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Noncommutative geometry provides both a unified description of the Standard Model of particle physics
together with Einstein-Hilbert action (in Euclidean signature) and some tools to go beyond the Standard
Model. In this paper, we extend to the full noncommutative geometry of the Standard Model the twist (in
the sense of Connes-Moscovici) initially worked out for the electroweak sector and the free Dirac operator
only. Namely, we apply the twist also to the strong interaction sector and the finite part of the Dirac
operator. To do so, we are forced to take into account a violation of the twisted first-order condition. As a
result, we still obtain the extra scalar field required to stabilize the electroweak vacuum and fit the Higgs
mass, but it now has two chiral components. We also get the additive field of 1-forms already pointed out in
the electroweak model, but with a richer structure. Finally, we obtain a pair of Higgs doublets, which are
expected to combine into a single Higgs doublet in the action formula, as will be investigated in the second
part of this work.
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I. INTRODUCTION

Noncommutative geometry [1] (see [2] for a recent
review of the various aspects of the field) provides a
mathematical framework in which a single action formula
yields both the Lagrangian of the Standard Model of
fundamental interactions and the Einstein-Hilbert action
(in Euclidean signature). As an added value, the Higgs field
is obtained on the same footing as the other gauge bosons—
as a connection 1-form—but a connection that lives on a
slightly generalized notion of space, where points come
equipped with an internal structure. Such “spaces” are
described by spectral triples

A; H; D ð1:1Þ

consisting in an algebra A acting on a Hilbert space H
together with an operator D on H which satisfies a set of
axioms [3] guaranteeing that—in case A is commutative
and unital—then there exists a (closed) Riemannian spin
manifold M such that A coincides with the algebra
C∞ðMÞ of smooth functions on M. In other terms, a
spectral triple with A commutative does encode all the
geometrical information of a (closed) Riemannian spin
manifold [4]. These axioms still make sense when A is

noncommutative and provide then a definition of a non-
commutative geometry as a spectral triple in which the
algebra is not necessarily commutative.
The spectral triple of the Standard Model [5] is built

upon an “almost-commutative algebra”:

C∞ðMÞ ⊗ ASM; ð1:2Þ

where M is an even-dimensional closed Riemannian spin
manifold and ASM a noncommutative matrix algebra that
encodes the gauge degrees of freedom of the Standard
Model. As explained in Ref. [3], this noncommutative
algebra provides the points ofM with an internal structure,
in such a way that the Standard Model is actually nothing
but a pure theory of gravity, on a space that is made slightly
noncommutative by multiplying the (infinite-dimensional)
commutative algebra C∞ðMÞ with the finite-dimensional
noncommutative ASM.
After the discovery of the Higgs boson in 2012, it has

been noticed in Ref. [6] that an extra scalar field—usually
denoted σ—proposed by particle physicists to cure the
instability of the electroweak vacuum due to the “low mass
of the Higgs” also makes the computation of the Higgs
mass (which is not a free parameter in the noncommutative
description of the Standard Model) compatible with its
experimental value. Various scenarios have been proposed
to make this extra scalar field emerge from the mathemati-
cal framework of noncommutative geometry, all of them
consisting in some modification of one of the axioms, the
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first-order condition (e.g., Refs. [7–13]; see [14] for a
recent review).
In this paper, we push forward one of these scenarios,

consisting in twisting the spectral triple of the Standard
Model. Twists have been introduced by Connes and
Moscovici in Ref. [15] with purely mathematical motiva-
tions. Later, it has been discovered in Ref. [16] that a very
simple twist of the Standard Model produces not only the
extra scalar field σ, but also an additive field of 1-form Xμ

which turns out to be related with Wick rotation and the
transition from the Euclidean to the Lorentzian signature
[17,18]. However, in Ref. [16], the twist was applied only
to the part of the spectral triple that yields the field σ,
namely, the subalgebra of ASM describing the electroweak
interaction and the part of the operator D that contains the
Majorana mass of the neutrinos. For simplicity, the sub-
algebra of ASM describing the strong interaction was left
untouched, and the part of D containing the Yukawa
coupling of fermions was not taken into account. In this
paper, we extend the twisting procedure to the whole
spectral triple of the Standard Model, according to the
following lines.
The twist of gauge theories has been investigated in a

systematic way in Refs. [19,20], where the twisted version
of the first-order condition—introduced by imitation of the
nontwisted case in Ref. [16]—has been put onto solid
mathematical bases. A notion of minimal twist of a spectral
triple has also been defined, which consists in making
several copies of A act on H, leaving D untouched. By
doing so, one produces models with new bosonic fields,
keeping the fermionic content untouched, in agreement
with the state of the art of the Standard Model (indeed, the
metastability of the electroweak vacuum points toward new
scalar fields, but there are no indications of new fermions).
A procedure for minimally twisting any real spectral triple
is to make two copies of the algebra act independently on
the eigenspaces of the grading operator. However, applied
to the Standard Model, this does not produce any extra
scalar field, as explained in Ref. [21].
That is why in this paper we investigate another minimal

twist of the Standard Model that does produce an extra
scalar σ. The price to pay is a violation of the twisted first-
order condition, which is taken into account following the
way pioneered in Ref. [13] and adapted to the twisted case
in Ref. [22].
Besides the field content of the Standard Model, we find

that the extra scalar σ actually decomposes into two chiral
components σr and σl (Proposition 4.6) which are invariant
under a gauge transformation (Proposition 6.6). We also
work out the structure of the 1-form field Xμ (Proposition
5.5) and study how it behaves under a gauge transformation
(Proposition 6.2). In brief, imposing the same unimodular
condition as in the nontwisted case, we find that the anti-
self-adjoint part of the (generalized) 1-form generated by
the free Dirac operator =∂ yields exactly the bosonic content

of the Standard Model as in the nontwisted case. But there
is also a self-adjoint part made of two real 1-form fields and
one self-adjoint M3ðCÞ-value 1-form field. Altogether,
these three fields compose the 1-form field Xμ.
The complete understanding of the physical meaning of

these fields passes through the computation of the fer-
mionic and spectral actions and will be the subject of a
second paper [21].
The paper is organized as follows. In Sec. II, we recall

the basics of the spectral triple of the Standard Model
(Sec. II A), make explicit the tensorial notations employed
all along the paper (Sec. II B), and use them to write
explicitly the Dirac operator, the grading, and the real
structure (Sec. II C). Section III deals with the twist. After
recalling the procedure of minimal twisting defined in
Ref. [19], we apply it to the spectral triple of the Standard
Model: The algebra is doubled so as to act independently
on the left and right components of Dirac spinors
(Sec. III A). The grading and the real structure are the
same as in the nontwisted case, and we check explicitly that
one of the axioms (the order-zero condition) still holds in
the twisted case (Sec. III B), as expected from the general
result of Ref. [19]. Section III C is a brief recalling about
twisting fluctuations, that is, the way to generate the
bosonic fields. The detailed computation of these fluctua-
tions is the subject of Secs. IV and V, which contain the
main results of this paper. We first work out the Higgs
sector in Sec. IVA. The main result is Proposition 4.4, in
which we find two Higgs doublets. The extra scalar field σ
is generated in Sec. IV B. Its structure as a doublet of real
scalar fields σr and σl is established in Proposition 4.6. In
Sec. V, we compute the twisted fluctuation of the free part =∂
of the Dirac operator. Useful properties of the Dirac
matrices with respect to the twist are worked out in
Sec. VA. The generalized twisted 1-forms generated by
the free Dirac operator are computed in Sec. V B, and the
physical degrees of freedom are identified in Sec. V C. The
structure of the 1-form field Xμ is summarized in
Proposition 5.5 and yields, in Sec. V D, the explicit form
of the twisted fluctuation of the free Dirac operator. In
Sec. VI, we study how all these fields behave under a gauge
transformation. After recalling the basics of gauge trans-
formation for a twisted spectral triple (as stabilized in
Ref. [20]), we apply these techniques to the gauge and the
1-form fields in Sec. VI A and to the scalar fields in Sec. VI
B. We show in Proposition 6.2 that the bosonic fields
transform in the correct way, while the 1-form field is
invariant, up to a unitary transformation on the M3ðCÞ-
value part. The Higgs doublets as well transform as
expected (Proposition 6.5), while the extra scalar field σ
is gauge invariant, as shown in Proposition 6.6.
The first section of the Appendix contains notations and

generalities on Dirac matrices. In the second section, we
write explicitly the components of the twisted fluctuation in
terms of the gauge fields (this will be useful in the second
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part of the paper, to compute the action). In the last section
of the Appendix, we check that the twisted first-order
condition is only partially verified.

A. Notations and important comments
regarding the literature

In the first version of this paper, we erroneously thought
the twist we were using was “by grading” and assumed the
twisted first-order condition. Actually, the latter is violated
only by the off-diagonal part of the internal Dirac operator,
and this does not modify the extra scalar field, as explained
before Remark 4.7, nor the gauge invariance of the
fermionic action, as explained before Proposition 6.6.
We work with one generation of fermions (electron e,

neutrino νe, and quarks up u and down d). The extension to
three generations will be discussed in the second part of the
work [23].
All along the paper, we apply the usual rule of contractions

of indices in alternate up and down positions. Typically,
Greek indices label the coordinates of the manifold.

II. THE NONTWISTED CASE

As a preparation to the twisting, we recall in this section
the main features of the spectral description of the Standard
Model. Besides the original papers (recalled in the text), the
details are extensively discussed in the books [24,25] (for a
more physics-oriented presentation).

A. The spectral triple of the Standard Model

The usual spectral triple of the Standard Model [5] is the
product of the canonical triple of a (closed) Riemannian
spin manifold M of even dimension m:

C∞ðMÞ; L2ðM; SÞ; ∂ ð2:1Þ

with the finite-dimensional spectral triple (called internal)

ASM ¼ C ⊕ H ⊕ M3ðCÞ; HF ¼ C32n; DF ð2:2Þ

that describes the gauge degrees of freedom of the Standard
Model. In Eq. (2.1), C∞ðMÞ denotes the algebra of smooth
functions on M that acts by multiplication on the Hilbert
space L2ðM; SÞ of square integrable spinors as

ðfψÞðxÞ ¼ fðxÞψðxÞ ∀ f ∈ C∞ðMÞ;
ψ ∈ L2ðM; SÞ; x ∈ M; ð2:3Þ

while

=∂ ¼ −iγμ∇μ with ∇μ ¼ ∂μ þ ωμ ð2:4Þ

is the Dirac operator on L2ðM; SÞ associated with the spin
connection ωμ and the γμ’s are the Dirac matrices asso-
ciated with the Riemannian metric g on M:

γμγν þ γνγμ ¼ 2gμνI ∀ μ; ν ¼ 0; m − 1 ð2:5Þ

[I is the identity operator on L2ðM; SÞ, and we label the
coordinates of M from 0 to m − 1].
In Eq. (2.2), n is the number of generations of fermions,

and DF is a 32n square complex matrix whose entries are
the Yukawa couplings of fermions and the coefficients of
the Cabibbo-Kobayashi-Maskawa mixing matrix of quarks
and of the Pontecorvo-Maki-Nakagawa-Sakata mixing
matrix of neutrinos. Details are given in Sec. II C, and
the representation of ASM on HF is in Sec. II B.
The product spectral triple is

C∞ðMÞ ⊗ ASM; H ¼ L2ðM; SÞ ⊗ HF;

D ¼ ∂ ⊗ IF þ γM ⊗ DF ð2:6Þ

with γM the product of the Euclidean Dirac matrices
(Appendix 7) and IF the identity on HF.
A spectral triple ðA;H; DÞ is graded when the Hilbert

space comes equipped with a grading (that is, a self-adjoint
operator that squares to I) which anticommutes withD. The
spectral triple (2.1) is graded with grading γM. The internal
spectral triple (2.2) is graded, with grading the operator γF
on HF that takes value þ1 on right particles and left
antiparticles and −1 on left particles and right antiparticles.
The product spectral triple (2.6) is graded, with grading

Γ ¼ γM ⊗ γF: ð2:7Þ

Another important ingredient is the real structure, that is,
an antilinear operator that squares to �I and commutes or
anticommutes with the grading and the operator D (the
possible choices define the so-called KO dimension of the
spectral triple). For a manifold, the real structure J is given
by the charge conjugation operator. In dimension m ¼ 4, it
satisfies

J 2 ¼ −I; J ∂ ¼ ∂J ; J γM ¼ γMJ : ð2:8Þ

The real structure of the internal spectral triple (2.2) is the
antilinear operator JF that exchanges particles with anti-
particles on HF. It satisfies

J2F ¼ I; JFDF ¼ DFJF; JγF ¼ −γFJF: ð2:9Þ

The real structure for the product spectral triple (2.6) is

J ¼ J ⊗ JF: ð2:10Þ

For a manifold of dimension m ¼ 4, it is such that

J2 ¼ −I; JD ¼ DJ; JΓ ¼ −ΓJ: ð2:11Þ

The real structure implements an action of the opposite
algebra A∘ on H, identifying a∘ ∈ A∘ with Ja�J−1.
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This action is asked to commute with the one ofA, yielding
the order-zero condition

½a; b∘� ¼ 0 ∀ a ∈ A; b ∈ A∘: ð2:12Þ

Among the properties of a spectral triple, one particularly
relevant for physical models is the first-order condition

½½D; b�; a∘� ¼ 0 ∀ a; b ∈ A: ð2:13Þ

B. Representation of the algebra

To describe the action of ASM ⊗ C∞ðMÞ on H in
Eq. (2.6), it is convenient to label the 32n degrees of
freedom of the finite-dimensional Hilbert space HF by a
multi-index CIα defined as follows.

