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For electromagnetic field theories, canonical energy-momentum conservation laws can be derived from
the underpinning spacetime translation symmetry according to the Noether procedure. However, the
canonical energy-momentum tensors (EMTs) are neither symmetric nor gauge-symmetric (gauge
invariant). The Belinfante-Rosenfeld (BR) method is a well-known procedure to symmetrize the EMTs,
which also renders them gauge symmetric for first-order field theories. High-order electromagnetic field
theories appear in the study of gyrokinetic systems for magnetized plasmas and the Podolsky system for the
radiation reaction of classical charged particles. For these high-order field theories, gauge-symmetric EMTs
are not necessarily symmetric and vice versa. In the present study, we develop a new gauge-symmetrization
method for EMTs in high-order electromagnetic field theories. The Noether procedure is carried out using
the Faraday tensor Fμν, instead of the 4-potential Aμ, to derive a canonical EMT Tμν

N . We show that the
gauge-dependent part of Tμν

N can be removed using the displacement-potential tensor F σμν ≡DσμAν=4π,
where Dσμ is the antisymmetric electric displacement tensor. This method gauge-symmetrizes the EMT
without necessarily making it symmetric, which is adequate for applications not involving general
relativity. For first-order electromagnetic field theories, such as the standard Maxwell system, F σμν reduces
to the familiar BR superpotential Sσμν, and the method developed can be used as a simpler procedure to
calculate Sσμν without employing the angular momentum tensor in 4D spacetime. When the electromag-
netic system is coupled to classical charged particles, the gauge-symmetrization method for EMTs is shown
to be effective as well.

DOI: 10.1103/PhysRevD.104.025013

I. INTRODUCTION

In classical field theories, one can derive canonical
energy-momentum tensors (EMTs) Tμν

N from the under-
pinning spacetime translation symmetry using the Noether
procedure [1]. However, for classical systems of electro-
magnetic field, the canonical EMTs are neither symmetric
with respect to tensor indices nor electromagnetic gauge
invariant. Gauge dependence is unphysical, and nonsym-
metric EMT is not consistent with general relativity. In the
present study, we will call an EMT symmetric if it is
symmetric with respect to tensor indices, and gauge sym-
metric if it is gauge invariant. To date, much effort has been
focused on symmetrizing the EMTs (with respect to tensor
indices), while constructing gauge-symmetric EMTs is
oftentimes a challenging task for general systems [2–7].
The first method for symmetrizing EMTs was discov-

ered by Belinfante [8,9] and Rosenfeld [10], who added
a divergence-free tensor ∂σSσμν to obtain a symmetric
EMT, i.e.,

Tμν
BR ¼ Tμν

N þ ∂σSσμν; ð1Þ

∂μ∂σSσμν ¼ 0: ð2Þ

Here, Tμν
BR is Belinfante-Rosenfeld (BR) EMT, and Sσμν is

known as BR superpotential that depends on the angular
momentum tensor and is antisymmetric with respect to σ
and μ [see Eq. (54)]. General relativity suggests another
method to generate symmetric EMTs by varying the action
with respect to the spacetime metric [11,12], which was
modified by Gotay and Marsden, who employed con-
straints to define symmetric EMTs [13,14]. The relations
between these three types of symmetric EMTs have been
discussed in the literature [15–17].
In many systems, including the standard Maxwell

system (6), the symmetrization of Tμν
N also renders it gauge

symmetric. But for general electromagnetic field theories
with high-order field derivations, symmetry with respect to
tensor indices in general does not imply gauge symmetry
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and vice versa. High-order electromagnetic field theories
appear in the study of gyrokinetic systems [18–20] for
magnetized plasmas and the Podolsky system [21,22]
for the radiation reaction of classical charged particles.
In the present study, we propose a new method to gauge-
symmetrize the canonical EMTs Tμν

N in general electro-
magnetic field theories with high-order field derivations.
Our method removes the gauge dependence, but does not
necessarily symmetrize the EMTs. In applications that do
not involve general relativity, gauge-symmetrized EMTs
are adequate.
We first consider the Lagrangian density LF which

only depends on the Faraday tensor Fμν, i.e., LF ¼
LFðxμ; Fμν; DFμν;…; DðnÞFμνÞ. We reformulate the equa-
tion of motion for the field by the variational principle with
respect to the Faraday tensor Fμν, instead of the 4-potential
Aμ as in the standard field theory. The Euler-Lagrange (EL)
equation is cast into an explicitly gauge-symmetric form.
The canonical EMT is then separated into a gauge-invariant
part and a gauge-dependent part, the latter of which
contains the antisymmetric electric displacement tensor
Dμν. We define a superpotential F σμν ≡DσμAν=4π, called
displacement-potential tensor, whose divergence Tμν

0 ≡
DσF σμν as a second order tensor is divergence free with
respect to the first index, i.e.,DμT

μν
0 ≡ 0. Adding Tμν

0 to the
canonical EMT Tμν

N leads to a gauge-symmetric EMT
Tμν
GS ¼ LFη

μν þ 1
4πD

μσFν
σ − Σμν. Here, the tensor Σμν,

defined in Eq. (36), is the gauge invariant. It is simpler
to calculate the displacement-potential tensor F σμν than
the BR superpotential Sσμν, and the former only gauge-
symmetrizes the canonical EMT without render it sym-
metric (with respect to tensor indices). For first-order
electromagnetic field theories, such as the standard
Maxwell system, F σμν reduces to the familiar BR super-
potential Sσμν, and the method developed here can be used
as a simpler procedure to calculate Sσμν without employing
the angular momentum tensor in 4D spacetime.
In addition, when the electromagnetic system is coupled

with classical charged particles, the Lagrangian density
is generally written as LF ¼ LFðxμ;Xa; _Xa; Aμ; Fμν;
DFμν;…; DðnÞFμνÞ. If the 4-potential Aμ is minimally
coupled with particle’s trajectory and LF depends on Aμ

linearly, we find that the method is effective as well, even
though the Lagrangian density is not gauge symmetric in
general.
The paper is organized as follows. In Sec. II, we

describe the gauge-symmetrization method for the
EMT in a general high-order electromagnetic field
theory, and highlight the difference in comparison with
the BR method using the example of the Podolsky
system [21,22]. Section III shows how the gauge-
symmetrization method for the EMT works when the
electromagnetic system is coupled with classical charged
particles.

