quantum gravity [3,4], noncommutative
geometry [5], and some gedanken experiments in quantum
gravity phenomenology hint at the existence of a minimal
length, namely, the Planck length. This fundamental
hypothesis of the observer independent Planck length
together with the Heisenberg uncertainty principle
(HUP), one of the main pillars of QM, leads to a
modification of the HUP [6]. This modification is well
known in the literature as the generalized uncertainty
principle (GUP). A large area in theoretical physics which
includes black hole thermodynamics [7-9], and various
quantum systems like particle in a box, Landau levels, and
simple harmonic oscillator [10-13], have been extensively
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studied under the GUP framework. We would also like to
mention that the simplest form of the minimal length
uncertainty relation is motivated by the scattering of strings
in the first quantized formulation of string theory. A cubic
form of an uncertainty relation known as the spacetime
uncertainty relation also appears in the literature getting its
motivation from M theory [14—-16]. Interestingly, in the
nonperturbative formulation of open string field theory
such cubic structures arise [17,18]. This makes it quite
natural to look for cubic algebraic structures in string
theory. In [19], some speculative comments on the gener-
alization of two-bracket algebraic structures to three-
bracket (cubic) algebraic structures have been mentioned
and its possible role in string theory has been discussed.
The issue of gauge invariance in the presence of a minimal
length is another important problem that has been discussed
in the literature [20]. This is important as it seems to
contradict the robustness of the symplectic form appearing
in Gromov’s nonsqueezing theorem [21]. Also the breaking
of Lorentz covariance due to the minimal length may lead
to a violation of the second law of thermodynamics [22].
These are some of the fundamental issues that make the
study of GUP even more interesting.

Recently studies have been done to investigate the path-
integral formalism of a nonrelativistic particle in the pres-
ence of the GUP [23,24]. In [24], the Feynman propagator of
a particle under any arbitrary potential has been calculated
using the simplest form of the GUP, in which the modifi-
cation to the HUP involves a term proportional to the
quadratic in momentum. This modification of the HUP,
proportional to the quadratic in momentum is motivated by
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black hole physics and string theory. However, theories of
doubly special relativity suggest that there can be a modi-
fication involving a term linear in momentum. Hence,
combining both possibilities, the most general form of
the GUP has been first introduced in [13]. In this paper
we want to explore the path-integral formalism for a non-
relativistic particle moving under any arbitrary potential
using this form of the GUP which contains both the linear
and quadratic modifications in momentum. We would also

AgiAp; >

like to comment that the path-integral formalism is con-
sistent with two-bracket algebraic structures; however, it is
not quite clear at present how to figure out from the path-
integral formalism the underlying algebraic structures that
would lead to cubic algebraic structures.

The modified uncertainty principle between the position
g; and its conjugate momentum p; incorporating both the
contributions, linear and quadratic in momentum, is given
by [10]

> g [1 - athe<p + %> — (@ =p)((Ap)* +(p)*) — (@® = 2B)((Ap:)* + (p:)?) (1)

where p? = |p|* = n;p'p’s i, j=1, 2, 3, the parameters a and f§ bear the signature of the GUP, and are defined as
a=ay/(Mpc) and f = By/(Mpc)?, with Mp, being the Planck mass and c is the speed of light in free space. The
dimensions of @ and /3 are (momentum)~! and (momentum)~2, respectively. The above uncertainty principle is consistent

with the following modified Heisenberg algebra:

PiPj

i, pj] = ih [51']' - a(5ijp +

It can be easily shown that the above commutator follows
the Jacobi identity, [g;,q;] = [p;» p;] = 0. The modified
variables (g;, p;) can be expressed in terms of the usual
variables (qo;, po;) in such a way that they obey the
commutation relation (2). Hence we have

q; = 40j»
pj = poj(1 —apy + ppo®). (3)

where (qo;. po;) satisfies the usual commutation relation
[90i» Po,] = ihd;;. With the relation (3) in hand, we now
construct the GUP modified Hamiltonian describing a
particle moving under any arbitrary potential V(g). In
the subsequent discussion we shall work in one spatial
dimension. Therefore using Eq. (3), the Hamiltonian of the
particle in an arbitrary potential V(g) up to order O(a?, )
reads

