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For electromagnetic field theories, canonical energy-momentum conservation laws can be derived from
the underpinning spacetime translation symmetry according to the Noether procedure. However, the
canonical energy-momentum tensors (EMTs) are neither symmetric nor gauge-symmetric (gauge
invariant). The Belinfante-Rosenfeld (BR) method is a well-known procedure to symmetrize the EMTs,
which also renders them gauge symmetric for first-order field theories. High-order electromagnetic field
theories appear in the study of gyrokinetic systems for magnetized plasmas and the Podolsky system for the
radiation reaction of classical charged particles. For these high-order field theories, gauge-symmetric EMTs
are not necessarily symmetric and vice versa. In the present study, we develop a new gauge-symmetrization
method for EMTs in high-order electromagnetic field theories. The Noether procedure is carried out using
the Faraday tensor F s instead of the 4-potential Ay to derive a canonical EMT T’Ii]”. We show that the
gauge-dependent part of T4 can be removed using the displacement-potential tensor Fo# = D#A? /4x,
where D°* is the antisymmetric electric displacement tensor. This method gauge-symmetrizes the EMT
without necessarily making it symmetric, which is adequate for applications not involving general
relativity. For first-order electromagnetic field theories, such as the standard Maxwell system, F°* reduces
to the familiar BR superpotential S°#¥, and the method developed can be used as a simpler procedure to
calculate S?* without employing the angular momentum tensor in 4D spacetime. When the electromag-
netic system is coupled to classical charged particles, the gauge-symmetrization method for EMTs is shown

to be effective as well.

DOI: 10.1103/PhysRevD.104.025013

I. INTRODUCTION

In classical field theories, one can derive canonical
energy-momentum tensors (EMTs) 7% from the under-
pinning spacetime translation symmetry using the Noether
procedure [1]. However, for classical systems of electro-
magnetic field, the canonical EMTs are neither symmetric
with respect to tensor indices nor electromagnetic gauge
invariant. Gauge dependence is unphysical, and nonsym-
metric EMT is not consistent with general relativity. In the
present study, we will call an EMT symmetric if it is
symmetric with respect to tensor indices, and gauge sym-
metric if it is gauge invariant. To date, much effort has been
focused on symmetrizing the EMTs (with respect to tensor
indices), while constructing gauge-symmetric EMTs is
oftentimes a challenging task for general systems [2-7].

The first method for symmetrizing EMTs was discov-
ered by Belinfante [8,9] and Rosenfeld [10], who added
a divergence-free tensor J,S°*" to obtain a symmetric
EMT, i.e.,
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Thr = TN + 0,5, (1)
0,0,8 = 0. (2)

Here, T’y is Belinfante-Rosenfeld (BR) EMT, and S is
known as BR superpotential that depends on the angular
momentum tensor and is antisymmetric with respect to o
and p [see Eq. (54)]. General relativity suggests another
method to generate symmetric EMTs by varying the action
with respect to the spacetime metric [11,12], which was
modified by Gotay and Marsden, who employed con-
straints to define symmetric EMTs [13,14]. The relations
between these three types of symmetric EMTSs have been
discussed in the literature [15-17].

In many systems, including the standard Maxwell
system (6), the symmetrization of 7 also renders it gauge
symmetric. But for general electromagnetic field theories
with high-order field derivations, symmetry with respect to
tensor indices in general does not imply gauge symmetry
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and vice versa. High-order electromagnetic field theories
appear in the study of gyrokinetic systems [18-20] for
magnetized plasmas and the Podolsky system [21,22]
for the radiation reaction of classical charged particles.
In the present study, we propose a new method to gauge-
symmetrize the canonical EMTs T4 in general electro-
magnetic field theories with high-order field derivations.
Our method removes the gauge dependence, but does not
necessarily symmetrize the EMTs. In applications that do
not involve general relativity, gauge-symmetrized EMTs
are adequate.

We first consider the Lagrangian density £p which
only depends on the Faraday tensor F,, ie., Lp=
Lp(x*,F,,,DF,,, ..., DWF ). We reformulate the equa-
tion of motion for the field by the variational principle with
respect to the Faraday tensor F,,, instead of the 4-potential
A* as in the standard field theory. The Euler-Lagrange (EL)
equation is cast into an explicitly gauge-symmetric form.
The canonical EMT is then separated into a gauge-invariant
part and a gauge-dependent part, the latter of which
contains the antisymmetric electric displacement tensor
DH. We define a superpotential Fo* = DHAY /4x, called
displacement-potential tensor, whose divergence T} =
D, F°* as a second order tensor is divergence free with
respect to the first index, i.e., D, T = 0. Adding T{" to the
canonical EMT T4/ leads to a gauge-symmetric EMT
Tts = Lpn™ + =D'"F; — 3. Here, the tensor X,
defined in Eq. (36), is the gauge invariant. It is simpler
to calculate the displacement-potential tensor F°** than
the BR superpotential S, and the former only gauge-
symmetrizes the canonical EMT without render it sym-
metric (with respect to tensor indices). For first-order
electromagnetic field theories, such as the standard
Maxwell system, F°* reduces to the familiar BR super-
potential S°**, and the method developed here can be used
as a simpler procedure to calculate S°** without employing
the angular momentum tensor in 4D spacetime.