II. EXPLICITLY GAUGE-SYMMETRIC
CONSERVATION LAWS FOR HIGH-ORDER

ELECTROMAGNETIC SYSTEMS

A. Explicitly gauge-symmetric
Euler-Lagrange equation

The Lagrangian density of a general electromagnetic
system is written as

LF ¼ LFðxμ; DAμ;…; Dðnþ1ÞAμÞ; ð3Þ

where Aμ ¼ ðφ;AÞ is the 4-potential defined on 4D
Minkowski space endowed with a Lorentz metric
ημν ¼ diagf1;−1;−1;−1g. Here, Aμ ¼ ημνAν and D ¼
ðð1=cÞ∂t;∇Þ is the derivative operator over spacetime.
The EL equation of the Lagrangian density is

Eμ
AðLFÞ ¼ 0; ð4Þ

where the Euler operator Eμ
A of Aμ is defined by

Eμ
A ≡Xnþ1

i¼1

ð−1ÞiDμ1 � � �Dμi

∂
∂ð∂μ1 � � � ∂μiAμÞ

: ð5Þ

Note that the Lagrangian densityLF depends on derivatives
of A with respect to the spacetime coordinates up to
the (nþ 1)th order. It includes the standard Maxwell
system, i.e.,

LF ¼ −
1

16π
FμνFμν; ð6Þ

as a special case, where

Fμν ¼ ∂μAν − ∂νAμ: ð7Þ

is the Faraday tensor. In Eq. (6), LF depends only on first-
order derivatives of A. High-order electromagnetic field
theories appear in the study of gyrokinetic systems [18–20]
for magnetized plasmas and radiation reaction for classical
charged particles [21,22]. Physics requires that the EL
equation (4) is gauge symmetric, i.e., invariant under the
gauge transformation Aμ ↦ Aμ þ ∂μf. In the present study,
we assume that LF is explicitly gauge symmetric in the
form of

LF ¼ LFðxμ; Fμν; DFμν;…; DðnÞFμνÞ: ð8Þ

From the variational principle, δA ¼ δ
R
LFd4x ¼ 0, we

have
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0 ¼ δ

Z
LFd4x ¼

Z
½Eμν

F ðLFÞδFμν�d4x

¼
Z

½Eμν
F ðLFÞð∂μδAν − ∂νδAμÞ�d4x

¼ −
Z

∂μ½2E½μν�
F ðLFÞ�δAνd4x; ð9Þ

where the boundary term has been dropped, and Eμν
F

denotes the Euler operator for the Faraday tensor Fμν

defined by

Eμν
F ðLFÞ ¼

∂LF

∂Fμν
þ
Xn
i¼1

ð−1ÞiDμ1 � � �Dμi

∂LF

∂∂μ1 � � � ∂μiFμν
:

ð10Þ

In Eq. (9), superscript ½μν� represents antisymmetrization
with respect to μ and ν, i.e.,

E½μν�
F ðLFÞ≡ 1

2
½Eμν

F ðLFÞ − Eνμ
F ðLFÞ�: ð11Þ

Due to the arbitrariness of δAν in Eq. (9), the equation of
motion for the system is

∂μDμν ¼ 0; ð12Þ

where

Dμν ≡ −8πE½μν�
F ðLFÞ ð13Þ

is the electric displacement tensor.
In Sec. III, we will consider electromagnetic systems

coupled with charged particles, and the Lagrangian density
L will depend on 4-potential Aμ i.e.,

L ¼ Lðxμ; Aμ; Fμν;…; DðnÞFμνÞ: ð14Þ

Equation (12) then becomes

∂μDμν ¼ 4π

c
Jνf; ð15Þ

where

Jνf ≡ −c
∂LF

∂Aν
ð16Þ

is the free 4-current.
For the standard Maxwell system (6) without free

4-current, the electric displacement tensor is the Faraday
tensor, i.e., Dμν ¼ Fμν, and Eq. (12) reduces to Maxwell’s
equation

∂μFμν ¼ 0: ð17Þ

B. Infinitesimal criterion of symmetry
and conservation laws

A continuous symmetry of the action A is a group of
transformation

ðxμ; AνÞ ↦ ðx̃μ; ÃνÞ ¼ gϵ · ðxμ; AνÞ; ð18Þ

such that

Z
LFðx̃μ; F̃μν; D̃F̃μν;…; D̃ðnÞF̃μνÞd4x̃

¼
Z

LFðxμ; Fμν; DFμν;…; DðnÞFμνÞd4x; ð19Þ

where gϵ constitutes a continuous group of the trans-
formations parametrized by ϵ [23]. The infinitesimal
generator of the transformation group is

v ≔
d
dϵ

����
0

gϵ · ðxμ; AνÞ ¼ ξμ
∂
∂xμ þ ϕμ

∂
∂Aμ

: ð20Þ

By rewriting the symmetry condition (19) as

d
dϵ

����
0

Z
LFðx̃μ; F̃μν; D̃F̃μν;…; D̃ðnÞF̃μνÞd4x̃ ¼ 0; ð21Þ

we can derive the following infinitesimal version of the
symmetry condition,

prðnþ1ÞvðLFÞ þ LFDμξ
μ ¼ 0; ð22Þ

where prðnþ1Þv is the prolongation of v. The standard
prolongation formula for prðnþ1Þv can be found in
Ref. [23]. In the present study, we rewrite the prolongation
formula with respect to Fμν, instead of Aμ, as

prðnþ1Þv ¼ vþ ½Gσρ þ ξσDσFσρ�
∂LF

∂Fσρ

þ
Xn
i¼1

½Dμ1 � � �DμiGσρ þ ξσDσDμ1 � � �DμiFσρ�

×
∂LF

∂ð∂μ1 � � � ∂μiFσρÞ
; ð23Þ

where

Gσρ ¼ ∂σQρ − ∂ρQσ ≡ 2∂ ½σQρ� ð24Þ

and

Qν ¼ ϕν − ξσDσAν; ð25Þ

is a characteristic of the Lie algebra.