; ) B+ 2mipy) — (6,00 + piny) . @)

We are now ready to construct the path-integral represen-
tation of a particle moving in an arbitrary potential in the
GUP modified Hamiltonian (4). Note that we have used
the most general form of the GUP incorporating both the
contributions, linear and quadratic in momentum. In this
paper, first we calculate the classical action and the explicit
form of the propagation kernel for a particle moving under
any arbitrary potential using the Hamiltonian (4) in Sec. 1.
In this section, we derive the equation of motion of the
particle which gives an interesting relation between the
GUP parameters a and f. In Sec. II, we evaluate the explicit
form of the propagation kernel both for the free particle and
the harmonic oscillator. Then we proceed to Sec. III to
calculate the quantum fluctuations of the propagation
kernel for the harmonic oscillator. Finally, we summarize
our results in the concluding section.

II. PROPAGATION KERNEL FOR AN
ARBITRARY POTENTIAL

a2 2
~ Dy a5 1 [(a . .
H= om mPot (E + ﬂ) Py + V(@) +O(ap.a’, ). To investigate the path-integral formalism of a particle
described by the GUP modified Hamiltonian (4), we write
(4) the general form of the propagation kernel as
|
. +°° L
(a7 tflqo: to) = ,}gglo/ 11 4a5(as- trlan ta) (G- tal--a1. 11) (a1 111q0. t0)- (5)
—o
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Then we compute the propagator over a small segment in the above path integral. Here we use the following completeness
relation:

/_ ™ dplp)ip| = 1. (6)

(e8]

Hence, the Hamiltonian given by Eq. (4) along with the above completeness relation ([3]) gives the infinitesimal propagator,
which reads

(gjt1-tjw1lg). 1)) = <‘Z;+1|€_éHT|‘I‘>

<q]+1‘1 HT+® ‘q1>
2

o0 . . i x
= /_; ;15;1 éépxqm—q/>e‘zf<z—,,’,—‘—1’7+,,,( +A)pi+V(4;) +O(2). ™

Substituting the above expression in Eq. (5), the propagation kernel takes the form (apart from a constant factor)

<Qf’tf|q07t0—hm/ qu,Hdp,eXp< Z[p,(Q,+1 q;) - {p—;—%p%%(%2+ﬂ>p§+V(qj)H). (8)

Taking the 7 — O limit, the propagation kernel given by Eq. (5) in the path-integral representation reads

(g7 trlao. o) = / DqDp exp (%A) )

where the phase-space action 4 is given by

I O AR N N 4 o

Before doing the p integral, let us look at the jth phase-space integral up to order . Setting @ = 0, this takes the form

. 2
+o00 i 2 ﬂ
(@js15tjs1lg 1) = /_oo dq;dp;exp (E [Pj(%’ﬂ - q;) _T{ﬁ‘*‘ZP?H) (11)

The above expression can be rewritten in the following form:

o0 dg;dp; it (4-4)\ P, P -
(@1 t411a;.17) :/ W exp <g {Pj(% —ﬁ l—i—ij“ (12)
—co I

where p; = p;(1 +p pf) and7=17(14p pf)‘l. From the above expression one can easily see that the usual phase-space

volume dqdp gets corrected by a factor of (1 + 38p?)~". Interestingly, this correction factor in the weighted phase-space
volume has been obtained in [25] using the canonical approach. Note that the factor 3/ in our case appears due to the choice
of 23 as the coefficient of p;p; in the commutation relation (2).
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Now we compute the momentum integral in Eq. (7). Evaluating this keeping terms up to O(a?, ) yields

iam*(qi1 —q;)® 1 fiam*(q;y —q;)*\?) 3am(q;i; —q;
(@1 tpaalag 1) = 5 | 1+ (qﬁé o) 1 (qﬁi %) MECLICT ')
R - 2riht hr 2 ht .

