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We examine the nonperturbative gauge dependence of arbitrary configuration space fermion correlators
in quantum electrodynamics (QED). First, we study the dressed electron propagator (allowing for emission
or absorption of any number of photons along a fermion line) using the first quantized approach to quantum
field theory and analyze its gauge transformation properties induced by virtual photon exchange. This is
then extended to the N-point functions where we derive an exact, generalized version of the fully
nonperturbative Landau-Khalatnikov-Fradkin (LKF) transformation for these correlators. We discuss some
general aspects of application in perturbation theory and investigate the structure of the LKF factor about
D ¼ 2 dimensions.

DOI: 10.1103/PhysRevD.104.025014

I. INTRODUCTION

The nonperturbative structure of the N-point functions in
QED is an important aspect of quantum field theory, yet
analyzing such aspects of the theory remains a difficult
problem and still attracts significant attention. In a general
theory, such information plays an important role in deter-
mining its phase structure, such as for dynamical chiral
symmetry breaking or confinement in the well-known
example of QCD. It is often desirable to determine the
gauge dependence of various quantities or to use results
found in a certain gauge to extract information about the
same quantity in a different gauge. There exist limited
nonperturbative analyses of relatively simple objects, such
as the Ball-Chiu decomposition of the QED vertex [1] and
its perturbative determination at one-loop order in various
gauges [2,3]; results of similar calculations of the three-
point vertex in three-dimensional QED3 have been reported
in [4–9] and for scalar QED in [10,11]. Ball and Chiu
generalized their work to analyze the one-loop quark
gluon vertex in QCD [12], later extended to two-loop

order [13,14] in a particular renormalization scheme, and
its gauge structure in arbitrary covariant gauge and dimen-
sion for an SUðNÞ symmetry group [15]—this information
is crucial for the determination of the transverse part of the
vertex. Similarly, it has been possible to calculate the three-
and four-gluon vertices, off shell, in covariant gauges for
special kinematics up to two-loop order [16–23], which
bears strongly on both the Dyson-Schwinger equations and
infrared divergences within QCD.
Although physical observables such as cross sections are

gauge invariant, the N-point Green functions of a given
gauge theory generally have a strong dependence on the
gauge choice for internal photons (the gauge transforma-
tions of external photons are well understood via the Ward-
Takahashi [24] or Slavanov-Taylor [25,26] identities,
whereas perturbation theory requires the gauge of internal
photons to be fixed in order to define their propagator).
Various covariant gauges can offer significant advantages
for specific computations: Feynman gauge, besides mini-
mizing the number of terms in loop calculations, leads to
simple ghost-free Ward identities [27]. Landau gauge has
become the favorite in Yang-Mills theory and QCD since it
leads to an UV-finite ghost-gluon vertex [25] and an
infrared (IR) fixed point of the renormalization group flow
accessible on the lattice [28,29]. The Yennie-Fried gauge
(ξ ¼ 3) [30] is useful for eliminating spurious IR diver-
gences in D ¼ 4 [2], and a similar role is played by the
traceless gauge ξ ¼ −1 in D ¼ 2 [31]. It is thus of great
interest to develop efficient techniques for transforming
Green’s functions from one gauge to another. Such studies
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were initiated for the QED two-point function—or propa-
gator—and the electron-photon vertex for the family of
linear covariant gauges by Landau and Khalatnikov [32]
and independently by Fradkin [33] and were later revisited
using functional techniques in [34,35]; see also [36].
These LKF transformations are framed in coordinate

space and are fully nonperturbative; denoting the propa-
gator with covariant gauge parameter ξ by Sðx; ξÞ, a
variation in the gauge ξ → ξþ Δξ leads to the trans-
formation (ξ¼0 corresponds to Landau gauge and ξ ¼ 1
to Feynman gauge),

Sðx; ξþ ΔξÞ ¼ Sðx; ξÞe−iΔξ½ΔDðxÞ−ΔDð0Þ�; ð1Þ

where ΔDðxÞ is a function that fixes the gauge [32] [see
(9)]. Aside from specifying the way in which the N-point
functions vary under a gauge transformation at a given loop
order, the linear dependence of ΔD on α shows that one can
construct gauge-dependent parts of higher-loop diagrams
from knowledge of lower order terms [37,38]. The utility of
these transformations is well illustrated by the restrictions
imposed on the nonperturbative three-point vertex for it to
be compatible with the LKF transformation of the fermion
propagator [39–41]. Unfortunately, despite their impor-
tance in restraining the structure of gauge theory inter-
actions, the LKF transformations have been studied far less
than the more familiar constraints arising from the Ward-
Takahashi and Slavanov-Taylor identities [42,43].
However, the LKF transformations for the particular case

of the propagator have been examined to varying degrees of
detail. In the massless case, it has been shown for both
scalar and spinor QED and, in particular, circumstances for
QCD that wavefunction renormalization takes a multipli-
cative power law form in four dimensions [37,44,45].
Moreover, the LKF transformations link the wave function
normalization constants in different gauges [34] and relate
strongly to chiral symmetry breaking. It has also been
shown that the LKF rules for the fermion propagator lead to
an enhancement to the quark anomalous magnetic moment
[46] and constrain Anstze for the vertex operator often
employed in analyses of the Schwinger-Dyson equations
[47]. Some similar results for the propagator in reduced
QED are given in [7,48].
Going beyond the propagator, there has been a recent

resurgence in studying the generalized LKF transforma-
tions for N-point functions, especially in the context of
QCD and extensions of the Gribov-Zwanziger (GZ) sce-
nario [49–51] away from Landau gauge [52,53], among
other nonperturbative properties of Yang-Mills theories.
The use of the LKF transformations in perturbation theory
is discussed in detail in [54,55]. More modern treatments
have arrived at the transformation rules by including
auxiliary “Stueckelberg-type” fields and Becchi-Rouet-
Stora-Tyutin (BRST) invariance [56,57] (see also

[58,59]), methods that were recently applied to the gluon
propagator [60].
The LKF transformations in scalar QED for both the

propagator and the generalized case of the N-point func-
tions were also derived in [61,62] using the alternative
worldline approach to quantum field theory. There, it is
shown that the ordered (quenched) ðN ¼ 2nÞ-point ampli-
tudes completely fix the LFK transformations. Denoting
such an amplitude that corresponds to the contraction of n
fields ϕðxiÞ with n conjugate fields ϕ†ðx0πðiÞÞ for π ∈ Sn
as Aðx1;…; xn; x0πð1Þ;…; x0πðnÞjξÞ when covariant gauge

parameter ξ is used for internal photons, they find the
amplitudes in different gauges are related by

Aðx1;…; xn; x0πð1Þ;…; x0πðnÞjξþ ΔξÞ

¼
YN
k;l¼1

e−ΔξS
ðk;lÞ
iπ Aðx1;…; xn; x0πð1Þ;…; x0πðnÞjξÞ; ð2Þ

which is the natural generalization of (1), constructed now

from functions ΔξS
ðk;lÞ
iπ to be defined below in (22). This

same worldline formalism was recently applied to extend
this work to the case of spinor QED [63]. In this companion
paper, we provide further calculational details on this
worldline derivation of the LKF transformation of the
fermion propagator and the N-point fermionic Green
functions that enter the calculation of scattering amplitudes
in perturbation theory and discuss various applications of
these recent results.
The worldline formalism is an alternative, first quantized

approach to quantum field theory that has its roots in work
due to Feynman at the same time that the more familiar
second quantized approach was developed [64,65].
Strassler later developed perturbation theory within this
framework [66], motivated by the seminal works of Bern
and Kosower [67,68]. The essential idea is to reexpress the
field theory scattering matrix in terms of path integrals over
relativistic point particle trajectories, which reproduce the
so-called Master Formulae of Bern and Kosower; a detailed
review and a more recent report describing these methods
can be found in [69,70]. Despite remaining lesser known
than the “standard” perturbation theory based on Feynman
diagrams that came to dominate the development of
quantum field theory, the first quantized worldline
approach has been applied with great success in a wide
variety of problems. Of particular importance in the context
of LKF transformations, the nontrivial task of extracting the
form factor decomposition of the QCD vertex that is
usually done by analyzing the Ward identities is quite
cumbersome for rich tensorial structures. The worldline
calculation has shown its efficiency in the decomposition of
the three- and four-gluon vertices and the generalization of
the N-point Ward identity (see [18,21,23]), and we expect
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similar simplifications in analyses of the gauge structure of
the propagator.
Early successful applications of the worldline approach

include a semiclassical “instanton” based determination of
the Schwinger pair production rate [71]. By now, it is
recognized that the worldline formalism has several advan-
tages over standard methods, including representations of
amplitudes where virtual momenta have already been
integrated over that combine multiple Feynman diagrams
related by permutation of external legs [31,70,72–74] and
that are gauge invariant even at the level of the integrand
[66,69]. Initial work using worldline techniques was
largely focused on loop amplitudes, and although there
are a few preliminary representations of propagators and
tree-level processes using worldline techniques [72,75–80],
it is only recently that a complete description of the scalar
[61,62,81–85], spinor [86–89], and quark [90,91] propa-
gators that are needed to study the LKF transformations has
been achieved that retains the familiar benefits of the first
quantized approach (see also [92]).
We are motivated by several main goals. First, this article

expands upon the brief report of the main results given in
[63], where we sought to compare the forms of the
generalized transformation of the N-point functions
between spinor and scalar QED; second, the theoretical
developments presented here for spinor QED are far from
trivial and will serve as a stepping stone to the more
complicated transformations in QCD or more general gauge
theories (worldline techniques have been extended to the
non-Abelian case in a series of recent articles [93–98]);
finally, a systematic study of the variation of N-point
functions under a change of gauge is crucial for under-
standing how gauge invariant information can be extracted
from calculations carried out in particular gauges—we have
in mind, for instance, the truncation of Dyson-Schwinger
equations to a particular order or numerical evaluation of
such quantities on the lattice. Our use of the worldline
formalism will be seen to simplify both the derivation of the
LFK transformations and their implementation in perturba-
tion theory.