GAUGE-SYMMETRIZATION METHOD FOR ENERGY-MOMENTUM … PHYS. REV. D 104, 025013 (2021)

025013-3



Combining Eqs. (12) and (22) generates the conservation
law corresponding to the symmetry,

Dμ

�
LFξ

μ −
1

4π
DμνðLFÞQν þ Pμ

�
¼ 0; ð26Þ

where

Pμ ¼
Xn
i¼1

Xi

j¼1

ð−1Þjþ1ðDμjþ1
� � �DμiGσρÞ

×

�
Dμ1 � � �Dμj−1

∂LF

∂ð∂μ1 � � � ∂μj−1∂μ∂μjþ1
� � � ∂μiFσρÞ

�
:

ð27Þ

The conservation law given by Eq. (26) is not gauge-
symmetric in general.

C. Gauge-symmetrization of the canonical EMT

Now we assume the high-order electromagnetic field
theory admits the spacetime translation symmetry, i.e.,

∂LF

∂xμ ¼ 0; ð28Þ

and derive the corresponding energy-momentum conser-
vation law. Because of Eq. (28), the action is invariant
under the spacetime translation

ðxμ; AνÞ ↦ ðxμ þ ϵXμ
0; AνÞ; ð29Þ

where Xμ
0 is 4D constant vector field. The infinitesimal

generator v, characteristic Qν, and Gσρ in Eq. (24) are

v ¼ Xμ
0

∂
∂xμ ; ð30Þ

Qν ¼ −Xν
0∂νAσ; ð31Þ

Gσρ ¼ −Xν
0∂νFσρ: ð32Þ

The Lagrangian density satisfies the infinitesimal criterion
because

Xμ
0

∂LF

∂xμ ¼ 0; ð33Þ

which implies a conservation law. Substituting
Eqs. (30)–(32) into Eq. (26), we obtain the canonical
energy-momentum conservation law according the stan-
dard Noether procedure,

DμT
μν
N ¼ 0; ð34Þ

Tμν
N ¼ LFη

μν þ 1

4π
Dμσ∂νAσ − Σμν; ð35Þ

Σμν ¼
Xn
i¼1

Xi

j¼1

ð−1Þjþ1ðDμjþ1
� � �Dμi∂νFσρÞ

×

�
Dμ1 � � �Dμj−1

∂LF

∂ð∂μ1 � � � ∂μj−1∂μ∂μjþ1
� � � ∂μiFσρÞ

�
:

ð36Þ

In Eq. (34), Tμν
N is the canonical EMT derived from the

standard Noether procedure.
Obviously, Tμν

N depends on the gauge as expected. In the
expression of Tμν

N given by Eq. (35), the gauge dependence
comes from the second term, and the first and third terms
are gauge symmetric. Now we show how to gauge-
symmetrize Tμν

N . Note that because electric displacement
tensor Dσμ is antisymmetric, the following equations hold,

DμðDσF σμνÞ ¼ 0; ð37Þ

F σμν ≡ 1

4π
DσμAν: ð38Þ

Here, F σμν is a superpotential that is antisymmetric with
respect to the first two indices. For easy reference, we will
call F σμν displacement-potential tensor. The divergence of
F σμν defines a divergence-free tensor, i.e.,

Tμν
0 ≡DσF σμν ¼ −

1

4π
Dμσ∂σAν; ð39Þ

where the field equation (12) have been used. When Tμν
0 is

added to Tμν
N , the gauge dependence is removed, i.e.,

DμT
μν
GS ¼ 0; ð40Þ

Tμν
GS ≡ Tμν

N þ Tμν
0 ¼ LFη

μν þ 1

4π
DμσFν

σ − Σμν; ð41Þ

where Tμν
GS is the gauge-symmetric EMT.

It is worthwhile to mention that we derived the gauge-
symmetrized EMT Tμν

GS from the expression of Tμν
N in

Eq. (35), which is calculated from the prolongation with
respect to Fμν. On the other hand, had we started from
Eq. (3) and calculated the EMT from the prolongation with
respect to Aμ, we would have obtained a canonical EMT in
the form of

Tμν
N ¼ LFη

μν − Σ̂μν; ð42Þ

where
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Σ̂μν ¼
Xnþ1

i¼1

Xi

j¼1

ð−1Þjþ1Dμjþ1
� � �Dμið∂νAσÞ

×

�
Dμ1 � � �Dμj−1

∂LF

∂ð∂μ1 � � � ∂μj−1∂μ∂μjþ1
� � � ∂μiAσÞ

�
:

ð43Þ

However, different from the situation in Eq. (35), every
term in Eq. (43) is gauge dependent, making the gauge
symmetrization difficult, if not impossible.
For the standard Maxwell electromagnetic system speci-

fied by Eq. (6), the electric displacement tensor reduces to
the Faraday tensor Fσμ, and the displacement-potential
tensorF σμν reduces toFσμAν=4π, coincidingwith the tensor
used by Blaschke et al. for the Uð1Þ gauge theory [24].

D. Comparison with the BR method

As described above, the method proposed in the present
study employs displacement-potential tensor F σμν to
gauge-symmetrize the EMT, while the BR method use
the superpotential Sσμν to symmetrize the EMT. In this
subsection, we discuss the difference between the displace-
ment-potential tensor F σμν in Eq. (37) and the BR super-
potential Sσμν. To calculate Sσμν, we need to first derive the
4D angular momentum conservation laws generated by the
Lorentz symmetry. Assume that system is invariant under
rotational transformation in 4D spacetime

ðxμ; AνÞ ↦ ðx̃μ; ÃνÞ ¼ ðΛμσ
ϵ xσ;Λνσ

ϵ AσÞ; ð44Þ

where fΛμσ
ϵ g is one-parameter subgroup of the Lorentz

group. The infinitesimal generator v, the characteristic Qρ,
and the term Gsρ are calculated respectively by Eqs. (20),
(24) and (25) as

v ¼ d
dϵ

����
0

ðΛμσ
ϵ xσ;Λνσ

ϵ AσÞ ¼ ðΩμσxσ;ΩμσAσÞ; ð45Þ

Qρ ¼ ϕρ − ξαDαAρ ¼ ΩραAα −ΩαβxβDαAρ; ð46Þ

Gsρ ¼ ΩραFα
s −ΩsαFα

ρ −Ωαβxβ∂αFsρ; ð47Þ

where the antisymmetric tensor Ωμσ ¼ ½dΛμσ
ϵ =dϵ�0 is the

Lie algebra element of the Lorentz group. Substituting
Eqs. (45)–(47) into Eq. (26), we obtain the angular
momentum conservation law in 4D spacetime,

