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We study the connection between asymptotic symmetries in non-Abelian gauge theories and the
generalized coherent states following from the application to QCD of the Faddeev-Kulish approach to
asymptotic dynamics. We compute the large gauge transformation properties of the soft evolution operators
and use this to define the quantum corrected, nonlinear contribution to the asymptotic charges. We then
compute the leading IR-divergent part of the one-loop correction to matrix elements of the charges and show
that, with a specific ordering of soft limits, the asymptotic charges continue to be conserved at this order.

DOI: 10.1103/PhysRevD.104.025019

I. INTRODUCTION

The study of the infrared behavior of gauge theory
scattering amplitudes has a long history and in the case of
QED has essentially been understood since the work
of Bloch and Nordsieck [1], though it has been refined
over the years [2–5]. The standard approach involves the
computation of amplitudes which are formally singular—
they in fact vanish after exponentiation of the perturbative
divergences. One then focuses on inclusive quantities
involving arbitrary numbers of real soft photons
which cancel the IR divergences from virtual photons
in loops. An alternative approach is to directly formulate
infrared-finite S-matrix elements by choosing appropriate
asymptotic states. For QED this approach where the
asymptotic states are not eigenstates of the photon number
operator but rather have the form of coherent states, was,
starting from the work of Chung [6,7], developed by a
number of authors, e.g., [9–12]. Faddeev and Kulish,
building on the work of Dollard for the Coulomb problem
in nonrelativistic quantum mechanics [13], related the
structure of these coherent states to the form of the
large-time Hamiltonian [14,15]. The approach was

partially extended to the much more complicated case of
non-Abelian gauge theory [16–26] and more recently to
perturbative gravity [27].
The observation that asymptotic conservation laws,

which follow from Noether’s second theorem [28] for
large gauge transformations, pave the way to understanding
the infrared dynamics of gauge theories [29,30] (see [31]
for a review and more complete references) has lead to a
renewed interest in the study of coherent state operators and
soft dressing more generally [32–41]. It has already been
demonstrated that for QED [34] and perturbative gravity
[36] the coherent states relevant to the construction of an
infrared finite S-matrix follow from the symmetry of
asymptotic charges. The existence of an infinite dimen-
sional symmetry group has lead to the interpretation of
the QED vacuum as being degenerate and that scattering
processes are accompanied by a shift in the vacua. Infrared
divergences due to massless particles which result in the
vanishing of S-matrix elements are thus connected with the
“wrong” choice of the in- and out-vacua, and a cure can
be sought in a systematic way by considering the asymp-
totic charges. An analogous statement can be made for
perturbative gravity, using supertranslation charges
to find suitable asymptotic states for an infrared-finite
gravity S-matrix.
The corresponding understanding of QCD infrared

dynamics is significantly less complete. Compared to
QED, the natural complication that arises is that gauge
bosons self-interact in a nontrivial way. The persistence of
these nontrivial self-interactions at early and late times is
central to the behavior of the infrared properties of QCD
[42].
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It is our aim here to understand the connection between
asymptotic symmetries in non-Abelian gauge theories and
generalized IR leading coherent states. We will follow the
approach of Catani, Ciafaloni and Marchesini, [21–25] (see
[43] for an introduction) which uses energy ordering in
each interaction to systematically organize the divergences
due to soft gluons. Non-Abelian gauge theories of course
also have collinear divergences which have been treated in
the coherent operator approach [44]; see also [45] and the
recent interesting works [46,47]. We will focus on the
leading IR divergence, though the method can be extended
in principle to include subleading divergences. To be
slightly more precise, when we extend the tree-level
considerations to one-loop we will focus on the IR double
pole terms arising from simultaneously soft and collinear
regions of parameter space.
In the following a central goal is the definition of

asymptotic charges at loop level. As we discuss below
we start from the linear part of the charge that arises in the
classical construction and which can be understood to act
on Fock, or bare, asymptotic states at null infinity.
However, as the S-matrix is ill defined for such states
we must introduce the soft-evolution operators generated
by the QCD Hamiltonian which is used to define dressed
states. We then consider the transformation properties of
these soft-evolution operators under transformations gen-
erated by the asymptotic charges and we show how the
soft-evolution operators can be viewed as generating the
nonlinear part of the charge from the linear part. This
implies the existence of an infinite sequence of quantum
corrections to the nonlinear charge. This charge can then be
used to define a Ward identity for scattering amplitudes.
The main result of this paper is the computation, at leading
IR divergence, of the one-loop corrections to the Ward
identity of the asymptotic charge which is related to the soft
gluon theorem. We demonstrate explicitly that the contri-
bution from the soft gluon dressing factor cancels the
contribution from the one-loop soft factor in QCD [48,49],
showing that the asymptotic charge produces a vacuum that
is orthogonal to all scattering states built on the original
vacuum as in [34]. We will see that this result depends on
the precise prescription for the order of soft limits in the
definition of the charge and dressing factor which is
analogous to the order of limits discussed in [50,51].
There are two order-of-limit choices we must make, for
the first, in the definition of the charge we take a order of
limits used in [50], which corresponds to the standard
choice in dimensionally regularized soft limits. This choice
is motivated, as in [50], by its use in problems such as the
computation of physical cross sections. For the second
choice, in the definition of the dressed states, we compute
the result using both orderings for comparison. As we
discuss in Sec. VI it is however natural to choose the
prescription which preserves, where possible, the sym-
metries of the theory. We will see that there is indeed a

particular prescription that preserves the asymptotic sym-
metries to the order we compute, as we find that with this
choice theWard identity receives no corrections at one-loop
and leading IR divergence.

A. Preliminaries

Perturbative computations are relevant in QCD as they
are related to experimental observables due to two impor-
tant properties: asymptotic freedom and factorization.
Confinement naturally sets a scale ΛQCD such that for
partons to be well-defined objects we require the existence
of a lower cutoff on the lowest momentum transfer in a
given process. Perturbative quantities are then related to
physical cross sections by convolution with nonperturba-
tive but universal objects, e.g., parton distribution func-
tions. In this work we will initially consider asymptotic
states formed by acting on the Fock vacuum with creation/
annihilation operators for the hard incoming or outgoing
partons (these can be either massless gluons or massive
quarks), Y

l

b†αl;σlðplÞj0i ¼ jfpl; αl; σlgi ð1Þ

which are labeled by momenta pl, color indices αl
(corresponding to the fundamental representation for
quarks and the adjoint for gluons) and helicity indices
σl as appropriate.
We will consider n-particle IR divergent S-matrix ele-

ments between such asymptotic states,

Mnðfpl; αl; σlgÞ

¼ h0j
�Y

l∈out
bαl;σlðplÞ

�
S

�Y
l∈in

b†αl;σlðplÞ
�
j0i

¼ gn−2YM

X∞
L¼0

g2LYMM
ðLÞ
n ðfpl; αl; σlgÞ ð2Þ

which give the usual perturbative scattering amplitudes.
The behavior of such amplitudes as individual gluons
become soft and the relation to the asymptotic charge
plays a key role in our work. We will properly introduce
and define the linearized asymptotic charge, Qlin

ϵ , in
subsequent sections however for now it is sufficient to
state that it involves soft gluon creation/annihilation oper-
ators aa†σ ðωqÞ=aaσðωqÞ with vanishing gluon energy ωq ≃ 0

and has matrix elements of the form

houtjQlin
ϵ Sjini ∼ houtj lim

ωq→0
ωqaaσðωqÞSjini ð3Þ

with a careful interpretation of the limit. At tree level it is
known that the limit in the definition of the charge can be
understood as
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houtj lim
ωq→0

ωqaaσðωqÞSjini ¼ lim
ωq→0

ωqhoutjaaσðωqÞSjini

¼ lim
ωq→0

ωqM
ð0Þ
nþ1ðfq; a; σgÞ: ð4Þ

These terms can be computed using the tree-level soft-
gluon theorem

lim
ωq→0

Mð0Þ
nþ1ðfq; a; σg; fplgÞ ¼ gYMJ

ð0Þa
σ ðqÞMð0Þ

n ðfplgÞ

ð5Þ

with the soft current given by

Jð0Þaσ ðqÞ ¼
�X
l∈out

pl · εσðqÞ
pl · q

tal −
X
l∈in

pl · εσðqÞ
pl · q

tal

�
; ð6Þ

where the soft gluon of momentum q, color a and helicity σ
is taken to be outgoing. In this expression, and similar
expressions below, as the limit does not strictly exist the
notation limωq→0 should be understood as referring to the
leading term in an expansion in small ωq. If the gluon was
incoming, there would be an overall minus sign and the
corresponding polarization vector would be ε̄σ.
At loop level the issue of the soft limit is more subtle:

after computing the perturbative terms defining the matrix
elements one may attempt to take the soft limit at the level
of the integrands before performing loop integrations or
alternatively one may keep ωq finite and take the limit only
after performing the loop integrations. It is known, from the
case of subleading IR behavior of graviton amplitudes [50–
52], that the order has important consequences for the
interpretation of quantum corrections to the Ward identities
for asymptotic symmetries. In this work for the definition
of matrix elements of the asymptotic charge we always take
the soft limit after the computation of matrix elements.
That is we will define a regularized charge Qlin