| 3itmp_ Gime® (a_2 +ﬂ> <q,-+1 - q,)z _imBgjn —a)*
T 2 T

. hr’
N Tia*m*(q;41 — q;)" n 45a’m?(q;11 — qj)z] X exp <M + i.TV(CI')>
fn’3 21.2 2ht h /

— moy i m*B(q;1 — q;)* _ da’m’ (g1 — q;)* n 3am(q;1 = q;)
2riht h 73 73 T
N 3pihm _ 6ihma® o (0;2 N ﬁ) <qj+lr— 61j>2 . 450°m? <qj+] - ‘Ij> 2]

T T 2 T

im(qj —q;)* i iam*(q;.1 —q;)°
_ m [3am(q;i1 —q;) n 3pihm 3 6ihma’® _ 6m’p i1 —4q;\?
2rwiht T T T T
39a*m? (g1 — q;)\2 im(qj —q;)* i iam*(q;1 — q;)°
MG =41 L iy — j j
T ( 7 >}Xexp< 2ht Tt (9;) h?
ipm*(q;1 — q,)* | 4iaPm’(q;0 — q;)*
g |+ 0. (13)

Using the above result in Eq. (8), we obtain the propagation kernel up to a constant factor as

oo o i~ [m (a0 —aq;)\? qjv1—4; div1—4q;\?
<Qf’tf|‘10,to>=/ qujexp <EE T[E <—’+T L) 31+ 2am 7’+T 1) 4 8a2m? J+T j
- o] 0

Jj=

~ope (22 4Y v ). (14)

To get the configuration space path-integral representation of a particle moving in an arbitrary potential V(gq), we take the
limit 7 — 0. This gives

(ar.tflau.10) = F(T..p) [ Dot (15)
where the action of the particle moving in the presence of an arbitrary potential V(g) in the configuration space is given by
S = /t "t [% (1 + 2amg + 8a®m?i? — 2pm>?) — V(q)} . (16)
0
From the above action one can readily write down the Lagrangian to be
L= %ef(l +2amg + 8a*m*q* — 2pm?*§4?) — V(q). (17)

Equations (16) and (17) are the general forms of the action and the Lagrangian of a nonrelativistic particle moving under an
arbitrary potential V(g) in the presence of the GUP. It is to be noted that here we take the generalized structure of the GUP
(3) where both the linear and quadratic modifications in momentum p; are present. We now proceed to investigate the free
particle and the harmonic oscillator systems.
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II1. FREE PARTICLE AND HO SYSTEM

With the above results in hand, we now proceed to
investigate the free particle and harmonic oscillator poten-
tial in this section.

For the free particle case we have V(g) = 0. Hence, from
the action in Eq. (16) one can easily find the classical
equation of motion. This reads

m(1 + 6amg + 48a’>m>¢* — 12pm*¢*)§ =
(1 + 6amg + 48a’*m*q* — 12pm*§?) =
18)

=§=0 or

—~

Before going further we now analyze the above result.
Interestingly, both the possibilities indicate § = 0.
Moreover, the presence of the GUP puts a bound on the
free particle velocity. The upper bound on the velocity of
the free particle obtained from the action reads

—a— - 7a°

Note that in the limit @ — 0, this maximum particle speed
agrees with the result obtained in [24]. Now the free particle
velocity given by Eq. (19) cannot be imaginary and must be
finite. This restriction gives a relation between the GUP
parameters a and f which is

Se

_m RY qr —4i s of4r —4di 2_ > (45 — 40 2
—2T(qf q0) {1+2am<T >+8am<T ) 2pm (T > .

p >35> and p#4a’. (20)
It should also be noted that we have taken the negative sign
before the square root. The reason behind this choice is that
there is no value of > 3.5a” for which ¢,,,, is positive.
With the negative sign before the square root, the positivity
of §,,x implies B > 4a®. We now want to point out some
relevant and interesting facts about the above relations. In
[10], the authors showed that # = 2a? (see the Appendix).
But from our analysis we find that the relation g = 2a? is
not possible. From the analysis in [10] (see the Appendix),
we have
p=(n+1)a* (21)
Therefore, Eq. (20) together with Eq. (21) gives the relation
between a and . This is an important result in our paper.
We now calculate the classical action for the free particle
in the presence of the GUP. To do this first we have to solve
g = 0, imposing the boundary conditions that at ¢ = 7,
q = qo> t = 1y, ¢ = qy. The classical trajectory of the free
particle then comes out to be

t, l‘f—t() - T (22)