ΩνσDμfxσTμν
N þ 2E½μν�

F ðLFÞAσ þ Lμνσg ¼ 0; ð48Þ

which can be rewritten as

DμMμνσ ¼ 0; ð49Þ

where

Mμνσ ¼ xσTμν
N − xνTμσ

N þ Sμνσ ð50Þ

is the canonical angular momentum tensor. In the above
equations,

Lμνσ ¼
Xn
i¼1

Xi

j¼1

ð−1Þjþ1Dμjþ1
� � �DμiðFσ

ρÞDμ1 � � �Dμj−1

×

� ∂L
∂ð∂μ1 � � � ∂μj−1∂μ∂μjþ1

� � � ∂μiFρνÞ
−

∂L
∂ð∂μ1 � � � ∂μj−1∂μ∂μjþ1

� � � ∂μiFνρÞ
�

−
�Xn
i¼1

Xi

j¼1

ð−1Þjþ1Dμjþ1
� � �Dμiðxσ∂νFsρÞDμ1 � � �Dμj−1

∂L
∂ð∂μ1 � � � ∂μj−1∂μ∂μjþ1

� � � ∂μiFsρÞ
− xσΣμν

�
ð51Þ

1

2
Sμνσ ¼ E½μν�

F ðLFÞAσ − E½μσ�
F ðLFÞAν þ Δμνσ; ð52Þ

Δμνσ≡2Lμ½νσ�

¼
Xn
i¼1

Xi

j¼1

ð−1Þjþ1Dμjþ1
� ��Dμi

�
ðFσ

ρÞDμ1 � ��Dμj−1

� ∂L
∂ð∂μ1 � ��∂μj−1∂μ∂μjþ1

� � �∂μiFρνÞ
−

∂L
∂ð∂μ1 � � �∂μj−1∂μ∂μjþ1

� ��∂μiFνρÞ
�

−ðFν
ρÞDμ1 � ��Dμj−1

� ∂L
∂ð∂μ1 � ��∂μj−1∂μ∂μjþ1

�� �∂μiFρσÞ
−

∂L
∂ð∂μ1 � � �∂μj−1∂μ∂μjþ1

� � �∂μiFσρÞ
��

−
Xn
i¼1

Xi

j¼1

ð−1Þjþ1Dμjþ1
� ��Dμiðxσ∂νFsρ−xν∂σFsρÞDμ1 � � �Dμj−1

∂L
∂ð∂μ1 � ��∂μj−1∂μ∂μjþ1

� ��∂μiFsρÞ
þxσΣμν−xνΣμσ; ð53Þ
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where the superscript ½μν� denotes antisymmetrization with
respect to μ and ν.
The BR superpotential Sσμν is defined from the tensor

Sσμν in Eq. (49) as [8–10]

Sσμν ≡ 1

2
½Sσνμ − Sμνσ − Sνμσ�: ð54Þ

It is clear from Eqs. (51)–(53) that Sσμν andF σμν are related
as follows,

Sσμν ¼ F σμν þ 1

2
½Δσνμ − Δμνσ − Δνμσ�: ð55Þ

In the BR theory, the EMT Tμν
BR defined in Eq. (1) is

symmetric with respect to μ and ν because

T ½μν�
BR ¼ T ½μν�

N þ ∂σSσ½μν� ¼ 0; ð56Þ

where we have made use of

Sσ½μν� ¼ −
1

2
Sσμν; T ½μν�

N ¼ 1

2
∂σSσμν; ð57Þ

which can be easily derived from Eqs. (49) and (54). For
the classical electromagnetic systems discussed in the
present study, Tμν

BR is also gauge symmetric. However, this
fact is difficult to establish directly from the definition of
Tμν
BR through Eqs. (1), (42), (43), (52) and (53). But it can

easily proved from the formalism we developed as follows.
Because the tensor Δ in Eq. (55) is gauge symmetric, we
know that the BR EMT Tμν

BR is gauge symmetric from the
fact that Tμν

GS is gauge symmetric and connection between
Tμν
BR and Tμν

GS via Eqs. (1), (39), (41), and (55). Our theory
clarifies which term implicitly contained in the BR pro-
cedure is responsible for the gauge symmetrization, and
thus leads to a simpler gauge-symmetrization method.
Specifically, it is the displacement-potential tensor F σμν

that removes the gauge dependence, and the gauge-
symmetrization process can be made simpler without using
the canonical angular momentum tensorMμνσ as in the BR
method.
Although the BR method always gauge-symmetrizes the

classical electromagnetic systems, it fails for systems in
which quantum matter fields minimally couple to gauge
fields, such as the Proca system. This fact was first studied
by Blaschke et al. [24] and a gauge-symmetric method for a
lowest order field theory was developed. However, for
high-order gauge fields, a general method has not been
established to date. The result in the present study suggests
a possible approach. We can first reformulate the equation
of motion with respect to the gauge-strength tensor Fa

μν, and
convert the particle derivatives for matter fields to covariant
derivatives. This will separate the canonical EMT into
gauge-symmetric and gauge-dependent parts, and the
gauge-symmetrization procedure developed here might

be applicable. Since the present study is focused on
classical systems, the corresponding method for general
quantum field systems will be investigated in the future.
Equation (55) shows that in general F σμν is different

from Sσμν whenΔσνμ is nonvanishing. For a first-order field
theory, such as the standard Maxwell system (6), n ¼ 1 and
the last three terms vanish such that Sσμν ¼ F σμν. In this
situation, adding Tμν

0 ≡DσF σμν to Tμν
N will render it both

symmetric and gauge-symmetric, and the method devel-
oped here can be used as a simpler procedure to calculate
the BR superpotential Sσμν without the necessity to
calculate the angular momentum tensor in 4D spacetime.