(i) C ¼ 0, 1 is for a particle (C ¼ 0) or antipar-
ticle (C ¼ 1);

(ii) I ¼ 0; i with i ¼ 1, 2, 3 is the leptocolor index:
I ¼ 0 means lepton, while I ¼ 1, 2, 3 are for the
quark, which exists in three colors;

(iii) α ¼ _1; _2; a with a ¼ 1, 2 is the flavor index:

_1 ¼ νR; _2 ¼ eR; 1 ¼ νL;

2 ¼ eL for leptons ðI ¼ 0Þ; ð2:14Þ

_1 ¼ uR; _2 ¼ dR; 1 ¼ qL;

2 ¼ dL for quarks ðI ¼ iÞ: ð2:15Þ

We sometimes use the shorthand notation la
L ¼

ðνL; eLÞ for the left-handed neutrino and the asso-
ciated lepton and qaL ¼ ðuL; dLÞ for the pair of left-
handed quarks.

There are 2 × 4 × 4 ¼ 32 choices of triplet of indices
ðC; I; αÞ, which is the number of fermions per generation.
One should also take into account an extra index n ¼ 1, 2, 3
for the generations, but in this paper we work with one
generation only and we omit it (we will discuss the number
of generations in the computation of the action [21]). So
from now on

HF ¼ C32: ð2:16Þ

An element ψ ∈ H ¼ C∞ðMÞ ⊗ HF is thus a 32-
dimensional column vector, in which each component
ψCIα is a Dirac spinor in L2ðM; SÞ.
Regarding the algebra, unless necessary we omit the

symbol of the representation and identify an element a ¼
ðc; q;mÞ in C∞ðMÞ ⊗ ASM, where

c ∈ C∞ðM;CÞ; q ∈ C∞ðM;HÞ;
m ∈ C∞ðM;M3ðCÞÞ; ð2:17Þ

with its representation as bounded operator on H, that is, a
32-square matrix whose components1

aDJβ
CIα ð2:18Þ

are smooth functions acting by multiplication on L2ðM; SÞ
as in Eq. (2.3). Explicitly,2

a ¼
�
Q

M

�D

C

; ð2:19Þ

where the 16 × 16 square matrices Q and M have
components

QJβ
Iα ¼ δJIQ

β
α; MJβ

Iα ¼ δβαMJ
I ; ð2:20Þ

respectively, where

Qβ
α ¼

0B@ c

c̄

q

1CA
β

α

; MJ
I ¼

�
c

m

�J

I

: ð2:21Þ

Here, the overbar denotes the complex conjugate, m
(evaluated at the point x) identifies with its usual repre-
sentation as 3 × 3 complex matrices, and the quaternion q
(evaluated at x) acts through its representation as 2 × 2
matrices:

H ∋ qðxÞ ¼
�

α β

−β̄ ᾱ

�
; α; β ∈ C: ð2:22Þ

C. Finite-dimensional Dirac operator, grading,
and real structure

With respect to the particle and antiparticle index C, the
internal Dirac operator

DF ¼ DY þDM ð2:23Þ

decomposes into a diagonal and an off-diagonal part

DY ¼
�
D0

D†
0

�D

C

; DM ¼
�

0 DR

D†
R 0

�D

C

ð2:24Þ

containing, respectively, the Yukawa couplings of fermions
and the Majorana mass of the neutrino.

1D, J, and β are column indices with the same range as the line
indices C, I, and α (the position of the indices was slightly
different in Ref. [16]; the one adopted here makes the tensorial
computation more tractable).

2The indices after the closing parenthesis are here to recall that
the block entries of A are labeled by the C, D indices, that is,
a11 ¼ Q, a22 ¼ M, and a21 ¼ a12 ¼ 0.
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The 16 × 16matricesD0 andDR are block diagonal with
respect to the leptocolor index I:

D0 ¼

0BBB@
Dl

0

Dq
0

Dq
0

Dq
0

1CCCA
J

I

;

DR ¼

0BBB@
Dl

R

04

04

04

1CCCA
J

I

; ð2:25Þ

where we write l for I ¼ 0 and q for I ¼ 1, 2, 3. EachDI
0 is

a 4 × 4 matrix (in the flavor index α):

DI
0 ¼

�
0 k̄I

kI 0

�β

α

where kI ≔
�
kIu 0

0 kId

�β

α

; ð2:26Þ

whose entries are the Yukawa couplings of elementary
fermions

kIu ¼ ð kν; ku; ku; ku Þ;
kId ¼ ð ke; kd; kd; kd Þ ð2:27Þ

(three of them are equal because the Yukawa coupling of
quarks does not depend on the color). Similarly, Dl

R is a
4 × 4 matrix (in the flavor index):

Dl
R ¼

�
kR

03

�
β

α

ð2:28Þ

whose only nonzero entry is the Majorana mass of the
neutrino.
In tensorial notations, one has

DR ¼ kRΞ
Jβ
Iα ; ð2:29Þ

where

Ξβ
α ≔

�
1

03

�
β

α

; ΞJ
I ≔

�
1

03

�J

I

; ð2:30Þ

and ΞJβ
Iα is a shorthand notation for the tensor ΞJ

IΞ
β
α.

Similarly, the internal grading is

γF ¼

0BBB@
I8

−I8
−I8

I8

1CCCA ¼ ηDβ
Cαδ

J
I ; ð2:31Þ

where the blocks in the matrix act, respectively, on right
and left particles and then right and left antiparticles, and
we define

ηβα ≔
�
I2

−I2

�
β

α

; ηDC ≔
�
1

−1

�D

C

; ð2:32Þ

and ηDβ
Cα holds for ηDCη

β
α. The internal real structure is

JF ¼
�

0 I16
I16 0

�D

C

cc ¼ ξDCδ
Jβ
Iαcc; ð2:33Þ

where cc denotes the complex conjugation and we define

ξDC ≔
�
0 1

1 0

�D

C

: ð2:34Þ

III. MINIMAL TWIST OF THE
STANDARD MODEL

In the noncommutative geometry description of the
Standard Model, the bosonic degrees of freedom are
obtained by a so-called fluctuation of the metric, that is,
the substitution of the operator D with Dþ Aþ JAJ−1,
where

A ¼
X
i

ai½D; bi�; ai; bi ∈ A; ð3:1Þ

is a generalized 1-form (see [3] for details and the
justification of the terminology).
As already noticed in Refs. [5,24], the Majorana mass of

the neutrino does not contribute to the bosonic content of
the model, for DM commute with algebra:

½γ5 ⊗ DM; a� ¼ 0 ∀ a ∈ A: ð3:2Þ

However, in order to generate the σ field proposed in
Ref. [6] to cure the electroweak vacuum instability and
solve the problem of the computation of the Higgs mass,
one precisely needs to make DM contribute to the
fluctuation.
To do this, a possibility consists in substituting the

commutator ½D; a� with a twisted commutator

½D; a�ρ ≔ Da − ρðaÞD; ð3:3Þ

where ρ is a fixed automorphism of A. This substitution is
the base of the definition of twisted spectral triple [15]
where, instead of asking that ½D; a� be bounded for any a
(which is one of the axioms of a spectral triple), one
requires that there exists an automorphism ρ such that the
twisted commutator ½D; a�ρ is bounded for any a ∈ A. As
shown in Ref. [19], starting with a spectral triple ðA;H; DÞ,
where A is almost commutative as in Eq. (1.2), then the
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only way to build a twisted spectral triple with the same
Hilbert space and Dirac operator (which, from a physics
point of view, means that one looks for models with the
same fermionic content as the Standard Model) is to double
the algebra and make them act independently on the left
and right components of spinors (following actually an idea
of Ref. [26]). All this is detailed in the next section.

A. Algebra and Hilbert space

The algebra A of the twisted spectral triple of the
Standard Model is twice the algebra (2.6):

A ¼ ðC∞ðMÞ ⊗ ASMÞ ⊗ C2; ð3:4Þ
which is isomorphic to

ðC∞ðMÞ ⊗ ASMÞ ⊕ ðC∞ðMÞ ⊗ ASMÞ: ð3:5Þ
It acts on the same Hilbert space H as in the nontwisted

case, but now the two copies of C∞ðMÞ ⊗ ASM act
independently on the right and left components of spinors.
To write this action, it is convenient to view an element of
H as a column vector with 4 × 32 ¼ 128 components [4
being the number of components of a usual spinor in
L2ðM; SÞ form ¼ 4]. To this aim, one introduces two extra
indices to label the degrees of freedom of L2ðM; SÞ.

(i) s ¼ r, l is the chirality index;
(ii) _s ¼ _0; _1 denotes the particle (_0) or antiparticle

part (_1).
An element a of Eq. (3.5) is a pair of elements of

Eq. (2.6), namely,

a ¼ ðc; c0; q; q0; m;m0Þ ð3:6Þ
with

c; c0 ∈ C∞ðM;CÞ; q; q0 ∈ C∞ðM;HÞ;
m;m0 ∈ C∞ðM;M3ðCÞÞ: ð3:7Þ
We make ðc; q;mÞ act on the chiral subspace Hc of H,

consisting in particles and antiparticles whose chirality as
Dirac spinors coincides with chirality in the internal space,
whereas ðc0; q0; m0Þ acts on the antichiral subspace Ha
consisting in particles and particles whose Dirac and
internal chiralities do not coincide. The chiral subspace
Hc is the subspace of H spanned by r; α ¼ _1; _2 and l,
α ¼ 1, 2, whileHa is spanned by l; α ¼ _1; _2 and r, α ¼ 1, 2
(in both cases, C takes both values 1 and 0). In other terms,
a ∈ A acts as in Eq. (2.19), but now the two 64 × 64
matrices Q and M are tensor fields of components

Q_ttJβ
_ssIα ¼ δ_tJ_sIQ

tβ
sα; M_ttJβ

_ssIα ¼ δ_t_sM
tβJ
sαI; ð3:8Þ

where δtJsI denotes the product of the two Kronecker
symbols δts and δJI . Both Q and M still act trivially (i.e.,
as the identity) on the indices _s _t but no longer on the chiral
indices st. On the latter, the action is given by

Qtβ
sα ¼

� ðQrÞβα
ðQlÞβα

�t

s

;

MtβJ
sαI ¼

� ðMrÞβJαI
ðMlÞβJαI

�t

s

; ð3:9Þ

with

Qr ¼
�
c

q0

�
β

α

; Ql ¼
�
c0

q

�
β

α

; ð3:10Þ

and

Mr ¼
�
m ⊗ I2 0

0 m0 ⊗ I2

�
β

α

;

