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We examine the status of the Chern-Simons (or Kodama) state from the point of view of a formulation of
gravity that uses only real connection and metric variables and a real action. We may package the real
connection variables into the complex self-dual Ashtekar connection (and will do so to make contact with
previous work), but that operation is essentially cosmetic and can be undone at any step or even bypassed
altogether. The action will remain the (real) Einstein-Cartan action, forgoing the addition of the usual Holst
(or Nieh-Yan) term with an imaginary coefficient. It is then found that the constraints are solved by a
modification of the Chern-Simons state which is a pure phase (in the Lorentzian theory, we stress), the
phase containing only the fully gauge-invariant imaginary part of the Chern-Simons functional. Thus, the
state for the “real theory” is nonpathological with regards to the most egregious criticisms facing its
“nonreal” cousin, solving the complex theory. A straightforward modification of the real Chern-Simons
state is also a solution in quasitopological theories based on the Euler invariant, for which the cosmological
constant, Λ, is dynamical. In that case it is enough to shift the usual factor of Λ in the wave function to the
inside of the spatial Chern-Simons integral. The trick only works for the quasi-Euler theory with a critical
coupling previously identified in the literature. It does not apply to the quasi-Pontryagin theory.

DOI: 10.1103/PhysRevD.104.026002

I. INTRODUCTION

In this paper we reevaluate the Chern-Simons wave
function (also called theKodama state [1–5]) from a different
point of view. We consider a formalism where the gravita-
tional phase space only contains real variables, and the action
is kept explicitly real. The phase space variables may then be
written in terms of the complex Ashtekar Self-Dual con-
nection tomake contactwith previous literature and results in
Chern-Simons theory, but this “complexification” is essen-
tially cosmetic. It can be undone at any step or, indeed, be
bypassed altogether. No “reality conditions” are required,
even though our modified solution (which we will call the
real Chern-Simons state) still is more easily written in terms
of a complex connection variable.
Specifically we use the Einstein-Cartan action as our

starting point (later in the paper we will also consider the
quasitopological theories of [6,7]). We then consider a
Hamiltonian reformulation in terms of a Gauss augmented
phase space [8], but this is made up of real triads E (and
possibly a time metric variable, if we are not in the “time
gauge”) and real extrinsic curvature K and spatial con-
nection Γ. We eschew the canonical transformation (typ-
ically assuming zero torsion) that complexifies the theory
[8], or equivalently, the addition to the Einstein-Cartan
action of a Holst (or Nieh-Yan) term with a complex

coefficient. The theory remains real to the bone. We then
repackage the two real variables K and Γ into the Ashtekar
Self-Dual connection wherever convenient to connect with
the literature. But, we reiterate, this is not needed. Indeed,
later in the paper we will provide a derivation of the real
Chern-Simons state in which the self-dual variable is never
invoked.
We find that the quantum constraints in such a setting are

solved, in the connection representation, by a modification
of the Chern-Simons state which is always a pure phase
with Lorentzian signature. Its phase is made up of the usual
factors involving the cosmological constant, Λ, and the
Planck length, lP, and the imaginary part of the Chern-
Simons functional. Postponing detailed definitions (given
early in the paper), if YCS is the Chern-Simons functional,
then our solution is obtained from the usual Chern-Simons
state:

ψKðAÞ ¼ N exp

�
3

l2PΛ
YCS

�
ð1Þ

by the replacement:

YCS → iℑðYCSÞ: ð2Þ

If we do not invoke the self-dual connection used in the
standard definitions of YCS, we obtain this result, in a real
formalism, written directly in terms of K and Γ.*j.magueijo@imperial.ac.uk
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Therefore, the state acquires in the Lorentzian signature
the central property usually ascribed to its version with
Euclidean signature [4,5,9]: it becomes a pure phase. This
is most desirable. A number of fair criticisms have been
levelled against the standard Lorentzian Chern-Simons
state (e.g., [2]), namely regarding its non-normalizability,
CPT violating properties (and consequent impossibility of
a positive energy property), and lack of gauge invariance
under large gauge transformations. All of these criticisms
hinge on the fact that the state’s phase is not purely
imaginary, for example proportional to iℑYCS. They
evaporate for the our modified Chern-Simons state, just
as they do for the Chern-Simons state in the Euclidean
theory [9,10].
This result is not entirely new: it appears as a limiting

case in the work of [9,11] (the realization that reality
conditions are not needed in this limiting case might be
new, however). So as to connect with this work and with
Chern-Simons theory in general [12,13], we can view our
approach as the result of dissociating two aspects of the
Immirzi parameter: the parameter appearing in the defi-
nition of the connection, on the one hand, and the
coefficient of the boundary term added to the action, on
the other. We explain this in Sec. II, stressing that none of
this is needed for a direct derivation (presented later, in
Sec. V C). In Sec. III we then review Chern-Simons theory
and explain how our claim fits in with existing literature.
For the Einstein-Cartan theory, it can be easily proved that