E. EMT for Podolsky system

As an example of high-order electromagnetic field
theory, we consider the Podolsky system [21,22], which
was proposed to study the radiation reaction of classical
charged particles. The Podolsky Lagrangian density is

LPo ¼
1

8π

�
E2 − B2 þ a2

�
ð∇ ·EÞ2 −

�
∇×B −

1

c
∂tE

�
2
��

ð58Þ

or in a manifestly covariant form

LPo ¼ −
1

16π
FσρFσρ −

a2

8π
∂σFσλ∂ρFρλ: ð59Þ

The field equation for this system can be easily obtained
using Eq. (12) as [22]

ð1 − a2∂σ∂σÞ∂μFμν ¼ 0:

We substitute the Lagrangian density (59) into Eq. (35)
to obtain the canonical EMT

4πTμν
N ¼

�
−
1

4
FσρFσρ −

a2

2
∂σFσλ∂ρFρλ

�
ημν

þ ½Fμσ − a2ð∂μ∂λFλσ − ∂σ∂λFλμÞ�∂νAσ

þ a2ð∂νFμ
ρÞð∂σFσρÞ; ð60Þ

where the following equations are used,

∂
∂ð∂σFμνÞ

½∂αFαλ∂ρFρλ� ¼ 2ησμ∂λFλν; ð61Þ

Dσ
∂

∂ð∂σFμνÞ
½∂αFαλ∂ρFρλ� ¼ 2∂μ∂σFσν; ð62Þ

Eμσ
F ¼ ∂LPo

∂Fμσ
−Dρ

∂LPo

∂∂ρFμσ
¼−

1

8π
Fμσþ a2

4π
∂μ∂λFλσ; ð63Þ

PEIFENG FAN, JIANYUAN XIAO, and HONG QIN PHYS. REV. D 104, 025013 (2021)

025013-6



2E½μσ�
F ¼ −

1

4π
Fμσ þ a2

4π
ð∂μ∂λFλσ − ∂σ∂λFλμÞ; ð64Þ

Σμν ¼ ð∂νFσρÞ
∂LPo

∂ð∂μFσρÞ
¼ −

a2

4π
∂νFσρ½ημσ∂λFλρ�

¼ −
a2

4π
ð∂νFμ

ρÞð∂σFσρÞ: ð65Þ

The displacement-potential tensor is

F μνσ ≡ 1

4π
DσμAν

¼ 1

4π
½−Fμσ þ a2ð∂μ∂λFλσ − ∂σ∂λFλμÞ�Aν; ð66Þ

and

4π∂σF μνσ ¼ ½−Fμσ þ a2ð∂μ∂λFλσ − ∂σ∂λFλμÞ�∂σAν: ð67Þ

Adding Eq. (67) to Eq. (60), we obtain the gauge-
symmetric EMT,

4πTμν
GS ¼

�
FμσFν

σ −
1

4
ðFσρFσρÞημν

�
−
a2

2
ð∂σFσλ∂ρFρλÞημν

− a2Fν
σð∂μ∂ρFρσÞ þ a2Fν

σð∂σ∂ρFρμÞ
þ a2ð∂νFμ

ρÞð∂σFσρÞ: ð68Þ

It is easy to see that Tμν
GS for the Podolsky system is not

symmetric, i.e., Tμν
GS ≠ Tνμ

GS.
To calculate the BR EMT Tμν

BR for the Podolsky system,
we evaluate the Δμνσ term in Eq. (54). Using Eq. (53),
we have

Δμνσ ¼ Fσ
ρ

� ∂LPo

∂ð∂μFρνÞ
−

∂LPo

∂ð∂μFνρÞ
�
− Fν

ρ

� ∂LPo

∂ð∂μFρσÞ
−

∂LPo

∂ð∂μFσρÞ
�

¼ −
a2

4π
½Fμσ∂ρFρν − ημνðFσ

ρ∂λFλρÞ − Fμν∂ρFρσ þ ημσFν
ρð∂λFλρÞ�: ð69Þ

Substituting Eqs. (54) and (69) into Eq. (1), we obtain the BR EMT as

4πTμν
BR ¼ 4πTμν

GS þ 2π½Δσνμ − Δμνσ − Δνμσ�

¼
�
FμσFν

σ −
1

4
ðFσρFσρÞημν

�
þ a2

2
½ð∂σFσρÞð∂λFλρÞ − 2Fσ

ρð∂σ∂λFλρÞ�ημν

þ a2½Fνσð∂σ∂ρFρμÞ þ Fμσð∂σ∂ρFρνÞ − ð∂σFσμÞð∂ρFρνÞ − Fν
σð∂μ∂ρFρσÞ − Fμ

σð∂ν∂ρFρσÞ�: ð70Þ

It is easy to verify that Tμν
BR for the Podolsky system is both

symmetric and gauge-symmetric.

III. GAUGE-SYMMETRIC EMTs FOR
ELECTROMAGNETIC SYSTEMS COUPLED
WITH CLASSICAL CHARGED PARTICLES

For self-consistent electromagnetic systems with free
currents, the electromagnetic fields are coupled with
charged particles. In this section, we apply the theory
established in Sec. II to derive gauge-symmetric EMTs for
electromagnetic systems coupled with classical charged
particles.
Due to the intrinsic complexity of the dynamics for

interaction systems, reduced theoretical models, such as the
gyrokinetic models [18–20] for magnetized plasmas, are
often adopted. The Lagrangian densities of these systems
may not be relativistic covariant and are usually given by
“3þ 1” splitting forms. These systems are not written in
manifestly covariant forms. However, the equations of
motion for the systems are usually gauge invariant.
Consequently, for these systems, energy and momentum
conservation laws (with respect to split time and space

translation symmetries) need to be derived separately. In
this section, we demonstrate how the energy and momen-
tum conservation laws can be transformed into gauge-
symmetric forms using the “3þ 1” form of Eq. (37), i.e.,

D
Dt

�
D
Dx

· ½EEðLÞφ�
�
þ D
Dx

·

�
D
Dt

½−EEðLÞφ�
�
¼ 0 ð71Þ

and

D
Dt

�
D
Dx

·
�
−
1

c
EEðLÞA

��
þ D
Dx

·
�
D
Dt

�
1

c
EEðLÞA

��
¼ 0:

ð72Þ

A. Weak Euler-Lagrange equation
and conservation law

The Lagrangian density of a generic classical electro-
magnetic field-charge particle system assumes the form of