ϵ ðωqÞ and
then define

houtjQlin
ϵ ð0ÞSjini ≔ lim

ωq→0
houtjQlin

ϵ ðωqÞSjini ð7Þ

so that for the insertion of the soft gluon operator we use the
usual soft gluon theorem. The regularization of the charge
will be related to that of the soft limits of amplitudes. When
we discuss the soft-evolution operators we will follow [24]
and use an energy cutoff. However for explicit computa-
tions we will make use of the one-loop soft limits which
were computed using dimensional regularization, with
parameter ϵ̂ ¼ ðd − 4Þ=2, in [49] (see also [48,53–58]
for an earlier work in the case where the quarks are
massless) and can be written as

lim
ωq→0

Mð1Þ
nþ1ðfq; a; σg; fplgÞ ¼ gYMJ

ð0Þa
σ ðqÞMð1Þ

n ðfplgÞ

þ g3YMJ
ð1Þa
σ ðqÞMð0Þ

n ðfplgÞ;
ð8Þ

where the first term on the right-hand side is the iterated
tree result involving the tree-level soft current Eq. (6) while
the second term is due to the one-loop soft current which is,
to leading divergence,

Jð1Þaσ ðqÞ ¼ −
CA

16π2ϵ̂2
Jð0Þaσ ðqÞ þO

�
1

ϵ̂

�
; ð9Þ

where CA is the adjoint quadratic Casimir. It is important to
note that this leading double pole is due to both collinear
and soft divergences at leading logarithmic accuracy and as
we will see the coherent state will deal with both of them at
this order, as explained in [22,25].
However before computing such matrix elements we first

understand in more detail the definition of the asymptotic
charge and its expression in terms of free-field operators. In
order to do this we must review both the classical con-
struction of the charges, the soft-evolution operators in
QCD and the transformation properties of the evolution
operators under large gauge transformations.

II. ASYMPTOTIC CHARGES FOR QCD

We will be interested in the asymptotic charges of Yang-
Mills theory related to large gauge transformations, which
are those that are nonvanishing on the boundary of space-
time. Quite generally, Noether’s second theorem relates the
existence of a local symmetry to a two-form κνμ which can
be integrated over a codimension-two sphere to define a
charge. That is, the local symmetry implies that there exists
a conserved current

jμðϵÞ ¼ SμðϵÞ þ ∂νκ
νμðϵÞ; ð10Þ

where the function ϵðxÞ parametrizes local symmetry
transformations and the current SμðϵÞ vanishes on shell,

SμðϵÞ ¼eom0: ð11Þ

If ϵ is constant, one recovers the usual conserved current
that couples to the gauge field. If we consider the integral of
jμðϵÞ over a manifold Σ,Z

Σ
dΣμjμðϵÞ ¼

Z
Σ
dΣμ½SμðϵÞ þ ∂νκ

νμðϵÞ�

¼eom
Z
σ¼∂Σ

dσμνκνμðϵÞ; ð12Þ

this charge is nonvanishing only if the function ϵ has
support at the manifold boundary ∂Σ, otherwise it is
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trivially zero. This is equivalent to the statement that gauge
symmetries are not really “symmetries” in the proper sense.
Let us review the construction of classical non-Abelian

asymptotic charges at I� for QCD in four-dimensional
Minkowski space using the usual conformal compactifica-
tion (for details see [29,31] and see Appendix A for the
notations used in this paper). The two-form, κ, is given by
the field strength associated to the gauge field Aμ ¼ Aa

μTa,

F μν ¼ ∂μAν − ∂νAμ − igYM½Aμ;Aν� ð13Þ

which obeys the equations of motion

∇μF μν − igYM½Aμ;F μν� ¼ gYMjMν ; ð14Þ

where jMν is the matter color current. The classical charge
for non-Abelian large gauge transformations with param-
eter ϵ is then given as

Qϵ ¼
Z
σ
�tr½ϵF �; ð15Þ

see for example [59,60] and also [61].
The relevant surfaces for our asymptotic charges are

future and past null infinity, usually denoted Iþ and I−

(see Fig. 1). The natural coordinates for discussing Iþ are
the so-called retarded Bondi coordinates,

r2 ¼
X3
i¼1

ðxiÞ2; u ¼ t − r; z ¼ x1 þ ix2
rþ x3

; ð16Þ

such that the flat-space metric becomes

ds2 ¼ −du2 − 2dudrþ 2r2γzz̄dzdz̄ with

γzz̄ ¼
2

ð1þ zz̄Þ2 : ð17Þ

The boundary at r → ∞, Iþ is thus parametrized by
the coordinates ðu; z; z̄Þ. The advanced coordinates,
ðr; v ¼ tþ r; z; z̄Þ, are most convenient for I− and where
necessary we will apply the antipodal matching conditions
as in [30]. Furthermore, as it is convenient for making
contact with perturbative computations, relevant for the
construction of the coherent states, we will focus on Lorenz
gauge in this paper with the gauge fixing condition

∇μAa
μ ¼ 0: ð18Þ

The same charge can be found in noncovariant gauges
such as retarded radial or radiation gauge. In general the
asymptotic symmetries may depend on the choice of gauge
fixing, which can also be seen at the path integral level (see
[60]), but for the leading asymptotic charges one finds the
same result for both covariant and physical gauge choices.

Finally we will be interested in large gauge transformations
parametrized by a function ϵ ¼ ϵaðz; z̄ÞTa which labels the
transformations at infinity, for example at Iþ,

δϵAzðu; z; z̄Þ ¼ Dzϵðz; z̄Þ; ð19Þ

where Azðu; z; z̄Þ ¼ limr→∞Azðr; u; z; z̄Þ.
In retarded Bondi coordinates on the celestial sphere S2

defined by the u → −∞ region of Iþ, i.e., Iþ
− , the charge

Eq. (15) becomes

Qϵ ¼
Z
Iþ
−

d2zγzz̄tr½ϵðz; z̄ÞFru�; ð20Þ

where Fru ¼ limr→∞ r2F ru. This charge is usually denoted
Qþ

ϵ to distinguish it from the corresponding charge Q−
ϵ

on I−. In order to avoid a proliferation of superscripts we
will mostly neglect this index and hopefully it is clear from
context to which charge we are referring.
The charge can now be rewritten, assuming the field

strengths vanish at Iþ
þ (for details see Appendix B), as

Qϵ ¼ Qlin
ϵ þQnon−lin

ϵ ; ð21Þ

where

Qlin
ϵ ¼

Z
Iþ

d2zduϵaðz; z̄Þ½∂uð∂zAa
z̄ þ ∂ z̄Aa

z Þ� ð22Þ

and

Qnon−lin
ϵ ¼ gYM

Z
Iþ

d2zduϵaðz; z̄Þ½fabcðAb
z∂uAc

z̄

− Ac
z̄∂uAb

z Þ þ γzz̄j
að2Þ
u �: ð23Þ

FIG. 1. Penrose diagram picture of Minkowski compactification.
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Here we have adopted the standard splitting of the asymp-
totic charge into a piece linear in the gauge field (usually
called soft) and a piece nonlinear in the gauge fields (usually
called hard). In the construction of asymptotic charges it is
usually argued that it is the linearized theory which is used to
define the two-form. This is the case in the framework of
covariant charges [59,62] and in a related context was noted
by Abbott and Deser [61] for Yang-Mills theory. In the
current context this would correspond to linearizing the
theory around the background Aa

z ¼ Aa
z̄ ¼ 0 and would thus

discard the nonlinear gluon piece of the asymptotic charge.
However, it was argued that one should include the nongluon
piece inside the hard part of the charge [63]. As we will
explicitly discuss later, we start from the linear charge
Eq. (22) acting on asymptotic states however such a hard
contribution in our case is indeed present as it will be
generated by the time evolution given by theMøller operator.
At I− there is an analogous construction where the
linearized asymptotic charge is given by

Qlin
ϵ ¼

Z
I−

d2zdvϵaðz; z̄Þ½∂vð∂zAa
z̄ þ ∂ z̄Aa

z Þ� ð24Þ

in advanced Bondi coordinates.
We will be interested in understanding the action of these

charges on scattering states and in order to hew closely to
the standard S-matrix formulation we will start with the
usual equal-time commutators on a spacelike hypersurface
and by taking the t → �∞ limit of the usual free field
expansion,

Aa
μðxÞ ¼

X
σ¼�

Z fdq½ε̄σμðqÞaaσðqÞeiq·x þ εσμðqÞa†aσ ðqÞe−iq·x�:

ð25Þ

The sum is over helicities with polarization vectors εσμ
and the equal time commutation relations are given in
Appendix A. We can then evaluate the fields arbitrarily
close to Iþ by using the saddle point approximation in the
r → ∞ limit [31,64–66] such that

Aa
z ¼

−i
8π2

ffiffiffi
2

p

ð1þ zz̄Þ
Z þ∞

0

dωq½aaþðωqx̂Þe−iωqu

− aa;†− ðωqx̂Þeiωqu�

Aa
z̄ ¼

−i
8π2

ffiffiffi
2

p

ð1þ zz̄Þ
Z þ∞

0

dωq½aa−ðωqx̂Þe−iωqu

− aa;†þ ðωqx̂Þeiωqu�; ð26Þ

where q0 ¼ ωq and x̂ ¼ x=r. The asymptotic charges can
now be expressed in terms of the creation and annihilation
operators and for the linear, or soft, charge we have

Qlin
ϵ ¼ lim

ωq→0

ωq

4π

Z
d2z

ffiffiffiffiffiffi
γzz̄

p ½∂zϵ
aðz; z̄Þðaa−ðωqx̂Þ

þ aa†þ ðωqx̂ÞÞ þ H:c:� ð27Þ

which provides the connection with the action discussed in
the Introduction, Eq. (3). The nonlinear part of the charge is
more complicated to interpret in the quantum theory as it
requires normal ordering. For the gluon part we have

Qnon−lin
ϵ jgluon ¼ igYMfabc

Z
Iþ

d2z
2ð2πÞ3 γzz̄ϵ

aðz; z̄Þ
�Z þ∞

0

dωq ωq

X
σ¼�

ab†σ ðωqx̂Þacσðωqx̂Þ

þ 1

2

Z þ∞

0

Y2
i¼1

dωqiδðωq1 þ ωq2Þðωq1 − ωq2Þ½abþðωq1 x̂Þac−ðωq2 x̂Þ − ab†− ðωq1 x̂Þac†þ ðωq2 x̂Þ�
�
;

where we have normal ordered the expression and
dropped the resulting constant. As the energy integral is
over only positive values, the delta function in the second
term has no nonzero support in the integration region and it
is therefore vanishing. Defining the gluon number density
operator

ρagðqÞ ¼ −ifabc
X
σ¼�

ab†σ ðωqx̂Þacσðωqx̂Þ ð28Þ

we can write the first term in the particularly simple form

Qnon−lin
ϵ ja†a−gluon ¼ −gYM

Z fdqρagðqÞϵaðx̂Þ: ð29Þ

There is one important subtlety in relating the linear
charge to large gauge transformations. Using the equal-
time commutators and the expression Eq. (27) one can
show that

½Qlin
ϵ ; aaþðqÞ� ¼ −

ð2πÞ2δðωqÞffiffiffiffiffiffi
γzz̄

p ∂zϵ
aðz; z̄Þ ð30Þ
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½Qlin
ϵ ; aa†þ ðqÞ� ¼ ð2πÞ2δðωqÞffiffiffiffiffiffi

γzz̄
p ∂ z̄ϵ

aðz; z̄Þ ð31Þ

½Qlin
ϵ ; aa−ðqÞ� ¼ −

ð2πÞ2δðωqÞffiffiffiffiffiffi
γzz̄

p ∂ z̄ϵ
aðz; z̄Þ ð32Þ

½Qlin
ϵ ; aa†− ðqÞ� ¼ ð2πÞ2δðωqÞffiffiffiffiffiffi

γzz̄
p ∂zϵ

aðz; z̄Þ: ð33Þ

Thus the gauge transformation of the asymptotic field
Aa
z ðu; z; z̄Þ is given by

½Qlin
ϵ ; Aa

z ðu; z; z̄Þ�

¼ i
2
∂zϵ

aðz; z̄Þ
Z

∞

0

dωqδðωqÞðe−iωqu þ eþiωquÞ: ð34Þ

This will give the incorrect large gauge transformations
using the usual definition of the delta function but it can be
remedied by inserting a factor of 2 for the zero-mode
contribution. This is related to the fact noted in the context
of the Abelian theory [33,64,67] that the radiative phase
space at Iþ defined as Γþ ¼ fFa

uz; Fa
uz̄g will not give the

usual linearized large gauge transformation. It is easy to
check that

½Qlin
ϵ ; Aa

z ðu; z; z̄Þ� ¼
i
2
∂zϵ

aðz; z̄Þ ≠ iδϵAa
z ðu; z; z̄Þ ð35Þ

using the standard Poisson brackets of the non-Abelian
gauge theory

½Aa
z ðu; z; z̄Þ; Ab

wðu0; w; w̄Þ� ¼ −
i
4
δabΘðu − u0Þδ2ðw − zÞ:

ð36Þ

The problem is that the zero modes at the boundary
correspond to a single real scalar field and not to a complex
one: in the zero frequency limit the two helicities are
identified and there is a miscounting of the degrees of
freedom. This problem can be solved as in [64,67] by
imposing additional constraints at the boundaries of Iþ.
Alternatively one can add the factor of 2 for zero modes as
was done by the authors of [33] used in the definition of the
QED coherent state operator. We will follow a similar
procedure however in our case we modify the charge,
adding a factor of 2 for zero modes, and leave the coherent
state, and the amplitudes, unchanged.

A. Splitting of the charge contributions according
to the energy scale E

A key point is that once we pick a scale E we split the
Fock space of free particles into the hard and the soft parts

H ¼ HE
s ⊗ HE

h . Indeed we could make a splitting of the
energy integral to separate the two contributionsZ þ∞

λ
dωq →

Z
E

λ
dωq þ

Z þ∞

E
dωq; ð37Þ

where we have introduced λ as an infrared cutoff. As
mentioned previously, we will in fact take the linearized
charge in the asymptotic region as our starting point and see
how the nonlinearity emerges from commuting with the
evolution operators. As we will see this corresponds to
effectively having

Qlin
ϵ ¼Qlin

ϵ;s ⊗ Ih and Qnon−lin
ϵ ¼ Is ⊗Qnon−lin

ϵ;h jgluonþquarks;

ð38Þ

where we have a nonlinear hard term for both gluons and
quarks. This is similar to the approach taken in [63].

III. ASYMPTOTIC HAMILTONIAN AND SOFT
EVOLUTION OPERATORS

The starting point for the coherent state approach to IR
divergences [14] is the choice of an appropriate asymptotic
Hamiltonian describing the parton dynamics in the far
future and far past. Wewill review, following the arguments
of [24], how one can carry out the Faddeev-Kulish (FK) ap-
proach in the non-Abelian case at the leading order in the
IR divergences. We start from the splitting of the standard
QCD interaction Hamiltonian in the interaction represen-
tation into soft and hard parts:

HIðtÞ ¼ HE
h ðtÞ þHE

s ðtÞ: ð39Þ

This is done by introducing at each interaction vertex the
energy transfer ν:

ν ¼
				X

i

ηiωi

				 X
i

ηiqi ¼ 0; ð40Þ

where ωi are the energies of the interacting particles with
ηi ¼ þ1 (respectively −1) for incoming (respectively out-
going) particles. We define the soft part of the Hamiltonian
as containing only energies below a scale ν < E and we
also introduce a lower cutoff λ < ν. The lower energy
bound λ is not only required by our use of perturbative
QCD but also to have a good definition of the FK states
[14]; however in the following we will sometimes leave it
implicit. It is important to note that the region ν < E
contains both soft and collinear subregions. For example
[26] considered a cubic vertex with incoming gluon energy
ω1 ¼ jq1j and outgoing energies ωi ¼ jqij for i ¼ 2, 3. In
particular ω3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 þ ω2

2 − 2ω1ω2 cos θ12
p

, where θ12 is
the angle between q1 and q2. The condition Eq. (40) then
defines a hyperbola in ω2– cos θ12 plane
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cos θ12 ¼ −
�
1þ E

2ω1

�
E
ω2

þ
�
1þ E

ω1

�
ð41Þ

which defines regions of small ω2 and cos θ12 ∼ 1.
Alternatively one can define the asymptotic region by
imposing both an angular cutoff θ12 < Θ and an energy
cutoff ω2 < M. In this way either form of the cutoffs can be
used to treat the soft and collinear regions for any of the
particles.
The soft Møller operators are defined as the standard

time-ordered product

ΩE
� ¼ T exp

�
−i

Z
0

∓∞
HE

s ðtÞdt
�
; ð42Þ

but in order to isolate the leading IR singularities, which
are of the form ðg2YM logðEλÞÞk at k loops, it is useful to
transform to frequency space and so write the Hamiltonian
as [22]