ourmodifiedChern-Simons state solves the realHamiltonian
constraint. We first do this adapting well-known results for
the self-dual Ashtekar connection (Sec. IV). We also show
how our result and derivation reduce to minisuperspace
(MSS) results (Sec. IV B); indeed this papermay be seen as a
non-perturbative generalization of [14,15], which inspired it.
The status of the other constraints is examined in Sec. V. The
secondary constraints forcing torsion to vanish do not
directly interfere with the topic of this paper (but see
[16]). With more relevance here, in Sec. V C we show
explicitly how the second class reality conditions are not
needed in this “real formalism.” We do this by explicitly
rederiving our result using real variables only, and the
uncontaminated Einstein-Cartan action.
Finally, nontrivially and perhaps surprisingly, we show

(Sec. VI) that the real Chern-Simons state is also a solution,
with minimal adaptation, to some quasitopological theories
for whichΛ is dynamical and varies in space and time [6,7].
Writing YCS ¼

R
LCS, we find a solution by applying to

real Chern-Simons wave function the replacement

YCS

Λ
→

Z
LCS

Λ
ð3Þ

i.e., by passing the varying Λ factor inside the Chern-
Simons integral. The Hamiltonian and conformal con-
straints, however, are only consistent for one class of these

theories. Furthermore, even in that case, for the parity-odd
branch of the theory the Chern-Simons state is not the only
solution.
We conclude with some comments on the implications of

our findings.

II. THE TWO FACES OF THE IMMIRZI
PARAMETER

Let us consider the Einstein-Cartan action:

SEC ¼ κ

2

Z
ϵABCD

�
eAeBRCD −

Λ
6
eAeBeCeD

�
ð4Þ

where κ ¼ 1=ð16πGNÞ, the indices are SOð3; 1Þ Lorentzian
indices, eA are the tetrad 1-forms, and RAB ¼ dΓAB þ
ΓA
CΓCB are the curvature 2-forms of the spin-connection

ΓA
B. We can write this action in terms of the Ashtekar-

Barbero SUð2Þ connection:

Ai ¼ Γi þ γIKi ð5Þ

with:

Ki ¼ Γ0i

Γi ¼ −
1

2
ϵijkΓjk

where γI the Immirzi parameter and the indices i, j, k, etc
denote SUð2Þ components (more on the basis soon). We
stress that in writing the connection in this format we have
not used the equations of motion forcing Ki and Γi to be
related to the metric and the torsion. If γI ¼ i the con-
nection is the self-dual connection. Given that the Einstein-
Cartan action is real, its complex conjugate (the anti-self-
dual connection, Āi) will have to appear in any expression
of SEC in terms of the self-dual connection.
At this stage it may seem that we have complexified the

theory, but that is not true, since everything can be rewritten
in terms of the original real variables,Ki and Γi (as we shall
do in Sec. V C). The theory only becomes truly complex if
to the Einstein-Cartan action one adds a boundary term,
aimed at cancelling off the terms in Āi. This is the Nieh-Yan
term:

SNY ¼ 2

γNY

Z
eAeBRAB − TATA; ð6Þ

(called the Holst term if the torsion is set to zero) and its
coefficient contains parameter γNY, usually taken to be
equal to γI . By setting γI ¼ γNY ¼ i we cancel the anti-self-
dual terms that appear in the Einstein-Cartan action, thus
producing an overall action (S ¼ SEC þ SNY) that only
depends on the self-dual connection. However, in doing so
we have complexified the action and so the theory.
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In the usual setting the Immirzi parameter controls both
the definitions of connection and the coefficient of the
boundary term, but these are conceptually different. We can
work with γI ¼ i and at the same time dispense with the
Holst/NY term (formally setting γNY ¼ ∞). This has the
advantage of keeping the action real: it may look as if we
have complexified the phase space, but the theory remains
real. It is no different from a complex scalar field, for which
the action is still real, and which could therefore be
rewritten as two real scalar field theories.
The advantage of this hybrid construction is that it allows

us to make use of Chern-Simons theory [13], namely in
solving the (real) Hamiltonian constraint with a modified
Chern-Simons/Kodama state built from the Ashtekar self-
dual connection as well as its anti-self-dual conjugate [9–
11,17]. But we could equally well dispense with the
Ashtekar connection, and derive the final result directly
in terms of real Ki and Γi. For the reader not interested in
Chern-Simons theory, we recommend following this alter-
native route, jumping straight into Sec. V C.

III. THE REAL CHERN-SIMONS STATE:
BACKGROUND

We now review the standard Chern-Simons state (solv-
ing the complex, self-dual theory), mainly to define the
notation. We refer the reader to [13] and particularly to [11]
for full details of the results we will be quoting without
proof and using to prove our later results. We then explain
how our claim relates to existing literature.