A. Overview

The thrust of our approach and the main results can be
summarized as follows. The worldline representation of the
spinor propagator was recently developed in [86,87] and
uses the second order formalism of the Dirac field [99,100].
The fundamental procedure is to decompose the configu-
ration space representation of a Dirac fermion propagating
in an electromagnetic field with gauge potential AðxÞ ¼
AμðxÞdxμ as

Sx
0x½A� ¼ ½mþ iD0�Kx0x½A�; ð3Þ

where D0
μðxÞ ¼ ∂ 0

μ þ ieAμðx0Þ is the covariant derivative
acting at x0, and Kx0x½A� is a matrix-valued auxiliary kernel
to be discussed below. Here, we shall describe N-point
functions by extending this representation to multiple open
fermionic lines. To isolate the gauge transformation of
internal photons, it is convenient to utilize the background
field method [101,102] to split the gauge field A ¼ Aγ þ Ā
into a part Aγ representing external photons and a “quan-
tum” piece Ā—the path integral over Ā will produce the
virtual photons joining the spinor lines. These photons’
propagators will be evaluated in a particular covariant
gauge with parameter ξ, and we examine the dependence
of the propagator on this choice. Related to this, we define
the “backgroundless” propagator by

Sx
0x
0 ½Aγþ Ā;ξ� ¼ h½mþ ið∂ 0 þ ie=AγÞ�Kx0x½Aγ þ Ā�iĀ;ξ; ð4Þ

without the insertion of −e=̄Aðx0Þ in the prefactor of (3). The
expectation value is taken over configurations of the
background field that produces loop photons attached to
the fermion line with the photon propagator taken in the
covariant gauge with parameter ξ.
Our principle results are the following. The background-

less part of the ðN ¼ 2nÞ-point function will be shown to
transform according to the following rules for its partial
amplitudes (again π ∈ Sn):

S0πðx1;…;xn;x0πð1Þ;…;x0πðnÞjξþΔξÞ

¼
�Yn

i¼1

½mþ ið∂ 0
iþ ie=AγÞ�Kx0

πðiÞxi ½Aγþ Ā�
�

Ā;ξþΔξ

¼
�Yn

i¼1

½mþ ið∂ 0
iþ ie=AγÞ�Kx0

πðiÞxi ½Aγþ Ā�
�

Ā;ξ

YN
k;l¼1

e−ΔξS
ðk;lÞ
iπ ;

ð5Þ

with the same scalar factor as in (2). In this case, however,
the derivatives =∂ 0

i ≔ γμ∂x0μi
act through onto the trailing

exponential and generate additional terms involving the

derivatives of the ΔξS
ðk;lÞ
iπ . The additional contractions that

appear from the =̄A multiplying the kernels KxπðiÞxi in the
completeSxπðiÞxi precisely cancel these to allow for the expo-
nential factor to be commuted to the left of the expectation
value in (5). In this way, we arrive at the generalized LKF
transformations of the partial fermionic N-point functions,
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Sπðx1;…; xn; x0πð1Þ;…; x0πðnÞjξþ ΔξÞ ¼
�Yn

i¼1

½mþ ið∂ 0
i þ ieð=Aγ þ =̄AÞÞ�Kx0

πðiÞxi ½Aγ þ Ā�
�

Ā;ξþΔξ

¼
YN
k;l¼1

e−ΔξS
ðk;lÞ
iπ

�Yn
i¼1

½mþ ið∂ 0
i þ ieð=Aγ þ =̄AÞÞ�Kx0

πðiÞxi ½Aγ þ Ā�
�

Ā;ξ

¼
YN
k;l¼1

e−ΔξS
ðk;lÞ
iπ Sπðx1;…; xn; x0πð1Þ;…; x0πðnÞjξÞ; ð6Þ

which is the direct generalization of (2) to the spinor case
reported in [63] (we emphasize that the exponential factor
is identical to the scalar result).
Moreover, we shall show that the exponential prefactor,

once summed over k and l, is independent of the permu-
tation and thus, factorizes out of the sum over partial
amplitudes, giving a simple multiplicative transformation
for the N-point correlator itself, denoted S,

Sðx1;…; xn; x01;…; x0njξþ ΔξÞ
¼ TnSðx1;…; xn; x01;…; x0njξÞ; ð7Þ

with Tn as the exponential prefactor for any chosen
permutation. Likewise, a similar simplification lifts the
result for the partial amplitudes of scalar QED (2) to the
complete scalar propagator. Indeed, the congruence of
these results mirrors the original outcome of Landau and
Khalatnikov’s analysis [32], which makes clear that the
propagator’s transformation is essentially independent of
the particular field theory under study; here, we prove this
to hold for arbitrary correlators.
This paper has the following structure: In Sec. II, we

review the precise form of the LKF transformations and
recent work on their application. In Sec. III, we use the
recently developed worldline representation of the fermion
propagator [86] to study its gauge transformation proper-
ties, followed by the generalization to the LKF trans-
formations of the N-point functions in Sec. IV. We then
illustrate the application of our results in perturbation
theory in Sec. V before a conclusion and discussion of
ongoing and future work.

II. GAUGE TRANSFORMATIONS
OF GREEN FUNCTIONS

The LKF transformations show how field theory Green
functions change between linear covariant gauges and
contain information about their gauge-dependent part to
all orders in the coupling to internal gauge bosons. We
begin by reviewing the original construction of the coor-
dinate space LKF transformations for the propagator (two-
point functions) presented in [32,33,35].
The coordinate space photon propagator corresponding

to the covariant gauge parameter ξ can be written as

Gμνðx − x0; ξÞ ≔ hĀμðxÞĀνðx0Þiξ
¼ Gμνðx − x0; ξ̂Þ þ Δξ∂μ∂νΔDðx − x0Þ; ð8Þ

where ξ̂ refers to a reference covariant gauge (chosen
arbitrarily), and Δξ ¼ ξ − ξ̂. Here, ΔD is a function that
fixes the gauge (see [32,103]), given by

ΔDðyÞ ¼ −ie2ðμÞμ4−D
Z

dDk̄
e−ik·y

k4

¼ −
ie2ðμÞ
16π

D
2

Γ
�
D
2
− 2

�
ðμyÞ4−D; ð9Þ

where we used dDk ¼ ð2πÞDdDk̄ for brevity and introduced
the mass scale μ by identifying e2 → μ4−De2ðμÞ to maintain
a dimensionless coupling constant eðμÞ (on the far right-
hand side, y indicates the magnitude of the vector). The
relation (8) can be found by considering a gauge trans-
formation Āμ → Āμ − ∂μϕ and interpreting the function ϕ
as a Stueckelberg-type scalar field. Quantization in momen-
tum space in covariant gauge with parameter ξ yields
[57,104] the correlation functions,

hĀμðkÞϕð−kÞiξ ¼
iξ
k4

kμ ð10Þ

hϕðkÞϕð−kÞiξ ¼
ξ

k4
; ð11Þ

so that under ĀμðkÞ → ĀμðkÞ − ikμϕðkÞ, the photon two-
point function changes, according to

hĀμðkÞĀνð−kÞiξ ⟶ hĀμðkÞĀνð−kÞiξ − ξ
kμkν
k4

: ð12Þ

This reproduces the Fourier space representation of
∂μ∂νΔD with the familiar result that it is only the longi-
tudinal part1 of the photon propagator that varies with ξ.

1We refer to the usual momentum space decomposition of
the photon propagator GμνðkÞ ¼ Δðk2ÞPμν þ ξ=k2Lμν into its
transverse projector, Pμν ≔ δμν −

kμkν
k2 , and longitudinal part,

Lμν ≔
kμkν
k2 , where at tree level, of course, Δðk2Þ ¼ 1

k2.
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It is the function ΔD that appears in (1) that transforms
the matter field’s propagator between covariant gauges. For
D ¼ 3, Δ3ðxÞ ¼ − i

2
αx with the familiar fine structure

constant, 4πα ¼ e2, so that (8) gives [105]

Sðx; ξÞ ¼ Sðx; ξ̂Þe−Δξ
2
αx: ð13Þ

In four dimensions, however, ΔD requires regularization;
expanding (9) about D ¼ 4 − ϵ leads to the result [38]
Δ4ðxÞ ¼ iα

4π ½2ϵ þ γE þ lnðπÞ þ 2 lnðμxÞ þOðϵÞ� so that,
upon introducing a cut-off to regularize the x-dependent
logarithm, we arrive firstly at

Δ4ðx0Þ − Δ4ðxÞ ¼ −i ln
�
x2

x20

� α
4π

; ð14Þ

and subsequently, to the LKF transformation,

Sðx; ξÞ ¼ Sðx; ξ̂Þ
�
x2

x20

�−Δξα
4π

: ð15Þ

As is clear in the original derivations of the LKF trans-
formations, this transformation is the same for scalar and
spinor QED. We shall shortly rederive this result using
worldline techniques.

A. Transformation of N-point functions

The LKF transformation of the N-point correlation
functions has been studied to differing extents in scalar
and spinor QED and QCD. Here, we shall review the
calculation in scalar QED presented in [61,62], where
a first quantized approach was used to derive the trans-
formation for arbitrary correlators, but we refer to [57,60]
and references therein for an examination of these
transformations using BRST symmetry in the standard
formulation.
The position space worldline representation of the partial

N ¼ 2n-point function in which the field ϕðxiÞ is con-
nected to the conjugate field ϕ†ðx0πðiÞÞ for i ∈ f1;…ng and

π ∈ Sn is given in [61,62] as

Aðx1;…; xn; x0πð1Þ;…; x0πðnÞjξÞ ¼
Yn
i¼1

Z
∞

0

dTie−m
2Ti

Z
xiðTiÞ¼xi

xið0Þ¼x0
πðiÞ

DxiðτiÞe−
P

n
l¼1

ðSl
0
þSlγÞ−

P
n
k;l¼1

Sðk;lÞiπ ðξÞ; ð16Þ

where m is the mass of the field, and the path integral is
over trajectories that travel between x0πðiÞ and xi in
(Schwinger) proper time T. The worldline action has been
split up into the free particle actions,

Sl0½xl� ¼
Z

Tl

0

dτl
_x2l
4
; ð17Þ

the interaction of these particles with external photons,

Slγ½xl; Aγ� ¼ ie
Z

Tl

0

dτl _xl · AγðxlðτlÞÞ; ð18Þ

and

Sðk;lÞiπ ½xk; xl; Ājξ� ¼
e2

2

Z
Tk

0

dτk

Z
Tl

0

dτl _x
μ
kGμνðxk − xl; ξÞ_xνl ;

ð19Þ
which produces the electromagnetic interaction due to the
exchange of virtual photons between particle worldlines k
and l in the chosen covariant gauge (we shall derive the
equivalent action for spinor QED below).
To study the LKF transformations, we recall the explicit

form of the configuration space photon propagator in an
arbitrary covariant gauge,

Gμνðy; ξÞ ¼
1

ð4πD
2 Þ

�
1þ ξ

2
Γ
�
D
2
− 1

�
δμν

y2
D
2
−1

þ ð1 − ξÞΓ
�
D
2

�
yμyν
y2

D
2

�
: ð20Þ

Under a change in the gauge parameter, ξ → ξþ Δξ, the integrand of the action Si changes by a total derivative,

Sðk;lÞiπ ðξÞ → Sðk;lÞiπ ðξÞ þ ΔξS
ðk;lÞ
iπ , where

ΔξS
ðk;lÞ
iπ ¼ Δξe2

32π
D
2

Γ
�
D
2
− 2

� Z
Tk

0

dτk

Z
Tl

0

dτl∂τk∂τl ½ðxkðτkÞ − xlðτlÞÞ2�2−D
2 ð21Þ

¼ Δξe2

32π
D
2

Γ
�
D
2
− 2

�
f½ðxk − xlÞ2�2−D

2 − ½ðxk − x0πðlÞÞ2�2−
D
2 − ½ðx0πðkÞ − xlÞ2�2−D

2 þ ½ðx0πðkÞ − x0πðlÞÞ2�2−
D
2g: ð22Þ
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As we shall discuss below for the fermionic amplitudes, the
effect of changing the gauge of the external photons also
introduces a total derivative term in the action [see
Eq. (32)]. Consequently, the contributions from gauge
transforming the internal and external photons vanish for
photons with at least one leg on a closed scalar loop. This
allows us to focus on the quenched amplitudes, which
completely fix the form of the LKF transformation, as
discussed in [61,62].
Even for quenched amplitudes, there are further sim-

plifications, since the gauge transformation of external
photons is well understood through the Ward identity. As
shall be made clear below, although such a gauge trans-
formation produces a nonvanishing boundary contribution
when the photon is attached to an open line, it does not
contribute to the Lehmann-Symanzik-Zimmermann (LSZ)
formula for on-shell matrix elements. As such, to study the
nontrivial gauge transformation of the propagator, we may
restrict our attention to only those virtual photons that
mediate interactions between open lines. Then (22), which
does not depend upon the path integral variables nor the
proper time, T, is the full contribution to the generalized
LKF transformation,

Aðx1;…; xn; x0πð1Þ;…; x0πðnÞjξþ ΔξÞ

¼
Yn
k;l¼1

e−ΔξS
ðk;lÞ
iπ Aðx1;…; xn; x0πð1Þ;…; x0πðnÞjξÞ; ð23Þ

as reported in (2); the full amplitude is constructed by
simply summing the ordered amplitudes over the permu-
tations π ∈ Sn. More information and a discussion about
the pole structure in dimensional regularization are given in
[61] and are elaborated for spinor QED below, where we
will also compute the product over k and l explicitly. The
application to perturbation theory in position space is also

given in [61], which we shall repeat for the spinor case
presently.