HE
s ðtÞ ¼

X
η¼�

Z
E

λ
dν hηðνÞe−iηνt: ð43Þ

Using this expression we can write the soft-evolution
operator as

ΩE
� ¼

X∞
n¼1

X
ηi¼�

Z
E

λ
dν1…dνn

×
hηnðνnÞ…hη1ðν1Þ

ðηnνn þ � � � þ η1ν1 � i0Þ…ðη1ν1 � i0Þ : ð44Þ

Infrared singularities come from vanishing energy denom-
inators, and in particular leading logarithms come from the
region specified by the strong ordering

λ ≪ ν1 ≪ ν2 ≪ …νn ≪ E; ð45Þ

where we can thus approximate

1

ηnνn þ � � � þ η1ν1 � i0
·… ·

1

η1ν1 � i0

≃
Yn
i¼1

1

ηiνi
Θðνn > � � � > ν1Þ: ð46Þ

To leading order (double pole accuracy) in the IR diver-
gences, for which we can neglect the distinction between
ΩEþ and ΩE

− due to the i0 prescription at leading order, the
Møller operator is then given by the frequency-ordered
exponential

ΩE ¼ Pν exp

�Z
E

λ

X
η¼�

dν
ην

hηðνÞ
�
: ð47Þ

Furthermore, it is possible to show that at this order in
the IR:

(i) In each three-gluon vertex we may assume there is
always one gluon which is much softer than the
others and so we can use the eikonal approximation.

(ii) Quarks interact only via eikonal vertices and pair
production is neglected because the process g → qq̄
is IR finite.

(iii) Four-gluon vertices and ghost contributions can be
neglected.

With these assumptions it is possible to write the soft
interaction Hamiltonian as a sum of two terms, one
depending on quarks and a soft gluon and a second purely
gluonic cubic term

HE
s ðtÞ ¼ HE

ffgðtÞ þHE
gggðtÞ: ð48Þ

These can be combined so that

HE
s ðtÞ ¼ −gYM

Z
ωq

fdp Z
E

λ

fdq ρaðpÞp̂ · ½aaðqÞeip̂·qt þ H:c:�

with ρaðpÞ ¼ ρafðpÞ þ
X
σ

a†bσ ðpÞTA
a
bcacσðpÞ; ð49Þ

where ρ now contains a contribution not only from
fermionic matter ρf but also from the hard gluons with
energies ωp > ωq. It is important to note that while the
density operator involves gluons which are harder than the
soft gluon at that vertex it does not commute with all soft
gluon operators. This is fundamentally different from the
QED case and corresponds to the nonlinear nature of the
gauge symmetry. Using the Hamiltonian HE

s ðtÞ in Eq. (49)
the soft Møller operator becomes

ΩE ¼ Pω exp

�Z
E

λ

fdqJ q · Πq

�
; ð50Þ

where Πa
μðqÞ ¼ aaμðqÞ − aa†μ ðqÞ is the displacement oper-

ator and

J a
qμ ¼ gYM

Z
ωq

fdp ρaðpÞ pμ

p · q
ð51Þ

and the dot product denotes the contraction of both Lorentz
and gauge indices where appropriate. The exponential is
interpreted as being ordered in the soft gluon energies
with smaller energies to the right. Here we have switched
from the frequency ordering to an energy ordering. For a
complete equivalence to the frequency ordering we should
also include an ordering on angles and a cutoff on the
angular region. However as we are only interested in the
leading IR region—which is both soft and collinear—it is
sufficient to only consider the energy cutoff. Where this
leads to expressions appearing singular an angular cutoff

ASYMPTOTIC CHARGES AND COHERENT STATES IN QCD PHYS. REV. D 104, 025019 (2021)

025019-7



can be mentally added. For our explicit computations in
subsequent sections we in fact use dimensional regulari-
zation which simultaneously treats both soft and collinear
singularities but the frequency/energy ordering is useful for
the physical picture it provides.
Finally, the soft evolution operator can be used to define

an IR-finite S-matrix SE by removing the IR singularities
due to initial and final state interactions

SE ¼ ΩE
−SΩ

E†
þ ð52Þ

as shown schematically in Fig. 2.

IV. LARGE GAUGE TRANSFORMATIONS FOR
SOFT EVOLUTION OPERATORS

We are interested in understanding the transformation
properties of the S-matrix under large gauge transforma-
tions and the corresponding Ward identity for amplitudes.
As the S-matrix relates states in the far future and far
past, where the theory is taken to be free, we will use the
linearized charge, Eq. (22), when we compute matrix
elements of the commutator

½Qlin
ϵ ; S� ≔ Qþ;lin

ϵ S − SQ−;lin
ϵ ; ð53Þ

where we use the appropriate linearized charge Q� for
incoming and outgoing states. The key to our approach is to
use the soft-evolution operator to relate the free theory to
the interacting theory and so relate the linearized charge to
the nonlinear contributions. As the soft-evolution operator
can be defined in the quantum theory, this gives a method of
defining the correct quantum nonlinear corrections to the
charge. This can be done by analyzing the gauge trans-
formation properties of the soft-evolution operator.
Before carrying out the computation, we can see how

such nonlinear terms imply a Ward identity for the
S-matrix: If we had that the evolution-operator transfor-
mation was given by a relation of the form

½Qlin
ϵ ;ΩE� ¼ Qh

ϵΩE ð54Þ

for some nonlinear charge Qh
ϵ , then we would have the

relation

⟪fpf;αfgk½Qlin
ϵ ; S�kfpi;αig⟫

¼ hfpf; αfgj½Qlin
ϵ −Qh

ϵ ; SE�jfpi; αigi: ð55Þ

Here we have used dressed states, e.g.,

kfpi;αig⟫ ¼ ΩE†
Y
i∈in

b†αiðpiÞj0i; ð56Þ

in computing matrix elements. If the linearized charge
produces states orthogonal to scattering states constructed
on the original vacuum, this becomes

⟪fpf; αfgk½Qlin
ϵ ; S�kfpi; αig⟫

¼ −hfpf; αfgj½Qh
ϵ ; SE�jfpi; αigi: ð57Þ

This relation, graphically represented in Fig. 3, is what we
refer to as the Ward identity.
Our goal is to study this relation in the context of

QCD using the soft-evolution operators and capturing the
leading IR singularities. To this end we consider the explicit
expression for the linearized large gauge transformations
using the definition of the linearized charge Eq. (22) with
the commutators Eq. (30). It is convenient to first integrate
by parts for the z and z̄ variables and start with the
expression

Qlin
ϵ ¼ −

Z
Iþ

d2zdu½∂zϵ
a∂uAa

z̄ þ ∂ z̄ϵ
a∂uAa

z �: ð58Þ

In principle we must carefully account for any boundary
terms that occur in this step, however at the end of the
computation we will undo this integration by parts and so
remove the boundary terms again. Using the definition of
the energy ordering, we calculate

½Qlin
ϵ ;ΩE� ¼

X
n

�
Qlin

ϵ ;
Z
ωn−1

fdqn � � �
×
Z

E

λ

fdq1J n · Πn…J 1 · Π1

�
: ð59Þ

As the charge only involves zero modes, it acts only on the
last term in each element of the sum, i.e.,

R
E
λ
fdq1J 1 · Π1,

FIG. 3. The Ward identity for the asymptotic charge. The red
clouds represent the parton dressing factors comprising soft
gluons.

FIG. 2. The dressing of each external leg, represented here by
the red cloud, removes the IR singularities and produces an IR
finite S-matrix.
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and then only for ω1 ¼ λ ∼ 0. That is, we are assuming that
the charge acts on the mode with energy ω1 ¼ λ ∼ 0 but not
on ω2 > ω1. By straightforward computation one finds�

Qlin
ϵ ;

Z
E

λ

fdqJ · Π
�
;¼ N ðϵÞ; ð60Þ

where N ðϵÞ ¼ R
λ
fdp ρaðpÞNaðϵ;pÞ with

Naðϵ;pÞ ¼ −ð2πÞ2gYM
Z fdqffiffiffiffiffiffi

γzz̄
p δðωqÞ

2p
p · q

· ðε−ðqÞ∂zϵ
aðqÞ þ εþðqÞ∂ z̄ϵ

aðqÞÞ: ð61Þ

This expression for Na depends on having performed an
integration by parts and so ignores any potential boundary
terms. For example it can be seen that such a term vanishes
for the case ϵa being a constant. One can undo the
integration by parts, and so recover the dropped boundary
terms, and write

Naðϵ;pÞ ¼ gYM
2π

Z
dωqδðωqÞ

Z
d2zγzz̄

−p2

ðp · q̂Þ2 ϵ
aðz; z̄Þ;

ð62Þ

where we use the notation q̂μ ¼ qμ=ωq and which for the
case of constant ϵ becomesNaðϵ;pÞ ¼ gYMϵa

R
dωδðωÞ. In

these expressions we must interpret the δ functions as
taking the soft limit in the appropriate fashion. We have
thus found that