L ¼
X
a

La þ LF; ð73Þ
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La¼Laδa;

La¼Laðxμ;Xa; _Xa;φ;A;E;B;DE;DB;…;DnE;DnBÞ ð74Þ

where the subscript a labels particles, Xa is its trajectory,
La is its Lagrangian density, and δa ≡ δðx − XaÞ. Here,
δðxÞ is the Dirac δ-function.
In the “3þ 1” form, the equations of motion for the

electromagnetic field are

∇ · EEðLÞ ¼ −
∂L
∂φ ; ð75Þ

−
1

c
∂
∂t ½EEðLÞ� − ∇ × ½EBðLÞ� ¼

∂L
∂A : ð76Þ

In this study, it is assumed that the particle’s trajectory is
minimally couple with φ and A, and Eqs. (75) and (76)
are thus gauge symmetric. Specifically, we assume
that L depends on φ and A only through the term
−qaδaðφþ A · _Xa=cÞ, i.e., the Lagrangian density can be
written as

L ¼
X
a

qaδa

�
−φþ 1

c
A · _Xa

�
þ GSPðLÞ; ð77Þ

where “GSPðLÞ” denotes the gauge-symmetric parts of the
Lagrangian density L. The right-hand side of Eqs. (75) and
(76) are the “3þ 1” form of Eq. (16), the free charge
density ρf and current density jf, respectively. Using
Eq. (77), we have

ρf ¼ −
∂L
∂φ ¼

X
a

qaδa;

jf ¼ c
∂L
∂A ¼

X
a

qa _Xaδa: ð78Þ

The equation of motion for particles is also derived from
the variational principle. However, because particles and

field reside on different manifolds, the equation of motion
for particles will be the weak EL equation [20,25–27]

EXa
ðLÞ ¼ D

Dx
·

�
_Xa

∂L
∂ _Xa

− LaI

�
; ð79Þ

where EXa
is the Euler operator for the trajectory of the ath

particle,

EXa
¼ ∂

∂Xa
−

d
dt

∂
∂ _Xa

: ð80Þ

To derive a local conservation law from a symmetry, we
need the infinitesimal symmetry criterion for the
Lagrangian density. A symmetry of the action A≡R
Ldtd3x is defined by group transformations

ðxμ;Xa;φ;AÞ ↦ ðx̃μ; X̃a; φ̃; ÃÞ ¼ gϵ · ðxμ;Xa;φ;AÞ; ð81Þ

such that

Z
Lðx̃μ; X̃a; Ẽ; B̃;…; D̃nẼ; D̃nB̃Þdt̃d3x̃

¼
Z

Lðxμ;Xa;E;B;…; DðnÞE; DðnÞBÞdtd3x: ð82Þ

The corresponding infinitesimal generator of (81) is

v ¼ ξμ
∂
∂xμ þ

X
a

θa ·
∂

∂Xa
þ ϕ0

∂
∂φþ ϕA ·

∂
∂A : ð83Þ

The infinitesimal criterion of the symmetry condition can
be derived using the same procedure in Sec. II B,

prðnþ1ÞvðLÞ þ LDμξ
μ ¼ 0: ð84Þ

The prolongation of v now reads

prðnþ1ÞvðLÞ ¼ vþ
X
a

�
ð_qa þ ξtẌaÞ ·

∂L
∂ _Xa

�
− ½∇Q0 þ ξμDμð∇φÞ� ·

∂L
∂E

− � � � −
Xn
i¼1

½Dμ1 � � �Dμi∇Qα0 þ ξμDμDμ1 � � �Dμið∇φαÞ� ·
∂L

∂Dμ1 � � �DμiE
− ½DtQA þ ξμDμA;t� ·

�
1

c
∂L
∂E

�

− � � � −
Xn
i¼1

½Dμ1 � � �DμiDtQA þ ξμDμDμ1 � � �DμiA;t� ·
∂L

∂Dμ1 � � �DμiE
þ ½∇QA þ ξμDμ∇A�∶

�
ε ·

∂L
∂B

�

þ � � � þ
Xn
i¼1

½Dμ1 � � �Dμi∇QA þ ξμDμDμ1 � � �Dμi∇A�∶
�
ε ·

∂L
∂Dμ1 � � �DμiB

�
; ð85Þ
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where

qa ¼ θa − ξt _Xa ð86Þ

is another characteristic of v induced by particle’s trajec-
tory. To obtain the corresponding conservation law, we
transform the infinitesimal criterion into

∂t

�
Lξt −

1

c
QA ·EEðLÞ þ

X
a

�
qa ·

∂L
∂ _Xa

��

þ∇ · ½Lκ−Q0EEðLÞ þQA ×EBðLÞ� þDμ½Pμ
1 þPμ

2�

þ
X
a

½qa ·EXa
ðLÞ� þ

�∂L
∂φþ∇ · ½EEðLÞ�

�
Q0

þ
�∂L
∂Aþ 1

c
∂t½EEðLÞ� þ ½∇×EBðLÞ�

�
·QA ¼ 0; ð87Þ

where

Pμ
1 ¼

Xn
i¼1

Xi

j¼1

ð−1ÞjDμjþ1
� � �Dμi

�
∇Q0þ

1

c
DtQA

�

·
�
Dμ1 � � �Dμj−1

∂L
∂Dμ1 � � �Dμj−1DμDμjþ1

� � �DμiE

�
; ð88Þ

Pμ
2 ¼

Xn
i¼1

Xi

j¼1

ð−1ÞjDμjþ1
� � �Dμið−∇×QAÞ

·

�
Dμ1 � � �Dμj−1

∂L
∂Dμ1 � � �Dμj−1DμDμjþ1

� � �DμiB

�
: ð89Þ

The last two terms on the left-hand side of Eq. (87) vanish
due to Eqs. (75) and (76), but the fourth term does not
because of the weak EL equation (79). If the characteristic
qa is independent of x, E, and B, the conservation law of
the symmetry is established as