Substituting Eq. (22) in Eq. (16), the classical action for the
free particle in the presence of the GUP takes the form

(23)

Using the above expression for the classical action in Eq. (15), we obtain

(s 17lqor 1) = E(T, a, B)edr(ar=a0*[142am (L 8 (20" ~2pm? (L)),

q5=4i

(24)

The above action reduces to that in [24] in the @ — O limit. Our next step is to evaluate the constant F (T, a, ) which
contains the quantum fluctuations. We now use the following identity:

“+o00
(a7 1/1p) = / daoa;t71do. 10) (o 101)

and the overlaps

<510’

(25)

0lp) = ——ex (i' ) (4 Tlp) = ——ex {‘—T(”_ﬁ Laead 4)}ex (i ) (26)

with 7y = 0 and ¢, = T. Equations (24) and (25), along with Eq. (26), yield the quantum fluctuations to be

- B m 3am(qf —qo) 3iphm  6ia*hm a? mz(CIf — o)’
F(T,a,p) = \/zm.m[l + T +— T 67 +4 72 +

450‘2’"2(% - qo)*
277

} . (@7

Hence, from Eqgs. (24) and (27), the propagation kernel for a free particle in the GUP framework, containing both the linear

and quadratic corrections in momentum, can be recast as
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m 3am(q; —qo) 3iphm  6ia*hm o? m*(qy = qo)*  452°m*(q; = q0)*
) te ) 1 == 1 - - 6 ey
(a7 trldo.to) = y, Zm'hT[ + T T T P4 = 272

x e3r(ar=90) 1+ 2am (L) +8a2m (L —2pm? (L)) (28)

Now we proceed to investigate the harmonic oscillator potential with V(g) = 3 mw?q* in Eq. (16). This yields
1
S:/ dt{2 2(1 4 2amq + 8a’m?*§* — 2pm>q )—Ema)zq2 ) (29)
0

From the above action one can easily find out the classical equation of motion which reads

G(t) + 6amg(1)4(1) + 48a’m?*(1)g(1) — 12Bm*§*(1)4(t) + a?q(t) = 0. (30)

Now we carry out a consistency check of the path-integral formalism by deriving the above equation of motion of the one-
dimensional harmonic oscillator up to O(a?, ) using Hamilton’s equations of motion. This gives

3a 20 4
R B A

. p
g={q.H} =—=- pPP+—p
m m m m

p={p.H} = —ma’q. (31)

A simple algebra now shows that the above equations agree with the equation of motion (30). This ensures the validity of the
path-integral formalism.

We now proceed to solve Eq. (30) to get the classical trajectory of the harmonic oscillator in the presence of the GUP up
to order O(a?, ). The solution can be recast as

q(1) = q(0)(1) + aqq)(1) + &gy (1) + Pge) (1) (32)

where

q(0)(t) = Acos(wt) + Bsin(wt),
q(1)(1) = C cos(wr) + C, sin(wr) + ma(A* — B?) sin(2wt) — 2ABmao cos(2wt),
q(2)(1) = Cs cos(wt) + Cy sin(wr) 4+ 3m*w?*(A* 4+ B*)(A — Btw) cos(wt) — 2mw(BCy + AC,) cos(2wt)

3
- 2w?A(A? — 3B?) cos(3wt) + 3m*w’tA(A? + B?) sin(wt) + 2mw(AC, — BC,) sin(2wt)

3
+am 2w’B(B? — 3A?) sin(3wt),
1
q(3)(t) = Cs cos(wt) + Cg sin(wt) + 3 [6m’w? (A% + B?)(2Btw — A) cos(wt) — 3m’>w*A(A? — 3B?) cos(3wt)

— 6m’w? (A% + B?)(B + 2Atw) sin(wt) + 3m*w*B(B* — 3A?) sin(3wt)). (33)