In addition, when the electromagnetic system is coupled
with classical charged particles, the Lagrangian density
is generally written as Lp= Lp(x* X, X,.A,.F,,
DF,,.....D™F,). If the 4-potential A, is minimally
coupled with particle’s trajectory and L depends on A,
linearly, we find that the method is effective as well, even
though the Lagrangian density is not gauge symmetric in
general.

The paper is organized as follows. In Sec. II, we
describe the gauge-symmetrization method for the
EMT in a general high-order electromagnetic field
theory, and highlight the difference in comparison with
the BR method using the example of the Podolsky
system [21,22]. Section III shows how the gauge-
symmetrization method for the EMT works when the
electromagnetic system is coupled with classical charged
particles.

II. EXPLICITLY GAUGE-SYMMETRIC
CONSERVATION LAWS FOR HIGH-ORDER
ELECTROMAGNETIC SYSTEMS

A. Explicitly gauge-symmetric
Euler-Lagrange equation

The Lagrangian density of a general electromagnetic
system is written as

Lr=Lp(x*,DA,,....D"DA,), (3)

where A¥ = (¢,A) is the 4-potential defined on 4D
Minkowski space endowed with a Lorentz metric
N = diag{1,-1,-1,-1}. Here, A, =7,,A" and D =
((1/¢)0,,V) is the derivative operator over spacetime.
The EL equation of the Lagrangian density is

EL(Lr) =0, (4)
where the Euler operator E; of A, is defined by

n+1 8

EZE;(_lyDﬂl.--Dma(a—.aAﬂ)' <5)

T Y

Note that the Lagrangian density £ depends on derivatives
of A with respect to the spacetime coordinates up to
the (n+ I)th order. It includes the standard Maxwell
system, i.e.,

1
Lrp=——F, FW, 6
F 16z~ ¥ (6)
as a special case, where
F,, = 8,,Ay - 0,A,. (7)

is the Faraday tensor. In Eq. (6), Lz depends only on first-
order derivatives of A. High-order electromagnetic field
theories appear in the study of gyrokinetic systems [18-20]
for magnetized plasmas and radiation reaction for classical
charged particles [21,22]. Physics requires that the EL
equation (4) is gauge symmetric, i.e., invariant under the
gauge transformation A, — A, + 0, f. In the present study,
we assume that L is explicitly gauge symmetric in the
form of

‘CF = EF(X”,F

Hv

DF,,.....D™F,). (8)

From the variational principle, 4 =6 [ Lrpd*x =0, we
have
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0=5 / Lrdx = / B2 (L)5F ]
_ / [E(L)(9,6A, — ,6A,)]d*x
- [ oleet cojon,ax ©)

where the boundary term has been dropped, and E}
denotes the Euler operator for the Faraday tensor F,,
defined by

az:F
814[ FIW

(10)

) oLy &
EY(Lp) = F+Z(_ FREE

”‘88

In Eq. (9), superscript [uv] represents antisymmetrization
with respect to y and v, i.e.,

EM(Lp) =S [B¥(Lp) - EX(Lp)]. (1)

1
2
Due to the arbitrariness of 64, in Eq. (9), the equation of
motion for the system is

9,D" =0, (12)
where
D = —8zEM (L) (13)
is the electric displacement tensor.
In Sec. III, we will consider electromagnetic systems

coupled with charged particles, and the Lagrangian density
L will depend on 4-potential A, i.e.,

L=L(x"A,F,....DF,). (14)
Equation (12) then becomes
v 4” 14
0,Dr :?Jf, (15)
where
L, OLp

is the free 4-current.