Ml ¼
�
m0 ⊗ I2 0

0 m ⊗ I2

�
β

α

; ð3:11Þ

where we denote

c ≔
�
c

c̄

�
; m ≔

�
c

m

�J

I

;

c0 ≔
�
c0

c̄0

�
; m0 ≔

�
c0

m0

�J

I

: ð3:12Þ

Compared to the usual spectral triple of the Standard
Model, Mr=l are no longer trivial in the flavor index α.
Remark 3.1.—If we were using the twist-by grading, we

should permute m with m0 in Eq. (3.11), for on the
antiparticle subspace—i.e., C ¼ 1—then Hc is a subspace
of the −1 eigenspace of the grading (see also Appendix 7
regarding the twist used in Ref. [16]).
The twist ρ is the automorphism of A that exchanges the

two components of ASM, namely,

ρðc; c0; q; q0; m;m0Þ ¼ ðc0; c; q0; q; m0; mÞ: ð3:13Þ
In terms of the representation, one has

ρðaÞ ¼
�
ρðQÞ

ρðMÞ

�D

C

ð3:14Þ

with

ρðQÞt_tJβs_sIα ¼ δ_tJ_sIρðQÞtβsα; ρðMÞt_tJβs_sIα ¼ δ_t_sρðMÞtβJsαI;

ð3:15Þ
where

ρðQÞtβsα ¼
� ðQlÞβα

ðQrÞβα

�t

s

;

ρðMÞtβJsαI ¼
� ðMlÞβJαI

ðMrÞβJαI

�t

s

: ð3:16Þ

In short, the twist amounts to flipping the left and right
indices l and r.
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B. Grading and real structure

The operators Γ in Eq. (2.7) and J in Eq. (2.10) are the
grading and the real structure for the twisted spectral triple,
respectively, in the sense defined in Refs. [16,19] [the rule
of signs defining the KO dimension is not affected by the
twist; that Γ commutes with the representation (3.9) follows
from the latter being diagonal but on the α and I indices,
where Γ is (block-)diagonal]. In particular, as in the
nontwisted case, the real structure implements an action
of the opposite algebra A∘ on H that commutes with the
one of A. To check this, let us first write down the
representation of the opposite algebra.
Proposition 3.2.—For a ∈ A as in Eq. (2.19), one has

(for M of dimension 4)

JaJ−1 ¼ −
�
M̄ 0

0 Q̄

�D

C

: ð3:17Þ

Proof.—From Eqs. (2.10) and (2.33), one has

J ¼
�

0 J ⊗ I16
J ⊗ I16 0

�D

C

: ð3:18Þ

Since J−1 ¼ −J by Eq. (2.11), using the representation
(2.19) of a, one obtains (omitting I16)

JaJ−1 ¼ −JaJ ¼ −
�

0 J

J 0

�E

C

�
Q 0

0 M

�F

E

�
0 J

J 0

�D

F

¼ −
�
JMJ 0

0 JQJ

�D

C

: ð3:19Þ

In addition, J commutes with the grading γM [see
Eq. (2.8)], so it is of the form

J ¼
�
J r 0

0 J l

�t

s

cc; ð3:20Þ

where J r=l are 2 × 2 matrices carrying the _s; _t indices, such
that J rJ̄ r ¼ J lJ̄ l ¼ −I2. From the explicit form (3.8) of
Q and M, one gets (still omitting the indices α and I in
which J is trivial)

JQJ ¼
�
J rðδ_t_sQ̄rÞJ̄ r 0

0 J lðδ_t_sQ̄lÞJ̄ l

�t

s

¼
�−δ_t_sQ̄r 0

0 −δ_t_sQ̄l

�t

s

¼ −Q̄; ð3:21Þ

JMJ ¼
�
J rðδ_t_sM̄rÞJ̄ r 0

0 J lðδ_t_sM̄lÞJ̄ l

�t

s

¼
�−δ_t_sM̄r 0

0 −δ_t_sM̄l

�t

s

¼ −M̄; ð3:22Þ

and, hence, the result. ▪

To check the order-zero condition, we denote

b ¼ ðd; d0; p; p0; n; n0Þ ð3:23Þ
another element of A with d; d0 ∈ C∞ðM;CÞ,
p; p0 ∈ C∞ðM;HÞ, and n; n0 ∈ C∞ðM;M3ðCÞÞ. It acts
on H by Eq. (3.24) as

b ¼
�
R

N

�D

C

; ð3:24Þ

where R and N are defined as Q and M in Eq. (3.8), with

Rr ¼
�
d

p0

�
β

α

; Rl ¼
�
d0

p

�
β

α

;

Nr ¼
�
n⊗ I2

n0 ⊗ I2

�
β

α

; Nl ¼
�
n0 ⊗ I2

n⊗ I2

�
β

α

:

ð3:25Þ
Corollary 3.2.1.—The order-zero condition (2.12) holds.
Proof.—By Proposition 3.2, the order-zero condition

½a; JbJ−1� ¼ 0 for all a; b ∈ A is equivalent to ½R; M̄� ¼ 0

and ½N; Q̄� ¼ 0. By Eqs. (3.8) and (3.9), one gets (omitting
the indices _s _t on which all actions are trivial)

½R;M� ¼
� ½δJI Rr;Mr� 0

0 ½δJI Rl;Ml�:

�t

s

: ð3:26Þ

By Eq. (3.11), one has

½δJI Rr;Mr� ¼
� ½δJId;m⊗ I2� 0

0 ½δJI p0;m0⊗ I2�

�β

α

; ð3:27Þ

which is zero, as can be seen writing δJId ¼ I4 ⊗ d and
similarly for ½δJI p0;m0 ⊗ I2�. The same holds true for
½δJI Rl;Ml�. ▪

C. Twisted fluctuation

In the twisted context, fluctuations are similar to
Eq. (3.1), replacing the commutator for a twisted one
[20]. In addition, if the twisted first-order condition does
not hold, one should add a nonlinear term [13,22]. We thus
consider the twisted-covariant Dirac operator

DA ¼ Dþ Að1Þ þ Âð1Þ þ Að2Þ; ð3:28Þ
where

Að1Þ ¼
X
i

ai½D; bi�ρ; ai; bi ∈ A; ð3:29Þ

is a twisted (generalized) 1-form and Âð1Þ ≔ JAð1ÞJ−1 is its
image by the conjugation with the real structure, while

Að2Þ ¼
X
i

âi½Aρ; b̂i�ρ∘ with âi ≔ JaiJ−1 ¼ ða�i Þ∘;

b̂i ≔ JBiJ−1 ¼ ðb�i Þ∘ ð3:30Þ
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and ρ∘ denotes the automorphism of the opposite algebra
defined as

ρ∘ða∘Þ ≔ ðρ−1ðaÞÞ∘: ð3:31Þ

The term Að2Þ breaks the linearity of the map Að1Þ →
Dþ Að1Þ þ JAð1ÞJ−1 and vanishes when the twisted first-
order condition (A16) holds (this is a straightforward
adaptation to the twisted context of the result of
Ref. [13]). We need to take it into account for, as explained
in Sec. VII, the twisted first-order condition holds only
partially.
The twisted 1-form decomposes as the sum Að1Þ ¼

AF þ =A of two pieces: one that we call the finite part
of the fluctuation because it comes from the finite-
dimensional spectral triple, namely,

AF ¼
X
i

ai½γM ⊗ DF; bi�ρ; ai; bi ∈ A; ð3:32Þ

and another one coming from the manifold part of the
spectral triple

=A ¼
X
i

ai½D; bi�ρ; ai; bi ∈ A; ð3:33Þ

that we call gauge part in the following (terminology will
become clear later).
To guarantee that the twisted covariant operator (3.28) is

self-adjoint, one assumes that the twisted 1-form Að1Þ is
self-adjoint (Proposition 3.8 in Ref. [22]) (actually, this
is not a necessary condition, but requiring Að1Þ to be self-
adjoint makes sense viewing the fluctuation D → DA as a
three-step process

D → Dþ Að1Þ → Dþ Að1Þ þ Âð1Þ → DA ð3:34Þ

such that self-adjointness is preserved at each step). This
means that, for physical models, we assume that both the
gauge =A and the finite AF parts are self-adjoint.
So far, the construction works for any even-dimension

manifold M. To build explicitly the Standard Model, from
now on one fixes the dimension of M to m ¼ 4. The
grading and the real structure are

γM ¼ γ5 ¼ γ0Eγ
1
Eγ

2
Eγ

3
E ¼

�
I4 0

0 −I4

�t

s

¼ ηtsδ
_t
_s ð3:35Þ

and

J ¼ iγ0Eγ
2
Ecc ¼ i

�
σ̃2 02

02 σ2

�
st

cc ¼ −iηtsτ_t_scc; ð3:36Þ

respectively, where cc denotes the complex conjugation
and we define

τ_t_s ≔
�
0 −1
1 0

�_t

_s

; ηts ≔
�
1

−1

�t

s

: ð3:37Þ

For the internal spectral triple, one has

γF ¼

0BBB@
I8

−I8
−I8

I8

1CCCA ¼ ηDβ
Cαδ

J
I ;

JF ¼
�

0 I16
I16 0

�D

C

cc ¼ ξDCδ
Jβ
Iα ; ð3:38Þ

where the matrix γF is written in the basis left and right
particles and then left and right antiparticles, and we define

ηβα ≔
�
I2

−I2

�
β

α

; ηDC ≔
�
1

−1

�D

C

;

ξDC ≔
�
0 1

1 0

�D

C

ð3:39Þ

with ηDβ
Cα holding for ηDCη

β
α. Thus,

Γ ¼ γM ⊗ γF ¼ ηtDβ
sCαδ

_t
_s and

J ¼ JM ⊗ JF ¼ −iηtsτ_t_sξ
C
Dδ

Jβ
Iαcc: ð3:40Þ

IV. SCALAR PART OF THE
TWISTED FLUCTUATION

The scalar sector of the twisted Standard Model is
obtained from the finite part (3.32) of the twisted 1-form,
which in turn decomposes into a diagonal part (determined
by the Yukawa couplings of fermions)

AY ¼
X
i

ai½γ5 ⊗ DY; bi�ρ ð4:1Þ

and an off-diagonal part (determined by the Majorana mass
of the neutrino)

AM ¼
X
i

ai½γ5 ⊗ DM; bi�ρ: ð4:2Þ

As shown below, the former produces the Higgs sector, the
latter a pair of extra scalar fields.