III. THE FERMION PROPAGATOR
IN FIRST QUANTISATION

The fermion propagator has only recently been given a
satisfactory worldline description that maintains the famil-
iar advantages of the first quantized approach (see earlier
attempts in [76,77,79]). Contrary to the one- or multiloop
case, this involves a path integral over open lines joining
the end points of the propagation and is also a function of
the initial and final spin states. The path integral formu-
lation of this construction is given in [86,87], and the reader
is referred to [106] for an alternative approach.
The fermion propagator in a background electromagnetic

field A ¼ Aμdxμ is defined in position space by the matrix
elements,

Sx
0x
βα ½A� ≔ hx0; βj½m − iD�−1jx; αi; ð24Þ

where the covariant derivative is given byDμ ≔ ∂μ þ ieAμ,
and α and β indicate the spin at the points x and x0,
respectively. Applying the Gordon identity, we can rewrite
this as

Sx
0x
βα ½A�¼½mþiD0�βσhx0;σj

�
−D2þm2þie

2
γμFμνγ

ν

�
−1
jx;αi

≡ ½mþ iD0�βσKx0x
σα ½A�; ð25Þ

where the covariant derivative acts on x0. The matrix
element, which we call the kernel Kx0x

σα , now takes the
form of the propagator for a scalar particle in the presence
of a matrix valued potential, and it is well known how to
give a path integral representation for this object. As
discussed in [86], this path integral can be written as

Kx0x½A� ¼ 2−
D
2symb−1

Z
∞

0

dTe−m
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞ

Z
ψð0ÞþψðTÞ¼0

DψðτÞe−
R

T

0
dτ½_x2

4
þ1

2
ψ · _ψþie_x·AðxÞ−ieðψþηÞ·FðxÞ·ðψþηÞ�: ð26Þ

Here, the path integrals are over trajectories from x to x0, on
which lives a one-dimensional field theory described by the
action that couples the bosonic embedding coordinates
xμðτÞ and the antiperiodic Grassmann variables ψμðτÞ to the
background field; the former produce the orbital interac-
tion, while the latter generate the spin coupling (the so-
called Feynman “spin factor” [65]). The spin structure of
the kernel arises from the “symbol map” acting on the
constant Grassmann variables ημ, according to

symbfγ½μ1 � � � γμn�g≡ ð−i
ffiffiffi
2

p
Þnημ1…ημn ; ð27Þ

where the square brackets indicate antisymmetrization of
the product with the appropriate combinatorial factor. As
mentioned in [86], this representation has the advantage of
expressing the propagator directly in the Dirac basis of the
Clifford algebra.
In the following, we are interested in analyzing scattering

amplitudes involving an arbitrary number of external
photons attached to the particle worldline and any number
of virtual photon exchanges along the line. To achieve this,
we employ the background field method for the virtual
photons, decomposing A ¼ Aγ þ Ā, and we shall quantize
Ā in the path integral formalism choosing a particular linear
covariant gauge for the internal photons. The internal
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photons are thus produced by Wick contractions between
distinct factors of Ā, while external photons are represented
by Aγ. Hence, we write the full propagator (we sub-
sequently suppress the spinor indices for brevity),

Sðx; x0jξÞ ≔ hSx0x½Aγ þ Ā�iĀ;ξ
¼ h½mþ iDγ0 − e=̄A�Kx0x½Aγ þ Ā�iĀ;ξ; ð28Þ

where we have extracted the “backgroundless” part of the
covariant derivative, Dγ0

μ ¼ ∂ 0
μ þ ieAγ

μ. We follow the
notation used to define (8) and establish expectation values
in the path integral approach in the Appendix.
The final identification that can be made to connect this

propagator to photon amplitudes is the specification of the
external photon source as a sum of plane waves of fixed
momenta, kiμ, with polarizations εiμ,

Aγ
μðxÞ ¼

XN
i¼1

εiμeiki·x; ð29Þ

after which, the amplitude (28) is expanded to multilinear
order in the polarizations. Substituted into K½Aγ þ Ā�, this
leads to the insertion of photon vertex operators under the
path integral (26),

Vx0x
η ½k;ε�¼

Z
T

0

dτ½ε · _xðτÞ− iðψðτÞþηÞ ·f ·ðψðτÞþηÞ�eik·xðτÞ

¼
Z

T

0

dτeik·xðτÞþε·_xðτÞ−iðψðτÞþηÞ·f·ðψðτÞþηÞjε: ð30Þ

Here, we introduced the photon field strength tensor
fμν ≔ 2k½μεν� and borrowed the trick often employed
in string theory for such vertex operators by exponentiating
the prefactor with the instruction that only the part linear in
ε should be taken. In this way, (26) becomes

Kx0x½k1; ε1;…; kN; εN jĀ� ¼ ð−ieÞN
Z

∞

0

dTe−m
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞe−

R
T

0
dτ½_x2

4
þie_x·ĀðxÞ�

× 2−
D
2symb−1

Z
ψð0ÞþψðTÞ¼0

DψðτÞe−
R

T

0
dτ½1

2
ψ · _ψ−ieðψþηÞ·F̄ðxÞ·ðψþηÞ� YN

i¼1

Vx0x
η ½ki; εi�jε1…εN

: ð31Þ

We have now separated the contributions to the kernel from
external photons and the interaction with the background
field, Ā, which will produce the virtual photons running
along the line.

A. Gauge transformations

Here, we consider how changing the gauge of the
photons attached to the particle line affects the propagator.
To begin with, we consider the gauge transformation of the
external photons represented by the vertex operators in
(30). The (momentum-space) gauge transformation of
photon i takes the form εiμ → εiμ þ λkiμ for an arbitrary
constant λ. Under this, the vertex changes as

Vx0x
η ½ki; εi� → Vx0x

η ½ki; εi� þ iλ
Z

T

0

dτi∂τie
iki·xðτiÞ

¼ Vx0x
η ½ki; εi� þ iλðeiki·x0 − eiki·xÞ: ð32Þ

Here, the last term-which depends only upon the end points
of the trajectory—does not contribute to the on-shell matrix
elements by the Ward identity (once Fourier transformed to
momentum space, the exponential factors shift the location
of the poles away from the mass shell, so they cannot
contribute in the LSZ formula). Moreover, for an external
photon attached to a closed fermion loop, the total

derivative integrates to zero. This means that the nontrivial
gauge transformation properties of the propagator come
only from the transformation of the internal photons (of
course, the effect of a gauge transformation of the internal
photons must also drop out of observable quantities, but
this transformation is not well understood as it is for
external photons2), which we go on to determine in the
following section.

B. Variation of the propagator

First, we rederive the original LKF transformation of the
two-point function using the worldline techniques pre-
sented above. For this analysis, we split (28) into two
parts:

Sðx; x0jξÞ ¼ ½mþ iDγ0�hKx0x½Aγ þ Ā�iĀ;ξ
− he=̄Aðx0ÞKx0x½Aγ þ Ā�iĀ;ξ: ð33Þ

2The plane wave decomposition of the external photons also
enters in the prefactor of (25), yet it has been shown in [87] that
these terms do not contribute on shell for the same reason that
they lack the correct LSZ poles; as such, their gauge trans-
formation need not be considered here.
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After the gauge transformation, the first term will produce
the multiplicative LKF law seen in the scalar case (23), plus
an additional, unwanted derivative of this exponential
factor. This extra derivative term will be canceled by the
nonmultiplicative part of the gauge transformation of
the second term involving =̄A (this is reminiscent of how
the covariant derivative of the Wilson line works out to be
gauge covariant).
It will be convenient to define the more general

ξ-dependent functional,

I ½J;M;ξÞ≔
�
eie

R
dDxJ½x�·Ā½x�YM

j¼1

K
x0
πðjÞxj
j ½Aγ þ Ā�

�
Ā;ξ
; ð34Þ

which can be used to generate insertions of Ā through
functional differentiation. To evaluate this, we require the
path integral representation of the kernel (26). It is clear that
the functional integral over Ā will then be Gaussian.
However, further simplifications can be engendered by
taking advantage of a supersymmetry in the worldline
action. The action is invariant under the transformations,

δxμ ¼ −2ζψμ; δψμ ¼ ζ _xμ; ð35Þ

with ζ as a constant Grassmann number, which motivates
us to formulate the worldline theory in superspace. So, we
extend our parameter domain to 1-1 superspace, τ → τjθ,
by introducing the Grassmann parameter θ. We can then
define the superfield and superderivative,

Xμðτ; θÞ ¼ xμðτÞ þ
ffiffiffi
2

p
θðψμðτÞ þ ημÞ ð36Þ

D ¼ ∂θ − θ∂τ: ð37Þ

Integrals of superfields over the whole of superspace, such
as

R
dτ

R
dθX, are invariant (up to boundary terms) under

supersymmetric transformations. In particular, we can
express (26) as

Kx0x½A�¼2−
D
2 symb−1

Z
∞

0

dTe−m
2T

Z
DXe−S0½X�−SA½X�; ð38Þ

in which appear the free particle action, S0½X�, and the
interaction with the gauge field, SA½X�, which (up to total
derivatives) can be written in superspace as3

S0½X� ¼
Z

T

0

dτ
Z

dθ

�
−
1

4
X · D3X

�
ð39Þ

SA½X� ¼
Z

T

0

dτ
Z

dθ½−ieA½X� · DX�: ð40Þ

The boundary conditions on X are inherited from x
and ψ .
To determine I , we decompose the gauge field into

external and internal photons. The path integral over the
potential of the internal photons, Ā, is then determined by
using the superspace representation of the kernels in I and
completing the square to arrive at

I ½J;M; ξÞ ¼
YM
j¼1

2−
D
2 symb−1

Z
∞

0

dTje−m
2Tj

×
Z

DXje
−
P

M
l¼1

SðlÞ
0γ ½Xl�−Si½X;J�; ð41Þ

where SðlÞ0;γ½X� consists of the free action for trajectory l
along with its coupling to the external photons, and we have
defined the generalized interaction term,

Si½X;J� ¼ e2

2

ZZ
dDydDy0J ðyÞ ·Gðy−y0;ξÞ ·J ðy0Þ; ð42Þ

J μðyÞ¼ JμðyÞþ
XM
l¼1

Z
Tl

0

dτl

Z
dθlδDðy−XlÞDlX

μ
l : ð43Þ

Note that in the current case, the inverse symbol
map must first order the variables ηl in ascending
order to reproduce the numeration of variables in the
product in (34) before converting them into products of
γ matrices.
The crucial observation is that, using (20), a change in

the gauge parameter ξ → ξþ Δξ causes a variation in Si
that is again a total derivative:

J ðyÞ ·ΔξG ·J ðy0Þ

¼ Δξ
16π

D
2

Γ
�
D
2
−2

�
J ðyÞ ·∂yJ ðy0Þ ·∂y0 ½ðy−y0Þ2�2−D

2 : ð44Þ

Using this in the variation of (41), we get the gauge
variation of the exponent divided into three term. The
contribution independent of the external source, J, coin-
cides with (22) from the scalar case, according to

3We define Grassmann integration by
R
dθ ¼ 0 andR

dθθ ¼ 1. Then,
R
dθS0½X� provides a τ integrand that gives

the kinetic terms of (26), plus − 1
4
∂τðx · _xþ 2ψ · ηÞ that is

independent of the gauge field A, and
R
dθSA½X� gives exactly

the interaction terms of (26).
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ΔξS
ðk;lÞ
iπ ¼ −Δξ

e2

32π
D
2

Γ
	
D
2
− 2


Z
Tk

0

dτk

Z
Tl

0

dτl

Z
dθk

Z
dθlDkDl½ðXk −XlÞ2�2−D

2

¼ Δξ
e2

32π
D
2

Γ
	
D
2
− 2


Z
Tk

0

dτk

Z
Tl

0

dτl∂τk∂τl ½ðxk − xlÞ2�2−D
2 : ð45Þ

This corresponds to the transformation of the propagator caused by a change of gauge in the internal photon propagators
that couple to the worldline trajectories. Aside from this, there are two terms in (44) involving the source that provide the
term denoted by ΔξIM in [63]. It can be split up into the sum of

ΔξI
ð1Þ
M ¼ −e2

XM
i¼1

Z
dDy

Z
Ti

0

dτi

Z
dθiJ½y� · Gðy −Xi; ξÞ · DiXi

¼ Δξe2

16π
D
2

Γ
�
D
2
− 2

�XM
i¼1

Z
Ti

0

dτi

Z
dDxJðxÞ · ∂x∂τi ½ðx − xiÞ2�2−D

2 ; ð46Þ

and

ΔξI
ð2Þ
M ¼ −

e2

2

Z
dDy

Z
dDzJ½y� ·Gðy − z; ξÞ · J½z�

¼ −
Δξe2

32π
D
2

Γ
�
D
2
− 2

� ZZ
dDxdDx0JðxÞ · ∂xJðx0Þ · ∂x0 ½ðx − x0Þ2�2−D

2 : ð47Þ

Put together, these imply that I transforms with the simple
multiplicative law,

I ½J;M; ξþ ΔξÞ ¼ I ½J;M; ξÞe−
P

M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM ; ð48Þ

which generalizes slightly the original LFK transformation.
With this, we can analyze how the propagator (33)

transforms. We can express it in terms of I as

Sðx;x0jξÞ¼ ½mþ iD0γ�I ½0;1;ξÞþ i
δ

δ=J0
I ½J;1;ξÞjJ¼0; ð49Þ

where the functional derivative is taken at the point x0 to
produce the insertion of =̄Aðx0Þ. Making a transformation of
the gauge parameter, we have

Sðx;x0jξþΔξÞ¼ ½mþ iD0γ�ðI ½0;1;ξÞe−ΔξSiÞ

þ i
δ

δ=J0
ðI ½J;1;ξÞe−ΔξSiþΔξI1 �Þ

���
J¼0

; ð50Þ

where both partial and functional derivatives act through
onto the exponential factors. However, the two terms that
arise from applying the derivatives to the exponents cancel
due to the general relation,

δ

δ=Jðx0iÞ
ΔξI

ð1Þ
M ¼ ∂ 0

i

XM
k;l¼1

ΔξS
ðk;lÞ
iπ ; ð51Þ

and the fact that δ
δ=Jðx0iÞ

ΔξI
ð2Þ
M ¼ 0 when J ¼ 0. So, we see

that the extra factor of =̄A in the second term of (33)
produces a nonmultiplicative contribution to the gauge
transformed propagator [from the functional derivative of
the exponent in (50)] that is precisely what is needed to
cancel the unwanted partial derivative of ΔξS arising from
the first term of S. This allows for the exponential factors in
both terms of (50) to be commuted to the left, resulting in
the following transformation for the propagator:

Sðx; x0jξþ ΔξÞ ¼ e−ΔξSiSðx; x0jξÞ; ð52Þ

which corresponds to the original LKF transformation. It
takes the same form as in the scalar case, as obtained in the
derivation of Landau and Khalatnikov that is independent
of the details of the matter field.

IV. N-POINT FUNCTIONS

The main contribution of this paper is to provide
additional details that prove the generalization of the
LKF transformation of the propagator to arbitrary corre-
lators, expanding upon the results reported in [63].
To this end, we generalize the propagator, which corre-
sponds to the field theory correlator hΨ̄ðxÞΨðx0Þi, to the
correlator of an arbitrary even number, N ¼ 2n, of fields,
hΨ̄ðx1Þ � � � Ψ̄ðxnÞΨðx01Þ � � �Ψðx0nÞi. This N-point function
can be decomposed into partial amplitudes,
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Sðx1…xn; x01…x0njξÞ ¼
X
π∈Sn

Sπðx1…xn; x0πð1Þ…x0πðnÞjξÞ;

ð53Þ

where the partial amplitude Sπ represents the contribution
in which the field Ψðx0πðiÞÞ is contracted with the conjugate

field Ψ̄ðxiÞ, defined as

Sπðx1…xn; x0πð1Þ…x0πðnÞjξÞ

¼ h½mþ iD0
1�K

x0
πð1Þx1
1 � � � ½mþ iD0

n�K
x0
πðnÞxn
n iĀ;ξ: ð54Þ

The generalized LKF transformation will be determined in
terms of the transformation of these partial amplitudes. We
shall express the kernels in terms of path integrals over
particle trajectories; as discussed above, the gauge trans-
formation due to the external photons is fixed by the Ward
identity, so we are again free to focus on the variation

induced by changing the gauge parameter of the internal,
virtual photons.
Before continuing with the complete derivation of the

gauge transformation, it is worth stressing how the final
result comes about. For the propagator, the previous section
showed that there is a cancellation between undesirable
derivatives of the LKF factorΔξS: in (50), the insertion of =̄A
gave a term that canceled against the partial derivative of
this factor. Now, transforming (54), there will be multiple
partial derivatives of an LKF factor produced by the D0

i—
these will be seen to be in exact correspondence with the
nonmultiplicative transformation of the additional inser-
tions of =̄A from the covariant derivatives and will cancel
against with them.
To illustrate this cancellation mechanism, we consider

the four-point case (N ¼ 4) explicitly for the identity
permutation, I. We organize the calculation of the gauge
transformed function with respect to the i=∂i

0 − =̄Ai (for
notational brevity, we use e ¼ 1 throughout this example):

SIðx1; x2; x01x02jξþ ΔξÞ ¼ h½m − =Aγ
1�K

x0
1
x1

1 ½m − =Aγ
2�K

x0
2
x2

2 iĀ;ξþΔξ þ h½i∂1
0 − =̄A1�Kx0

1
x1

1 ½m − =Aγ
2�K

x0
2
x2

2 iĀ;ξþΔξ

þ h½m − =Aγ
1�K

x0
1
x1

1 ½i∂2
0 − =̄A2�Kx0

2
x2

2 iĀ;ξþΔξ þ h½i∂1
0 − =̄A1�Kx0

1
x1

1 ½i∂2
0 − =̄A2�Kx0

2
x2

2 iĀ;ξþΔξ: ð55Þ

The first three terms of the right-hand side are already known to transform in the desired way; the first (no partial
derivatives) is trivial, while the transformation of second and third terms (one partial derivative) can be obtained by the same
method applied in the previous section for the two-point function case. It is in the last term where new undesired terms that
don’t appear in the two-point function case have arisen, as can be seen if we organize the various terms as follows:

h½i∂ 0
1 − =̄A1�Kx0

1
x1

1 ½i∂ 0
2 − =̄A2�Kx0

2
x2

2 iĀ;ξþΔξ ¼ i∂ 0μ
1 i∂ 0ν

2 hγμK
x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξþΔξ − i∂ 0μ
1 hγμK

x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξþΔξ

− i∂ 0ν
2 h=̄A1K

x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξþΔξ þ h=̄A1=̄A2K
x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξþΔξ: ð56Þ

We can again apply our knowledge of how the two-point function transforms to obtain the following transformations for the
first three contributions (derivatives inside expectation values do not act through while those outside do):

i∂ 0μ
1 i∂ 0ν

2 hγμK
x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξþΔξ ¼ fhi∂ 0
1K

x0
1
x1

1 i∂ 0
2K

x0
2
x2

2 iĀ;ξ þ hγμKx0
1
x1

1 i∂ 0
2K

x0
2
x2

2 iĀ;ξi∂ 0μ
1

þ hi∂ 0
1K

x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0ν
2 þ hγμKx0

1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0μ
1 i∂ 0ν

2 ge−
P

2

k;l¼1
ΔξS

ðk;lÞ
i ; ð57Þ

−i∂ 0μ
1 hγμK

x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξþΔξ ¼ f−hi∂ 0
1K

x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξ − hγμKx0
1
x1

1 =A2K
x0
2
x2

2 iĀ;ξi∂ 0μ
1

− hi∂1
0Kx0

1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0ν
2 − hγμKx0

1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0μ
1 i∂ 0ν

2 ge−
P

2

k;l¼1
ΔξS

ðk;lÞ
i ; ð58Þ

−i∂ 0μ
2 h=̄A1K

x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξþΔξ ¼ f−h=̄A1K
x0
1
x1

1 i∂2
0Kx0

2
x2

2 iĀ;ξ − hγμKx0
1
x1

1 i∂2
0Kx0

2
x2

2 iĀ;ξi∂ 0μ
1

− h=A1K
x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0ν
2 − hγμKx0

1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0μ
1 i∂ 0ν

2 ge−
P

2

k;l¼1
ΔξS

ðk;lÞ
i : ð59Þ

The fourth term, involving =̄A1=̄A2 in the expectation value, must be calculated explicitly to show that it transforms in such a
way as to cancel the partial derivatives of the LKF exponent in the previous expressions. To do this, we start in the gauge ξ
and generate the insertions of A0s via two functional derivatives of I ½J; 2; ξ�. Then, applying the transformation
ξ → ξþ Δξ, we get
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h=̄A1K
x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξþΔξ ¼
�
h=̄A1K

x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξ − hγμKx0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξi
δ

δJ0μ1

− h=̄A1K
x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξi
δ

δJ0ν2
þ hγμKx0

1
x1

1 γνK
x0
2
x2

2 iĀ;ξi
δ

δJ0μ1
i

δ

δJ0ν2

�
e−

P
2

k;l¼1
ΔξS

ðk;lÞ
i þΔξI2 jJ¼0: ð60Þ

Using relation (51) along with the simple extension,

δ

δJ0μi

δ

δJ0νj
ΔξIð2Þ ¼ −∂ 0μ

i ∂ 0ν
j

Xn
k;l¼1

ΔξS
ðk;lÞ
i ¼ −2∂ 0μ

i ∂ 0ν
j ΔξS

ði;jÞ
i ; ð61Þ

we can rewrite (60) as

h=̄A1K
x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξþΔξ ¼ fh=̄A1K
x0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξ þ hγμKx0
1
x1

1 =̄A2K
x0
2
x2

2 iĀ;ξi∂ 0μ
1

þ h=̄A1K
x0
1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0ν
2 þ hγμKx0

1
x1

1 γνK
x0
2
x2

2 iĀ;ξi∂ 0μ
1 i∂ 0ν

2 ge−
P

2

k;l¼1
ΔξS

ðk;lÞ
i : ð62Þ

Now, we may compare the above expressions and see that
only the first term of each remains uncanceled. The fourth
terms in (57) and (62) are canceled by the fourth terms of
(58) and (59). The second term of (57) is canceled by the
second term of (59), and the second term of (58) is canceled
by the second term of (62) etc. Finally, putting everything
together, we find that indeed the four-point correlation
function as

SIðx1; x2; x01x02jξþ ΔξÞ
¼ e−

P
2

k;l¼1
ΔξS

ðk;lÞ
i SIðx1; x2; x01x02jξþ ΔξÞ; ð63Þ

under the gauge parameter transformation, as desired.