For the standard Maxwell system (6) without free
4-current, the electric displacement tensor is the Faraday
tensor, i.e., D" = F* and Eq. (12) reduces to Maxwell’s
equation

9, Fm =0, (17)

B. Infinitesimal criterion of symmetry
and conservation laws

A continuous symmetry of the action A is a group of
transformation
(', AY) 1> (3, AY) = g - (w, AY), (18)

such that

... DF,)d*x,  (19)

where g, constitutes a continuous group of the trans-
formations parametrized by e [23]. The infinitesimal
generator of the transformation group is

d
de

0

y = o+ by 8A (20)

g, (xﬂ Al’)—é:ﬂ 9
0

By rewriting the symmetry condition (19) as

— / Lp(# F,.DF,....D"F,)d*%=0, (21)

we can derive the following infinitesimal version of the
symmetry condition,

pri" (L) + LpD, g = (22)

where pr(**y is the prolongation of v. The standard

prolongation formula for pr**Yy can be found in
Ref. [23]. In the present study, we rewrite the prolongation
formula with respect to F,,, instead of A, as

OLF

pr(n+l)v =V+ [G(F/) + faDr;Frf/)] aT
op

+> D,
i=1

G,, +&D,D, ---D, F,)

x a(aaﬁgﬂ,ﬂ) (23)
where
G, = 0,0, - 0,0, =20,,0, (24)
and
= ¢, = DA, (25)

is a characteristic of the Lie algebra.

025013-3



PEIFENG FAN, JIANYUAN XIAO, and HONG QIN

PHYS. REV. D 104, 025013 (2021)

Combining Eqgs. (12) and (22) generates the conservation
law corresponding to the symmetry,

p{ s - Lo +Prh 0. (o

where
PH — Z (_1)j+1(D/4/’+1 .--D, G,,)
i=1 j=1 '
OLp }
x |D, ---D, .
. o a(aﬂl T aﬂj—laﬂaﬂf+1 Y aﬂiFUP)
(27)

The conservation law given by Eq. (26) is not gauge-
symmetric in general.

C. Gauge-symmetrization of the canonical EMT

Now we assume the high-order electromagnetic field
theory admits the spacetime translation symmetry, i.e.,

OLr (28)

OxH ’

and derive the corresponding energy-momentum conser-
vation law. Because of Eq. (28), the action is invariant
under the spacetime translation

(x,A,) > (** 4+ eXj.A,), (29)

where X’é is 4D constant vector field. The infinitesimal
generator v, characteristic 0%, and G,, in Eq. (24) are

0
Qu = _XéauAm (31)
G,y = —X40,F,,. (32)

The Lagrangian density satisfies the infinitesimal criterion
because

oL
X4 Wj =0, (33)

which implies a conservation law. Substituting
Egs. (30)—(32) into Eq. (26), we obtain the canonical
energy-momentum conservation law according the stan-
dard Noether procedure,

DT\ =0, (34)

1
T = Lo + o D0rA, — 3", (35)

o =3"N " (=1)*(D,, -+ D, F,,)

i=l j=1
Ly
o 8(6141 . '8ﬂj_18ﬂ8ﬂ

X |\D, ---D .
|: . 'au,»Fap)

(36)

J+1

In Eq. (34), TY is the canonical EMT derived from the
standard Noether procedure.

Obviously, 7% depends on the gauge as expected. In the
expression of 7% given by Eq. (35), the gauge dependence
comes from the second term, and the first and third terms
are gauge symmetric. Now we show how to gauge-
symmetrize Ty . Note that because electric displacement
tensor D" is antisymmetric, the following equations hold,

D,(D,F") =0, (37)

1
Fow = DA, (38)

Here, 7 is a superpotential that is antisymmetric with
respect to the first two indices. For easy reference, we will
call F°* displacement-potential tensor. The divergence of
JF°r defines a divergence-free tensor, i.e.,

1
Tgu = DUFO'[IU — _ED””aGAD, (39)

where the field equation (12) have been used. When Tﬁ” is
added to TY/, the gauge dependence is removed, i.e.,

D, Tt =0, (40)
1
Tl =T + T4 = Lon™ + - D“Fy =3, (41)

where T’ is the gauge-symmetric EMT.

It is worthwhile to mention that we derived the gauge-
symmetrized EMT 7% from the expression of T in
Eq. (35), which is calculated from the prolongation with
respect to F,,. On the other hand, had we started from
Eq. (3) and calculated the EMT from the prolongation with
respect to AM, we would have obtained a canonical EMT in
the form of

T = Lpn — 2, (42)

where
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n+l i
S D, 0
i=1 j=
OLp
D ---D ’
X |: Hy Hj-1 8(8/41 a a 8’”]+1 .. all,AO')
(43)

However, different from the situation in Eq. (35), every
term in Eq. (43) is gauge dependent, making the gauge
symmetrization difficult, if not impossible.

For the standard Maxwell electromagnetic system speci-
fied by Eq. (6), the electric displacement tensor reduces to
the Faraday tensor F°¥, and the displacement-potential
tensor F°* reduces to F*AY /4x, coinciding with the tensor
used by Blaschke er al. for the U(1) gauge theory [24].