A. Review of the standard Chern-Simons state

The Chern-Simons functional is usually introduced for
topological reasons which will not be relevant here, as we
explain straight away. It is defined as [11,13]:

SCS ¼ kCS

Z
Tr

�
AdAþ 2

3
AAA

�
ð7Þ

where kCS is the “level” of the theory. Under large gauge
transformations:

SCS → SCS − 8π2n ð8Þ

where n ∈ Z is the Brouwer degree of the transformation.
With the requirement that the putative wave function
ψ ¼ eiSCS be single valued one would need the level to
be of the form:

kCS ¼
integer
4π

: ð9Þ

A similar argument has been used in the context of the
Chern-Simons/Kodama state to quantize the cosmological
constant (see [11]). This line of reasoning is not valid here,
because the modified Chern-Simons state we will derive

only contains the imaginary part of the Chern-Simons
functional, which already is invariant under large gauge
transformations. Only the real part of SCS transforms under
large gauge transformations and that will not be part of our
proposed wave function.
We will therefore set kCS ¼ 1 and define the Chern-

Simons functional as:

YCS ¼
Z

Tr

�
AdAþ 2

3
AAA

�
: ð10Þ

Furthermore we will use the basis of SUð2Þ generators
ti ¼ −iσi=2, where σi are Pauli matrices. This is the basis
usually (but not always) used to define the Ashtekar
variables, Ai, and also the densitized inverse triads Ei.
Hence, TrðtitjÞ ¼ −δij=2 and TrðtitjtkÞ ¼ −ϵijk=4 (and
also, for later use, ½ti; tj� ¼ ϵijktkÞ. Thus, the Chern-
Simons functional written in SUð2Þ components, reads:

YCS ¼ −
1

2

Z
AidAi þ 1

3
ϵijkAiAjAk: ð11Þ

With these definitions it is straightforward [11] to prove
that

δ

δAi
aðx⃗Þ

YCS ¼ −Ba
i ðx⃗Þ ð12Þ

where F ¼ dAþ AA as usual, and the magnetic field is
defined from Fi

ab ¼ ϵabcBci. The Hamiltonian constraint in
the (complex) self-dual formalism:

ϵabcϵ
ij
kEa

i E
b
j

�
Bck þ Λ

3
Eck

�
≈ 0 ð13Þ

is then quantum-mechanically solved by the standard
Chern-Simons state presented at the start of this paper,
Eq. (1), in view of (12) and since in the quantization
diagonalizing the self-dual connection we have

Êa
i ðx⃗Þ ¼ l2P

δ

δAi
aðx⃗Þ

: ð14Þ

Here lP is the reduced Planck length, lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNℏ

p
(so

that l2P ¼ ℏ=ð2κÞ). Note that in some literature (e.g., [8])
this is defined as lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16πGNℏ
p

explaining some dis-
parity in factors.

B. Review of previous work on the
Chern-Simons state

Our claimed solution to the real theory can be found in
the literature by using γI ¼ i, but γNY ¼ ∞. Then, one
arrives at a real version of the complex Hamiltonian
constraint (13) which is indeed solved by the standard
(1) with replacement (2). Taking, for example, Ref. [9],
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setting αR ¼ αL ¼ 1=2 in its Eq. (4), we see that indeed we
do away with the boundary term (γNY , called β there,
becomes infinite). The Chern-Simons state is then modified
according to (2): cf. Eq. (10) in [9]. Similar results can be
found in [11], whose notation we follow more closely.
A point in which we differ is in the need to apply “reality

conditions” to the state in this limit. In this limit the whole
theory can be rephrased in terms of real variables and a real
action, as we shall explicitly show in Sec. V C.
On a related front, we note that we can read off some of

the steps in the derivation below in standard Ashtekar
theory. We refer to [8] in particular. The point where we
should stop “copying” results is Sec. 4.2.1. of [8], i.e.: after
the ADM space is Gauss augmented, but before a canonical
transformation is applied (the latter is the equivalent of
adding the NY/Holst term). Many of the manipulations
complexifying the theory assume the torsion-free condition
for the real part of Ai. We do not want to do this because:

(i) We want to consider quasitopological theories which
have an identical Hamiltonian constraint to Einstein-
Cartan, but which allow for torsion even without
spinors, such as the theories of [6,7,15,18].

(ii) Even when the torsion vanishes on-shell we want to
leave room for a different quantum mechanical
treatment [16,19].

We refer to this matter further in Sec. V B, but stress here
that mixing up complexification, reality conditions, and the
torsion-free condition may well have been the undoing of
the traditional Chern-Simons state, Eq. (1).

IV. THE REAL HAMILTONIAN CONSTRAINT
IN TERMS OF THE SELF-DUAL CONNECTION

We now prove our central claim in the most straightfor-
ward manner: adapting well-known results for the self-dual
Ashtekar connection and CS theory. We also show how our
derivation reduces to results found in mini-superspace for
Einstein-Cartan theory and beyond.