A. Arbitrary N

In order to lift this result to the general case, in this
section, we continue to apply functional methods to
evaluate correlators expressed in path integral form; a
complementary approach that focuses more on the com-
binatorial aspects is developed in the Appendix. We begin
with an intermediate result that extends I of (34). We
consider the gauge transformation of the following function
(for M ≥ 1):

�
½mþ iD0

1�eie
R

dDxJ½x�·Ā½x� YM
i¼1

Kx0ixi

�
Ā;ξ
: ð64Þ

Applying the change ξ → ξþ Δξ, our analysis is a
straightforward generalization of the steps that led to
(50), except that we no longer set J ¼ 0 at the end of
the calculation. Explicitly, we repeat the trick of generating
=̄A with a functional derivative with respect to Jðx0Þ to find

�
½mþ iD0

1�eie
R

dDxJ½x�·Ā½x� YM
i¼1

Kx0ixi

�
Ā;ξþΔξ

¼
�
mþ iDγ0

1 þ i
δ

δ=J01

�	
I ½J;M; ξ�e−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM



:

ð65Þ

The derivatives act through and produce, aside from the
original function, various nonmultiplicative terms.
However, (51) and the similar relation,

δ

δ=Jðx0iÞ
ΔξI

ð2Þ
M ¼ −=∂ 0

iΔξI
ð1Þ
M ; ð66Þ

imply that most of these additional contributions cancel.
One may then verify that there is really only one new term
produced when J ≠ 0,

�
½mþ iD0

1�eie
R

dDxJ½x�·Ā½x� YM
i¼1

Kx0ixi

�
Ā;ξþΔξ

¼ e−
P

M
k;l

ΔξS
ðk;lÞ
i þΔξIM

�
½mþ iD0

1 þ i∂1
0ðΔξI

ð2Þ
M Þ�eie

R
dDxJ½x�·Ā½x� YM

i¼1

Kx0ixi

�
Ā;ξ
: ð67Þ
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This warm-up calculation illustrates the generalization that
will be used below to prove the transformation rule of the
N-point correlator: in the calculations that follow, we will
work with nonzero JðxÞ, which will eventually be put to
zero when we apply the results to the N-point function.
To this end, it is useful to consider a slightly more

general functional, defined as (again π ∈ SM)

J ½J;K;M;ξÞ

≔
�
eie

R
dDxJ½x�·Ā½x�YK

i¼1

½mþ iD0
i�
YM
j¼1

K
x0
πðjÞxj
j ½Aγ þ Ā�

�
Ā;ξ
;

K ≤M: ð68Þ

When we use the path integral representation of the various
kernels, the symbol map continues to order the Grassmann
variables according to the two products in J , before
converting them back to γ matrices. In fact, we should
stress that the ordering of the γ matrices in J ½J; K;M; ξÞ
does not yet correspond to that in the partial N-point
amplitude, but we shall see that this is easily remedied
under the symbol map.
The additional insertions of the Dirac operators (product

over i) suggest that this functional will transform in a way
that generalizes (67), introducing additional derivatives of

ΔξI
ð2Þ
M . Indeed, we claim that J transforms in the follow-

ing way:

J ½J; K;M; ξþ ΔξÞ ¼
�
J ½J; K;M; ξÞ þ

XK−1
k¼0

Yk
l¼1

½mþ iD̂0
l�ði∂ 0

kþ1ΔξI
ð2Þ
M ÞJ ðkþ2Þ½J; K;M; ξÞ

�
e−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM ; ð69Þ

with D̂0
μ ¼ ∂ 0

μ þ δ
δJμðx0Þ þ ieAγ

μðx0Þ a generalized differential
operator, whose derivatives act through onto everything to
their right. The superscript in J ðkþ2Þ½J; K;M; ξÞ indicates
that the variable i in (68) runs from kþ 2 to K. The proof is
most easily done by induction on K with the transforma-
tions for (34) and (64) derived above, validating the base
cases corresponding to K ¼ 0 and K ¼ 1, respectively.
Supposing this transformation, we examine the case

J ½J; K þ 1;M; ξþ ΔξÞ (maintaining K þ 1 ≤ M). This
introduces an additional factor of the Dirac operator, ½mþ
iD0� in the product over i, to whose argument we assign the

subscript 1, and we consequently shift the labels of the
other insertions by one. We generate the additional inser-
tion of Ā that appears in this operator by functional
differentiation with respect to J so that

J ½J; K þ 1;M; ξþ ΔξÞ
¼ ½mþ iD̂0

1�J ð2Þ½J; K þ 1;M; ξþ ΔξÞ: ð70Þ

We now vary the gauge parameter. The inductive hypoth-
esis leads immediately to

J ½J; K þ 1;M; ξþ ΔξÞ ¼ ½mþ iD̂0
1�½J ð2Þ½J; K þ 1;M; ξÞ

þ
XK
k¼1

Yk
l¼2

½mþ iD̂0
l�ði∂ 0

kþ1ΔξI
ð2Þ
M ÞJ ðkþ2Þ½J; K þ 1;M; ξÞ�e−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM : ð71Þ

Distributing the various derivatives in D̂0
1, the first term on the right-hand side gives

½mþ iD̂0
1�J ð2Þ½J; K þ 1;M; ξÞe−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM ¼ J ½J;K þ 1;M; ξÞe−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM

þ J ð2Þ½J; K þ 1;M; ξÞ
	
i∂ 0

1 þ
δ

δ=J01



e−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM : ð72Þ

In the second line, we find the same cancellations between the derivatives as at the start of this section; together, (51) with
(66) imply

	
i∂ 0

1 þ
δ

δ=J01


	
−
XM
k;l¼1

ΔξS
ðk;lÞ
iπ þ ΔξIM



¼ i∂ 0

1ΔξI
ð2Þ
M ; ð73Þ

so that only one contribution from the second line survives. Thus, we recover a result that mirrors (67):
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½mþ iD̂0
1�J ð2Þ½J; K þ 1;M; ξÞ ¼ ½J ½J; K þ 1;M; ξÞ þ ði∂ 0

1ΔξI
ð2Þ
M ÞJ ð2Þ½J; K þ 1;M; ξÞ�e−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM : ð74Þ

The nonmultiplicative derivative term combines nicely with the variation produced by the second line of (71) and allows us
to write

J ½J; K þ 1;M; ξþ ΔξÞ ¼ J ½J; K þ 1;M; ξÞe−
P

M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM

þ ði∂ 0
1ΔξI

ð2Þ
M ÞJ ð2Þ½J; K þ 1;M; ξÞe−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM

þ ½mþ iD̂0
1�
�XK
k¼1

Yk
l¼2

½mþ iD̂0
l�ði∂ 0

kþ1ΔξI
ð2Þ
M ÞJ ðkþ2Þ½J; K þ 1;M; ξÞ

�
e−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM

¼ e−
P

M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIMJ ½J; K þ 1;M; ξÞ

þ
�XK
k¼0

Yk
l¼1

½mþ iD̂0
l�ði∂ 0

kþ1ΔξI
ð2Þ
M ÞJ ðkþ2Þ½J; K þ 1;M; ξÞ

�
e−

P
M
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIM ; ð75Þ

where the k ¼ 0 contribution to the sum comes from the
second line of the first expression, and we have made a
relabeling to begin the product at l ¼ 1 (we also recall that
the derivatives D̂l act on everything to their right). This
shows that J ½J; K;M; ξÞ transforms as claimed in (69) for
all K. This result can be summarized as showing that the
cancellation of derivatives of the ΔξS between the partial
derivative and the =̄A continues to hold for arbitrary N but
that there are additional, nonmultiplicative terms in this
transformation produced by the presence of the source. We
will explain why these do not matter for the LKF trans-
formation of the N-point functions below.

B. Generalized LKF transformation

We can use this immediately to derive the generalized
LKF transformation rule for the ðN ¼ 2nÞ-point partial
amplitude. To do this, we first observe that the γ matrices
play no role in determining the functional form of the
transformation; we can either factorize them outside of
the expectation value or ask that the symbol map reorders
the Grassmann variables, ηi, under the path integral
accordingly—we only have to ensure that we return to
the initial ordering of these matrices by the end of the
calculation. Choosing the ordering that corresponds to the
propagator, (54), we fix K ¼ M ¼ n and evaluate the
transformation just derived on J ¼ 0, which gives

Sπðx1…xn; x0πð1Þ…x0πðnÞjξþ ΔξÞ

¼ e−
P

n
k;l¼1

ΔξS
ðk;lÞ
iπ Sπðx1…xn; x0πð1Þ…x0πðnÞjξÞ

þ
�Xn−1
k¼0

Yk
l¼1

½mþ iD̂0
l�ði∂ 0

kþ1ΔξI
ð2Þ
n ÞJ ðkþ2Þ½J; n; n; ξÞ

�

× e−
P

n
k;l¼1

ΔξS
ðk;lÞ
iπ þΔξIn jJ¼0: ð76Þ

Now, we assert that J ¼ 0 actually kills the second term on
the right-hand side of this result. This can be seen by noting

that ΔξI
ð2Þ
n is quadratic in J so that we need to apply two

functional derivatives to it to obtain something that survives
this limit. The resulting expression will depend only on the
two variables of these derivatives, neither of which will be

the same as the partial derivative, which also acts on ΔξI
ð2Þ
n .

Thus, the vanishing of this second term when we take
J ¼ 0 results in Eq. (6),

Sπðx1…xn; x0πð1Þ…x0πðnÞjξþ ΔξÞ
¼ TnSπðx1…xn; x0πð1Þ…x0πðnÞjξÞ; ð77Þ

where we have followed the notation of [61,62] in defining

Tn ≔ e−
P

n
k;l¼1

ΔξS
ðk;lÞ
iπ : ð78Þ

Thus, we have arrived at the generalized LKF transforma-
tion for the N-point correlation function for spinor QED,
which has turned out to be the same transformation as in the
scalar case. The key point is that unwanted derivatives of
ΔξS are canceled exactly by similar derivatives produced
by contractions between the =̄A of the Dirac operator and the
kernels K.
We can add to the discussion in [61,62] with the

observation that, after summing over k and l, the complete
LKF factor, Tn, is, in fact, independent of the permutation,
π, that fixes the partial amplitude. Instead, Tn is a function
only of the end points of the ðN ¼ 2nÞworldlines, since the
sum forces all of these end points to pair up in all possible
combinations. As an important consequence, not only do
the partial amplitudes determine the LKF transformation,
but they all transform in the same way, leading immediately
to the multiplicative result for the propagator itself, with a
global transformation,
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Sðx1…xn;x01…x0njξþΔξÞ ¼ TnSðx1…xn;x01…x0njξÞ; ð79Þ

where Tn can be determined using, say, the ΔξS
ðk;lÞ
iI

corresponding to the identity permutation—as claimed in
Eq. (7). Note that as a consequence, an analogous statement
holds for scalar QED (with the same prefactor that is now
promoted to a global multiplicative factor). We refer to the
Appendix for an alternative method for deriving the result
proven here.
We may carry out a consistency check on this new result.