D. Comparison with the BR method

As described above, the method proposed in the present
study employs displacement-potential tensor F°* to
gauge-symmetrize the EMT, while the BR method use
the superpotential S to symmetrize the EMT. In this
subsection, we discuss the difference between the displace-
ment-potential tensor F°* in Eq. (37) and the BR super-
potential S°#. To calculate S°*, we need to first derive the
4D angular momentum conservation laws generated by the
Lorentz symmetry. Assume that system is invariant under
rotational transformation in 4D spacetime

where {A£’} is one-parameter subgroup of the Lorentz
group. The infinitesimal generator v, the characteristic Q,,,
and the term G, are calculated respectively by Egs. (20),
(24) and (25) as

V= (Aex,, APA,) = (Q4x,, VA,), (45)
de 0

0, =¢,—ED,A, = Q,,A* = Qpx'D*A,, (46)

Gy = Q0 F¢ — Q F4 — QuxPO°F,,, (47)

where the antisymmetric tensor Q*° = [dAL°/de], is the
Lie algebra element of the Lorentz group. Substituting
Egs. (45)-(47) into Eq. (26), we obtain the angular
momentum conservation law in 4D spacetime,

QD {x°T + 2B (L)A” + Lo} =0,  (48)
which can be rewritten as
D M =0, (49)
where
MW = xoTH _ i 4 Spwo (50)

is the canonical angular momentum tensor. In the above

(2, 4%) > (#,A%) = (A%, ACA,). (44)  cquations,
|
Lo = Z Z (_1)‘i+lDﬂj+l o D#i(FZ)Dﬂ ' -D/‘j—l
i=1 j=1
o { oL 3 oL
A0, - aﬂ laﬂaﬂﬁrl 0 Fp) 09y, aﬂ laﬂaﬂ e 0y Fup)
n i aﬁ
- 1)*1D D, (x°0"F,,)D, ---D,. — XX 51
|:i—1 = ﬂ]+1 ﬂ,( A/) Hi Hj-1 8(8 8ﬂ ]aﬂaﬂﬁ] . 8;4iFs/J) ( )
1
S8 = Ep(Lp)ac - Ef7(Lpar + ave, (52)
AHVe =17 [ ulvo]
' oL oL
= J+1D ...D F\D ---D —
lzl:jz: Hjt1 m{( 2Dy, Hj-1 {a(aﬂl ..aﬂj_laﬂaﬂjﬂ 0, F,) 00, a 0 aﬂﬁl 0, F,,)
oL oL } }
—(F\D, ---D —
( p) . a [8(3 Hi aﬂ/ 18ﬂaﬂj+1 "'amF/w) 8(8 8#, 18ﬂ8ﬂj+1' 'aﬂ;Fﬁp)
—ZZ (-1)*'D, . (x°@“F,,—x*8°F,)D, ---D oL + XTI —xVIHO, (53)
i=1 j= ”i v v . 8(8141 8 8 8/4 j+1 "amFSﬂ)
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where the superscript [uv] denotes antisymmetrization with
respect to y and v.

The BR superpotential S is defined from the tensor
S°* in Eq. (49) as [8-10]

1
So‘/w = E [Sav,u — SHvo _ Su/m]. (54)

Itis clear from Egs. (51)—(53) that S°* and F°* are related
as follows,

1
Sowv — Fow | 5 [AW" — AHvo _ AW"]. (55)

In the BR theory, the EMT T%y defined in Eq. (1) is
symmetric with respect to u and v because

Tiy = T4 + 9,871 =0, (56)

where we have made use of

1 g 1
sl = 25 T =20, (5T)

which can be easily derived from Egs. (49) and (54). For
the classical electromagnetic systems discussed in the
present study, Ty is also gauge symmetric. However, this
fact is difficult to establish directly from the definition of
T'sx through Egs. (1), (42), (43), (52) and (53). But it can
easily proved from the formalism we developed as follows.
Because the tensor A in Eq. (55) is gauge symmetric, we
know that the BR EMT T%j is gauge symmetric from the
fact that T'5q is gauge symmetric and connection between
Tig and Tig via Egs. (1), (39), (41), and (55). Our theory
clarifies which term implicitly contained in the BR pro-
cedure is responsible for the gauge symmetrization, and
thus leads to a simpler gauge-symmetrization method.
Specifically, it is the displacement-potential tensor JF "
that removes the gauge dependence, and the gauge-
symmetrization process can be made simpler without using
the canonical angular momentum tensor M**? as in the BR
method.