A. The Higgs sector

We begin with the diagonal part (4.1). We first notice that
the M3ðCÞ part of the algebra (3.4) twist-commutes
with γ5 ⊗ DY .
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Lemma 4.1.—For any b ∈ A as in Eq. (3.24), one has

½γ5 ⊗ DY; b�ρ ¼
�
S 0

0 0

�C

D

; ð4:3Þ

where S has components

St_tJβs_sIα ¼ δ_t_sðηus ðD0ÞJγIαRtβ
sγ − ρðRÞuγsαηtuðD0ÞJβIγ Þ: ð4:4Þ

Proof.—From the explicit forms (2.24) of DY and (3.24)
of b, one has

½γ5 ⊗ DY; b�ρ ¼
� ½γ5 ⊗ D0; R�ρ

½γ5 ⊗ D†
0; N�ρ

�D

C

:

In the tensorial notation, S ≔ ½γ5 ⊗ D0; R�ρ has components

St_tJβs_sIα ¼ ηusδ
_u
_s ðD0ÞKγIα δ_tJ_uKRtβ

uγ − δ _uK_sI ρðRÞuγsαηtuδ_t_uðD0ÞJβKγ ð4:5Þ

¼ δt_sðηus ðD0ÞJγIαRtβ
uγ − ρðRÞuγsαηtuðD0ÞJβIγ Þ; ð4:6Þ

which shows (4.4). To show that

½γ5 ⊗ D†
0; N�ρ ¼ 0; ð4:7Þ

let us denoteT the left-hand side of the equation above. It has
components

Tt_tJβ
s_sIα ¼ ηusδ

_u
_s ðD†

0ÞKγIα δ_t_uNtβJ
uγK − δ _u_sρðNÞuγKsαI η

t
uδ

_t
_uðD†

0ÞJβKγ ð4:8Þ

¼ δ_t_sðηus ðD†
0ÞKγIα NtβJ

uγK − ρðNÞuγKsαI η
t
uðD†

0ÞJβKγÞ ð4:9Þ

¼ δ_t_s

 ðD†
0ÞKγIα ðNrÞβJγK − ðNlÞγKαI ðD†

0ÞJγKα 0

0 −ðD†
0ÞKγIα ðNlÞβJγK þ ðNrÞγKαI ðD†

0ÞJβKγ

!t

s

: ð4:10Þ

Since ðD†
0ÞKI ¼ δKI ðDI

0Þ and ðD†
0ÞKJ ¼ δKJ ðDJ

0Þ (with no summation on I and J), the upper-left term in Eq. (4.9) is

ðDI
0ÞδγðNrÞβJδI − ðNlÞγJαIðDJ

0Þβγ ¼
�

0 k̄Iðn0 ⊗ I2Þ
kIðn ⊗ I2Þ 0

�β

α

−
�

0 ðn0 ⊗ I2Þk̄J
ðn ⊗ I2ÞkJ 0

�β

α

; ð4:11Þ

where we omitted the I, J indices on n. One has

kIðn ⊗ I2Þ ¼
�
kIun

kIdn

�
;

ðn ⊗ I2ÞkJ ¼
�
nkJu

nkJd

�
; ð4:12Þ

and similarly for the terms in n0. Restoring the indices, one
has

kIunJI ¼
�
klud

kqun

�J

I

; nJI k
J
u¼
�
dklu

nkqu

�J

I

; ð4:13Þ

where we write kI¼0
u ¼ klu for the lepton and kI¼1;2;3

u ¼ kqu
for the colored quarks. Again, in the expression above,
there is no summation on I and J: kIunJI means the matrix n
in which the Ith line is multiplied by kIu, while in nJI k

J
u this

is the Jth column of n which is multiplied by kJu. Therefore,

kIðn ⊗ I2Þ − ðn ⊗ I2ÞkJ ¼ 0: ð4:14Þ

Similarly, k̄Iðn0 ⊗ I2Þ − ðn0 ⊗ I2Þk̄J ¼ 0, so that
Eq. (4.11)—that is, the upper-left term in Eq. (4.10)—is
zero. The proof that the lower-right term is zero is similar.
Hence (4.7) and the result. ▪
A similar result holds in the nontwisted case [the

computation is similar as above, with n0 ¼ n, so that
everything boils down to the single equation (4.14)].
The result, however, is not true if one genuinely generalizes
the twist used in Ref. [16]. As explained below, this yields
an additional violation of the twisted first-order condition,
besides the one required to generate the field σ. That is why
we do not use this genuine twist but rather the one
presented in Sec. III.
Remark 4.2.—The twist in Ref. [16] was not applied to

the M3ðCÞ part of the algebra. Only C ⊕ H was doubled,
and this yielded an action similar to the one used on the
present paper [modulo a change of notations, the repre-
sentation (4.7) of Ref. [16] coincides with Eq. (3.9)]. A
genuine generalization of this twist consists in making two
copies of M3ðCÞ acting independently on the left and right
components of spinors; namely, a ∈ A acts as in Eq. (3.8),
but now Mr;l are given by
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Mr ¼ ðm ⊗ I4 Þβα; Ml ¼ ðm0 ⊗ I4 Þβα: ð4:15Þ

Then Lemma 4.1 no longer holds, for the lower-right term
T is not necessarily zero [on the rhs of Eq. (4.11), the first
parentheses now contain only n, and the second only n0, so
that the cancellation (4.14) is no longer true].
We now compute the 1-forms generated by the Yukawa

couplings of the fermions. In order to do so, we extend the
action of the automorphism ρ to any polynomial in q, q0, p,
p0, c, c0, and d, d0. Namely, ρ “primes” what is unprimed,
and vice versa. For instance, ρðqp0 − c0dÞ ¼ q0p − cd0.
Proposition 4.3.—The diagonal part (4.1) of a twisted

1-form is

AY ¼
�
A

0

�D

C

; where A ¼ δ_tJ_sI

�
Ar

Al

�t

s

ð4:16Þ

with

Ar ¼
�

kIH1

H2kI

�β

α

;

Al ¼ −
�

kIH0
1

H0
2k

I

�β

α

; ð4:17Þ

where Hi¼1;2 and H0
1;2 ¼ ρðH1;2Þ are quaternionic fields.

Proof.—From Eq. (2.19) and Lemma 4.1, one has
a½γ5 ⊗ DY; b�ρ ¼ QS. In components, this gives [using
the explicit forms (3.8) of Q, R]

At_tJβ
s_sIα ¼ Qu _uKγ

s_sIα δ_t_u½ηvuðD0ÞJδKγRtβ
vδ − ρðRÞvδuγηtvðD0ÞJβKδ� ð4:18Þ

¼ δ_tJ_sIQ
uγ
sα½ηvuðDI

0ÞδγRtβ
vδ − ρðRÞvδuγηtvðDI

0Þβδ �; ð4:19Þ

where we use δKI ðD0ÞJK ¼ δJI ðDI
0Þ (with no summation on I

in the last expression). Since Q is diagonal on the chiral
indices s, the only nonzero components of A are for s ¼
t ¼ r and s ¼ t ¼ l, namely,

Ar_tJβ
r_sIα ¼ δ_tJ_sIðAI

rÞβα with

ðAI
rÞβα ¼ ðQrÞγα½ðDI

0ÞδγðRrÞβδ − ðRlÞδγðDI
0Þβδ �; ð4:20Þ

Al_tJβ
l_sIα ¼ δ_tJ_sIðAI

lÞβα with

ðAI
lÞβα ¼ ðQlÞγα½−ðDI

0ÞδγðRlÞβδ þ ðRrÞδγðDI
0Þβδ �: ð4:21Þ

From the explicit expression (3.10), (3.25), and (2.26) of
Qr=l, Rr=l, and DI

0, respectively, one gets

QrDI
0Rr ¼

�
ck̄Ip0

q0kId

�β

α

;

QrRlDI
0 ¼

�
cd0kI

q0pkI

�β

α

; ð4:22Þ

QlDI
0Rl ¼

�
c0kIp

qkId0

�β

α

;

QlRrDI
0 ¼

�
c0dkI

qp0kI

�β

α

: ð4:23Þ

Using that c; c0; d; d0 commute with kI, one has

QrðDI
0Rr − RlDI

0Þ ¼
�

k̄IH1

H2kI

�β

α

;

−QlDI
0Rl þQlRrDI

0 ¼ −
�

k̄IH0
1

H0
2k

I

�β

α

; ð4:24Þ

where

H1 ≔ cðp0 − d0Þ; H2 ≔ q0ðd − pÞ;
H0

1 ≔ c0ðp − dÞ; H0
2 ≔ qðd0 − p0Þ: ð4:25Þ

This shows the result. ▪
Imposing now self-adjointness as stressed before (3.34)

at the beginning of this section, we get the following
corollary.
Corollary 4.3.1.—A self-adjoint diagonal twisted

1-form (4.1) is parametrized by two independent scalar
quaternionic field Hr and Hl.
Proof.—The twisted 1-form (4.16) is self-adjoint if and

only if

H2 ¼ H†
1 ≕Hr and H0

2 ¼ H0†
1 ≕Hl: ð4:26Þ

They are independent as follows from their definition
(4.25). ▪
Since γ5 ⊗ DY satisfies the twisted first-order condition

(Proposition A.8), it does not contribute to the nonlinear
term Að2Þ of the twisted fluctuation. Gathering the results of
this section, one thus works out the fields induced by the
Yukawa coupling of fermions via a twisted fluctuation of
the metric.
Proposition 4.4.—A self-adjoint diagonal fluctuation is

DAY
¼ γ5 ⊗ DY þ AY þcAY

¼
�
ηtsδ

_t
_sD0 þ A

ηtsδ
_t
_sD

†
0 þ Ā

�D

C

; ð4:27Þ

where
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A ¼ δ_tJ_sI

�
Ar

Al

�t

s

is generated by two quaternionic fields Hr and Hl as

Ar ¼
�

k̄IH†
r

HrkI

�β

α

;

Al ¼
�

k̄IH†
l

HlkI

�β

α

: ð4:28Þ

Proof.—Remembering that J−1 ¼ −J, Proposition 4.3
yields

cAY ¼ JAYJ−1

¼
�

0 J

J 0

�D

C

�
A

0

�D

C

�
0 −J

−J 0

�D

C

¼
�
0

−JAJ −1

�D

C

: ð4:29Þ

From the explicit form (3.36) of J ¼ −J and (4.16) of A,
one obtains (omitting the IJ and αβ indices in which the
real structure J is trivial)

JAJ −1 ¼ ηusτ
_u
_s Ā

v _v
u _uη

t
vτ

_t
_v ¼ ηusτ

_u
_s

�
Ār 0

0 Āl

�t

s

ηtvτ
_t
_v

¼
�
−Ār 0

0 −Āl

�t

s

¼ −Ā; ð4:30Þ

where we used (4.16) and write τ _u_sδ
_v
_uτ

_t
_v ¼ −δ_t_s.

The result follows summing Eq. (4.29) with AY given in
Proposition 4.3 and DY given in Eq. (2.24), then using
Corollary 4.3.1 to rename Hr and Hl. ▪
In the nontwisted case, the primed and unprimed

quantities are equal, so that one obtains only one quater-
nionic field Hr ¼ Hl, which combines in the action as

H ≔ Hr þHl ¼
�
ϕ1 −ϕ̄2

ϕ2 ϕ̄1

�
; ð4:31Þ

whose complex components ϕ1 and ϕ2 identify with the
Higgs doublet. In the twisted case, the complex compo-
nents ϕr

1;2 and ϕ
l
1;2 of Hr and Hl define two scalar doublets

Φr ≔
�
ϕr
1

ϕr
2

�
; Φl ≔

�
ϕl
1

ϕl
2

�
; ð4:32Þ

which act, respectively, on the right and on the left part of
the Dirac spinors. However, similar to Eq. (4.31), they
appear in the fermionic action only through their linear
combination Hr þHl [21]; therefore, there is actually only
one physical Higgs doublet in the twisted case as well.

B. The extra scalar field

The computation of the off-diagonal term (4.2) of the
finite part of the twisted 1-form is easier than for the
diagonal part, because DM has only one nonzero
component.
Proposition 4.5.—The off-diagonal part (4.2) of a

twisted 1-form is

AM ¼
�

C

D

�D

C

; ð4:33Þ

where

C ¼ kRδ
_t
_s

�
Cr

Cl

�t

s

;

D ¼ k̄Rδ
_t
_s

�
Dr

Dl

�t

s

ð4:34Þ

with

Cr ¼ Dr ¼ ΞJβ
Iασ; Cl ¼ Dl ¼ −ΞJβ

Iασ
0 ð4:35Þ

where σ and σ0 are complex fields.
Proof.—Using the explicit form (2.24) of DM, for a in

(2.19) and b in (3.24), one gets

a½γ5 ⊗ DM; b�ρ ¼
�
Q 0

0 M

���
0 γ5 ⊗ DR

γ5 ⊗ D†
R 0

�
;
�
R 0

0 N

��
ρ

¼
�

Qððγ5 ⊗ DRÞN − ρðRÞðγ5 ⊗ DRÞÞ
Mððγ5 ⊗ D†

RÞR − ρðNÞðγ5 ⊗ D†
RÞÞ

�D

C

: ð4:36Þ

With DR given in Eq. (2.29), one computes the upper-
right component C of the matrix above:

Ct_tJβ
s_sIα ¼ Qu _uKγ

s_sIα ½kRηvuδ _v_uΞLδ
KγN

t_tJβ
v _vLδ − kRρðRÞv _vLδu _uKγη

t
vδ

_t
_vΞ

Jβ
Lδ�:
ð4:37Þ

Since Q and N are diagonal in the s index and proportional
to δ_t_s, the nonzero components of C are