Consider a particular ordering, π, and choose two lines, m
andn. Ifwe set x0n ¼ x0m and then identifyxnwithx0m, thenwe
ought to get the transformation of the N − 2 point function
where line n has been removed. Indeed, one may verify that
under this process, there are various cancellations between

the sum of terms of the ΔξS
ðk;lÞ
i involving k; l ∈ fm; ng that

leave onlyΔξS
ðm;mÞ
i , while thevariationsΔξS

ðn;lÞ
i andΔξS

ðl;nÞ
i

involving line n and other lines l ≠ m sum to zero. This turns
Tn into Tn−1 as expected. In particular, for the N ¼ 4-point

function, with lines 1 and 2, the process turns ΔξS
ð1;1Þ
i þ

ΔξS
ð1;2Þ
i þ ΔξS

ð2;1Þ
i þ ΔξS

ð2;2Þ
i → ΔξS

ð1;1Þ
i , which recovers

the original LKF transformation of the two-point function,
(52), as required.4

1. Specific examples: Conformal cross ratios

Now that we have arrived at the generalized LKF
transformation, it is worthwhile to consider some examples.
Since the results coincide with those of scalar QED, this
analysis also expands upon the examples given in [61,62].
In general, the complete, or nonperturbative Green func-
tions may have poles, potentially to all orders, in the
physical dimension, D ¼ D0, in which cases, we use
dimensional regularization, fixing D ¼ D0 − 2ϵ. The
LKF factor, Tn, should then be taken to all orders in ϵ,
which can be a nontrivial task. Here, we restrict our
attention to the first nontrivial contributions in various
dimensions.
We begin with the case D0 ¼ 4, also discussed in

[61,62]. As noted in deriving (14), expanding ΔSðk;lÞiπ in
powers of ϵ, the 1

ϵ (infrared) pole in the gamma functions
cancels between the terms so that Tn is finite in the limit
ϵ → 0. In this case, if we keep only the terms up to order
unity, we have

ΔξSðk;lÞ ¼ −
Δξe2

32π
D
2

flog½ðxk − xlÞ2�

− log½ðxk − x0πðlÞÞ2� log½ðx0πðkÞ − xlÞ2�
þ log½ðx0πðkÞ − x0πðlÞÞ2�g þOðϵÞ; ð80Þ

so that substituting this into the exponent and expanded to
linear order, we see that

Tn ¼
	Yn

k;l¼1

rðk;lÞπ


Δξe2

32π2 þOðϵÞ; ð81Þ

with, as in [61,62], rðk;lÞπ is the conformal cross ratio
corresponding to the end points of the lines with labels
k and l:

rðk;lÞπ ≡ ðxk − xlÞ2ðx0πðkÞ − x0πðlÞÞ2
ðxk − x0πðlÞÞ2ðx0πðkÞ − xlÞ2

: ð82Þ

Note that this factor appears regardless of the mass of the
spinor particle propagating between these end points
(which can occur because this factor does not depend
upon the details of the propagation between these points).
The original LKF transformation is recovered by setting
n ¼ 1, for which

T1 ¼
�ðx − xÞ2ðx0 − x0Þ2

ððx − x0Þ2Þ2
�Δξα

8π þOðϵÞ: ð83Þ

Finally, we replace the vanishing numerator by the cut-off
ððx0Þ2Þ2 to arrive at (15). Repeating this trick for the
arbitrary correlator and including the contributions from all
end points, we arrive at the simplification,

Yn
k;l¼1

rðk;lÞπ ¼ ðx20Þ2n
Q

n
l>k¼1ððxk − xlÞ2ðx0k − x0lÞ2Þ2Q

n
k;l¼1ððxk − x0lÞ2Þ2

; ð84Þ

which gives the leading order contribution to the LKF
factor independently of the permutation defining the partial
amplitude. It corresponds to the product of (regulated)
conformal cross ratios of the end points of n lines for all
possible pairings of initial and final points.
In D0 ¼ 3 dimensions, the LKF factor is without poles,

and we get an order unity contribution,

ΔξS
ðk;lÞ
iπ ¼ −

Δξe2

16π
½jxk − xlj − jxk − x0πðlÞj − jx0πðkÞ − xlj

þ jx0πðkÞ − x0πðlÞj�: ð85Þ

Summing over k and l, the LKF exponent can be
simplified to

−
Xn
k;l¼1

ΔξS
ðk;lÞ
iπ

¼ Δξe2

8π

� Xn
l>k¼1

½jxk − xlj þ jx0k − x0lj� −
Xn
k;l¼1

jxk − x0lj
�
;

ð86Þ
4We are grateful to an anonymous referee for suggesting that

we include this consistency check explicitly here.
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which is now manifestly independent of the permutation π.
Again, fixing n ¼ 1, we find

T1 ¼ e−
Δξα
2
jx−x0j þOðϵÞ; ð87Þ

which has given (13). We repeat that the divergences in
loop diagrams would require evaluation of higher order
terms in ϵ that we do not consider here.
For the case D0 ¼ 2, ΔξS

ðk;lÞ
iπ again has a pole in ϵ. The

singular part is (we introduce an arbitrary mass scale μ for
dimensional consistency)

ΔξS
ðk;lÞ
iπ jϵ−1 ¼

Δξe2μ2

32πϵ
½ðxk − xlÞ2 − ðxk − x0πðlÞÞ2 − ðx0πðkÞ − xlÞ2 þ ðx0πðkÞ − x0πðlÞÞ2�

¼ −
Δξe2μ2

16πϵ
ðxk − x0πðkÞÞ · ðxl − x0πðlÞÞ: ð88Þ

Summing this over values of l and k removes the dependence on the permutation, giving

−
Xn
k;l¼1

ΔξS
ðk;lÞ
iπ jϵ−1 ¼

Δξe2μ2

16πϵ

�Xn
k¼1

ðxk − x0kÞ
�
2

: ð89Þ

For the original LKF transformation, with n ¼ 1, the result is trivial:

T1jϵ−1 ¼ e
Δξαμ2
4ϵ ðx−x0Þ2 : ð90Þ

We also give the finite contribution for this case. There are two contributions to ΔξS,

ΔξS
ðk;lÞ
iπ jϵ0 ¼

Δξe2μ2

32π
fð1 − γEÞðxk − x0πðkÞÞ · ðxl − x0πðlÞÞ

þ ½ðxk − xlÞ2 log½πμ2ðxk − xlÞ2� − ðxk − x0πðlÞÞ2 log½πμ2ðxk − x0πðlÞÞ2�
− ðx0πðkÞ − xlÞ2 log½πμ2ðx0πðkÞ − xlÞ2� þ ðx0πðkÞ − x0πðlÞÞ2 log½πμ2ðx0πðkÞ − x0πðlÞÞ2��g; ð91Þ

where γE is the EulerMascheroni constant. Summing over k and l, we find

−
Xn
k;l¼1

ΔξS
ðk;lÞ
iπ jϵ0 ¼

Δξe2μ2

16π

�
ðγE − 1Þ

�Xn
k¼1

ðxk − x0kÞ
�
2

þ
Xn
k;l¼1

ðxk − x0lÞ2 log½πμ2ðxk − x0lÞ2�

−
Xn
l>k¼1

½ðxk − xlÞ2 log½πμ2ðxk − xlÞ2� þ ðx0k − x0lÞ2 log½πμ2ðx0k − x0lÞ2��
�
; ð92Þ

in which we have removed the dependence on the permu-
tation π. The simplest case of n ¼ 1 gives the original
transformation at constant order,

T1jϵ0 ¼ e
Δξαμ2

4
ðx−x0Þ2½log½πμ2ðx−x0Þ2�þγE−1�: ð93Þ

Combining this with (90), it is important to note that this
time the pole is not canceled when Δ2−2ϵð0Þ is subtracted,
which implies an essential singularity for the LKF trans-
formation, (1), in the limit ϵ → 0. In a perturbative
calculation, the poles, of arbitrary order, would thus need
to be taken into account in the transformation. This is
consistent with the observation of [107] that in D ¼ 2, the
pole of the fermion propagator is not gauge invariant in

covariant gauges at any finite order in perturbation theory.
These considerations, along with the physically interesting
aspects of two-dimensional QED, make further studies of
this case of both theoretical and practical interest for
ongoing and future work.

V. PERTURBATION THEORY

It is clear by now that the LKF transformation is
nonperturbative in nature. However, in a practical pertur-
bative calculation, one would like to see how it works
order by order in the loop expansion. For this purpose,
in this section, we consider a specific fixed loop-order
process as an example to illustrate the gauge transformation
of the internal photon propagators and represent the
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transformation diagrammatically. Since the generalized
LKF transformation has turned out to be the same as in
the scalar case, we can rework the perturbative discussion
in [61,62] for the present case. In particular, although
it is possible to obtain gauge dependent higher-loop

order contributions from a given amplitude, we restrict
attention here to the transformation of terms at a fixed
loop order.
For instance, consider the Feynman diagram depicted in

Fig. 1 with three electron propagators and 12 loops. It
should be understood that we consider the sum of this
diagram together with all the ones that differ from it only by
letting photon legs slide along spinor lines. This is a very
complicated process, but here, we are interested in the
application of the LKF transformation to some of the
internal photons, which are indicated with numbers. We
recall that the gauge transformation properties of an
amplitude are determined completely by the photons
exchanged between two fermion lines or along one fermion
line (like photons 1,2,3); in Fig. 1, photons 4 and 5 do not
produce a gauge transformation because they start and/or
end on an electron loop.
Anadvantage of our formalism is thatwehave the freedom

to affect a change of gauge parameter on individual photons
in isolation, which affects the amplitude according to (45); it
converts the photon connecting two propagators with end
points xl and xk into a multiplicative factor of −ΔξS

ðk;lÞ
iπ .

Thus, the gauge transformation of a photon eliminates that
photon and leaves a diagram of lower loop order (the
appropriate factor of the coupling constant is contained in

ΔξS
ðk;lÞ
π ). To illustrate, this we apply the LKF transformation

FIG. 1. A Feynman diagram for a typical process with three
fermion propagators representing six external particle legs at 12-
loop order in configuration space. Here, xi and x0i are the end
points of the propagators (i ¼ 1, 2, 3). The numbers 1–5 indicate
some of the photons that could be gauge transformed.