A. Derivation of the state

Let us consider the Einstein-Cartan action (4), and
subject it to a 3þ 1 split in the time gauge, e0a ¼ 0.
This can be written in terms of the (A)SD connection as:

SEC ¼ κ

Z
dtdx3½2ℑ _Ai

aEa
i − ðNHþNaHaþNiGiÞ� ð15Þ

where H, Ha and Gi are the real Hamiltonian, diffeo-
morphism and Gauss constraints. As explained, the form of
the constraints and action can be either found directly, or be
lifted from [8] before complexification and torsion-free
conditions are imposed, by means of:

Ki
a → ℑAi

a ð16Þ
Γi
a → ℜAi

a ð17Þ

(this can be used as an extra-check). Focusing first on the
Hamiltonian constraint, we find the real constraint written
in terms of self-dual quantities:

H ¼ ϵijk E
a
i E

b
j

�
ℜFk

ab þ
Λ
3
ϵabcEck

�
: ð18Þ

instead of the complex (13). From the first term in (15) we
also find that instead of the usual complexified:

fAi
aðx⃗Þ; Eb

j ðy⃗Þg ¼ i
2κ

δbaδ
i
jδðx⃗ − y⃗Þ ð19Þ

[implying ½Ai
aðx⃗Þ; Eb

j ðy⃗Þ� ¼ −l2Pδbaδijδðx⃗ − y⃗Þ, which leads
to (14), so that (13) implies (1)], we only have that:

fℑAi
aðx⃗Þ; Eb

j ðy⃗Þg ¼ 1

2κ
δbaδ

i
jδðx⃗ − y⃗Þ ð20Þ

implying:

½ℑAi
aðx⃗Þ; Eb

j ðy⃗Þ� ¼ il2Pδ
b
aδ

i
jδðx⃗ − y⃗Þ; ð21Þ

and so:

Êa
i ðx⃗Þ ¼ −il2P

δ

δℑAi
aðx⃗Þ

: ð22Þ

Since the Hamiltonian constraint instead of (13) becomes
(18), we conclude that the quantum Hamiltonian equation
for the real theory (pure Einstein-Cartan) is

�
ℜBkc −

il2PΛ
3

δ

δℑAk
cðx⃗Þ

�
ψ ¼ 0; ð23Þ

with significant differences with respect to its self-dual
counterpart.
However, it is easy to adapt the usual derivation of the

Chern-Simons state. We note that (12) implies:

δ

δℑAi
aðx⃗Þ

ℑYCS ¼ −ℜBa
i ðx⃗Þ ð24Þ

(where it is understood the variation is taken keeping ℜAi
a

fixed). The solution to (23) is therefore the modified Chern-
Simons state:

ψCSðAÞ ¼ N exp
�

3i
l2PΛ

ℑYCS

�
; ð25Þ

as claimed right at the Introduction. To avoid confusion, we
shall index this solution with the subscript CS and its
complex counterpart, Eq. (1), with the subscript K.
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B. Comparison with minisuperspace

It is easy to verify that the intermediate steps and final
result we have obtained are consistent with the equivalent
construction in minisuperspace [14,15]. For simplicity,
consider this exercise for k ¼ 0 (flat slicing). Then:

Ai
a ¼ δiaðibþ cÞ ð26Þ

Ea
i ¼ δai a

2: ð27Þ

The first term in the action (15) therefore leads to

S ¼ 6κVc

Z
dta2 _bþ � � � ð28Þ

where Vc comes from the spatial integration, and the extra
factor of 3 comes from the degeneracy δiaδ

a
i ¼ 3. Hence,

½b̂; â2� ¼ il2P
3Vc

ð29Þ

is the minisuperspace expression of (21), consistent
with [15]. Likewise all other steps in the derivation have
counterparts in minisuperspace, and if c ≠ 0 we can probe
the nontrivial aspects of the noncomplexified construction
even in minisuperspace. The final answer found in [15]
(and the solution that provides the dual to the Hartle-
Hawking and Vilenkin wave functions [20–22], should we
set the torsion to zero [14]) is

ψðbÞ ¼ N exp

�
9iVc

l2PΛ

�
b3

3
− bc2

��
: ð30Þ

This is just our general result (25) subject to the
reduction (26).
Note, however, that we do not need to set the torsion c to

zero by construction (c is Cartan’s spiral staircase [23]).
This is essential, should we wish to treat torsion differently
from the usual [16], or extend our results to quasitopo-
logical theories with torsion [6,7,15].

V. THE OTHER CONSTRAINTS

For completeness, we now investigate the status of the
other constraints, which are by and large irrelevant to this
paper. The only matter truly relevant here concerns the
reality conditions, discussed in Sec. V C.