Although the BR method always gauge-symmetrizes the
classical electromagnetic systems, it fails for systems in
which quantum matter fields minimally couple to gauge
fields, such as the Proca system. This fact was first studied
by Blaschke et al. [24] and a gauge-symmetric method for a
lowest order field theory was developed. However, for
high-order gauge fields, a general method has not been
established to date. The result in the present study suggests
a possible approach. We can first reformulate the equation
of motion with respect to the gauge-strength tensor F7,, and
convert the particle derivatives for matter fields to covariant
derivatives. This will separate the canonical EMT into
gauge-symmetric and gauge-dependent parts, and the
gauge-symmetrization procedure developed here might

be applicable. Since the present study is focused on
classical systems, the corresponding method for general
quantum field systems will be investigated in the future.
Equation (55) shows that in general F°* is different
from S when A is nonvanishing. For a first-order field
theory, such as the standard Maxwell system (6), » = 1 and
the last three terms vanish such that S* = F°*_ In this
situation, adding T4 = D,F°* to T} will render it both
symmetric and gauge-symmetric, and the method devel-
oped here can be used as a simpler procedure to calculate
the BR superpotential S without the necessity to
calculate the angular momentum tensor in 4D spacetime.

E. EMT for Podolsky system

As an example of high-order electromagnetic field
theory, we consider the Podolsky system [21,22], which
was proposed to study the radiation reaction of classical
charged particles. The Podolsky Lagrangian density is

1 1 2
Lp, :—{E2 - B>+ a? [(V-E)2 - (VxB——atE) } }
87 c
(58)
or in a manifestly covariant form

1 2
['Po = _—FopFﬂﬂ _g

- COFOIE, (59)

The field equation for this system can be easily obtained
using Eq. (12) as [22]

(1 - a29,07)9,F" = 0.

We substitute the Lagrangian density (59) into Eq. (35)
to obtain the canonical EMT

op

1 2
4aTy = (- 1 FaF” - % 9,F7O’F, A) n

+ [Fre — a2 (0RO, FH7 — 0P, F )| A,
+ (P F4)(9,F), (60)

where the following equations are used,

90.F.) aaF >[8aF°”(‘3ﬂFM] =20, F*, (61)
oy

9 al p W oV

D”W [aaF 8 F/)/d — 28 a{;F N (62)
ol pv
aﬁp a;Cp 1 Cl2

E;m: O_D 0 ——__fpuo L. u Fio-

F ok, Dan . s a0 O (63)
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2
o] _ _i wo . 4 (ou Ao _ Ao A
2EF 4,1-F +471- ((9 0, F 0°0,F ), (64)

aﬁp a2
I = (F ) e = = OV, [0, F
(8 O'p) a(aﬂFUp) 4”8 ap[rl aﬂ ]
a2
= = ("Fp)(0,F). (65)
¥4

The displacement-potential tensor is
Fuvo —= i DoKAY
4z
1
=1 [—FH° + a*(0#0,F* — 0°0,F*)|AY,  (66)

and

470, 1o = [—FF 4+ a2 (0, F — 9°0,F*)|9,A.  (67)

Adding Eq. (67) to Eq. (60), we obtain the gauge-
symmetric EMT,

HY Uo v 1 P\ a1V az oA P iz
4ﬂTGS = |F FO’ - Z (Fo'/)F )77 - ?(8{7F o F/)ﬂ)’/l
- aZFZ((?"(?pF”") + azFZ(ﬁ"apFW)

+ a* (0" F5)(0,F°). (68)

It is easy to see that T{5q for the Podolsky system is not
symmetric, i.e., Tsq # T

To calculate the BR EMT T’y for the Podolsky system,
we evaluate the A*° term in Eq. (54). Using Eq. (53),
we have

AW — O 8‘6[’0 _ a‘cPo v aEPo _ aﬁpo
- "\0(0,F,) 0(9,F,,) P10(8,F,.) 0(9,F,,)
2
= —Z— [Fwaprv — n/‘”(FgalF’lp) - F””@,,F”" + r/’“’F}j(@F’V’)]. (69)
JT

Substituting Eqs. (54) and (69) into Eq. (1), we obtain the BR EMT as

4nThi = AnTV + 2m[ AT — AW — A7)
2

1
= |ProFy = L (F o PO | + 5 [(0pF7) (' F ) = 20,0,

+ a*[F**(0,0,F™) + F'(0,0,F™) — (0,F%*)(8,F) — F4(0"0,F’) — F5(0*0,F")]. (70)

It is easy to verify that T%y, for the Podolsky system is both
symmetric and gauge-symmetric.