∂t

�
Lξt −

1

c
QA ·EEðLÞ þ

X
a

�
qa ·

∂L
∂ _Xa

��

þ∇ ·

�
Lκ−Q0EEðLÞ þQA ×EBðLÞ

þ
X
a

�
_Xa

∂La

∂ _Xa

−LaI

�
· qa

�
þDμ½Pμ

1 þPμ
2� ¼ 0: ð90Þ

B. Gauge-symmetric energy conservation law

We first derive the gauge-symmetric energy conservation
law, assuming that the action A≡ R

Ldtd3x is unchanged
under the time translation

ðt; x;Xa;φ;AÞ ↦ ðtþ ϵ; x;Xa;φ;AÞ; ϵ ∈ R: ð91Þ

The infinitesimal generator and characteristic are calcu-
lated as

v¼ ∂
∂t; ξt¼1; κ¼0; θa¼0; ϕ0¼ϕA¼0; ð92Þ

qa ¼ − _Xa; Q0 ¼ −φ;t; QA ¼ −A;t: ð93Þ

And the infinitesimal criterion (84) of the symmetry is

∂L
∂t ¼ 0: ð94Þ

The corresponding energy conservation law is thus

∂t

�
Lþ1

c
A;t ·EEðLÞ−

X
a

�
_Xa ·

∂L
∂ _Xa

��

þ∇ ·

�
½φ;tEEðLÞ−A;t×EBðLÞ�

−
X
a

�
_Xa

∂La

∂ _Xa

−LaI

�
· _Xa

�
þDμ½Pμ

1þPμ
2� ¼ 0; ð95Þ

where

Pμ
1 ¼

Xn
i¼1

Xi

j¼1

ð−1ÞjDμjþ1
� � �Dμi∂tE

·

�
Dμ1 � � �Dμj−1

∂L
∂Dμ1 � � �Dμj−1DμDμjþ1

� � �DμiE

�
; ð96Þ

Pμ
2 ¼

Xn
i¼1

Xi

j¼1

ð−1ÞjDμjþ1
� � �Dμi∂tB

·

�
Dμ1 � � �Dμj−1

∂L
∂Dμ1 � � �Dμj−1DμDμjþ1

� � �DμiB

�
: ð97Þ

The energy density and flux in Eq. (95) are obviously
gauge dependent. To gauge-symmetrize the conservation
law, we add Eq. (71) to Eq. (95) and obtain,

∂t

�
L−

∂L
∂φφ−

X
a

�
_Xa ·

∂L
∂ _Xa

�
−E ·EEðLÞ

�

þ∇ ·

�
cE×EBðLÞþc

∂L
∂Aφ−

X
a

�
_Xa

∂La

∂ _Xa

−LaI

�
· _Xa

�

þDμ½Pμ
1þPμ

2� ¼ 0: ð98Þ

In deriving Eq. (98), we have rewritten the first and
second terms of Eq. (71) as
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D
Dt

�
D
Dx

· ½EEðLÞφ�
�
¼ D
Dt

f∇ · ½EEðLÞ�φþEEðLÞ ·∇φg

¼ D
Dt

�
−
∂L
∂φφþEEðLÞ ·∇φ

�
; ð99Þ

D
Dx

·

�
D
Dt

½−EEðLÞφ�
�

¼ D
Dx

·

�
−
∂
∂t ½EEðLÞ�φ−EEðLÞφ;t

�

¼ D
Dx

·

�
c∇× ½EBðLÞ�φþc

∂L
∂Aφ−EEðLÞφ;t

�

¼ D
Dx

·

�
−EEðLÞφ;t−c∇φ×EBðLÞþc

∂L
∂Aφ

�
; ð100Þ

where use has been made of Eqs. (75) and (76). Adding
Eqs. (99) and (100) to Eq. (95) leads to Eq. (98).
We now prove that the energy density and flux in

Eq. (98) are gauge symmetric. It suffices to show that
the following terms

s1 ≡ L −
∂L
∂φ φ −

X
a

�
_Xa ·

∂L
∂ _Xa

�
;

s2 ≡ c
∂L
∂Aφ −

X
a

�
_Xa

∂La

∂ _Xa

− LaI

�
· _Xa ð101Þ

are gauge symmetric. Substituting Eq. (77) into the
expression of s1, we have

s1 ¼
X
a

�
−qaφδa þ

qa
c
A · _Xaδa

�
þ GSPðLÞ

−
∂
∂φ

�X
a

�
−qaφδa þ

qa
c
A · _Xaδa

��
φ

−
X
a

�
_Xa ·

∂
∂ _Xa

�
−qaφδa þ

qa
c
A · _Xaδa

��

¼ GSPðLÞ: ð102Þ

Similarly, s2 is also gauge symmetric,

s2 ¼ c
∂L
∂Aφ −

X
a

�
_Xa

∂La

∂ _Xa

− LaI

�
· _Xa

¼ c
∂
∂A

�X
a

�
−qaφδa þ

qa
c
A · _Xaδa

��
φ

−
X
a

�
_Xa

∂
∂ _Xa

�
−qaφδa þ

qa
c
A · _Xaδa

�

−
�
−qaφδa þ

qa
c
A · _Xaδa

�
I þ GSPðLaÞI

�
· _Xa

¼
X
a

GSPðLaÞ _Xa: ð103Þ

C. Gauge-symmetric momentum conservation law

We now discuss how to derive a gauge-symmetric
momentum conservation law, assuming that the actionA≡R
Ldtd3x of the electromagnetic field-charged particle

system is invariant under the space translation

ðt;x;Xa;φ;AÞ↦ ðt;xþϵh;Xaþϵh;φ;AÞ; ϵ∈R: ð104Þ

We emphasize that, different from the situation in standard
field theories, this symmetry group simultaneously trans-
lates both the spatial coordinate x for the field and particle’s
position Xa [25–27]. The infinitesimal criterion of this
symmetry is

∂L
∂x þ

X
a

∂L
∂Xa

¼ 0: ð105Þ

From Eq. (104), the infinitesimal generator and its char-
acteristic are

v ¼ h ·
X
a

� ∂
∂xþ

∂
∂Xa

�
; ξt ¼ 0;

κ ¼ θa ¼ h; ϕ0 ¼ ϕA ¼ 0; ð106Þ

qa ¼ h; Q0 ¼ −h · ∇φ; QA ¼ −h · ∇A: ð107Þ

The corresponding momentum conservation law is
obtained by substituting Eqs. (106) and (107) into
Eq. (90), i.e.,