ðCrÞJβIα ¼ kRδ
_t
_sðQrÞKγIα ½ΞLδ

KγðNrÞJβLδ − ðRlÞLδKγΞJβ
Lδ�; ð4:38Þ
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ðClÞJβIα ¼ kRδ
_t
_sðQlÞKγIα ½−ΞLδ

KγðNlÞJβLδ þ ðRrÞLδKγΞJβ
Lδ�: ð4:39Þ

Explicitly, from the formula (3.10) for Qr=l and (3.25) of Rr=l and Nr=l, one gets

QrðΞNr − RlΞÞ ¼
�
cδJI

q0δjI

�β

α

��
ΞJ
I

03

�β

α

�
n ⊗ I2

n0 ⊗ I2

�
β

α

−
�
d0δJI

pδJI

�β

α

�
ΞJ
I

03

�β

α

�

¼
�
cδJI

q0δjI

�β

α

�
ΞJ
I d − d0ΞJ

I

03

�β

α

¼
�
cðd − d0ÞΞJ

I

03

�β

α

¼ σΞJβ
αI

and, similarly,

Qlð−ΞNl þ RrΞÞ ¼ −σ0ΞJβ
αI ; ð4:40Þ

where we define the scalar fields

σ ≔ cðd − d0Þ; σ0 ≔ c0ðd0 − dÞ: ð4:41Þ

Similarly, one computes that the lower-left componentD
of (4.36) has nonzero components

Dr ¼ k̄Rδ_t_sMrðΞRr − NlΞÞ ¼ k̄Rδ_t_sΞ
βJ
αI cðd − d0Þ

¼ k̄Rδ_t_sΞ
βJ
αIσ;

Dl ¼ k̄Rδ_t_sMlð−ΞRl þ NrΞÞ ¼ k̄Rδ_t_sΞ
βJ
αI c

0ð−d0 þ dÞ
¼ −k̄Rδ_t_sΞ

βJ
αIσ

0: ð4:42Þ

▪
An off-diagonal 1-form AM is self-adjoint if and only if

D†
r ¼ Cr and D†

l ¼ Cl, that is,

σ ¼ σ̄; σ0 ¼ σ̄0: ð4:43Þ

The part of the twisted fluctuation induced by the
Majorana mass of the neutrino is then easily obtained,
taking into account, however, the contribution of DM to the
nonlinear term Að2Þ, since γ5 ⊗ DM violates the twisted
first-order condition (cf. Proposition A.8).
Proposition 4.6.—An off-diagonal fluctuation is para-

metrized by two independent real scalar fields σr and σl:

DAM
¼ γ5⊗DMþAMþcAMþAMð2Þ

¼ δ_t_t

�
0 ηtsD0þkRΞ

Jβ
Iα Σ̄t

s

ηtsD
†
0þ k̄RΞ

Jβ
IαΣt

s 0

�D

C

; ð4:44Þ

where

Σ ¼
�
σr

σl

�t

s

: ð4:45Þ

Proof.—As in the proof of Proposition 4.4, one has

cAM ¼ JAMJ−1 ¼
�

0 −JDJ

−JCJ 0

�D

C

ð4:46Þ

with

JCJ −1 ¼ ηusτ
_u
_s C̄

v _v
u _uη

t
vτ

_t
_v ¼ −C̄ ð4:47Þ

and similarly for D. Hence,

AM þ dJAM ¼
�

0 Cþ D̄

C̄þD 0

�D

C

: ð4:48Þ

The nonlinear term is (omitting the summation index)

AMð2Þ ¼ â½AM; b̂�ρ∘ : ð4:49Þ

By Proposition 3.2 and the explicit form (4.33) of AM, one
gets

â½AM;b̂�ρ∘ ¼−
�
M̄ 0

0 Q̄

�D

C

�
0 ρðNÞC−CR̄

ρðRÞD−DN̄

�D

C

;

ð4:50Þ

where we use ρ∘ðb̂Þ¼ρ∘ððb�Þ∘Þ¼ðρ−1ðb�ÞÞ∘¼ðρðbÞ�Þ∘¼dρðbÞ, which follows from the definition (3.31) of ρ∘
together with the regularity condition ρða�Þ ¼ ðρ−1ðaÞÞ�
satisfied by ρ. From Eqs. (4.34) and (3.24),

CR̄ ¼ kRδ
_t
_sΞ

Jβ
Iα

�
d̄σ

−d0σ0

�t

s

;

ρðNÞC ¼ kRδ
_t
_sΞ

Jβ
Iα

�
d0σ

−d̄σ0

�t

s

; ð4:51Þ

ρðRÞD ¼ kRδ
_t
_sΞ

Jβ
Iα

�
d0σ

−d̄σ0

�t

s

;

DN̄ ¼ kRδ
_t
_sΞ

Jβ
Iα

�
d̄σ

−d0σ0

�t

s

: ð4:52Þ
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Remembering Eq. (4.41), one obtains

−M̄ðρðNÞC−CR̄Þ ¼ kRδ
_t
_sΞ

Jβ
Iα

�
c̄ðd̄− d̄0Þσ

c0ðd̄− d̄0Þσ0
�t

s

¼ kRδ
_t
_sΞ

Jβ
Iα

� jσj2
−jσ0j2

�t

s

; ð4:53Þ

−Q̄ðR̄0D −DN̄Þ ¼ kRδ
_t
_sΞ

Jβ
Iα

�
c̄ðd̄ − d̄0Þσ

c0ðd̄ − d̄0Þσ0
�t

s

¼
� jσj2

−jσ0j2
�t

s

: ð4:54Þ

Hence,

Að2Þ ¼ δ_t_sΞ
Jβ
Iα

�
0 kR
kR 0

�D

C

� jσj2
−jσ0j2

�t

s

: ð4:55Þ

The explicit form of Σ follows from Eqs. (4.34) and
(4.35), defining

σr ¼ σ̄ þ σ þ jσj2 and σl ¼ −σ̄0 − σ0 − jσ0j2:

▪
The nonlinear term does not modify the nature of the

extra scalar field σ. It simply modifies the relation between
the components σr and σl and the elements of the algebra
defining the twisted 1-form, introducing the terms jσj2 and
jσ0j2 in the equation above.
Remark 4.7.—The field σ is chiral, in the sense it has two

independent components σr and σl. The one initially
worked out in Ref. [16] was not chiral. This is because,
in the latter case, one does not doubleM3ðCÞ and identifies
the complex component ofm with the complex component
of Qr. This means that the component d0 of Nl identifies
with the component d of Rr, so that Eqs. (4.40) and (4.42)
vanish, that is, Cl ¼ Dr ¼ 0. Similarly, the component c0 of
Ml becomes c, so that Dl ¼ Cr. One thus retrieves the
formula (4.32) of Ref. [16] (in which the roles of c and d
have been interchanged). However, forcing the identifica-
tion of the (nondoubled)M3ðCÞ component with one of the
(doubled) component of C is actually not compatible with
the twist, as explained in greater detail in Ref. [21]. This
problem is resolved in the present paper, where M3ðCÞ is
doubled and there is a minimal violation of the twisted first-
order condition.
As an illustration that the self-adjointness of the 1-form

is not necessary to get a self-adjoint twisted fluctuation (see
Sec. III C), notice that in the proposition above DAM

is self-
adjoint regardless of the self-adjointness of AM. As well,
one does not need to assume that AM is self-adjoint to
ensure that the fields σr and σl are real.

V. GAUGE PART OF THE TWISTED
FLUCTUATION

In this section, we compute the twisted fluctuation
induced by the free part D ¼ =∂ ⊗ IF of the Dirac operator
(2.6), that is,

Dþ =Aþ J=AJ−1; ð5:1Þ

where =A is the twisted 1-form (3.33) induced by D, that we
call in the following a free 1-form. As will be checked in
Sec. VI, the components of this form are the gauge fields of
the model. There is no nonlinear term =Að2Þ, for D does
verify the twisted first-order condition, as shown in
Proposition A.8.

A. Dirac matrices and twist

We begin by recalling some useful relations between the
Dirac matrices and the twist.
Lemma 5.1.—If an operator O on L2ðM; SÞ twist

commutes with the Dirac matrices,

γμO ¼ ρðOÞγμ ∀ μ ð5:2Þ

for some automorphism ρ of BðHÞ and commutes the spin
connection ωμ, then

½=∂;O�ρ ¼ −iγμ∂μO: ð5:3Þ

Proof.—One has

½γμ∇μ;O�ρ ¼ ½γμ∂μ;O�ρ þ ½γμωμ;O�ρ: ð5:4Þ

On the one side, the Leibniz rule for the differential
operator ∂μ together with Eq. (5.2) yields

½γμ∂μ;O�ρψ ¼ γμ∂μOψ − ρðOÞγμ∂μψ

¼ γμð∂μOÞψ þ γμO∂μψ − ρðOÞγμ∂μψ

¼ γμð∂μOÞψ :

On the other side, by Eq. (5.2),

½γμωμ;O�ρ ¼ γμωμO − ρðOÞγμωμ ¼ γμ½ωμ;O� ð5:5Þ

vanishes by hypothesis. Hence, the result. ▪
This lemma applies, in particular, to the components Q

and M of the representation of the algebra A in Eq. (2.19).
The slight difference is that these components do not act on
L2ðM; SÞ but on L2ðM; SÞ ⊗ C32. With a slight abuse of
notation, we write

γμQ ≔ ðγμ ⊗ I16ÞQ; ∂μQ ≔ ð∂μ ⊗ I16ÞQ ð5:6Þ

and similarly for M.
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Corollary 5.1.1.—One has

γμQ ¼ ρðQÞγμ; ½∂; Q�ρ ¼ −iγμ∂μQ; ð5:7Þ

γμM ¼ ρðMÞγμ; ½∂;M�ρ ¼ −iγμ∂μQ: ð5:8Þ

Proof.—From Eq. (3.9) and omitting the internal indices
(on which the action of γμ ⊗ I16 is trivial), one checks from
the explicit form (A2) of the Euclidean Dirac matrices that

γμEQ − ρðQÞγμE ¼
�

0 σμ

σ̃μ 0

�t

s

�
Qr 0

0 Ql

�t

s

−
�
Ql 0

0 Qr

�t

s

�
0 σμ

σ̃μ 0

�t

s

¼ 0: ð5:9Þ

The same holds true for the curved Dirac matrices (A4), by
linear combination.
The commutation with the spin connection follows by

remembering that the latter is

ωμ ¼ Γρν
μ γργν ¼ Γρν

μ

�
σμσ̃ν 0

0 σ̃μσν

�t

s

ð5:10Þ

and so commutes with Q, which is diagonal in the s, t
indices and trivial in the _s, _t indices. ▪

B. Free 1-form

With the previous results, it is not difficult to compute a
free 1-form (3.33).
Lemma 5.2.—A free 1-form is

=A ¼ −iγμAμ with Aμ ¼
�
Qμ 0

0 Mμ

�D

C

; ð5:11Þ

where we use notations similar to Eq. (5.6), with

Qμ ≔
X
i

ρðQiÞ∂μRi; Mμ ¼
X
i

ρðMiÞ∂μNi ð5:12Þ

for Qi (Mi) and Ri (Ni) the components of ai (bi),
respectively, as in Eqs. (2.19) and (3.24).
Proof.—Omitting the summation index i, one has

=A ¼ a½D; b�ρ ¼
�
Q 0

0 M

�D

C

� ½∂; R�ρ 0

0 ½∂; N�ρ

�D

C

¼ −i
�
Q 0

0 M

�D

C

�
γμ∂μR 0

0 γμ∂μN

�D

C

¼ −iγμ
�
ρðQÞ∂μR 0

0 ρðMÞ∂μN

�D

C

; ð5:13Þ

where the last equalities follow from Corollary 5.1.1.
Restoring the index i, one gets the result. ▪

By computing explicitly the components of =A, one finds
that a free 1-form is parametrized by two complex fields crμ
and clμ, two quaternionic fields qrμ and qlμ, and two M3ðCÞ-
valued fields mr

μ and ml
μ.