The constants A, B, C;, C,, C3, Cy4, Cs, and Cg read
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A = qo
B = [q; — gocos(wT)] csc(wT)
Cl = 2mwAB
1
G = Sn(@T) [2ABma cos(2wT) — mw(A? — B?) sin(2wT) — 2mwAB cos(wT))

5 9
C; = —Zm 2w*AB? + 2mwAC, — Zmza)zA3
1
C,=-— SnaT) [C;3 cos(@T) + 3m*>w? (A + B*)(A — BoT) cos(wT) — 2mw(BC, + AC,) cos(2wT)
sin(w
3
i 2w*A(A? = 3B?) cos(3wT) + 3m*w’TA(A? + B?) sin(wT) + 2mw(AC; — BC,) sin(2wT)

3
+am 2w*B(B? — 3A?) sin(3wT))

3
C5 = §m2w2(3A3 - ABZ)
b
8sin(wT)
— 6m’w? (A% + B?)(B + 2Awt) sin(wT) + 3m*w?*(B* — 3A%B) sin(3wT)} — Cs cos(wt)]. (34)

Co=— [{6m?>w?(A% + B*)(2BwT — A) cos(wT) — 3nm*w*(A3 — 3A%B) cos(3wT)

Therefore, the classical action for the harmonic oscillator in the framework of the GUP algebra (2) can be obtained by using
Egs. (32), (33), and (34) in Eq. (30). This yields

S. = 8.(0) + S.(@) + S.(a?) + S.(B). (35)

Here, S.(0) is the classical action for the ordinary harmonic oscillator. S, (a), S.(a?), and S.(f) are the corrections due to
the presence of the GUP. The forms of S.(0), S.(a), S.(a?), and S.(B) are

$.(0) = g mwesc(Tw)[(g3 + g3) cos(Tw) ~ 2qqq, (36)

a
Se(a) = —gmzwz(flo —qy) esc?(Tw)[(q5 + qoqy + a7) cos(2Tw) — 12qoq cos(Tw) = qoqy + 5(q5 + q7)]  (37)
o
S.(a?) = Em3w csct(Tw) (g8 + qf) sin(4Tw) — 4qoq(21g3 — 20g0q, + 21q]2,) sin(Tw)
—440q9,(5q% — 4q0q; + Sqf) sin(3Tw) + 24q0quw cos(2Tw) — 48qoq  Tw(qh + qff) cos(Tw)
+ 12Tw(qs + 445497 + 43) + 4(645 — 8a34 + 23q547 — 890q} + 64%) sin(2Tw)] (38)
p . .
S = —§m3w esc*(Tw)[(g8 + qf) sin(4Tw) — 44q0qf(q% + qj%) sin(Tw) — 12q0qf(q% + q}) sin(3Tw)
+ 24q0q2TW cos(2Tw) — 48goq  Tw(qj + quc) cos(Tw) + 12Tw(q$ + 4q%q]2c + q;‘c)
+4(2q5 + 15q5q7 + 247) sin(2Tw)]. (39)

It is reassuring to note that we recover the free particle classical action (23) in the limit @ — 0. Therefore, the propagator for
the harmonic oscillator reads

ma

__M® gor is. 40
2xihsin(wT) (T . pler (40)

(@7 trlqo. to) =

Now we will calculate the quantum fluctuations F; from the Schrodinger equation in the subsequent section.
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IV. CALCULATION OF THE QUANTUM FLUCTUATION

In this section we apply a different approach to evaluate the explicit form of the kernel of a particle moving in a harmonic
potential in the GUP framework. We calculate the Feynman propagator and the quantum fluctuations F, from the
Schrodinger equation up to order O(a, ). Note that in this section though we give the complete expression of
eigenfunctions and energy eigenvalues retaining the terms in a in the final expression of the quantum fluctuation for
harmonic oscillator we neglect the terms of the order O(a?, 5?).