(a) (b) (c)

(d)
(e)

FIG. 2. Diagrammatic presentation of gauge transformation of internal photons one by one or of some of them simultaneously using
the generalized LKF transformations in perturbation theory.
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arising from changing the gauge of the internal photons in
Fig. 1 to obtain the gauge variation of this diagram. We
denote the value of the diagram by Fig. 1 and its gauge
transformation byΔξ Fig. 1, which is built from the value of

lower order diagrams (see also Fig. 2) multiplied by the
appropriate factors of ΔξS. Then, changing the gauge
parameter of the internal photons leads to the gauge trans-
formation of this diagram:

ΔξFig:1 ¼ ð−2ΔξS
ð1;2Þ
iπ ÞFig:2aþ ð−2ΔξS

ð1;3Þ
iπ ÞFig:2bþ ð−ΔξS

ð1;1Þ
iπ ÞFig:2cþ � � �

þ ð−2ΔξS
ð1;2Þ
iπ Þð−2ΔξS

ð1;3Þ
iπ ÞFig:2dþ � � �

þ ð−2ΔξS
ð1;2Þ
iπ Þð−2ΔξS

ð1;3Þ
iπ Þð−ΔξS

ð1;1Þ
iπ ÞFig:2eþ � � �

þ ..
. ð94Þ

In the above equation, the first line represents the gauge
transformation of individual photons, the second line is for
the simultaneous transformation of pairs of photons, the
last line for the simultaneous gauge transformation of three
photons, and so on, which is extremely straightforward
using the above LKF rules.
Although this section has focused on perturbation theory

in configuration space, it is also possible to transfer the
LKF transformations found here to the perturbative expan-
sion in momentum space. This has been achieved for the
propagator in scalar and spinor QED in D ¼ 3 and D ¼ 4
dimensions [38,105,108]; the generalization we have
developed here will allow us to apply these techniques
to arbitrary correlation functions in future work. In par-
ticular, in a further publication, we shall deal with the
nontrivial pole structure in the two-dimensional LKF factor
in the context of momentum space perturbation theory.

VI. CONCLUSION

We have applied first quantized techniques to determine
the transformation of arbitrary fermion correlation func-
tions induced by varying the linear covariant gauge
parameter of virtual photons that give loop corrections to
the free correlators. These coordinate space transformations
generalize the original studies of Landau, Khalatnikov, and
Fradkin for the propagator to the general case of the N-
point functions of spinor QED and are completely non-
perturbative. We recover the original result as a special case
with N ¼ 2.
The generalized transformations were found by studying

the variation induced in partial amplitudes that pair up
initial and final points in a particular way. Their variation
turned out to be the same as that of their counterparts in
scalar QED and corresponds to the introduction of total
derivatives in worldline parameter integrals. However, we
noted here that the functional form of this variation does not
depend upon the ordering implied by the partial amplitude
and, as such, factorizes out of the sum over orderings.
Moreover, since we explained that virtual fermion loops
play no role in determining the LKF transformation, our

results found by studying the quenched amplitudes hold
unchanged even if such loops are included. We were thus
led to a simple, multiplicative transformation for the
complete correlators in both scalar and spinor QED, which
is the natural generalization of the multiplicative trans-
formation for the propagator.
It was important to check this since the multiplicative

form of the transformation could have been broken, even at
the level of the partial amplitudes, by the derivative
structure of the worldline representation of the correlators,
an issue raised in [61]. We have manifested that there is a
precise cancellation between all such terms that means that
the multiplicative form is maintained after all. In the main
text, this was shown using functional methods; a more
direct proof is given in the Appendix. We strongly suspect
that finding this factorization would be substantially more
difficult using standard techniques.
Since the transformation takes the same form as in scalar

QED, its application in perturbation theory is the same as in
the former case, originally worked out in [61,62] and
discussed briefly in Sec. V above. It is also important to
note that in spinor QED, renormalization counterterms
have the same structure as the bare vertex and propagators,
so including these contributions does not produce diagrams
with different topology to those considered here (albeit,
with some internal photons removed). As long as all
diagrams up to some fixed order in α are included, the
LKF transformation we have derived will remain
unchanged, even if these counterterms are included. In
the case of four-dimensional QED, the first order expansion
of the multiplicative factor is written in terms of conformal
cross ratios of the correlation function arguments. We have
added to that work by considering the transformation in
two-dimensional QED, wherein there is a divergence that
affects the LKF factor to all orders in the perturbative
expansion. As such, one can expect poles of arbitrary order
to enter the correlation functions after being nonperturba-
tively gauge transformed.
Current and future work in this context will develop the

perturbative application further, in particular, to analyze the
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momentum space transformation of the propagator for the
two-dimensional case as a massive analogue [109] of the
Schwinger model [110,111]. Here, there will be the addi-
tional difficulty of the pole to treat carefully. Given the
extension of the LKF transformation considered here,
we shall also be able to examine the momentum space
transformation of higher order Green functions in four
dimensional QED. Likewise, in lower dimensions, the
transformations of the propagator in [48,112] could now
be extended to higher order correlation functions.
While we have worked entirely within quantum electro-

dynamics, the worldline techniques we have applied can be
adapted to non-Abelian theories to study the gauge trans-
formation implied by virtual gluons. Moreover, the world-
line formalism extends to a gravitational background,
which would allow for studies of the diffeomorphism
structure of the propagator or correlation functions due
to virtual graviton exchange. Likewise, the gauge structure
of more complicated objects, such as the propagator in an
electromagnetic background or interaction vertices, can be
studied with an aim to obtain information about their form
factor decomposition. Such work would have application in
informing analyzes of the Schwinger-Dyson equations by
supplying further restrictions on solutions that incorporate
the gauge structure implied by the LKF transformations
uncovered here.
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APPENDIX: EXPECTATION VALUES

Here, we define how correlation functions of the quan-
tum background field, Ā, are calculated and provide an

alternative proof of the cancellation of undesired derivative
terms against the contributions from the =̄A terms in the
prefactors of (25). Throughout this Appendix, we shall set
the value of the charge to e ¼ 1.
We define the expectation value hQN

i¼1 ĀμiðxiÞi according
to the Euclidean space path integral over Ā with a particular
gauge fixing action SgfðξÞ ¼ −

R
d4xð∂ · ĀÞ2=ð2ξÞ that

imposes the covariant linear gauge with parameter ξ:

�YN
i¼1

ĀμiðxiÞ
�

ξ

≔
Z

DĀðxÞ
YN
i¼1

ĀμiðxiÞe−
R
dDx½−1

4
F̄μνF̄μν�−Sgf ðξÞ:

ðA1Þ

In particular, the two-point function reproduces the Green
function (20), hĀμðxÞĀνðx0Þiξ ¼ Gμνðx − x0; ξÞ.
As usual, the insertions of the prefactors ĀμiðxiÞ can be

generated by functional differentiation with respect to a
source term, S½J� ¼ i

R
dDxJðxÞ · ĀðxÞ. We can take ad-

vantage of this to give an alternative derivation of the result
given in the main text regarding the cancellation of the
unwanted derivatives of ΔξSiπ that would otherwise spoil
the multiplicative form of the LKF transformations. To this
end, we consider

Kπðn;N;ξÞ≔
�Yn

i¼1

=̄AiðxiÞ
YN
j¼1

K
x0
πðjÞxj
j ½Ā�

�
ξ

; π∈SN; ðA2Þ

where we have temporarily ignored the external photons,
which play no role in this calculation. The subindices on
the =̄A are reminders that the γ matrices must be placed in the
correct order according to the product in (54), but it will
become clear below that this is not important for now.
Expressing the Kj in their path integral representation (38)
and generating the =̄A by functional differentiation, we
arrive at

Kπðn;N; ξÞ ¼ symb−1
�YN

j¼1

2−
D
2

Z
∞

0

dTje−m
2Tj

Z
DXðτj; θjÞ

× e−
P

N
l¼1

Sl
0
½Xl� δ

n

δ=Jn
hei

P
N
i¼1

R
dτi

R
dθiDiXi·ĀðXiÞþi

R
dDxJðxÞ·ĀðxÞiξ

�
; ðA3Þ

where we abbreviate δn

δ=Jn ≔
ð−iÞnδn

δ=Jðx1Þ���δ=JðxnÞ
jJ¼0. Completing the square in the final exponent allows for the expectation value to

be computed, which supplies

Kπðn;N; ξÞ ¼ symb−1
�YN

j¼1

2−
D
2

Z
∞

0

dTje−m
2Tj

Z
DXðτj; θjÞe−

P
N
l¼1

Sl
0
½Xi� δ

n

δ=Jn
e
1
2

R
dDydDy0J ðyÞ·Gðy−y0;ξÞ·J ðy0Þ

�
; ðA4Þ
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where the current is J μðyÞ ¼ JμðyÞ þP
N
i¼1

R
dτi

R
dθiδDðy −XiÞDiX

μ
i . We are not interested in the precise form of this

result nor the path integrals over theXi, but rather how this quantity changes when we vary ξ. As such, we realize the change
of gauge directly in the Green function so that the integrand of (A4) changes, according to

δn

δ=Jn
hei

P
N
i¼1

R
dτi

R
dθiDiXi·ĀðXiÞþi

R
dDxJðxÞ·ĀðxÞiξþΔξ ¼

Xn
m¼0

X
permfρmg

δmρ
δ=Jm

e
1
2

R
dDx

R
dDx0J ðxÞ·ΔξGðx−x0Þ·J ðx0Þ

×
δn−mρ

δ=Jn−m
hei

P
N
i¼1

R
dτi
R

dθiDiXi·ĀðXiÞþi
R

dDxJðxÞ·ĀðxÞiξ; ðA5Þ

where the sum over partitions, fρmg, counts all ways to choose m variables from f1;…ng, which appear in the first
functional derivative; the remaining n −m are then placed in the second. Here, the exponent of the first term on the right-
hand side is derived from the ξ-dependent parts of (20) and can be decomposed as shown in the main text:

1

2

Z
dDx

Z
dDx0J ðxÞ · ΔξGðx − x0Þ · J ðx0Þ ¼ −

XN
i;j¼1

ΔξS
ði;jÞ
iπ þ ΔξI

ð1Þ
N þ ΔξI

ð2Þ
N ; ðA6Þ

where we have used (44) and computed the integrals over the θi as in Sec. III B.
The first term in (A6) generates the global exponential factor common to all terms in the Green functions. Meanwhile, the

m functional derivatives in (A5) will act on the functions JðxÞ in the ΔξIN of (A6) to produce various terms. Since the
derivatives are contracted into γ matrices, the structure is particularly simple. We must choose k pairs and l singletons such
that 2kþ l ¼ m. Each pair produces an insertion of the form,

Δξ
16π

D
2

Γ
�
D
2
− 2

�
γ · ∂xiγ · ∂xj ½ðxi − xjÞÞ2�2−D

2 ; ðA7Þ

which we recognize as =∂xi=∂xjΔξS
ði;jÞ
iπ . Similarly, the singletons produce factors,