Proposition 5.3.—The components Qμ and Mμ of =A in
Eq. (5.11) are, respectively,

Qμ ¼ δ_tJ_sI

�Qr
μ

Ql
μ

�t

s

;

Mμ ¼ δ_t_s

�Mr
μ

Ml
μ

�t

s

; ð5:14Þ

where

Qr
μ ¼

�
crμ

qrμ

�β

α

; Ql
μ ¼

� clμ

qlμ

�β

α

ð5:15Þ

for

crμ ¼
�
crμ

c̄rμ

�
and

clμ ¼
�
clμ

c̄lμ

�
and

Mr
μ ¼

�mr
μ ⊗ I2 0

0 ml
μ ⊗ I2

�β

α

;

Ml
μ ¼

�
ml

μ ⊗ I2 0

0 mr
μ ⊗ I2

�β

α

ð5:16Þ

for

mr
μ ¼

�
crμ

mr
μ

�J

I

and

ml
μ ¼

�
clμ

ml
μ

�J

I

:

The complex, quaternionic, andM3ðCÞ-value fields cr=lμ ,
qr=lμ , and mr=l

μ , respectively, are defined in the proof.
Proof.—The form (5.14) and (5.15) of the components

of =A follows calculating explicitly Eq. (5.12) using
Eqs. (3.9)–(3.12) for Qi and Mi and Eq. (3.25) for Ri
and Ni. Omitting the i index, one finds
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Qr
μ ¼ Ql∂μRr; Ql

μ ¼ Qr∂μRl;

Mr
μ ¼ Ml∂μNr; Ml

μ ¼ Mr∂μNl: ð5:17Þ

The first two equations yield Eq. (5.15) with

crμ ¼ c0∂μd; clμ ¼ c∂μd0;

qrμ ¼ q∂μp0; qlμ ¼ q0∂μp; ð5:18Þ

and the last two yield mr
μ ¼ m0∂μn and ml

μ ¼ m∂μn0, from
which Eq. (5.16) follows with

mr
μ ¼ m0∂μn; ml

μ ¼ m∂μn0:
▪

Corollary 5.3.1.—A free 1-form =A is self-adjoint if and
only if

clμ ¼ −c̄rμ; qlμ ¼ −ðqrμÞ†; ml
μ ¼ −ðmr

μÞ†: ð5:19Þ

Proof.—From Lemma 5.2 and Corollary 5.1.1, using
that ρ is a �-automorphism,3 one has

=A† ¼ iðAμÞ†γμ ¼ iγμρðAμÞ†; ð5:20Þ

so =A is self-adjoint if and only if γμðρðAμÞ† þ AμÞ ¼ 0.
Since Aμ is diagonal from the s and t indices, the sum

Δμ ≔ ρðAμÞ† þ Aμ is also diagonal with components Δr=l
μ .

Thus,

γμΔμ ¼
�

0 σμΔl
μ

σ̃μΔr
μ

�t

s

: ð5:21Þ

If this is zero, then for any γν

γνγμΔμ ¼
�
σνσ̃μΔr

μ 0

0 σ̃νσμΔl
μ

�
¼ 0: ð5:22Þ

Aμ—and, hence, Δμ—being trivial in _s and _t, and since
Trσ̃μσν ¼ 2δμν, the partial trace on the _s and _t indices of the
expression above yields Δr

μ ¼ Δl
μ ¼ 0. Therefore,

γμðρðAμÞ† þ AμÞ ¼ 0 implies

ρðAμÞ† ¼ −Aμ: ð5:23Þ

The converse is obviously true. Consequently, =Aμ is self-
adjoint if and only if Eq, (5.23) holds true.
From Eq. (5.11), this is equivalent to ρðQμÞ† ¼ −Qμ and

ρðMμÞ† ¼ −Mμ; that is, from Eq. (5.14),

ðQl
μÞ† ¼ −Qr

μ and ðMl
μÞ† ¼ −Mr

μ: ð5:24Þ

This is equivalent to Eq. (5.19). ▪

C. Identification of the physical degrees of freedom

To identify the physical fields, one follows the non-
twisted case [5] and separates the real from the imaginary
parts. We thus define two real fields aμ ¼ Recrμ and Bμ ¼
− 2

g1
Imcrμ (g1 is a real constant, and the signs are such to

match the notations of Ref. [24]; see Remark 5.6), so that

crμ ¼ aμ − i
g1
2
Bμ; clμ ¼ −c̄rμ ¼ −aμ − i

g1
2
Bμ: ð5:25Þ

Moreover, we denote wμ and −
g2
2
Wk for k ¼ 1, 2, 3 the real

components of the quaternionic field qrμ on the basis
fI2; iσjg of the (real) algebra of quaternions (with g2
another real constant), so that

qrμ ¼ wμI2 − i
g2
2
Wk

μσk;

qlμ ¼ −ðqrμÞ† ¼ −wμI2 − i
g2
2
Wk

μσk: ð5:26Þ

Finally, we write mr
μ as the sum of a self-adjoint part gμ ¼

1
2
ðmr

μ þmr
μ
†Þ and an anti-self-adjoint part 1

2
ðmr

μ −mr
μ
†Þ.

We denote V0
μ and g3

2
Vm
μ the real-field components of the

latter on the basis fiI3; iλmg of the (real) vector space of
anti-self-adjoint 3 × 3 complex matrices (with fλm;m ¼
1…8g the Gell-Mann matrices and g3 a real constant), so
that

mr
μ ¼ gμ þ iV0

μI3 þ i
g3
2
Vm
μ λm; ð5:27Þ

ml
μ ¼ −ðmr

μÞ† ¼ −gμ þ iV0
μI3 þ i

g3
2
Vm
μ λm: ð5:28Þ

The cancellation of anomalies is imposed requiring the
unimodularity condition

TrAμ ¼ 0: ð5:29Þ

This yields the same condition as in the nontwisted case.
Proposition 5.4.—The unimodularity condition for a

self-adjoint free 1-form yields

V0
μ ¼

g1
6
Bμ: ð5:30Þ

Proof.—From Proposition 5.3, one gets TrAμ ¼
TrQμ þ TrMμ. On the one side (neglecting the _s and I
indices),

TrQμ ¼ TrQr
μ þ TrQl

μ

¼ crμ þ c̄rμ þ Trqrμ þ clμ þ c̄lμ þ Trqlμ ð5:31Þ

3In a twisted spectral triple, the automorphism is not neces-
sarily involutive. What is asked is the regularity condition
ρða�Þ ¼ ðρ−1ðaÞÞ�. In our case, since ρ−1 ¼ ρ, the latter is
equivalent to ρ being a �-automorphism.
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vanishes by Eq. (5.19), when one notices that Trq† ¼ Trq
for any quaternion q. On the other side,

TrMμ ¼ TrMr
μ þ TrMl

μ ¼ 4Trfmgrμ þ 4Trfmglμ
¼ 4ðcrμ þ Trmr

μ þ clμ þ Trml
μÞ

¼ 4ð−ig1Bμ þ 6iV0
μÞ; ð5:32Þ

where we use crμ þ clμ ¼ −ig1Bμ and mr
μ þml

μ ¼
2iV0

μI3 þ 2ig3Vm
μ λm, remembering then that the Gell-

Mann matrices are traceless. Hence, Eq. (5.29) is equivalent
to Eq. (5.30). ▪
Let us summarize the results of this section in the

following.
Proposition 5.5.—A unimodular self-adjoint free 1-form

=A is parametrized by
(i) two real 1-form fields aμ and wμ and a self-adjoint

M3ðCÞ-value field gμ,
(ii) a uð1Þ-value field iBμ, a suð2Þ-value field iWμ, and

a suð3Þ-value field iVμ.
Proof.—Collecting the previous results, denoting Wμ ≔

Wk
μσk and Vμ ≔ Vm

μ λm, one has

crμ ¼ aμ − i
g1
2
Bμ; clμ ¼ −aμ − i

g1
2
Bμ; ð5:33Þ

qrμ ¼ wμI2 − i
g2
2
Wμ; qlμ ¼ −wμI2 − i

g2
2
Wμ; ð5:34Þ

mr
μ ¼ gμ þ i

�
g1
6
BμI3 þ

g3
2
Vμ

�
;

ml
μ ¼ −gμ þ i

�
g1
6
BμI3 þ

g3
2
Vμ

�
: ð5:35Þ

On the one side,aμ andwμ are inC∞ðM;RÞ and gμ ¼ gμ†

is in C∞ðM;M3ðCÞÞ. On the other side, since Bμ is real,
iBμ ∈ C∞ðM; iRÞ is a uð1Þ-value field. The Pauli matrices
span the space of traceless 2 × 2 self-adjoint matrices; thus,
the field iWμ takes a value in the set of anti-self-adjoint such
matrices, that is, suð2Þ. Finally, the real span of the Gell-
Mannmatrices is the space of traceless self-adjoint elements
of M3ðCÞ; hence, iVμ is a suð3Þ-value field. ▪
In the nontwisted case, the primed and unprimed

quantities in Eq. (5.18) and the next equation are equal,
meaning that the right and left components of the fields
(5.33)–(5.35) are equal; hence,

aμ ¼ wμ ¼ gμ ¼ 0: ð5:36Þ

That the twisting produces some extra 1-form fields has
already been pointed out for manifolds in Ref. [19] and for
electrodynamic in Ref. [18]. Actually, such a field (improp-
erly called vector field) appeared initially in the twisted
version of the StandardModel presented in Ref. [16], but its
precise structure—a collection of three self-adjoint fields

aμ, wμ, and gμ, each associated with a gauge field of the
Standard Model—had not been worked out there.
In the minimal twist of electrodynamics, there is only

one such field [associated with the Uð1Þ gauge symmetry].
By studying the fermionic action, it gets interpreted as an
energy-momentum 4-vector in Lorentzian signature.
Whether such an interpretation still holds for aμ, wμ, and
gμ will be investigated in a forthcoming paper [21].
Remark 5.6.—In the nontwisted case, the fields Bμ, Wμ,

and Vμ coincide with those of the spectral triple of the
Standard Model. More precisely, within the conditions of
Eq. (5.36), then

(i) our crμ ¼ clμ coincides with −iΛμ of Sec. 15.4 in
Ref. [24].4 The self-adjointness condition (5.19)
then implies that Λμ is real, in agreement with
Ref. [24]. Then Bμ ¼ 2

g1
Λμ as defined in Ref. [24]

coincides with our Bμ ¼ −i 2
g1
crμ ¼ −i 2

g1
clμ as

defined in Eq. (5.25).
(ii) Our qrμ ¼ qlμ coincides with −iQμ of Sec. 15.4 in

Ref. [24]. The self-adjointness condition (5.19) then
implies that Qμ is self-adjoint, in agreement with
Ref. [24]. Then Wμ ¼ 2

g2
Qμ as defined in Ref. [24]

coincides with our Wμ ¼ Wk
μσk ¼ i 2

g2
qrμ ¼ i 2

g2
qlμ

in Eq. (5.26).
(iii) The identification of our Vμ with the one of the

nontwisted case is made after Proposition 5.8.
Remark 5.7.—If one does not impose the self-adjointness

of =A, then one obtains two copies of the bosonic contents of
the Standard Model, acting independently on the right and
left components of Dirac spinors. Whether this may yield
physically meaningful models should be investigated else-
where (considering to remove also the self-adjointness of the
finite part of the fluctuation).