½Qlin
ϵ ;ΩE� ¼ ΩEN ðϵÞ; ð63Þ

which is almost what we would have expected from the
classical analysis of the nonlinear charge. However as

½J j · Πj;
Z
λ

fdp ρbðpÞNbðϵ;pÞ� ¼ 0 ð64Þ

only if Nbðϵ;pÞ ¼ Nbðϵ;qjÞ, we must correctly order the
terms to put the expression in the form Eq. (54). Performing
the nontrivial commutators to one-loop, Oðg2YMÞ, we find

½Qlin
ϵ ;ΩE� ¼ ½N ðϵÞ þAðϵÞ�ΩE; ð65Þ

where

AðϵÞ ¼ igYMfabc
Z

E

λ

fdqZ
ω

fdp ρaðpÞp · ΠcðqÞ
p · q

· ½Nbðϵ;pÞ − Nbðϵ;qÞ�: ð66Þ

Here we see that there are corrections to the tree-level
expression for Qh

ϵ which arise due to the non-Abelian
nature of the theory. Indeed we can see that there will be
further nonlinear corrections at each higher loop order.
These corrections do vanish in the case of a constant ϵ,
which is to say that the total color charge does not receive
any corrections. Moreover the correction involves a soft-
gluon operator which we might expect to have vanishing
contribution when computing matrix elements of the IR-
finite S matrix. We now turn to the computation of exactly
such matrix elements.

V. WARD IDENTITIES FOR DRESSED S MATRIX

To compute matrix elements between dressed states, we
make use of the nontrivial fact that, to leading order in the
soft divergence, the dressing of external states factorizes in
color space [21,22,24]

kfpi;αig⟫≡ΩE†jfpi;αigi¼
Y
i∈in

UpiE
αiβi

ðΠÞb†βiðpiÞj0i; ð67Þ

where the coherent-state operator UpiE
αiβi

ðΠÞ is a functional of
the soft gluons only. The coherent-state operator for a
parton in the gauge group representation with generators taαβ
is defined by the energy-ordered integral

UpE
αβ ¼ Pω exp

�
−gYM

Z
E

λ

fdqp · Πa
ωðqÞ

p · q
ta
�
αβ

; ð68Þ

where the dressed gluon field is similarly defined by

Πa
ωðqÞ ¼ UqE

abΠbðqÞ ð69Þ

and UpE
ab is the adjoint coherent-state operator. These

nonlinear equations can be solved iteratively so that to
Oðg2YMÞ we have

UpE
αβ ¼ δαβ − gYM

Z
λ

fdqp · ΠeðqÞ
p · q

teαβ þ g2YM

Z
λ

fdq1
Z
ω1

fdq2
�
p · Πe2ðq2Þ

p · q2
te2αγ

��
p · Πe1ðq1Þ

p · q1
te1γβ

�

− g2YM

Z
λ

fdq1
Z
ω1

fdq2
�
p · Πe2ðq2Þ

p · q2

��
q2 · Πe1ðq1Þ

q2 · q1

�
· ½te2 ; te1 �αβ: ð70Þ
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This dressing factor captures the leading-order effects of soft-gluon radiation of each of the hard partons. It includes all-
order effects arising from arbitrary numbers of gluons being radiated, as well as loop effects which arise from normal
ordering each of the terms.

A. Tree-level Ward identity

While the calculation is essentially identical to the Abelian case, to fix conventions we will start with the tree-level result.
The relevant terms for computing matrix elements of the commutator of the linearized charge with the S-matrix are

⟪fpf;αfgk½Qlin
ϵ ; S�kfpi;αig⟫

¼ h0j
Y
f∈out

bαfðpfÞ
�
½Qlin

ϵ ; S� − gYM

Z
λ

fdq�X
l∈out

pl · ΠeðqÞ
pl · q

tel½Qlin
ϵ ; S� þ

X
l∈in

½Qlin
ϵ ; S�pl · ΠeðqÞ

pl · q
tel

��Y
i∈in

b†αiðpiÞj0i; ð71Þ

where the subscripts on the color generators indicate the
parton leg upon which they act and for convenience we
denote, for example, taαjβjb

†
βj
¼ taj b

†
αj .

The two contributions to the matrix element can be
represented graphically as in Fig. 4. The first term,
corresponding to diagram (a), corresponds to the usual
absorption or emission of the soft gluon in the linearized
charge. We compute these terms by using the soft-gluon
theorem, see Eqs. (2) and (6), and due to the sign difference
in the soft limits of incoming and outgoing gluons the two
terms of the commutator add rather than cancel. The next
terms, corresponding to Fig. 4(b), arise from contracting
oscillators in the linearized charge with those in the
coherent states. These terms cancel due to the sign from
the commutator. Thus we find

⟪fpf;αfgk½Qlin
ϵ ; S�kfpi;αig⟫

¼ −
�X
l∈out

Qh
ϵðplÞ −

X
l∈in

Qh
ϵðplÞ

�
Mð0Þ

n ; ð72Þ

where we have introduced the eigenvalue of the nonlinear
charge Qh

ϵðpÞ ¼ Qh;a
ϵ ðpÞta, where

Qh;a
ϵ ðpÞ ¼ −8π2gYM

Z fdq δðωÞffiffiffiffiffiffi
γzz̄

p

·

�
∂zϵ

aðq̂Þ ε
− · p
q · p

þ ∂ z̄ϵ
aðq̂Þ ε

þ · p
q · p

�
ð73Þ

which, as expected, is Naðϵ;pÞ as defined in Eq. (62).
As in the QED case the charge acts on the Fock vacuum

to produce a state orthogonal to all scattering states built on
the original vacuum. This can be seen by keeping only
those terms where the charge corresponds to an emitted
gluon, and for convenience considering only incoming hard
partons. While we now only have half the terms from the
commutator, we can still have contributions of the form
represented in Fig. 4, however due to a cancellation
between diagrams (a) and (b), one finds

⟪0kQlin
ϵ Skfpi;αig⟫ ¼ 0 ð74Þ

at tree level.

B. Finite one-loop S matrix

Now let us proceed to a one-loop calculation, and again
for now considering only in-particles, we compute the one-
loop matrix elements

⟪0kSkfpi; αig⟫ ¼ h0jS
Y
i

UpiE
αiβi

b†βiðpiÞj0i

¼ h0jS
Y
i

b†αiðpiÞj0i − gYM
X
j

te1j

Z
λ

fdqh0jSpj · Πe1ðqÞ
pj · q

Y
i

b†αiðpiÞj0i

þ g2YM
2

X
j≠k

te1j t
e2
k

Z
λ

fdq1
Z
λ

fdq2h0jSpj · Πe1ðq1Þ
pj · q1

pk · Πe2ðq2Þ
pk · q2

Y
i

b†αiðpiÞj0i þ one-parton terms: ð75Þ

The first term is the usual IR-divergent S-matrix element
which arises from diagrams such as in Fig. 5(a), while the
remaining terms are the compensating IR-divergent terms
from the coherent state which are graphically represented in

Figs. 5(b) and 5(c). Here we will focus on those diagrams
which involve two external partons and neglect one-parton
contributions such as those in Fig. 6. These one-parton
contributions are subleading in the IR divergences and so
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are not needed, but can in fact be reconstructed by insisting
on gauge invariance. The second term 5(b) gives an
Oðg2YMÞ contribution by using the tree-level soft limit of
the S matrix. In particular it can be written as

Ið5.bÞ ¼ g2YM
X
j≠k

tej t
e
k

Z fdqX
σ

pj · εσðqÞ
pj · q

pk · ε̄σðqÞ
pk · q

Mð0Þ
n ;

ð76Þ

where we have again dropped the one-parton, i.e., j ¼ k,
terms. The next term, corresponding to 5(c), involves
contracting two gluons from the dressing factors of two
partons. We thus need

Πej
μ ðq1ÞΠek

ν ðq2Þ ¼ ðaejμ ðq1Þ− a
ej†
μ ðq1ÞÞðaekν ðq2Þ− aek†ν ðq2ÞÞ

¼ −δ̃ðq1 − q2Þδejek
X
σ

ε̄σμε
σ
ν

þ terms with two oscillators ð77Þ

so that we find

Ið5.cÞ ¼ −
g2YM
2

X
j≠k

tej t
e
k

Z fdqX
σ

pj · ε̄σðqÞpk · εσðqÞ
pj · qpk · q

Mð0Þ
n

ð78Þ

which is the same as the 5(b) contribution up to an overall
factor. We can rewrite the product of polarization vectors
using Eq. (A3) which, if we include the one-parton
contributions and impose total color conservation to
remove the cμ dependent terms, becomes

P
σ ε̄

σ
με

σ
ν ¼ ημν.