A. The rotational and diffeomorphism constraints

As with the standard Chern-Simons state, the real Chern-
Simons state is invariant under spatial diffeomorphisms as
well as rotations in the internal space [9–11,17]. Hence it
satisfies the constraints contained in Ha and Gi.
Note that in the real theory these constraints do not need

to assume zero torsion. For example, the Gauss constraint

obtained directly from the real Einstein-Cartan theory, but
written in terms of its usual self-dual formulation, reads:

Gi ¼ ℑDaEai; ð31Þ

that is, it is just the “rotational” constraint:

ϵijkKk
aEa

k ¼ 0: ð32Þ

We do not need to assume

ℜDaEai ¼ Ti ¼ 0: ð33Þ

and assumption that mixes the issues of reality and the
torsion-free condition.

B. The torsion constraints

In Einstein-Cartan theory the torsion-free conditions
arise from secondary constraints, which end up forming
second class constraints. These arise because we have 18
connections (Ki

a and Γi
a) but only 9 metrics Ea

i .
The Γi

a have a conjugate that is identically zero in the
time gauge, where e0a ¼ 0. In a general gauge the action
would start as:

SEC ¼ κ

Z
dtdx3½2ℑ _Ai

aEa
i þ 2ℜ _Ai

aϵ
abce0aeib þ � � ��: ð34Þ

The second term implies that the momentum canonical to
ℜAi

a ¼ Γi
a is

Πa
Γi ¼ ϵabce0aeib; ð35Þ

and a full covariant treatment of the ensuing second class
constraints can be found in [24]. This can be bypassed in
the time gauge, where the absence of a Πa

Γi may be phrased
as a constraint by rewriting the Einstein-Cartan action as:

S → Sþ 2κ

Z
_Γi
aΠa

Γi þ λiaΠa
Γi ð36Þ

with λia the corresponding Lagrange multiplier (the nor-
malization 2κ is irrelevant here, but will be useful later in
the paper). The secondary constraints obtained by evalu-
ating the PB of the Hamiltonian with this constraint then
force the torsion in Γi to be zero, but together with (36) they
are second class constraints.
There are different strategies for dealing with the

quantization of systems subject to second class constraints.
In this context usually one solves them classically, by
imposing zero torsion before quantizing. However, this is
not the only avenue, as we will demonstrate in [16].
Whatever one does, it does not affect the definition of
the real Chern-Simons state presented here; it only affects
whether the torsion should be left in the Chern-Simons
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functional, and conditions upon it placed at a later state
when identifying the physical states (as we shall do in
[16,19]; or whether torsion should be simply be set to zero
by hand.

C. The reality conditions

We claimed earlier that we used self-dual variables
merely to make contact with standard Chern-Simons
theory, but that the complexification could be bypassed
altogether, using only real variables. Here we show this
explicitly. Backtracking to the Einstein-Cartan action in the
time gauge, and writing it in terms of Ki

a and Γi
a only, we

can read off the Poisson bracket:

fKi
aðx⃗Þ; Eb

j ðy⃗Þg ¼ 1

2κ
δbaδ

i
jδðx⃗ − y⃗Þ ð37Þ

implying:

½Ki
aðx⃗Þ; Eb

j ðy⃗Þ� ¼ il2Pδ
b
aδ

i
jδðx⃗ − y⃗Þ; ð38Þ

and so:

Êa
i ðx⃗Þ ¼ −il2P

δ

δKi
aðx⃗Þ

: ð39Þ

The Γi have a conjugate momentum forced to be zero,
leading to the second class constraints mentioned in the
previous section, but that is beside the point here. The fact
is that we now have a phase space made of explicitly real

variables, as well as a real action. Everything is real by
construction.
This is also true of the Hamiltonian constraint. Noting

that the 3-curvature in our generator basis is

ð3ÞRi ¼ dΓi þ 1

2
ϵijkΓjΓk ð40Þ

or in spatial components:

ð3ÞRi
ab ¼ 2∂ ½aΓi

b� þ
1

2
ϵijkΓj

aΓk
b ð41Þ

and likewise for

Fi ¼ dAi þ 1

2
ϵijkAjAk ð42Þ

we can rewrite the (real) Hamiltonian constraint Eq. (18) as:

ϵijk E
a
i E

b
j

�
ð3ÞRk

ab −
1

2
ϵklmKl

aKm
b þ Λ

3
ϵabcEck

�
¼ 0; ð43Þ

or its quantum version, with appropriate ordering:

�
ð3ÞRk

ab −
1

2
ϵklmKl

aKm
b − i

l2PΛ
3

ϵabc
δ

δKck

�
ψ ¼ 0: ð44Þ

It is then easy to see that a solution is given by:

ψ ¼ N exp

�
−

3i
Λl2P

Z
Kið3ÞRi − ϵijk

KiKjKk

6

�

¼ N exp

�
−

3i
2Λl2P

Z
2KidΓi þ ϵijk

�
KiΓjΓk −

KiKjKk

3

��
ð45Þ

¼ N exp

�
−

3i
2Λl2P

Z
KidΓi þ ΓidKi þ ϵijk

�
KiΓjΓk −

KiKjKk

3

��
ð46Þ

after an integration by parts in the last step. The last
expression is nothing but the real Chern-Simons state (25)
written in a form invoking explicitly real variables only.
Admittedly the expression in terms of complex variables is
more elegant, but the point has been made, we hope.
The integration by parts needed to bring the state obtai-

ned directly in terms of real variables [i.e., Eq. (45)] to the
form obtained by taking the imaginary part of the complex
YCS (i.e., Eq. (46) is innocuous here. But it will not be
irrelevant in quasitopological theories, where Λ becomes
dynamical. This will be an essential clue allowing for the
straightforward generalization of the real Chern-Simons
state for a class of such theories.

VI. GENERALIZATION TO
QUASITOPOLOGICAL THEORIES

Perhaps surprisingly, the real Chern-Simons state
obtained for the Einstein-Cartan theory generalizes almost
trivially to one of the quasi-topological theories in [6,7], as
already hinted at in the Appendix of [15] (unfortunately
with a large number of typos, hopefully corrected here).
This only applies to the quasi-topological theory based on
the Euler invariant with the critical coupling identified in
[6]. We will keep the Pontryagin term and a general
coefficient for the Euler term in part of the analysis, to
show this fact. Except for that one special case, the

JOÃO MAGUEIJO PHYS. REV. D 104, 026002 (2021)

026002-6



Hamiltonian and conformal constraints turn out to
contradict each other (something we already knew from
MSS [15]).
In these theories, one adds to the Einstein-Cartan action

(4) the quasitopological terms:

SQT ¼ κ

2
ðSEul þ SPontÞ ð47Þ

SEul ¼ −
3θ

2

Z
1

Λ
ϵABCDRABRCD; ð48Þ

SPont ¼ −
3

γP

Z
1

Λ
RABRAB: ð49Þ

The critical coefficient for the Euler theory is obtained with
θ ¼ 1, as explained in [6,7]. Arguments were given in [18]
for relating the coefficient of the Pontryagin term, γP, to the
Immirzi parameter (specifically its aspect denoted by γNY
here). These arguments are merely motivational, so we
shall not relate γP with either γI or γNY.
In such theories Λ becomes a dynamical variable, so that

in this Sec. Λ≡ ΛðxÞ (in contrast with the rest of this paper
where Λ≡ Λ0). Our claim is that for the critical Euler
theory, a solution to the Hamiltonian and conformal
constraints can be obtained directly from Eq. (25) by
replacing YCS by:

YΛ ¼
Z

LCS

Λ
ð50Þ

with:

LCS ¼ Tr

�
AdAþ 2

3
AAA

�

¼ −
1

2

�
AidAi þ 1

3
ϵijkAiAjAk

�
: ð51Þ

That is, it is enough to move the space-time varying Λ in
(25) inside the integral YCS. The claimed solution is
therefore:

ψΛðAÞ ¼ N exp

�
3i
l2P
ℑYΛ

�
: ð52Þ

As we have already found in [15] for minisuperspace,
this solution is only a particular solution, for the parity-odd
branch of the theory. A more general solution accepts
a nonconstant amplitude N with a particular functional
dependence. This issue, as well as the full algebra of
constraints for these theories is deferred to [25]. Suffice it to
say here that it is possible to implement the other
constraints in a different form, as can be done in the
Einstein-Cartan theory for the torsion [16].

To find the general form of the constraints, we note that,
since:

RiRi ¼ 1

2

�
RABRAB −

i
2
ϵABCDRABRCD

�
; ð53Þ

the quasi-topological terms can be written as:

SQT ¼ −κ
Z

1

Λ
ℜðζRiRiÞ ð54Þ

with:

ζ ¼ 3

�
1

γP
þ iθ

�
: ð55Þ

But given the standard result:

TrRR ¼ dLCS ð56Þ

or in components:

RiRi ¼ d

�
AidAi þ 1

3
ϵijkAiAjAk

�
¼ −2dLCS ð57Þ

we have:

SQT ¼ 2κ

Z
1

Λ
dℜðζLCSÞ: ð58Þ

Subjecting this action to a 3þ 1 split generates 3 types of
terms, depending on where in the integrand the time index
is. We proceed to examine them.