III. GAUGE-SYMMETRIC EMTs FOR
ELECTROMAGNETIC SYSTEMS COUPLED
WITH CLASSICAL CHARGED PARTICLES

For self-consistent electromagnetic systems with free
currents, the electromagnetic fields are coupled with
charged particles. In this section, we apply the theory
established in Sec. II to derive gauge-symmetric EMTs for
electromagnetic systems coupled with classical charged
particles.

Due to the intrinsic complexity of the dynamics for
interaction systems, reduced theoretical models, such as the
gyrokinetic models [18-20] for magnetized plasmas, are
often adopted. The Lagrangian densities of these systems
may not be relativistic covariant and are usually given by
“3 + 17 splitting forms. These systems are not written in
manifestly covariant forms. However, the equations of
motion for the systems are usually gauge invariant.
Consequently, for these systems, energy and momentum
conservation laws (with respect to split time and space

|

translation symmetries) need to be derived separately. In
this section, we demonstrate how the energy and momen-
tum conservation laws can be transformed into gauge-
symmetric forms using the “3 + 17 form of Eq. (37), i.e.,

D { D .[EE(£)¢]}+£. {2[—EE(£)¢]} _o ()

Dt | Dx Dx | Dt

and

D (D 1 D D |1

o {D_x |:—EEE(£)A:| } +D_x' {E [ZEE(ﬁ)A] } =0.

(72)

A. Weak Euler-Lagrange equation
and conservation law

The Lagrangian density of a generic classical electro-
magnetic field-charge particle system assumes the form of

L= L,+Lp. (73)
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L:a :Laéav

L,=L,(x* X, X,;0.A.E.B.DE.DB,.... D"E,D"B) (74)
where the subscript a labels particles, X, is its trajectory,
L, is its Lagrangian density, and §, = 6(x — X,). Here,
6(x) is the Dirac §-function.

In the “3 4 17 form, the equations of motion for the
electromagnetic field are

V-Eg(L) = —g—i, (75)
10 oL
IR (L) - VX [Eg(O] =5 (76)

In this study, it is assumed that the particle’s trajectory is
minimally couple with ¢ and A, and Egs. (75) and (76)
are thus gauge symmetric. Specifically, we assume
that £ depends on ¢ and A only through the term
~4.0.(p+A-X,/c), ie., the Lagrangian density can be
written as

1 .
L= q., |:—(p +-A -Xa] +GSP(L), (77)

where “GSP(L)” denotes the gauge-symmetric parts of the
Lagrangian density £. The right-hand side of Eqgs. (75) and
(76) are the “3 + 1”7 form of Eq. (16), the free charge
density py and current density j;, respectively. Using
Eq. (77), we have

pf:_g_ﬁzzqa5a7
Jr —c— anXé

The equation of motion for particles is also derived from
the variational principle. However, because particles and
|

(78)

oL

a

’ 'Dﬂ,-VQaO + gﬂDﬂDm

’ 'DMthQA + ‘fﬂDﬂDm

"DmVQA + ‘fﬂDﬂDm

2L -1vov+e,v)
Dﬂ,-(vfpa)] ! p)

Hi

oL
DAL (e )
M Hi

field reside on different manifolds, the equation of motion
for particles will be the weak EL equation [20,25-27]

(s25-20)

where Ex is the Euler operator for the trajectory of the ath
particle,

D
Ex,(£) = o

oL

X, (79)

_9 _
< X,

d 0

To derive a local conservation law from a symmetry, we
need the infinitesimal symmetry criterion for the
Lagrangian density. A symmetry of the action A=
[ Ldtd®x is defined by group transformations

(. X0, A) > (#. X3 9.A) = g - (. X:0.4), (81)
such that
L(x* X, E.B, ... D'E,D"B)did’x
= / L(x* X,,E.B,....D"E, D" B)dtd’x. (82)
The corresponding infinitesimal generator of (81) is
Pt G b b ()

The infinitesimal criterion of the symmetry condition can
be derived using the same procedure in Sec. II B,

pr"*Uy(L) + LD, & = 0. (84)

The prolongation of v now reads

oL
OE

oL
Dﬂl T DMiE

oL
! aDM] “DﬂiE

1oL

- [DIQA + fﬂDﬂA.t] : < 8E)
oL

+ {VQA + f”DMVA]C <€ . 8—B>

(85)
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where
9. = ea - tha (86)

is another characteristic of v induced by particle’s trajec-
tory. To obtain the corresponding conservation law, we
transform the infinitesimal criterion into

o oc
9, {&f —EQA'EE(ﬁ)‘an:(‘Ia'a—XZ)}
+ V- [Lx = QoEg(L) + Q4 x Eg(L)] + D, [P} 4 P]