Hence we find the S-matrix elements

⟪0kSkfpi; αigii ¼
�
1þ g2YM

2

X
j;k

tej t
e
kIjk

�
Mð0Þ

n ð79Þ

in terms of the IR-divergent loop integral

Ijk ¼
Z fdq pj · pk

pj · qpk · q
: ð80Þ

While we have previously considered an energy cutoff to
regularize divergences, in order to compare with known
results it is useful to instead use dimensional regularization.
Keeping the leading divergence in the parameter ϵ̂ ¼ d

2
− 2,

the loop integral is given by

Ijk ¼ −
1

2ð2πÞ2ϵ̂2 ; ð81Þ

which encodes the double-pole singularity due to both soft
and collinear divergences at leading logarithmic accuracy.
To one-loop order and to our accuracy the amplitude is
known to be [49]

Mn ¼
�
1þ g2YM

16π2ϵ̂2
X
j≠k

tej t
e
k

�
Mð0Þ

n ð82Þ

and hence we see that, as expected, the singular parts cancel
in the S-matrix elements. This can be repeated for generic
outgoing states and again one finds that the one-loop
leading singularities cancel

⟪fpf; αfgkSkfpi; αig⟫jOðg2YMÞ ¼ 0þOð1=ϵ̂Þ ð83Þ

as expected. An analogous approach to removing the
singularities would be the Wilson-line dressing which
reproduces the same leading IR divergences [68] (see also
[69–74]).

C. One-loop Ward identity

We now want to compute the one-loop correction to the
Ward identity using the dressed states. We thus consider the
terms

(a) (b) (c)

FIG. 5. The IR-divergent contributions at one-loop involving
two external partons.

(a) (b) (c)

FIG. 6. The IR-divergent contributions at one-loop involving
one external parton.

(a) (b)

FIG. 4. The tree-level contributions to the Ward identity.
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⟪0k½Qlin
ϵ ; S�kfpi; αig⟫jOðg3YMÞ ¼ h0j½Qlin

ϵ ; S�
�
1 − gYM

X
j

te1j

Z
λ

fdqpj · Πe1ðqÞ
pj · q

þ g2YM
2

X
js

Y2
s¼1

tesjs

Z
λ

fdqs pjs · Π
esðqsÞ

pjs · qs

þ g2YM
X
j

½te1j ; te2j �
Z
λ

fdq1
Z
ω1

fdq2 q2 · Πe1ðq2Þ
q2 · q1

pj · Πe2ðq2Þ
pj · q2

−
g3YM
3!

X
js

te1j1 t
e2
j2
te3j3

Y3
s¼1

Z
λ

fdqs pjs · Π
esðqsÞ

pjs · qs

− g3YM
X
j1;j2

te1j1 ½t
e2
j2
; te3j2 �

Y2
s¼1

Z
λ

fdqs pjs · Π
esðqsÞ

pjs · qs

Z
ω2

fdq3 q2 · Πe3ðq3Þ
q2 · q3

− g3YM
X
j1;j2

te1j1 t
e3
j2
te2j2

Y2
s¼1

Z
λ

fdqs pjs · Π
esðqsÞ

pjs · qs

Z
ω2

fdq3 pj2 · Π
e3ðq3Þ

pj2 · q3

þ one-parton terms

�
jfpi; αigi; ð84Þ

where as before the subscripts on the generators denote the
hard parton upon which they act. This expression simplifies
significantly as the contributions where the gluon in the
charge is contracted with a gluon in the dressing of the
partons cancel between the two terms in the commutator.
Thus we only need to keep the contributions where the
charge contracts with the S matrix as these terms add. The
nonvanishing contributions are graphically represented in
Fig. 7 where it can be seen that these contributions closely
parallel those of Fig. 5. The result can be straightforwardly
computed using the previous tree-level and one-loop
results. For example diagram 7(b) gives

Ið7.bÞ ¼ g2YM
X
j;k;r

Qh;a
ϵ ðpjÞIkrtaj tekterMð0Þ

n ; ð85Þ

where Qh;a
ϵ is defined in Eq. (73) and Ikr is the integral

Eq. (80). Diagram 7(c) gives the same contribution but with
a coefficient of − 1

2
, so that Ið7.cÞ ¼ − 1

2
Ið7.bÞ. These terms

cancel against contributions such as those in diagram 7(a),
which can be computed using the soft limit of one-loop
amplitudes given in Eq. (8). As can be seen in, for example,
Eq. (85) there are contributions with j ≠ k ≠ r that
involve three external hard-parton legs. These contributions

straightforwardly cancel against the appropriate terms in
the first term of the one-loop soft limit involving the one-
loop amplitude, which is the iterated tree term,

X
j

Qh;a
ϵ ðpjÞtajMð1Þ

n ≃
g2YM

16π2ϵ̂2
X
j≠k≠r

Qh;a
ϵ ðpjÞtaj tekterMð0Þ

n

ð86Þ
using Eq. (82) for the leading singular terms in the
amplitude. Slightly more subtle are the contributions which
involve only two external legs. In particular for diagram 7
(b) there is an ambiguity regarding the order in which one
takes the soft limits corresponding to the gluon in the
charge and the lowest-energy gluon in the parton dressing.
The two orderings are shown schematically in Fig. 8.
Diagram 8(b1) corresponds to first taking the soft limit for
the charge before computing the loop integral involving the
soft gluon in the dressing factor. In diagram 8(b2) we
instead take the soft limit for the dressing-factor gluon and
then for the gluon in the charge. In particular this gives an
ordering of the color generators

Ið8.b:2Þ ¼ −g2YM
X
j≠k

Qh;a
ϵ ðpjÞIkrtej taj tekMð0Þ

n ð87Þ

(a) (b) (c)

FIG. 7. The one-loop contributions to the Ward identity.
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which combines with the other two-parton contributions
from 9(c) to cancel against the two-parton contributions
from 7(a) which come from the soft limit of the one-loop
amplitude. The final result is that using the ordering 8(b2)
we find that the commutator vanishes at one-loop to leading
singularity

⟪0k½Qlin
ϵ ; S�kfpi; αig⟫jOðg3YMÞ ¼ 0þO

�
1
ϵ̂

�
: ð88Þ

There are in principle contributions which only involve a
single external parton momentum which we have not
included as they are subleading in the IR expansion,
however these can again be found by using gauge invari-
ance. Thus we find that, using this prescription, there are no
corrections to the Ward identity.
If we had chosen the alternative prescription 8(b1) we

would find a correction which is related to the one-loop soft
current and which can be written as

⟪0k½Qlin
ϵ ; S�kfpi; αig⟫jOðg3YMÞ ¼ −

g2YMCA

16π2ϵ̂2
X
l∈in

Qh
ϵðplÞMð0Þ

n :

ð89Þ

In this case we see that there appears to be a one-loop effect
which in principle could be interpreted as a correction to the
hard charge. Related to this we must also establish that the
linearized soft charge acting on the vacuum produces states
that are orthogonal to the dressed scattering states at one-
loop, that is we must compute

⟪0kQlin
ϵ Skfpi; αig⟫jOðg3YMÞ: ð90Þ

In order to do this, one needs to compute all Oðg3YMÞ
contributions, a calculation which closely parallels the
computation of the one-loop soft current [48]. There are
additional three-parton contributions, see Fig. 10, which
combine, using essentially the manipulations from the tree-
level calculation, to zero. That is the contributions from
Fig. 10 cancel those of Fig. 7. The more nontrivial
calculation involves the two-parton contributions (see
Figs. 9 and 11) and there are contributions with the same
ordering ambiguity as in Fig. 8. Once again if we make the
choice corresponding to 8(b2) we find that there is a
cancellation of the two-parton contributions so that

⟪0kQlin
ϵ Skfpi; αig⟫jOðg3YMÞ ¼ 0 ð91Þ

to leading order in the IR divergences. Alternatively if we
choose the ordering of Fig. 8(b1), we find that all the
diagrams that arise from dressing the tree-level amplitude
cancel amongst themselves. The diagram corresponding to
dressing the one-loop amplitude, Fig. 10(a), cancels the
contribution due to the iterated tree term in the soft limit of
the loop amplitude Eq. (8), so that the term arising from the
one-loop soft current remains. Thus we find

⟪0kQlin
ϵ Skfpi; αig⟫jOðg3YMÞ ¼ −

g2YMCA

16π2ϵ̂2
X
l∈in

Qh
ϵðplÞMð0Þ

n ;

ð92Þ

which is the same as the one-loop contribution to the Ward
identity for that choice.

(a) (b)

FIG. 8. Ambiguous two-parton contributions to one-loop Ward
identity.

(a) (b)

FIG. 9. Nonambiguous two-parton contributions to one-loop
Ward identity.