A. The conformal constraint

The first type of term is of the form:

S ¼ −2κ
Z

dtd3x _ϕℜðζLCSÞ þ � � � ð59Þ

where we set ϕ ¼ 1=Λ, and integrated by parts in time. This
suggests a PB between ϕ and its conjugate momentum:

fϕðxÞ;ΠðyÞg ¼ −
1

2κ
δðx − yÞ ð60Þ

subject to the primary constraint:

V ¼ Π −ℜðζLCSÞ ≈ 0: ð61Þ

Equation (61) is the generalization beyond minisuperspace
of the conformal constraint found in [18]. It differs from its
MSS version in that it must be enforced point by point.
Elsewhere [25] we will show that the total system of

constraints is first class in the case relevant to this paper.
Therefore, quantum mechanically we can promote the
PB to:
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½ϕ̂ðxÞ; Π̂ðyÞ� ¼ −il2Pδðx − yÞ ð62Þ

so that in the ϕ representation we have:

Π̂ðxÞ ¼ il2P
δ

δϕðxÞ : ð63Þ

The quantum conformal constraint equation

V̂ψ ¼
�
il2P

δ

δϕðxÞ −ℜðζLCSÞ
�
ψ ¼ 0 ð64Þ

is solved (point by point) by:

ψ ¼ N exp
�
−

i
l2P
ℜζYΛ

�

¼ N exp

�
3i
l2P

�
θℑYΛ −

1

γP
ℜYΛ

��
: ð65Þ

At once we note that we only get a form that generalizes the
standard Chern-Simons state [i.e., Eq. (52)] if θ ¼ 1 and
γP ¼ ∞. We now show that this is the only case where the
solutions of the conformal and Hamiltonian constraints
coincide.

B. The Hamiltonian constraint

Beside the term highlighted in Eq. (59), the action (58)
contains two other types of term, bearing Eq. (51) in mind.
Terms in Ai

0 generate a new constrain, since Ai
0 does not

have a time derivative anywhere, and so can be regarded as
a Lagrange multiplier. This new constraint, together with
the other constraints and their algebra, will be studied in
[25]. In addition there are terms in _Ai

a, leading to the
contribution:

S ¼ κ

Z
dtd3xϵabcð∂aϕÞℜðζAi

b
_Ai
cÞ þ � � �

¼ κ

Z
dtd3xϵabcð∂aϕÞ½−3θðKi

b
_Γi
c þ Γi

b
_Ki
cÞ

þ 3

γP
ð−Ki

b
_Ki
c þ Γi

b
_Γi
cÞ� þ � � � ð66Þ

The term in _Γ implies that no longer the momentum
conjugate to Γ is set to zero in the time gauge by a primary
constraint, as was the case in Sec. V B. Instead, we have:

fΓi
aðx⃗Þ;Πb

Γjðy⃗Þg ¼ 1

2κ
δbaδ

i
jδðx⃗ − y⃗Þ

Πai
Γ ≈

3

2
ϵabc

�
θKi

b −
1

γP
Γi
b

�
∂cϕ: ð67Þ

The conditions upon the torsion that follow will therefore
be modified, a matter we examine thoroughly in [25].
Again one may choose to impose the torsion conditions on
the classical theory and then quantize; or, rather, to impose
them on the wave function only, a matter we highlight here,
but which is beyond the scope of this paper [16].
The term in _K affects instead Eqs. (20) and (37), which

retain their form, for example:

fKi
aðx⃗Þ;Πb

j ðy⃗Þg ¼ 1

2κ
δbaδ

i
jδðx⃗ − y⃗Þ ð68Þ

but with:

Πa
i ¼ Ea

i þ
3

2
ϵabc

�
θΓi

b þ
1

γP
Ki

b

�
∂cϕ: ð69Þ

In the representation diagonalizing the connection we
therefore now have:

Êa
i ¼ −il2P

δ

δKi
a
−
3

2
ϵabc

�
θΓi

b þ
1

γP
Ki

b

�
∂cϕ; ð70Þ

and it will be this representation that we should use to
implement the Hamiltonian and other constraints.
At this point we note that once we account for the 3 types

of term into which (58) can be expanded, nothing is left that
can alter the other constraints. In particular the Hamiltonian
constraint in these theories retains the Einstein-Cartan
form [Eqs. (18) or (43)], with the trivial modification
Λ → 1=ϕðxÞ, i.e.: Lambda becomes a field. However, this
is only true classically: the quantum mechanical expression
of the constraint is modified, because the form of the
operator Ê changes from (22) or (39) to (70). The quantum
Hamiltonian constraint, with suitable ordering, is therefore:

�
ℜFk

ab þ
1

3ϕ
ϵabc

�
il2P

δ

δKk
c
þ 3

2
ϵabc

�
θΓi

b þ
1

γP
Ki

b

�
∂cϕ

��
ψ ¼ 0: ð71Þ

We now note that the algebraic manipulations leading to
(24) carry over trivially into our calculation by replacing
YCS=Λ0 with YΛ, because ϕ appears in them as an irrelevant
multiplicative factor. The exception is when we have to
integrate by parts: what usually produces a boundary term

that can be discarded now produces terms in dϕ. Thus,
inserting ψ ¼ ψΛ [defined in Eq. (52)] in Eq. (71), we find
that its first two terms cancel as usual, if we ignore the
boundary term. However, the usually innocuous integration
by parts now leads to an extra term:
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�
ℜFk

ab þ
1

3ϕ
ϵabc

�
−il2P

δ

δKk
c

��
ψΛ ¼

�
3

2
ϵcdeΓi

d∂eϕ

�
ψΛ:

ð72Þ

This term cancels the extra terms in the Hamiltonian
equation (71) if θ ¼ 1 and γP ¼ ∞, completing the proof
of our claim.