30 Ex (0] {Ge+v o1 }on

N {% L0 [Bx(0)+ [V X Eg(£)] } -4 =0, (87

O0A
where
Plf:i; 'll(—l)j i Dy (VQO‘I'%DIQA)

pr

D 49D, D, ?)SDMHMDME]’ (88)
Pt — _2";:<—1>f% D, (-VxQ,)

oy

'[D"""D”f-l aD, ---D, f)fDM -DMB]' (89)

The last two terms on the left-hand side of Eq. (87) vanish
due to Egs. (75) and (76), but the fourth term does not
because of the weak EL equation (79). If the characteristic
q, is independent of x, E, and B, the conservation law of
the symmetry is established as

o1 oL
0, {ﬁf —EQA'EE(Q‘F;(%‘@—X“)}
v. {ﬁx — QuEx(L) + Q4 X Es(L)

. L,
+Za:<xaa—xa—

Egl> -qa} +D,[Pf +P5]=0. (90)

B. Gauge-symmetric energy conservation law

We first derive the gauge-symmetric energy conservation
law, assuming that the action A = f Ldtd’x is unchanged
under the time translation
(t+ex,X,0,4),

(t,x,X,,0,A) > eeR. (91)

The infinitesimal generator and characteristic are calcu-
lated as

k=0, 6,=0, ¢y=¢4=0, (92)

9. = _Xu’ QO =@ QA = _A,l' (93)
And the infinitesimal criterion (84) of the symmetry is

oL

5 =0 (94)

The corresponding energy conservation law is thus
1 . 0L
-A-E - X, ——
TS s (]
9 {l0.B(0)-A, < En(L)

—Z(Xa%—£> }+D[P"+P"] 0, (95

a a

oL
.|\D, ---D . (96
1 Hj-1 aDMI D DMDﬂjH . "DMiE:| ( )
n i )
[P”f = Z (_l)jDﬂm ”'D”iatB
i=1 j=1
oL
b | . (97
m 19D, - D,, DD, - -D#I.B} (97)

The energy density and flux in Eq. (95) are obviously
gauge dependent. To gauge-symmetrize the conservation
law, we add Eq. (71) to Eq. (95) and obtain,

or . or
o,|c-9= X, 25\ CE-Ey(L
[ 99" 4 ( 8X> x( )]

a

+V-{cExEB +c— Z( )Xa}

+D, [P P4 =0. (98)

In deriving Eq. (98), we have rewritten the first and
second terms of Eq. (71) as
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o o ES(£)0] | = D V- (B0 + Ex(£)- )
o =G0+ ER(L) Vo) (9

Dt

e {pui-enten]
{- Bl =B, |

oL

:D% {CVX[EB<£)]¢+C8—A(P Eg(L)gp, }

N

D
- Dx

D

oL
= r { EE(£)¢,,—CV¢XEB(E)+ca¢}, (100)

where use has been made of Egs. (75) and (76). Adding
Egs. (99) and (100) to Eq. (95) leads to Eq. (98).

We now prove that the energy density and flux in
Eq. (98) are gauge symmetric. It suffices to show that
the following terms

slzﬁ—gﬁgo—zc'(a.ai),
szzc (p Z(

are gauge symmetric. Substituting Eq. (77) into the
expression of s;, we have

)%, (o

5=y {—qa(péa + %A -Xa(sa] + GSP(L)

a

9 0
_9 _ 9ay . %
o [Z( 9uPPa+ a5a)]<p

( Qu(p5 &A 'Xa5a>:|
C

= GSP(E).
Similarly, s, is also gauge symmetric,
oL . 0L .
Szzcaj(p—;(Xua ) £u1>Xu
:Ciz —q,¢5 —l—&A‘Xﬁ @
8A - a a c ava
. 0 qa . )
- X,— | —q.90, +—A - X6,
Z{ 6Xa< Al

a

(102)

- <_Qa§05a + %A : Xaéa)l + GSP(,C“)I} 'Xa
C

= GSP(L,)X,. (103)

C. Gauge-symmetric momentum conservation law

We now discuss how to derive a gauge-symmetric
momentum conservation law, assuming that the action A =
Ik Ldtd’x of the electromagnetic field-charged particle
system is invariant under the space translation
(t,x,X,,0,A)—~ (t,x+eh, X, +eh,p,A), ecR. (104)
We emphasize that, different from the situation in standard
field theories, this symmetry group simultaneously trans-
lates both the spatial coordinate x for the field and particle’s
position X, [25-27]. The infinitesimal criterion of this
symmetry is

oL N oL
Ox — 0X,

=0. (105)