Δξ
32π

D
2

Γ
�
D
2
− 2

�XN
i¼1

Z
Ti

0

dτi

Z
dDxγ · ∂xj

∂
∂τi ½ðxj − xðτiÞÞ2�2−D

2 ; ðA8Þ

which is, of course,
P

N
i¼1 =∂xjΔξS

ði;jÞ
iπ . As such, (A5) can be written as

δn

δ=Jn
hei

P
N
i¼1

R
dτi
R

dθiDiXi·ĀðXiÞþi
R

dDxJðxÞ·ĀðxÞiξþΔξ

¼
Xn
m¼0

X
permfρmg

δn−mρ

δ=Jn−m
hei

P
N
i¼1

R
dτi

R
dθiDiXi·ĀðXiÞþi

R
dDxJðxÞ·ĀðxÞiξ

×
X

2kþl¼m

X
σ∈Sm

Yk
i¼1

ð∂xσð2i−1Þ∂xσð2iÞΔξS
ðσð2i−1Þ;σð2iÞÞ
iπ Þ

Ym
j¼2kþ1

	XN
p¼1

∂xσðjÞΔξS
ðp;σðjÞÞ
iπ



e−

P
N
r;s¼1

ΔξS
ðr;sÞ
iπ ; ðA9Þ

where the fσg permute the set fρð1Þ;…ρðmÞg. Finally, we note that differentiating P
N
r;s¼1 ΔξS

ðr;sÞ
iπ twice with respect to

distinct positions, x1 and x2, leaves a function only of x1 and x2 so that a further derivative with respect to any x3 kills the
result. For this reason, we recognize that the final line of (A9) is precisely the action of m derivatives =∂x on the global
exponent. Substituting this into (A3), we arrive at

Kπðn;N; ξþ ΔξÞ ¼
Xn
m¼0

X
permfρmg

� Yn
j¼mþ1

=̄AðxρðjÞÞ
YN
k¼1

K
x0
πðkÞxk
k

�
ξ

�Ym
i¼1

i∂xρðiÞ

�
e−

P
N
l;m¼1

ΔξS
ðl;mÞ
iπ : ðA10Þ

In fact, we can improve this to give an iterative formula relating changes in the various matrix elements. We define a new
“difference” operator, ▴ξ, which returns the nonmultiplicative terms in the transformations of matrix elements as follows:
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▴ξh� � �iξ ¼ h� � �iξþΔξ − h� � �iξe−ΔξS; ðA11Þ

where we have denoted ΔξS ¼ P
l;m ΔξS

ðl;mÞ
iπ , allowing the case that the sum is empty. To give some examples,

▴ξ

�YN
j¼1

K
x0
πðjÞxj
j ;

�
ξ

¼ 0 ðA12Þ

▴ξ

�
=̄A1

YN
j¼1

K
x0
πðjÞxj
j

�
ξ

¼
�YN

j¼1

K
x0
πðjÞxj
j

�
ξ

i∂1e
−
P

N
l;m¼1

ΔξS
ðl;mÞ
iπ ; ðA13Þ

¼ ▴ξ

�
i∂1

YN
j¼1

K
x0
πðjÞxj
j

�
ξ

: ðA14Þ

From these relations follows immediately the LKF transformation for the propagator, which, in this notation, takes the form,

▴ξh½mþ i∂ 0 − =̄Aðx01Þ�Kx0;x
1 i ¼ 0: ðA15Þ

To include derivatives, we note that there is a commutator ½▴ξ; ∂μ� ¼ ∂μe−ΔξS, which follows by direct computation from the
definition (A11). This allows a nice way of arriving at the last line of (A14).
With this notation and using the properties of ▴ξ, we can convert (A10) into a stronger statement that is equivalent to the

LKFT. This requires moving the derivatives acting on the LKF exponent inside of the expectation value. To achieve this, we
first prove a general property: With AðĀÞ, any function of Ā we have, for n ≥ 1,

�
A
YN
k¼1

K
x0
πðkÞxk
k

�
i∂ 0

1i∂ 0
2…i∂ 0

ne−ΔξS ¼ ð−1Þn−1
�
▴ξ

�
i∂ 0

1i∂ 0
2…i∂ 0

nA
YN
k¼1

K
x0
πðkÞxk
k

�

−
Xn
m¼1

X
fρmg

ð−1Þm−1i∂ 0
ρð1Þ…i∂ 0

ρðmÞ▴ξ

�
i∂ 0

ρðmþ1Þ…i∂ 0
ρðnÞA

YN
k¼1

K
x0
πðkÞxk
k

��
; ðA16Þ

where the sum over fρmg is over the selection of m out of the n derivatives. Although this very general result follows
from repeated application of the commutator, it is quicker to use induction. For n ¼ 1, we may repeat the same steps in
(A14) with the additional insertion of A, since the commutator holds; the n ¼ 2 case, which is needed to check
the alternating sign, is discussed below. Assuming then, that the relation holds for n derivatives, we write

hAQ
N
k¼1 K

x0
πðkÞxk
k ii=∂ 0

1i=∂ 0
2…i=∂ 0

nþ1e
−ΔξS as

i∂ 0
nþ1

��
A
YN
k¼1

K
x0
πðkÞxk
k

�
i∂ 0

1i∂ 0
2…i∂ 0

ne−ΔξS

�
−
�
i∂ 0

nþ1A
YN
k¼1

K
x0
πðkÞxk
k

�
i∂ 0

1i∂ 0
2…i∂ 0

ne−ΔξS; ðA17Þ

where, in the second term, the derivative =∂ 0
nþ1 does not act beyond the expectation value. The inductive hypothesis

immediately shows that these two terms simply split up contributions, in which, =∂ 0
nþ1 is outside or inside of the expectation

value, respectively, and hence, give the result for nþ 1 derivatives.
We can use this immediately in (A10) to move derivatives inside of the expectation values. Then, the LKFT corresponds

to the fact that all of the terms coming from the second line of (A16), involving derivatives of the variations, cancel between
themselves, and we are left with

▴ξ

�Yn
i¼1

=̄AiðxiÞ
YN
j¼1

K
x0
πðjÞxj
j

�
ξ

¼
Xn
m¼1

X
fρmg

ð−1Þm−1
▴ξ

�Ym
i¼1

i∂ 0
ρðiÞ

Yn
j¼mþ1

=̄AρðjÞ
YN
k¼1

K
x0
πðkÞxk
k

�
ξ

; ðA18Þ

where the sum over permutations sums all possible replacements of m of the Ā with partial derivatives. Indeed, the n ¼ 1
case has been given in (A14), and the general case is proven with strong induction as follows.
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We suppose the result holds for up to n insertions and use (A10) and (A16) for the case of nþ 1 insertions. This leads
straightforwardly to

▴ξ

�Ynþ1

i¼1

=̄AiðxiÞ
YN
j¼1

K
x0
πðjÞxj
j

�
ξ

¼
Xnþ1

m¼1

X
fρmg

ð−1Þm−1
�
▴ξ

�Ym
i¼1

i∂ 0
ρðiÞ

Ynþ1

j¼mþ1

=̄AρðjÞ
YK
k¼1

K
x0
πðkÞxk
k

�
ξ

−
Xm
p¼1

X
fσpg

Yp
q¼1

ð−1Þp−1i∂ 0
ρðσðqÞÞ▴ξ

� Ym
r¼pþ1

i∂ 0
ρðσðrÞÞ

Ynþ1

j¼mþ1

=̄AρðjÞ
YK
k¼1

K
x0
πðkÞxk
k

�
ξ

�
: ðA19Þ

The terms on the first line are precisely the result desired; it remains to show that the sum of terms coming from the second
line cancel. To verify this, we consider the sum of all terms that contain p ¼ s derivatives outside of the variation ▴ξ. The
terms involving such derivatives are

Xnþ1

m¼s

X
fρmg

ð−1Þmþs−1
X
fσsg

Ys
q¼1

i∂ 0
ρðσðqÞÞ▴ξ

� Ym
r¼sþ1

i∂ 0
ρðσðrÞÞ

Ynþ1

j¼mþ1

=̄AρðjÞ
YK
k¼1

K
x0
πðkÞxk
k

�
ξ

: ðA20Þ

Of these terms, when m ¼ s, there are no derivatives in the expectation value, and there are n or fewer factors of Ā. The
inductive hypothesis shows that this term,

−
X
fρsg

X
fσsg

Ys
q¼1

i∂ 0
ρðσðqÞÞ▴ξ

� Ynþ1

j¼sþ1

=̄AρðjÞ
YK
k¼1

K
x0
πðkÞxk
k

�
ξ

; ðA21Þ

cancels against the terms that have one or more derivatives inside the brackets. This completes the proof.
The immediate application is to derive the LKF transformation. It is clear that

▴ξ

�Yn
i¼1

½mþ i∂ 0
i − =Aγ

i − =̄Ai�
YK
k¼1

K
x0
πðkÞxk
k ½Aγ þ Ā�

�
ξ

¼ 0; ðA22Þ

since the signs and the derivatives in the variation of ▴ξh
Q

n
i¼1 =̄AiðxiÞ

Q
N
j¼1K

x0
πðjÞxj
j iξ given in (A18) cancel term by term

against the variations with fewer =̄A. To illustrate how the cancellation works, we work out the n ¼ 2 case explicitly,
organizing the calculation according to powers of ½m − =Aγ� whose gauge variation is trivial:

▴ξh½mþ i∂ 0
1 − =Aγ

1 − =̄A1�½mþ i∂ 0
2 − =Aγ

2 − =̄A2�K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ;

¼ ½m − =Aγ
1�½m − =Aγ

2�▴ξhK
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ; ðA23Þ

þ½m − =Aγ
1�▴ξh½i∂ 0

2 − =̄A2�K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ; ðA24Þ

þ½m − =Aγ
2�▴ξh½i∂ 0

1 − =̄A1�K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ; ðA25Þ

þ▴ξh½i∂ 0
1 − =̄A1�½i∂ 0

2 − =̄A2�K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ: ðA26Þ

Now, we already know that ▴ξhK
x0
πð1Þx1
1 ½Aγ þ Ā�Kx0

πð2Þx2
2 ½Aγ þ Ā�iξ ¼ 0, and, in fact, our n ¼ 1 case from above shows that

the second two lines also vanish. For the last line, we begin with the term involving =̄A1=̄A2:

▴ξh=̄A1=̄A2K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ ¼ −▴ξhi∂ 0

1i∂ 0
2K

x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ þ ▴ξhi∂ 0

1=̄A2K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ þ ▴ξh=̄A1i∂ 0

2K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ; ðA27Þ

which cancels the other terms that arise in the final line. The variations therefore sum to zero.
For completeness, we also exhibit how the result (A18), used in this illustration, arises in this simple case. We can use

(A10) and the commutator to write
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▴ξh=̄A1=̄A2K
x0
πð1Þx1
1 K

x0
πð1Þx1
k iξ ¼ ½h=̄A2K

x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξi∂ 0

1 þ h=̄A1K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξi∂ 0

2 þ hKx0
πð1Þx1
1 K

x0
πð2Þx2
2 iξi∂ 0

1i∂ 0
2�e−ΔξS ðA28Þ

¼ ▴ξhi∂ 0
1=̄A2K

x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ − i∂ 0

1▴ξh=̄A2K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ

þ ▴ξhi∂ 0
2=̄A1K

x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ − i∂ 0

2▴ξh=̄A1K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ

− ▴ξhi∂ 0
1i∂ 0

2K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ þ i∂ 0

1▴ξhi∂ 0
2K

x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ

þ i∂ 0
2▴ξhi∂ 0

1K
x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ − i∂ 0

1i∂ 0
2▴ξhK

x0
πð1Þx1
1 K

x0
πð2Þx2
2 iξ: ðA29Þ

The last two lines can be verified by direct calculation (the last term vanishes, of course) to verify (A16) and (A27). The
n ¼ 1 case can again be used to cancel all but the three terms that make up (A18). In the course of working out this example
in detail, we have also verified the alternating signs that enter the equations (A16) and (A18).
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