(a) (b) (c)

FIG. 10. The additional three-parton one-loop contributions to the orthogonality condition.
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While for simplicity we focused on the case with only
incoming hard particles, it is possible to generalize our
results to generic in- and out-states by essentially using
crossing symmetry. In order to check diagrammatically that
crossing is satisfied for dressed states, one can argue that
the non-Abelian gluon clouds at leading logarithmic order
weakly commute with the S matrix. The steps are essen-
tially the same as in [36], with the important difference that
here we have non-Abelian generators inside the clouds.
However even in the non-Abelian theory the coherent state
operators have the property (see Appendix B)

½UpE
αβ ;U

p0E
α0β0 � ¼ 0: ð93Þ

We have explicitly checked that for the ordering prescrip-
tion 8(b2) there are no corrections to the Ward identity for
generic states, while for ordering 8(b1) the correction term
now has a sum over both outgoing and incoming partons
with a corresponding sign.

VI. DISCUSSION AND CONCLUSIONS

In this work we have computed matrix elements of the
commutator

½Qlin
ϵ ; S� ¼ Qþ;lin

ϵ S − SQ−;lin
ϵ ð94Þ

between asymptotic states corresponding to hard partons
dressed with soft-gluon coherent operators. At tree level the
result following from the soft theorem is essentially the
same as in the Abelian case

⟪outk½Qlin
ϵ ; S�kin⟫

¼ −
�X
l∈out

Naðϵ; plÞtal −
X
l∈in

Naðϵ; plÞtal
�
⟪outkSkin⟫:

ð95Þ

In the Abelian case the right-hand side of this relation
corresponds to the contribution from the hard part of the
asymptotic charge and so this expression is equivalent to
the conservation law for the full charge. The non-Abelian

theory is already quite different at the classical level as the
correct definition of the nonlinear charge is unclear and
these difficulties are likely only exacerbated by including
quantum corrections. We choose a pragmatic approach of
defining our quantum nonlinear hard charge by means of
the soft evolution operators and then computing matrix
elements to check whether the resulting Ward identities
continue to hold. We have seen in Sec. IV that the hard
charge does receive modifications at loop order however
they involve soft gluon operators which can be shown to
not contribute at one-loop order if we use IR-finite S-matrix
elements with a particular ordering prescription.
In the computation of matrix elements of the commutator

we noted that there are several order-of-limits issues. First,
we have assumed a “weak” definition of the soft charge
insertion, where the soft limit for the gluon operator in the
charge is taken after the evaluation of the matrix element.
This makes the connection between the asymptotic charge
and the standard soft limit of amplitudes most direct.
A similar issue arose in the case of subleading soft
theorems for graviton amplitudes and our approach is
analogous to that of [50]. For the case of the dressed states
there remains a second ordering ambiguity, which can be
seen in Figs. 8(b1) and 8(b2), as one must choose whether
to take the soft limit in the charge before—ordering O1—or
after—ordering O2—the contribution from the coherent
state operator.
These two orderings imply:
(i) Ordering O1: The orthogonality relation,

⟪0kQlin
ϵ Skin⟫jOðg3YMÞ

¼ −
g2YMCA

16π2ϵ̂2
X
l∈in

Qh
ϵðplÞ⟪0kSkin⟫; ð96Þ

is broken by pure one-loop effects (i.e., no tree-level
iterated terms) and the soft charge no longer pro-
duces states orthogonal to scattering states. The
Ward identity receives the exact same correction
and one may attempt to correct the hard charge at
one loop in a fashion similar to [75] to preserve the
conservation law.

(a) (b) (c)

FIG. 11. The additional two-parton one-loop contributions to the orthogonality condition.
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(ii) Ordering O2: Using this definition the orthogonality
relation is still valid at one-loop and leading
singularity

⟪0kQlin
ϵ Skin⟫jOðg3YMÞ ¼ 0þO

�
1

ϵ̂

�
ð97Þ

and moreover the Ward identity is preserved:

⟪outk½Qlin
ϵ ; S�kin⟫jOðg3YMÞ ¼ 0þO

�
1

ϵ̂

�
: ð98Þ

In this case the interpretation is clearer and we can
see that loop effects at this order do not affect the
asymptotic symmetries of the S matrix.

It is quite natural to choose a prescription that preserves
the symmetries of the theory where it does not lead to
inconsistencies which argues in favor of the second choice.
That this second choice is to be preferred on symmetry
grounds can be further seen as follows. In this work we
have used the dressing following from the evolution
operator Eq. (50). However one could, following [14],
modify the dressing so that

J a
q;fμ

¼ gYM

Z
ωq

fdp ρaðpÞ
�

pμ

p · q
−
fμ
ωq

�
; ð99Þ

where fμ is a q-dependent vector and whose value could be
determined by insisting on physical asymptotic states.
Relatedly one can choose a modified vacuum

k0⟫Λ ¼ Pω exp

�Z
E

λ

fdqΛaðqÞΠaðqÞ
�
j0i ð100Þ

which is an eigenstate of the linearized charge

Qlin
ϵ k0⟫Λ ¼ Λ̄ϵk0⟫Λ ð101Þ

with

Λ̄ϵ ¼ −4π
Z fdq δðωqÞffiffiffiffiffiffi

γzz̄
p ΛaðqÞðε−∂zϵ

a þ εþ∂ z̄ϵ
aÞ ð102Þ

if we also assume that the Fock vacuum is an eigenstate of
the linearized charge with eigenvalue 0. Strictly speaking
this corresponds to the identification of the Fock vacuum
with the dressed vacuum j0i≡ k0⟫0 but this is in fact what
we have used as we have set ΩEj0i ¼ j0i in our regular-
ized, perturbative calculations. In this sense we may
interpret the failure of the orthogonality relation in the
case of ordering O1 as being related to the coherent states
no longer being eigenstates of the linearized charge at one-
loop and so requiring a one-loop modification. Thus if we
make the physically sensible choice that the asymptotic
states remain eigenstates of the linearized asymptotic

charges we are forced to use ordering O2 and we thus
find that there are no corrections to the Ward identity.
While our explicit computations have been at one-loop,

the leading IR divergence coherent state construction is
valid to all-loop orders and so with the correct ordering
prescription there should be no leading IR divergent
quantum corrections to the Ward identity at any loop order.
More nontrivially it should also be possible to repeat the
analysis at subleading order in the IR divergences [76,77].
The construction of the dressed states is more complicated
since single-parton coherent states can no longer be defined
and one needs nonfactorizable coherent states which take
into account two-parton correlations [22]. At subleading
order the issue of collinear IR divergences will also become
more involved. In this work we have included collinear
effects to the order we consider, that is in the soft region,
which gives rise to the double pole in ϵ̂, and we see that the
asymptotic charges continue to be conserved with the
appropriate ordering prescription. At subleading order this
will need to be reconsidered as there are also collinear
singularities in the nonsoft region [78–80]. Such collinear
divergences play an important role in understanding tree-
level asymptotic symmetries where they are related to the
algebra of charges [29,81,82]. Though at loop level they are
less well studied, the coherent state approach can treat such
divergences, see [44,45] and the recent works [46,47]
which proposed using the soft-collinear effective theory
Hamiltonian to generate the asymptotic time evolution. It
can in fact be shown quite generally [83] that the dressed S
matrix is completely IR finite and as the proof makes no use
of an explicit expression of the asymptotic Hamiltonian it
includes any collinear divergences.
The Faddeev-Kulish dressing of asymptotic particles

with soft gauge boson clouds is related to the dressing of
hard external particle fields with Wilson lines. This method
was first introduced byMandelstam [84] in order to achieve
a gauge-invariant formulation of QED. Nowadays, it is,
amongst other applications, an important tool to efficiently
compute the infrared-divergence structure of scattering
amplitudes. See e.g., [68] for a discussion of the virtual
soft gluon contribution to multileg amplitudes in non-
Abelian gauge theories obtained in this formalism. It is also
known that the Wilson line approach to soft radiation
produces the Faddeev-Kulish dressing when taking the
Wilson lines along timelike paths [85]. Furthermore, it was
recently used in [86] to study soft photon hair of black
holes. It would be interesting to further study the con-
nection between these formulations and asymptotic sym-
metries in the context of QCD.
Finally in this work we have focused on single insertions

of the asymptotic charge but it would be of interest to
consider the generalization to multiple insertions to study
the algebra of asymptotic charges. He et al. in [81], see also
[87,88], showed that the tree-level double-soft limit of two
positive helicity gluons could be rewritten as the level zero
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Kac-Moody algebra. This can in fact even be used to
construct a stress-energy tensor for gluons by the Sugawara
method and to derive a Knizhnik-Zamolodchikov-like
equation for maximally helicity violating (MHV) ampli-
tudes [82]. By considering more general tree-level double-
soft limits [89,90] the algebra of currents can be extended
to include mixed-helicity gluons and subleading, in the soft
expansion, currents [82]. The coherent state approach may
make it possible to understand quantum corrections to the
algebra of such currents.
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APPENDIX A: NOTATIONS

(i) We use a mostly positive signature gμν ¼
diagð−1;þ1;þ1;þ1Þ so that x0 ¼ ct and p0 ¼ E.