D. Twisted fluctuation of the free Dirac operator

We now compute the free part (5.1) of the twisted
fluctuation.
Proposition 5.8.—A twisted fluctuation of the free Dirac

operator D is DZ ¼ Dþ Z, where

Z ¼ =Aþ J=AJ−1 ¼ −iγμ
�
Zμ 0

0 Z̄μ

�D

C

with

Zμ ¼ γ5 ⊗ Xμ þ I4 ⊗ iYμ; ð5:37Þ

in which Xμ and Yμ are self-adjointASM-value tensor fields
on M with components

ðXμÞ_2J_1I ¼ ðXμÞ_1J_2I ¼ ðYμÞ_2J_1I ¼ ðYμÞ_1J_2I ¼ 0; ð5:38Þ

4Beware that =∂M in the formula of Λ is iγμ∂μ [24], so that
Λ ¼ Λμγ

μ is the Uð1Þ part of −=A, meaning that Λμ is the Uð1Þ
part of iAμ.
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and

ðXμÞ_1J_1I ¼ ðXμÞ_2J_2I ¼
�
2aμ

aμI3 þ gμ

�J

I

; ð5:39Þ

ðYμÞ_1J_1I ¼
�
0

− 2g1
3
BμI3 −

g3
2
Vμ

�
; ðYμÞ_2J_2I ¼

� g1Bμ

g1
3
BμI3 −

g3
2
Vμ

�
; ð5:40Þ

ðXμÞbJaI ¼
�
δbaðwμ − aμÞ

δbawμI3 − gμ

�J

I

; ð5:41Þ

ðYμÞbJaI ¼
 δba

g1
2
Bμ −

g2
2
ðWμÞba

−δba
�

g1
6
BμI3 þ g3

2
Vμ

�
− g2

2
ðWμÞbaI3

!J

I

: ð5:42Þ

Proof.—With J ¼ −J−1 as defined in Eq. (3.18),
one has

J=AJ−1 ¼ −Jð−iγμAμÞJ−1 ¼ −iJγμAμJ−1

¼ iγμJAμJ−1 ¼ iγμ
�
JMμJ −1 0

0 JQμJ −1

�D

C

;

where we use that J is antilinear and anticommutes
with γμ (Lemma A.7). Noticing that JMμJ −1 ¼ −M̄μ

and JQμJ −1 ¼ −Q̄μ [this is shown as in Eqs. (3.22) and
(3.21), respectively], one obtains

Zμ ¼ Qμ þ M̄μ: ð5:43Þ

Explicitly,

Zμ ¼
�Zr

μ

Zl
μ

�
;

where, using the explicit forms (5.15) and (5.16) of Qr
μ

and Mr
μ,

Zr
μ ¼ δ_tJ_sIQ

r
μ þ δ_t_sM̄

r
μ ¼ δ_t_s

�
crμδJI þ δ _b_am̄

r
μ

qrμδJI þ δbam̄l
μ

�β

α

ð5:44Þ
and

Zl
μ ¼ δ_tJ_sIQ

l
μ þ δ_t_sM̄

l
μ: ð5:45Þ

The components of the matrix in the rhs of Eq. (5.44) are

ðZr
μÞ _bJ_aI ¼ crμδJI þ δ _b_am̄

r
μ ¼

�
crμδJI þ m̄r

μ

c̄rμδJI þ m̄r
μ

� _b

_a

ð5:46Þ

with ðZr
μÞ_2J_1I ¼ ðZr

μÞ_1J_2I ¼ 0 and, using Proposition 5.5,

ðZr
μÞ_1J_1I ¼ crμδJI þ m̄r

μ ¼
 
2aμ �

aμ − i g1
2
Bμ

�
I3 þ gμ − i

�
g1
6
BμI3 þ g3

2
Vμ

�!J

I

≕ ðXr
μÞ_1J_1I þ iðYr

μÞ_1J_1I ;

ðZr
μÞ_2J_2I ¼ c̄rμδJI þ m̄r

μ ¼
 
2aμ þ ig1Bμ �

aμ þ i g1
2
Bμ

�
I3 þ gμ − i

�
g1
6
BμI3 þ g3

2
Vμ

�!J

I

≕ ðXr
μÞ_2J_2I þ iðYr

μÞ_2J_2I ;

and

ðZr
μÞbJaI ¼ qrμδJI þ δbam̄l

μ ¼
 
ðqrμÞ11δJI þ m̄l

μ ðqrμÞ21δJI
ðqrμÞ12δJI q̄rμ22δ

J
I þ m̄l

μ

!b

a

ð5:47Þ

with
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ðZr
μÞaJaI ¼ ðqrμÞaaδJI þ m̄l

μ

¼

0BB@wμ − i g2
2
ðWμÞaa − aμ þ i g1Bμ

2 �
wμ − i g2

2
ðWμÞaa

�
I3 − gμ − i

�
g1Bμ

6
I3 þ g3

2
Vμ

�
1CCA

J

I

≕ ðXr
μÞaJaI þ iðYr

μÞaJaI ;

ðZr
μÞb≠aa ¼ ðqrμÞbaδJI ¼

�−i g2
2
ðWμÞba

−i g2
2
ðWμÞbaI3

�J

I

¼ ðXr
μÞbJaI þ iðYr

μÞbJaI :

The matrices Xr
μ and Yr

μ defined by the equations above
are self-adjoint (notice that Wμ as defined in Proposition
5.5 is self-adjoint) and such that

Zr
μ ¼ Xr

μ þ iYr
μ: ð5:48Þ

The self-adjointness condition (5.24) applied to Eq. (5.45)
yields

Zl
μ ¼ −ðZr

μÞ† ¼ −Xr
μ þ iYr

μ: ð5:49Þ

In other terms, Zl
μ ¼ Xl

μ þ iYl
μ with

Xl
μ ¼ −Xr

μ; Yl
μ ¼ Yr

μ: ð5:50Þ

Redefining Xμ ≔ Xr
μ ¼ −Xl

μ, Yμ ≔ Yr
μ ¼ Yl

μ, one obtains
the result. ▪
We collect the components of Z in Appendix 7. There,

we also make explicit that iYμ coincides exactly with the
gauge fields of the Standard Model [including the suð3Þ
gauge field Vμ]. Thus, the twist does not modify the gauge
content of the model. What it does is to add the self-adjoint
part Xμ whose action on spinors breaks chirality. As shown
in the next section, this field is invariant under a gauge
transformation.

VI. GAUGE TRANSFORMATIONS

A gauge transformation is implemented by an action of
the group UðAÞ of unitary elements of A, both on the
Hilbert space and on the Dirac operator. On a twisted
spectral triple, these actions have been worked out in
Refs. [17,20] and consist in a twist of the original formula
of Connes [3], later generalized without the first-order
condition in Ref. [13]. Explicitly, on the Hilbert space, the
fermion fields transform under the adjoint action of UðAÞ
induced by the real structure, namely,

ψ →Aduψ ≔ uψu¼ uu∘ψ ¼ uJu�J−1ψ ; u∈U: ð6:1Þ

On the other hand, the twisted-covariant Dirac operator DA
(3.28) transforms under the twisted conjugate action of
Ad u:

DA → AdρðuÞDAAdu�: ð6:2Þ

By Proposition 4.2 in Ref. [22], the operator DA, viewed as
a function of the components ai and bi of the twisted
1-form A ¼ Að1Þ ¼

P
i ai½D; bi�, transforms under a gauge

transformation in the operator DAu, where

Au ≔ ρðuÞ½D; u��ρ þ ρðuÞAu�: ð6:3Þ

This is the twisted version of the law of transformation of
generalized 1-forms in ordinary spectral triples, which, in
turn, is a noncommutative generalization of the law of
transformation of the gauge potential in ordinary gauge
theories.
To write down the transformation A → Au, we need the

explicit form of a unitary u of A. The latter is a pair of
functions on M with a value in

UðCÞ×UðHÞ×UðM3ðCÞÞ≃Uð1Þ×SUð2Þ×Uð3Þ: ð6:4Þ

Namely,

u ¼ ðeiα; eiα0 ; q; q0;m;m0Þ ð6:5Þ

with

α;α0 ∈ C∞ðM;RÞ; q; q0 ∈ C∞ðM; SUð2ÞÞ;
m;m0 ∈ C∞ðM; Uð3ÞÞ: ð6:6Þ

It acts on H as

u ¼
�
A

B

�D

C

; ð6:7Þ

where, following Eqs. (3.8)–(3.12), one hasA_ttJβ
_ssIα ¼ δ_tJ_sIA

tβ
sα

and B_ttJβ
_ssIα ¼ δ_t_sB

tβJ
sαI with
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Atβ
sα ¼

� ðArÞβα
ðAlÞβα

�t

s

;

BtβJ
sαI ¼

� ðBrÞβJαI
ðBlÞβJαI

�t

s

; ð6:8Þ

in which

Ar ¼
�
α

q0

�
β

α

; Al ¼
�
α0

q

�
β

α

; ð6:9Þ

and

Br ¼
�
m ⊗ I2 0

0 m0 ⊗ I2

�
β

α

;

Bl ¼
�
m0 ⊗ I2 0

0 m ⊗ I2

�
β

α

; ð6:10Þ

where we denote

α ≔
�
eiα

e−iα

�
; m ≔

�
eiα

m

�J

I

;

α0 ≔
�
eiα

0

e−iα
0

�
; m0 ≔

�
eiα

0

m0

�J

I

: ð6:11Þ

A. Gauge sector

A twisted gauge transformation (6.2) does not neces-
sarily preserve the self-adjointness of the Dirac operator
(because the action of the unitary is twisted on the left, not
on the right). Equivalently, Au in Eq. (6.3) is not necessarily
self-adjoint, even though one starts with a self-adjoint A.
This may seem as a weakness of the twisted case, since

in the nontwisted case self-adjointness is preserved.
Actually, the possibility to lose self-adjointness allows
one to implement Lorentz symmetry and yields—at least
for electrodynamics [18]—an interesting interpretation of
the component Xμ of the free fluctuation Z of Proposition
5.8 as a four-vector energy impulsion.
However, regarding the gauge part of the Standard

Model which—as shown below—is fully encoded in the
component iYμ of Z, it is rather natural to ask the self-
adjointness of the free 1-form =A to be preserved. This
reduces the choice of unitaries to pair of elements of
Eq. (6.4) equal up to a constant.
Proposition 6.1.—A unitary u whose action (6.3) pre-

serves the self-adjointness of any unimodular self-adjoint
free 1-form =A is given by Eq. (6.5) with

α0 ¼ αþ K; q ¼ q0; m0 ¼ m: ð6:12Þ

The components (5.11) of =A then transform as

crμ → crμ − i∂μα; clμ → clμ − i∂μα; ð6:13Þ

qrμ → qqrμq†þqð∂μq†Þ; qlμ → qqlμq†þqð∂μq†Þ; ð6:14Þ

mr
μ →mmr

μm† þmð∂μm†Þ; ml
μ →mml

μm† þmð∂μm†Þ:
ð6:15Þ

Proof.—From Corollary 5.1.1, one has [with the same
abuse of notations (5.6), now with I32]

=Au ¼ ρðuÞð½D; u��ρ þ =Au�Þ
¼ −iγμðuð∂μu�Þ þ uAμu�Þ: ð6:16Þ

Using the explicit forms (6.7) of u and (5.11) of Aμ, one
finds

=Au ¼−iγμ
�
Að∂μA†ÞþAQμA† 0

0 Bð∂μB†ÞþBMμB†

�D

C

;

ð6:17Þ

meaning that a gauge transformation is equivalent to the
transformation

Qμ → Að∂μA†Þ þAQμA†;

Mμ → Bð∂μB†Þ þBMμB†: ð6:18Þ

From Eqs. (5.15) and (5.16), these equations are equiv-
alent to

crμ → eiα∂μe−iα þ crμ ¼ crμ − i∂μα;

clμ → clμ − i∂μα
0; ð6:19Þ

qrμ → q0qrμq0† þ q0ð∂μq0†Þ;
qlμ → qqlμq† þ qð∂μq†Þ; ð6:20Þ

mr
μ → mmr

μm† þmð∂μm†Þ;
ml

μ → m0ml
μm0† þm0ð∂μm0†Þ: ð6:21Þ

For any unitary operator q, one has that qð∂μq†Þ ¼ q½∂μ; q†�
is anti-Hermitian (∂μ being anti-Hermitian as well). Hence,
beginning with a self-adjoint =A as in Eq. (5.19), requiring
that =Au be self-adjoint is equivalent to

∂μα
0 ¼ ∂μα; ð6:22Þ

qqlμq† þ qð∂μq†Þ ¼ q0qlμq0† þ q0ð∂μq0†Þ; ð6:23Þ

m0ml
μm0† þm0ð∂μm0†Þ ¼ mml

μm† þmð∂μm†Þ: ð6:24Þ

In particular, for qlμ the identity, the second of these
equations yields qð∂μq†Þ ¼ q0ð∂μq0†Þ for any q; q0.
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Hence, for any qlμ one has qqlμq† ¼ q0qlμq0†. This means
that q0†q is in the center of H. Being a unitary, q0†q is thus
the identity. So q ¼ q0. Similarly, one gets that m0†m is in
the center of M3ðCÞ, that is, a multiple of the identity.
Being unitary, m0†m can be only the identity; hence,
m0 ¼ m. Thus, (6.19)—(6.21) yield the result. ▪
These transformations of the components of the free