VII. CONCLUSIONS

We conclude with a digression on the origin of our result,
followed by a discussion of some of its implications.
Complexification, as in the self-dual formalism of

general relativity, is a wonderful tool but presents some
dangers. Foremost, in complexifying the theory one often
folds in the assumption that the connection is torsion-free.
Indeed, most manipulations leading to the self-dual for-
mulation [8] without spinors assume that the connection is
torsion-free (see [26,27] for the situation with spinors and
not only). This may obscure matters, particularly when we
do not want to assume zero torsion off-shell [16], or in
extensions to Einstein-Cartan theory [6,7,15] where we
simply cannot assume it, even though the Hamiltonian
constraint is unmodified. This, we would argue, is behind
the apparent pathologies of the Chern-Simons state in self-
dual theory. None of them are present in an explicitly real
formalism where no assumptions on torsion (folded into the
complexification and the reality conditions) have yet been
made at the point of quantization.
For example, by taking the full complex Hamiltonian

constraint in minisuperspace (and not just its real part), we
require in addition to the real part condition that:

ϵijkEa
i E

b
jℑF

k
ab ∝ ℑðcþ ibÞ2 ¼ 2bc ¼ 0; ð73Þ

where, we recall, b and c are the connection components
defined in (26) (the latter the parity-violating Cartan spiral
staircase [23]). This is overkill on various levels. Firstly, it
cannot be assumed for quasitopological theories, blocking
the calculations in Sec. VI. Indeed, even for the quasi-Euler
theory with critical coupling we have c ¼ c0 ≠ 0 in the
absence of matter (and more complicated solutions in the
presence of matter).
Second, we may not want to assume zero torsion before

quantization even in Einstein-Cartan theory [16]. We may
want to define a real Chern-Simons state with uncon-
strained torsion, and then build wave packets indexed by
the torsion, around zero torsion, or around any c0 in the
quasi-Euler theory. The reason is that this illuminates the
meaning of normalizability for the wave function. As
suggested in [9,10], the nonpathological real Chern-
Simons state is delta-function normalizable, but what does
this mean?With respect to what? A possible answer is: with
respect to torsion [16]. The wave-packets in torsion space
are then normalizable in the conventional sense.

This sheds light on the issue of the normalization and
interpretation of the wave function of the Universe (in
particular of the Hartle-Hawking variety [20], although an
adaptation of the construction may work for the Vilenkin
one [14,20–22]). The real Chern-Simons state with zero-
torsion, when reduced to minisuperspace is the Fourier dual
of the Hartle-Hawking wave function, with a real integra-
tion contour [14]. Hence, normalizability issues should be
identical for both, since they do not depend on the
representation. We can therefore import the construction
proposed above (wave packets in torsion space) into the
metric formulation. This leads to a regular Hartle-Hawking
“beam” [16]. None of this would be possible with the non-
real Chern-Simons state, which would acquire the patho-
logical extra factor:

ψCS → ψCS exp

�
3Vc

l2PΛ
ðc3 − 3b2cÞ

�
; ð74Þ

applied to (30).
Another implication of our result is that, since the

Chern-Simons state is a nonperturbative construction,
and its pure phase property is general too, it should be
possible to define generic metric representations by stan-
dard Fourier transform. What are its metric duals beyond
minisuperspace, for example for anisotropic and inhomo-
geneous models, black holes or gravity waves? These
can be seen as generalizations of the Hartle-Hawking
wave function and a preliminary study will be presented
in [19].
We close with a couple of speculations. Could a closer

examination of our proposal show that it is valid, not for
standard Einstein-Cartan theory, but for a variation on the
theory which breaks local Lorentz invariance? It could be
that the way we dealt with the constraints fixes the frame in
which the 3þ 1 decomposition was performed, so that a
3þ 1 ¼ 4 cannot be reinstated (in vague analogy with the
Horava-Lifshitz construction [28]). Care was taken to avoid
this possibility (and this author has found no evidence for
it), but it is possible that hiding somewhere is the peg for a
preferred Lorentz frame. The same concern may be voiced
about SUð2Þ symmetry breaking. We can also speculate
about some other points of overlap with the concepts of
holography [29,30] or new approaches to Chern-Simons
theory [12].
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