∂t

�
1

c
EEðLÞ · ð∇AÞT þ

X
a

� ∂L
∂ _Xa

��

þ ∇ ·

�
LI þ

X
a

�
_Xa

∂La

∂ _Xa

− LaI

�

þ ½EEðLÞ∇φþ EBðLÞ × ð∇AÞT �
�

þDμ½P̄μ
1 þ P̄μ

2� ¼ 0; ð108Þ

where

P̄μ
1 ¼

Xn
i¼1

Xi

j¼1

ð−1ÞjDμjþ1
� � �Dμi∇E

·

�
Dμ1 � � �Dμj−1

∂L
∂Dμ1 � � �Dμj−1DμDμjþ1

� � �DμiE

�
; ð109Þ

P̄μ
2 ¼

Xn
i¼1

Xi

j¼1

ð−1ÞjDμjþ1
� � �Dμi∇B

·

�
Dμ1 � � �Dμj−1

∂L
∂Dμ1 � � �Dμj−1DμDμjþ1

� � �DμiB

�
: ð110Þ
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Again, the momentum density and flux in Eq. (108) are
gauge dependent. We add Eq. (72) to Eq. (108) to obtain a
gauge-symmetric momentum conservation law,

∂t

�
1

c
EEðLÞ×Bþ 1

c
∂L
∂φAþ

X
a

� ∂L
∂ _Xa

��

þ∇ ·

�
−
∂L
∂AAþ

X
a

�
_Xa

∂La

∂ _Xa

�
½LF −B ·EBðLÞ�I

þ ½−EEðLÞEþBEBðLÞ�
�
þDμ½ðP̄μ

1 þ P̄μ
2Þ� ¼ 0: ð111Þ

In the derivation of Eq. (111), we have rewritten the first
and second terms of Eq. (72) as

D
Dt

�
D
Dx

·

�
−
1

c
EEðLÞA

��

¼ D
Dt

�
−
1

c
∇ · ½EEðLÞ�A −

1

c
EEðLÞ · ∇A

�

¼ D
Dt

�
1

c
∂L
∂φ A −

1

c
EEðLÞ · ∇A

�
; ð112Þ

D
Dx

·

�
D
Dt

�
1

c
EEðLÞA

��

¼ D
Dx

·

�
1

c
∂
∂t ½EEðLÞ�Aþ 1

c
EEðLÞA;t

�

¼ D
Dx

·

�
−∇× ½EBðLÞ�A−

∂L
∂AAþ 1

c
EEðLÞA;t

�

¼ D
Dx

·

�
−EBðLÞ×∇A−

∂L
∂AAþ 1

c
EEðLÞA;t

�
; ð113Þ

where use has been made of Eqs. (75) and (76). Adding
Eqs. (112) and (113) into Eq. (108) gives Eq. (111).
To show that the momentum density and flux in

Eq. (111) are gauge symmetric, it suffices to show that
the following terms are gauge symmetric,

t1 ≡ 1

c
∂L
∂φ Aþ

X
a

� ∂L
∂ _Xa

�
;

t2 ≡ −
∂L
∂AAþ

X
a

�
_Xa

∂La

∂ _Xa

�
: ð114Þ

Substituting Eq. (77) into the expression of t1, we can see
that it is gauge symmetric, i.e.,

t1 ¼
1

c
∂L
∂φ Aþ

X
a

� ∂L
∂ _Xa

�

¼ 1

c

X
a

∂
∂φ

�
−qaφδa þ

qa
c
A · _Xaδa

�
A

þ
X
a

∂
∂ _Xa

�
−qaφδa þ

qa
c
A · _Xaδa þ GSPðLaÞ

�

¼
X
a

∂
∂ _Xa

½GSPðLaÞ�: ð115Þ

Similarly, t2 is also gauge-symmetric,

t2 ¼ −
∂L
∂AAþ

X
a

�
_Xa

∂La

∂ _Xa

�

¼ −
∂
∂A

�
−qaφδa þ

qa
c
A · _Xaδa

�
A

þ
X
a

_Xa
∂

∂ _Xa

�
−qaφδa þ

qa
c
A · _Xaδa þ GSPðLaÞ

�

¼
X
a

_Xa
∂

∂ _Xa

½GSPðLaÞ�: ð116Þ

IV. CONCLUSION

In this study, we developed a gauge-symmetrization
method for the energy and momentum conservation laws in
general high-order classical electromagnetic field theories,
which appear in the study of gyrokinetic systems [18–20]
for magnetized plasmas and the Podolsky system [21,22]
for the radiation reaction of classical charged particles. The
method only removes the electromagnetic gauge depend-
ence from the canonical EMT derived from the spacetime
translation symmetry, without necessarily symmetrizing the
EMTwith respect to the tensor indices. This is adequate for
applications not involving general relativity.
To achieve this goal, we reformulated the EL equation

and infinitesimal criterion in terms of the Faraday tensor
Fμν. The canonical EMT Tμν

N is derived using this formal-
ism, and it was found that the gauge dependent part of Tμν

N
can be removed by adding the divergence of the displace-
ment-potential tensor, which is defined as

F σμν ≡ 1

4π
DσμAν: ð117Þ

It was shown that the displacement-potential tensor F σμν is
related to the well-known BR superpotential Sσμν as

Sσμν ¼ F σμν þ 1

2
½Δσνμ − Δμνσ − Δνμσ�; ð118Þ

where Δσνμ is defined in Eq. (53). Using the example of the
Podolsky system [21,22], we show that Δσνμ in general is
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nonvanishing for high-order field theories. For a first-order
field theory, such as the standard Maxwell system (6),
Δσνμ vanishes such that Sσμν ¼ F σμν. In the case, the
method developed can be used as a simpler procedure
to calculate the BR superpotential Sσμν without the
necessity to calculate the angular momentum tensor in
4D spacetime.
Lastly, we applied the method to derive gauge-symmet-

ric EMTs for high-order electromagnetic systems coupled
with classical charged particles. Using the “3þ 1” form of
Eq. (37), we obtained the explicitly gauge-symmetric
energy and momentum conservation laws in a general
setting [see Eqs. (98) and (111)].
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