To do this first we write the Schrédinger equation for the harmonic oscillator bearing the GUP effects for both linear and
quadratic corrections in momentum. This reads

WP iah® & &ht & ppt Ot 1 L,
__—2_78—513+W8—cf‘+78—cf‘+5mw 9+ O0) \w.(q) = Ezw,(q) (41)

where y,(q) and E, are nth order eigenfunction and eigenvalue of the Schrédinger equation. Hence, the Feynman
propagator (g, t¢|qo. ty) can be recast as

(a5 trlgo. to) = lefn (g7 Wi (qo)eWE=t0), (42)

We now solve the Schrodinger equation (41) by treating the GUP contributions as time independent perturbations. Then
the perturbation piece of the Hamiltonian up to the order O(a?, ) can be written as

a 1 /a? 1
H 2 __ 23 4 - 2.2 3 42) 4
(a,0”, p) mp0+m<2+ﬂ>po+2qu + O(ap, o, p?) (43)

We can now obtain the eigenstates and eigenvalues by applying time independent perturbation theory. This yields

Val) = dalg) ——2 (h’"“’)i{ nn = D=2 ) g) = 3nv/ign () = 31+ DVA T T (0)

mhw \ 2 3
DAy ()] + (54 8) nnoy [V DEED
CIERN ) PR ) T | PR TR0 CEE CEE IR PR
+0(@®) + O(B?) + O(ap) (44)
and
I’l2 n (12
E, = <n + %) ho [1 + 3(22(2:—?'_1—;1) (? + ﬂ) (mha))] +0(8), (45)
where n =0,1,2, ..., and
du(q) = Zlﬂn! <n7:(;l)) 1/4Hn( m;q) exp [_”;’;‘l’qz]' (46)
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Note that the energy eigenvalue obtained in Eq. (45) for the 1 — d harmonic oscillator agrees with the result reported in [26]
up to order O(f3). This can be seen by setting @ = 0 in Eq. (45) and the coefficient of p;p; in [26] to 23. Further, since the
result for the energy eigenvalue in [26] is given for any arbitrary dimension d, one needs to set d = 1 to see the agreement.
These are the complete forms of the eigenstates and energy eigenvalues of the harmonic oscillator in the presence of the
GUP, with the general GUP structure containing both linear and quadratic contributions in momentum up to order
O(a, @?, ). Using Eqs. (44) and (45) in Eq. (42), the Feynman propagator reads

] n\:
(ag.11ldo10) =T + 2 (%) (M, + M;] + (fmhao) [N, + N3] + O(F) + O(c?. p) (47)

where

1= laptanese [ (w5 ) nor {1+ 232D G ||

= [ SV D0 (0062 (0) ~ dulo) ()]

n=3

+ i \/(n i 1)(” * 2) (n ha 3) [¢n+3(CIO)¢n(Q,f) - ¢n+3 (qf)¢n (‘IO)]:| exp |:_% <I’l + %) th:|

n=0 3

My = -3 [fj VA1) (00) = s 0 0]+ D0+ DV Tl (00) = s (0]
n=0

n=1

X i —|—1 hwT
X —— —
exp 5 n > 0)

- [ IO D b, 4 sta) + el

s

n

0
Ez: Gr= DVt =1 () ua(ao) + ¢n<qo>¢n_z<qf>]} exp [—h ( i ;) W]
—

\/l’l l’l - 1 2)( 3) {¢n(Qf)¢n—4(QO) + ¢n(QO)¢n—4(qf)]
V(n

; (n + 122(” +3)(n+4d) [ (qr)na(q0) + ¢n(QO)¢"+4(qf)@ '
X exp [—% <n + 5) ha)T] . +

Now using the exact form of ¢,(q) given by Eq. (46) in Eq. (48), we have
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; mw N . iwT i’: exp (—iwT)\" 1 " mo A\ mw
g — X X —_— _ —_— —{ ¢
h p Zfl QO q]‘ p ra 2 P h do n h qy

4

M= \/%af { 25 (@0 47)] exp (=2iaT) sm( )2 <exp 7 ) 1
X |:Hn+3<\/@qf>Hn (\/@%) —H,3 (\/> > < q >]

M, = @&\fzexp [ P (a3 + qf)] exp (—ioT) Sm< > i::o n (M)nri!
y [HM <\/;qu>}1”<\/”qu> ~Hy <\/~ H, (200, )]