From Eq. (104), the infinitesimal generator and its char-
acteristic are

i a 8 r

v-h-;(a‘l—a—xa), 5—0,

K= oa =h, 4)0 = ¢A =0, (106)
ga=h,  Qy=—-h-Vo. Qu=-h-VA. (107

The corresponding momentum conservation law is
obtained by substituting Eqgs. (106) and (107) into
Eq. (90), i.e.,

a, EEE(E) (VA + Z(c‘%ﬁ)]
o1 21)

- [Ep(£)Vo + E(L) x <VA>T1}

+D, [P + P5] =0, (108)
where
P’f = (_l)jDﬂj+1 . 'DﬂiVE
i=1 j=1
oL
b , 109
|: o K-t 9D 1 ..D DﬂDﬂ/+1 ...D”[E:| ( )
Pg: (_1)] ”IH...DMVB
i=1 j=1
D, ---D, oL - (110)
m Hict aDm ...DM];]D”D”]_H ---D, B
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Again, the momentum density and flux in Eq. (108) are
gauge dependent. We add Eq. (72) to Eq. (108) to obtain a
gauge-symmetric momentum conservation law,

8[1 oL
XB+-——A+ —
cdy Z <8Xa>]

oL . 0L
V. {—a—AA+Za:<X

37) Lr—B-Eg(O)I

a, EEEw)

+[—EE<£>E+BEB<c>]}+D,4[<P'f+P';>1= (1)

In the derivation of Eq. (111), we have rewritten the first
and second terms of Eq. (72) as

£ (8 -t

zg{_;v.[EEw)]A——EE(c)-VA}
1oL 1

- [C%A - Eg(L) -VA}, (112)
D D |1
D {m LEE(ﬁ)A] }
~ e Lo EROIA + B0, |
_ %. {—v x [Eg(L)]A g—jA %EE(E)A f}
—Dﬂx.{_EB(c)xVA—g—§A+%EE(£)A,,}, (113)

where use has been made of Egs. (75) and (76). Adding
Egs. (112) and (113) into Eq. (108) gives Eq. (111).

To show that the momentum density and flux in
Eq. (111) are gauge symmetric, it suffices to show that
the following terms are gauge symmetric,

10C oL
v=ant 2w
oL . oL,
—a—AA+§a:<Xa aX)' (114)

Substituting Eq. (77) into the expression of ¢;, we can see
that it is gauge symmetric, i.e.,

10L

t
! c8(p

oL
+ —
(i)
o 9a v
= fzf (—qacoéa +-2A -Xa5a>A
c g c
+Zi —q.08, + 1% A . X5, + GSP(L,)
< a a c a~a a
Similarly, ¢, is also gauge-symmetric,
oL . 0L
-—A X,—
oa” " Z( ’ axa>

_ 9 < 4u95, +q“A X5>A

GSP - (115)

T 0A
+ ZX
_ ZX

7 [—qaq)éa 1994 %5, +GSP(L,)
C

GSP - (116)

IV. CONCLUSION

In this study, we developed a gauge-symmetrization
method for the energy and momentum conservation laws in
general high-order classical electromagnetic field theories,
which appear in the study of gyrokinetic systems [18-20]
for magnetized plasmas and the Podolsky system [21,22]
for the radiation reaction of classical charged particles. The
method only removes the electromagnetic gauge depend-
ence from the canonical EMT derived from the spacetime
translation symmetry, without necessarily symmetrizing the
EMT with respect to the tensor indices. This is adequate for
applications not involving general relativity.

To achieve this goal, we reformulated the EL equation
and infinitesimal criterion in terms of the Faraday tensor
F,,. The canonical EMT Ty is derived using this formal-
ism, and it was found that the gauge dependent part of 7%/
can be removed by adding the divergence of the displace-
ment-potential tensor, which is defined as

1
Fomw = - DHA. (117)

It was shown that the displacement-potential tensor F°# is
related to the well-known BR superpotential S7** as

1
Souv — Fom | 5 [AGW — AHvo _ AW"], (118)

where A®* is defined in Eq. (53). Using the example of the
Podolsky system [21,22], we show that A°** in general is
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nonvanishing for high-order field theories. For a first-order
field theory, such as the standard Maxwell system (0),
A% vanishes such that S = F°*. In the case, the
method developed can be used as a simpler procedure
to calculate the BR superpotential S without the
necessity to calculate the angular momentum tensor in
4D spacetime.

Lastly, we applied the method to derive gauge-symmet-
ric EMTs for high-order electromagnetic systems coupled
with classical charged particles. Using the “3 + 1” form of
Eq. (37), we obtained the explicitly gauge-symmetric
energy and momentum conservation laws in a general
setting [see Egs. (98) and (111)].
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