(ii) Retarded coordinates are defined as

xμ ¼
�
uþ r; r

ðzþ z̄Þ
1þ zz̄

; ir
ðz − z̄Þ
1þ zz̄

; r
1 − zz̄
1þ zz̄

�
ðA1Þ

and polarizations are

εμ− ¼ 1ffiffiffi
2

p ðz; 1; i;−zÞ; εμþ ¼ 1ffiffiffi
2

p ðz̄; 1;−i;−z̄Þ:

ðA2Þ

The polarization vectors satisfyX
σ

ε̄σμðqÞεσνðqÞ ¼ ημν þ cμqν þ cνqμ; ðA3Þ

where cμ is a fixed vector which depends on the
choice of polarization vectors. In our conventions
for retarded Bondi coordinates we have
cμ ¼ ð1þzz̄Þ

2ω ð−1; 0; 0; 1Þ.
(iii) The free mode expansion of the gluon field is

Aa
μðxÞ¼

Z fdq½ε̄σμðqÞaaσðqÞeiq·xþεσμðqÞaa†σ ðqÞe−iq·x�;

ðA4Þ

where

fdq ¼ d3q
ð2πÞ3ð2ωÞ ðA5Þ

and we use the commutator

½aaσðqÞ; a†bσ0 ðq0Þ� ¼ δ̃ðq − q0Þδσσ0δab ðA6Þ

with δ̃ðq − q0Þ ¼ ð2πÞ3ð2ωÞδð3Þðq − q0Þ.
(iv) The gauge generators of suðNÞ are defined by the

relations

½ta; tb� ¼ ifabctc ðA7Þ

and are normalized such that TrðtatbÞ ¼ 1
2
δab.

Quarks transform in the fundamental representation
ta ¼ Ta and gluons in the adjoint ðtaÞbc ¼ ðTa

AÞbc ¼
−ifabc.

(v) The covariant derivative is defined as

Dμ ¼ ∂μ − igYM½Aμ; �: ðA8Þ

APPENDIX B: ASYMPTOTIC EXPANSIONS

In this Appendix we review the construction of the
asymptotic charges for non-Abelian gauge theory. We
follow [29,64,81,91,92] and the review [31]. In order to
understand the asymptotic symmetries, one must impose
falloff conditions compatible with the equations of motion
and which allow for relevant solutions. We consider Lorenz
gauge, which in our coordinates is

−∂uðr2ArÞ − ∂rðr2Au − r2ArÞ þ γzz̄ð∂zAz̄ þ ∂ z̄AzÞ ¼ 0

ðB1Þ

and impose the conditions at null infinity (r; t → ∞,
u ¼ t − r ¼ const)

Az¼Azðu;z;z̄ÞþOðr−1Þ; Az̄¼Az̄ðu;z;z̄ÞþOðr−1Þ

Ar¼
1

r2
Arðu;z;z̄ÞþOðr−3Þ; Au¼

1

r
Auðu;z; z̄ÞþOðr−2Þ:

ðB2Þ

The corresponding condition on the field strength compo-
nent is

F ru ¼ r−2Fru þOðr−3Þ with Fru ¼ −ðAu þ ∂uArÞ
ðB3Þ

which using the u component of the field equations,
satisfies
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∂uðAu þ ∂uArÞ − γzz̄∂uð∂zAz̄ þ ∂ z̄AzÞ
¼ −igYMγzz̄ð½Az̄; ∂uAz� þ ½Az; ∂uAz̄�Þ þ gYMj

ð2Þ
u ; ðB4Þ

where ju ¼ jð2Þu =r2 þOðr−3Þ. Hence one finds

Qϵ ¼
Z
Iþ
−

r2d2zγzz̄ϵaF a
ru ðB5Þ

giving the expressions Eqs. (22) and (23).
Alternatively, one can impose the following conditions

on the falloffs of the non-Abelian gauge fields at large-
r [93,94]:

Au ¼
1

r2
Að2Þ
u ðu; z; z̄Þ þ logðrÞ

r
Ãð1Þ
u ðu; z; z̄Þ þ logðrÞ

r2
Ãð2Þ
u ðu; z; z̄Þ þO

�
logðrÞ
r3

�
;

Ar ¼
1

r2
Að2Þ
r ðu; z; z̄Þ þ logðrÞ

r2
Ãð2Þ
r ðu; z; z̄Þ þO

�
logðrÞ
r3

�
;

Az ¼ Að0Þ
z ðu; z; z̄Þ þ 1

r
Að1Þ
z ðu; z; z̄Þ þ logðrÞ

r
Ãð1Þ
z ðu; z; z̄Þ þO

�
logðrÞ
r2

�
; ðB6Þ

and use the freedom in the residual gauge transformations at order 1r to set Auðu; z; z̄Þ ¼ 0. From Eq. (B6) we get the leading
components for the field strengths:

F a
ur ¼

1

r2
½∂uA

a;ð2Þ
r − Ãa;ð1Þ

u � þ logðrÞ
r2

½∂uÃ
a;ð2Þ
r þ Ãa;ð1Þ

u � þO
�
logðrÞ
r3

�

F a
uz ¼ ∂uA

a;ð0Þ
z þO

�
1

r

�
;

F a
rz ¼

1

r2

h
−Aa;ð2Þ

z þ Ãa;ð1Þ
z − ∂zA

a;ð2Þ
r þ gYMfabcA

b;ð2Þ
r Ac;ð0Þ

z

i
þ logðrÞ

r2
ð−Ãa;ð1Þ

z − ∂zÃ
a;ð2Þ
r þ fabcÃb;ð2Þ

r Ac;ð0Þ
z Þ þO

�
logðrÞ
r3

�
;

F a
zz̄ ¼ ∂zA

a;ð0Þ
z̄ − ∂ z̄A

a;ð0Þ
z þ gYMfabcA

b;ð0Þ
z Ac;ð0Þ

z̄ þO
�
1

r

�
; ðB7Þ

so that the radiation flux is nonzero and finite on Iþ as required ([64]). The equations of motion imply the following
constraint equations on Iþ at Oð1Þ in the large-r expansion:

−∂uÃ
a;ð1Þ
u þ ∂2

uA
a;ð2Þ
r ¼ −γzz̄½∂uð∂ z̄A

a;ð0Þ
z þ ∂zA

a;ð0Þ
z̄ Þ þ gYMfabcðAb;ð0Þ

z̄ ∂uA
c;ð0Þ
z − Ac;ð0Þ

z ∂uA
b;ð0Þ
z̄ Þ� þ gYMj

a;ð2Þ
u

and

2


∂uA

a;ð1Þ
z − ∂uÃ

a;ð1Þ
z

�
þ ∂z



∂uA

a;ð2Þ
r þ Ãa;ð1Þ

u

�
− gYMfabc∂u



Ab;ð2Þ
r Ac;ð0Þ

z

�
− gYMfabcÃ

b;ð1Þ
u Ac;ð0Þ

z

− ∂z



γzz̄



∂zA

a;ð0Þ
z̄ − ∂ z̄A

a;ð0Þ
z þ gYMfabcÃ

b;ð0Þ
z Ac;ð0Þ

z̄

��
þ gYMfabc

h
−Ab;ð2Þ

r ∂uA
c;ð0Þ
z þ γzz̄Ab;ð0Þ

z



∂ z̄A

c;ð0Þ
z − ∂zA

c;ð0Þ
z̄ þ gYMfcdeÃ

d;ð0Þ
z̄ Ae;ð0Þ

z

�i
¼ gYMj

a;ð2Þ
z ðB8Þ

and

−∂uA
a;ð2Þ
r − Ãa;ð1Þ

u þ γzz̄


∂zA

a;ð0Þ
z̄ þ ∂ z̄A

a;ð0Þ
z

�
¼ 0; ðB9Þ

whereas at order OðlogðrÞÞ

2∂uÃ
a;ð1Þ
z − 2∂zÃ

a;ð1Þ
u − gYMfabc



∂uÃ

b;ð2Þ
r Ac;ð0Þ

z þ Ãb;ð1Þ
u Ac;ð0Þ

z þ Ãb;ð2Þ
u Ac;ð0Þ

z þ Ãb;ð2Þ
r ∂uA

c;ð0Þ
z

�
¼ 0: ðB10Þ

In these expressions we have used that the currents have the decay properties
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ju ¼ O
�
1

r2

�
jr ¼ O

�
1

r3

�
jz; jz̄ ¼ O

�
1

r2

�
: ðB11Þ

Just as before B8 can be used to rewrite the charge as in (22) and (23). One can also use retarded radial gauge or radiation
gauge and at least at leading order one ultimately finds the same expressions for the charge.
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