N, = M’&i\fzexp [ > e +qf)] exp < Sl ) sin(wT) 2 (e le))n;!
X [Hn+2<\/;1%a;Qf>Hn<\/—m7E%> +Hn+z<\/%aqo>lfn "

)]
Similarly, N, can be recast in terms of the Hermite polynomials.
Now to evaluate the constants J, M, M,, Ny, and N,, we use the extended Mehler’s formula [27]

T

k=0

» [1 B 3ipmw’hT

-
(2n% +2n+ 1) }
}

=

&’

+

e ﬁ

8

7N

~ Atxy — 42 (x* + 2
om0 (9) = (1 = 42) i) exp{ &)

1 — 472

= |

min(mn) n x =2ty y—2tx
Z k “\Vi-ar “\Vi-ar

Using this we get

[ MY [P sy _ MO sy

th sin a)T th sin a)T b M, 27if sin a)Teh >
So]\/‘1 e 0N27

2mh sin wT 2mh sin a)T

where

- 3ipma’T

J=1- % [=3ihmw(qg + q7) sin 20T + m*@*(q5 + q7 — 2904, cos @T)?

+ 4ihme sin T (2 + cos 2wT)qoq; — h* sin® T (2 + cos 2wT))

1 [mo  sin34L ) 4 2 4 o 5 2 o
M, 3\ 24 hsin® T sin?Z (90 = ap)[=mo(q5 + 449045 + q7) + 2mw(qp + qoqy + q7) cos wT — 3ihsin T
. V2 mw (g0 —ay) e e
M, =— TR "’—Tcosfz o7 |[—ihsin 20T + ma(q5 = 2q0qy cos wT + q7) — il sin T

2 2
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- i
N]Z—

[—4m*@*qoq,(q5 + q7) (3 4 cos 2wT) + 3h*(cos 3wT — cos wT)

842 sin® wT
+ 4ma cos wT {mw(qj + 6¢5q7 + q}) + 12ihqyq, sin T} = 3ihma(qg + q7)(5 sin T + sin 3wT)]
- j T
N, = —% [12m*@*q5q7 — 30%(1 = cos 2wT) + 2mw{ma cos 20T (g5 + q7)
— 4mwqq(q5 + q7) cos T — 6ifvsinwT{(q5 + q7) cos oT = 2qoq}}]. (54)

Therefore, (qy.1/|q. ) can be recast as [up to O(a, f)]

ma

7t 7t - .7.
<qf f|q0 0) 2rihsin wT

where

mw
S.(0) = o8¢ oT[(q5 + q7) cos T —2q4qy]

a

1+ af(qo. q7:T) + B9(q0. 45: T) + O(a, )] eSO +5:(@+5:(5) (55)

Sc(a) = __m2w2(40 - Qf)CSCZCUT[(qg + qoqr + CI%) cos 20T — 12¢goqy cos wT — qoqy + 5(613 + C]?)]

6

pm’ e’

Se(p) =

esctoT[{ 1207 + 8sin 20T + sin 4T} (g5 + q7)

— 4{120T cos T + 11 sinwT + 3sin 30T} q0q,(q3 + 47)
+ 12{4@T + 2wT cos 2wT + 5sin 2a)T}q(2)qj%] (56)

with the functions f and g being given by

f(q0.q7:T) = —(q0 — qf)mw csc? @T[sin wT + sin 20T

3inmw

3miw?

T (20T + 5sinwT cos wT + oT cos 2wT)

— 5= [20T{3cos @T(q§ + q7) — 2(2 + cos 20T)qoq, }

8 sin® wT

+10sin T (g5 + g7 = 2qoqy cos wT) = 6sin’ wT (g5 + q7)]. (57)

Note that in this method we calculate the exact expression
for the quantum fluctuation up to first order in «, . This

calculation can be extended for higher order in a?.

V. CONCLUSION

We now summarize the results in this paper. In this paper
we have constructed the path-integral formalism of the
propagation kernel in the presence of the generalized
uncertainty principle incorporating both the contributions
proportional to linear and quadratic terms in momentum.
We obtained the action of a nonrelativistic particle moving
in an arbitrary potential in the framework of the generalized
uncertainty principle. After getting the general form of the
action we have moved on to investigate the free particle and
harmonic oscillator systems. From the free particle analy-
sis, we have seen that the action imposes an upper bound on

the free particle velocity which depends on the mass of the
particle. This feature is consistent with the results obtained
earlier [23,24,28]. Moreover, the fact that the particle
velocity must be real and finite leads us to a relation
between parameters a and . We show that # > 4a?. This is
an interesting result in our paper. Then we have calculated
the Feynman propagator for a harmonic oscillator. In the
limiting case @ — 0, the classical action for the harmonic
oscillator reduces to the free particle result. We have
explored another approach to get the propagation kernel.
We have constructed the Schroédinger equation for a
harmonic oscillator in the framework of the generalized
uncertainty principle. Solving the Schrodinger equation we
have got expressions for the nth order eigenfunction and
energy eigenvalue bearing the effects of the generalized
uncertainty principle. Using these results, we derive the
expression for the propagation kernel for the harmonic
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oscillator. We have obtained the explicit form of the . piPi

quantum fluctuations up to first orderpin a and f. These [9:-p,] _’h<5ij+5ijalp +a27j+ﬂ 16, +ﬁ2pipj>'
results would be important to derive the thermodynamics of

the harmonic oscillator system in the general uncertainty (A1)
principle framework. This we hope to report in future.

Therefore, the coordinates and its conjugate momentum
APPENDIX: RELATION BETWEEN THE gup ~ follow the Jacobi identity
PARAMETERS

The most general algebra [10] for the commutation =llai-qj], pi] = [lg; Pl 4] + [[Pic- @il 431 = 0-
relation between position g; and its conjugate momentum
p; with linear and quadratic modifications in momentum  Now we expand the right-hand side of the Jacobi identity
reads and using Eq. (Al), we get

|
in{—a8;e[q:. p] — @ ([q;- pjlper™ + pilai- plp™ + pipelai 7)) = B16ai pilpi + pilais pi])
= Bo(lgi pjlpe + pjlai pi)} = (i < j) = 0. (A3)

(A2)

We can easily evaluate the following commutator up to O(p):
9i- p] = in{pip™" + (a1 + @2)p;} (A4)
and
l9i P~ = =ihpip7 {1 + (a1 + @) p}- (AS)
Using the above commutation relations in Eq. (A3), we get
{(a; =) p™ + (af + 28, = p)}(piSjx — p;Sik) = 0. (A6)

Thus, the above equation is satisfied only when a; = @, = a (@ > 0 [29]) and , = 2f3; + a}. Now from dimensional
analysis we have 8, ~ a®. Let #; = na?, where n is positive number. Then we have 8, = (2n + 1)a?. Note that in [10]
1 = & (thatis n = 1) has been taken into account for mathematical simplicity. Putting the values of 3, and 3, in Eq. (A1),
the commutation relation takes the form as

p;fj) + na’p*s;; + (2n + 1) p;p;| . (A7)

[9:, p)] = i [51']' - a<P5zj +
Now the most general form of the momentum p; in terms of p,; can be written as
Pj = Poj + apopo; + bpgpo;, (A8)
where a ~ a and b ~ a”. Hence the commutation relation can be recast as

i P;] = [4:- Poj + apopo; + bp§poj]

Comparing the above relation with (A7), finally we get a = —a, na®> = b — a* and (2n + 1)a? = 2b — a*. Hence,
b= (n+1)a’ (A10)

Note that if we take n = 1 for mathematical simplicity, then we get # = 2o [10]. Now using the above relations we define
two parameters, bearing the signature of the GUP as a = —a and (n + 1)a? = . Therefore, Eq. (A8) yields
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Pj = Poj —apoPoj + ﬂP(Z)POj, (A11)

where # = (n + 1)a?. This is Eq. (3) in this paper. In our
analysis, Eq. (20) shows that

B> 4a?. (A12)

This implies n > 3.
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