1-form induce the following transformations of the physical
fields defined in Eqs. (5.33)—(5.35).
Proposition 6.2.—Under a twisted gauge transformation

that preserve the self-adjointness of a unimodular free
1-form, the physical fields aμ and wμ are invariant, gμ
undergoes an algebraic (i.e., nondifferential) transformation

gμ → ngμn†; ð6:25Þ

and the gauge fields transform as in the Standard Model:

Bμ → Bμ þ
2

g1
∂μα; ð6:26Þ

Wμ → qWμq† þ
2i
g2

qð∂μq†Þ; ð6:27Þ

Vμ → nVμn† −
2i
g3

nð∂μn†Þ; ð6:28Þ

where n ¼ ðdetmÞ−1=3m is the SUð3Þ part of m.
Proof.—Applying the gauge transformations (6.13)–

(6.15) to the physical fields defined through Eqs. (5.33)–
(5.35), one obtains

�aμ − i
g1
2
Bμ → �aμ − i

�
g1
2
Bμ þ ∂μα

�
; ð6:29Þ

�wμI2 − i
g2
2
Wμ → �wμI2 − i

�
g2
2
qWμq† þ iqð∂μq†Þ

�
;

ð6:30Þ

� gμ þ i

�
g1
6
BμI3 þ

g3
2
Vμ

�
→ �mgμm† þ i

�
g1
6
BμI3 þ

g3
2
mVμm† − imð∂μm†Þ

�
;

ð6:31Þ

where the anti-self-adjointness of qð∂μq†Þ and mð∂μm†Þ
guarantees that the rhs of Eqs. (6.30) and (6.31) is split into
a self-adjoint and anti-self-adjoint part. The first two
equations above yield Eqs. (6.26) and (6.27). Writing
m ¼ eiθn with eiθ ¼ ðdetmÞ1=3 and n ∈ SUð3Þ, then the
right-hand side of Eq. (6.31) becomes

�ngμn† þ i

��
g1
6
Bμ − ∂μθ

�
I3 þ

g3
2
nVμn† − in∂μn†

�
;

ð6:32Þ

where we use m∂μm† ¼ −i∂μθ þ n∂μn†. Requiring the
unimodularity condition to be gauge invariant forces one to
identify −θ with α

3
, thus reducing the gauge group Uð3Þ to

SUð3Þ. This yields Eqs. (6.25) and (6.28). ▪
Remark 6.3.—If one does not impose that the twisted

gauge transformation preserves self-adjointness, then the
left and right components of spinors transform independ-
ently. As explained in Remark 5.7, the viability of such
models should be explored elsewhere.

B. Scalar sector

We now study the gauge transformation (6.3) of the
scalar part of the twisted AY þ AM of the twisted 1-form
computed in Sec. IV, beginning with the Yukawa part AY
in Eq. (4.1).
Lemma 6.4.—Let u be a unitary ofA as in Eq. (6.5). One

has

Au
Y ¼ ρðuÞ½γ5 ⊗ DY; u†�ρ þ ρðuÞAYu†

¼
�
Au

0

�D

C

; ð6:33Þ

where

Au ¼ δ_tJ_sI

� ðAuÞr
ðAuÞl

�t

s

; ð6:34Þ

with

ðAuÞr ¼
�

0 k̄Iðα0ðH1 þ IÞq0† − IÞ
ðqðH2 þ IÞα† − IÞkI 0

�
;

ð6:35Þ

ðAuÞl ¼ −
�

0 k̄IðαðH0
1 þ IÞq† − IÞ

ðq0ðH0
2 þ IÞα0† − IÞkI 0

�
;

ð6:36Þ

where H1;2 are the components of AY and α, α0, q, q0 those
of u.
Proof.—From the formula (4.16) of AY and (6.7) and

(6.8) of u, one gets

ρðuÞAYu† ¼
�
ρðAÞAA†

0

�D

C

;

where ρðAÞAA† ¼ δ_tJ_sI

�
AlArA

†
r

ArAlA
†
l

�t

s

; ð6:37Þ
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where, using Eqs. (4.17) and (6.9),

AlArA
†
r ¼

�
α0

q

��
k̄IH1

H2kI

��
α†

q0†

�

¼
�

k̄Iα0H1q0†

qH2α
†kI

�β

α

; ð6:38Þ

ArAlA
†
l ¼ −

�
α

q0

��
k̄IH0

1

H0
2k

I

��
α0†

q†

�

¼ −
�

k̄IαH0
1q

†

q0H0
2α

0†kI

�β

α

; ð6:39Þ

where we used that kI and k̄I commute with α and α0 and
their conjugates.
The computation of the twisted commutator part in

Eq. (6.33) is similar to that of AY in Proposition 4.3, with
ai ¼ ρðuÞ and bi ¼ u† for u as in Eq. (6.5), that is,

ρðuÞ½γ5 ⊗ DY; u†�ρ ¼
�
U

0

�D

C

; ð6:40Þ

where

U ¼ δ_tJ_sI

�
Ur

Ul

�t

s

with Ur ¼
�

k̄IH1

H2kI

�β

α

;

Ul ¼ −
�

k̄IH0
1

H0
2k

I

�β

α

; ð6:41Þ

in whichHi¼1;2 andH0
1;2 ¼ ρðH1;2Þ are given by Eq. (4.25)

with [remembering Eq. (6.11)]

c ¼ α0; c0 ¼ α; q ¼ q0; q0 ¼ q and

d ¼ α†; d0 ¼ α0†; p ¼ q†; p0 ¼ q0†; ð6:42Þ

that is,

H1 ¼ α0ðq0† − α0†Þ; H2 ¼ qðα† − q†Þ and

H0
1 ¼ αðq† − α†Þ; H0

2 ¼ q0ðα0† − q0†Þ: ð6:43Þ

Thus, one obtains Eq. (6.33) with

Au ¼ Uþ ρðAÞAA†

¼ δ_tJ_sI

�
Ur þAlArA

†
r

Ul þArAlA
†
l

�t

s

: ð6:44Þ

From Eqs. (6.38) and (6.41), one obtains the explicit forms
of ðAuÞr and ðAuÞl:

ðAuÞr≔UrþAlArA
†
r

¼
�

k̄IðH1þα0H1q0†Þ
ðH2þqH2α

†ÞkI 0

�
; ð6:45Þ

ðAuÞl≔UlþArAlA
†
l

¼−
�

k̄IðH0
1þαH0

1q
†Þ

ðH0
2þq0H0

2α
0†ÞkI 0

�
: ð6:46Þ

The final result follows substituting H1;2 with their explicit
formulas (6.43). ▪
A unitary u that preserves the self-adjointness of the

unimodular free 1-form (Proposition 6.1) also preserves the
self-adjointness of AY if, and only if, K ¼ 0. Indeed, in that
case u is twist invariant (i.e., q0 ¼ q and α0 ¼ α), and one
easily checks that for a self-adjoint AY (that is, H†

1 ¼ H2 ¼
Hr andH0

1
† ¼ H0

2 ¼ Hl by Corollary 4.3.1) then Au
Y is self-

adjoint as well. If K ≠ 0, then H1 andH2 undergo different
gauge transformations, forbidding Au

Y to be self-adjoint. For
this reason, from now on we take K ¼ 0. With this caveat,
the gauge transformation of Lemma 6.4 then reads as a law
of transformation of the complex components (4.32) of the
quaternionic fields Hr and Hl.
Proposition 6.5.—Let AY be a self-adjoint diagonal

1-form parametrized by two quaternionic field Hr and
Hl. Under a gauge transformation induced by a twist-
invariant unitary u ¼ ðα; α; q; q; m;mÞ, the components
ϕr
1;2 and ϕl

1;2 of Hr and Hl transform, respectively, as�
ϕr
1 þ 1

ϕr
2

�
→ q

�
ϕr
1 þ 1

ϕr
2

�
e−iα;�

ϕl
1 þ 1

ϕl
2

�
→ q

�
ϕl
1 þ 1

ϕl
2

�
e−iα: ð6:47Þ

Proof.—AY being self-adjoint means that Eq. (4.26)
holds. A twist-invariant unitary satisfies Eq. (6.12) with
K ¼ 0. Under these conditions, comparing the for-
mula (4.17) of AY with its gauge transformed counterpart
(6.35) and (6.36), one finds that the fields Hr and Hl
undergo the same transformation:

Hr → qðHr þ IÞα† − I;

Hl → qðHl þ IÞα† − I: ð6:48Þ

Written in components (4.32), with qij the components of
q, these equations read

ϕr
1 → q11ðϕr

1 þ 1Þe−iα þ q12ϕr
2e

−iα − 1;

ϕr
2 → q21αðϕr

1 þ 1Þe−iα þ q22ϕr
2e

−iα; ð6:49Þ

and similarly for ϕl
1;2. In matricial form, these equations are

nothing but Eq. (6.47). ▪

MINIMAL TWIST FOR THE STANDARD MODEL IN … PHYS. REV. D 104, 025011 (2021)

025011-21



The transformations (6.47) are similar to those of the
Higgs doublet in the Standard Model (see, e.g., Proposition
11.5 in Ref. [25]). In the twisted version of the Standard
Model, we thus obtain two Higgs fields, acting independ-
ently on the left and right components of the Dirac spinors.
However, as we already mentioned, the two have no
individual physical meaning on their own, since they
appear in the fermionic action only through the linear
combination h ¼ ðHr þHlÞ=2. Therefore, there is actually
only one physical Higgs doublet in the twisted case as well.
In conclusion, we check that the scalar field σ is gauge

invariant. As explained below Eq. (6.2), this invariance is
not affected by the nonlinear term and is encoded within the
transformation

AM → Au
M ¼ ρðuÞ½γ5 ⊗ DM; u†�ρ þ ρðuÞAMu†: ð6:50Þ

Proposition 6.6.—Under a gauge transformation
induced by a twist-invariant unitary u, the real fields σr
and σl parameterizing a self-adjoint off-diagonal fluc-
tuation (Proposition 4.6) are invariant.
Proof.—The result amounts to showing that AM is

invariant under Eq. (6.50). Since u ¼ ρðuÞ by hypothesis,
the twisted commutator in Eq. (6.3) coincides with the
usual one ½γ5 ⊗ DM; u†� which is zero by Eq. (3.2). The
explicit forms (4.33) of AM and (6.7) of u yield

uAMu† ¼
�

ACB†

BDA†

�
: ð6:51Þ

From Eq. (4.35), one checks that ACB† has components
(omitting the global factor kRδ

_t
_s and δJI per Ar=l)

ArCrB
†
r ¼ σArΞ

Jβ
IαB

†
r ¼ σΞJβ

Iα ; ð6:52Þ

AlClB
†
l ¼ −σ0AlΞ

Jβ
IαB

†
l ¼ −σ0ΞJβ

Iα ; ð6:53Þ

where we use the explicit forms (6.9)–(6.11) of A and
B to get ArΞ

Jβ
IαB

†
r ¼ eiαΞJβ

Iαe
−iα ¼ ΞJβ

Iα , and similarly for
Eq. (6.53). Hence, uAMu† ¼ AM, and the result. ▪

VII. CONCLUSION

We haveworked out the field content of a twisted version
of the spectral triple of the Standard Model. The physical
meaning of these fields will be made precise by the
computation of the fermionic action in the second part
of this work [23], as well as the possibility of gauge
transformations induced by non-twist-invariant unitaries
and their relation with Lorentzian signature.
As shown in Ref. [21], the twisted first-order condition

needs to be violated in order to generate the extra scalar
field σ. This forbids one to apply the twist by grading of
Ref. [20], since the latter always preserves this condition.
However, this violation has no real importance, being

reabsorbed in the definition of the components of σ. In
this sense, the model presented here is the one that
minimally violates the twisted first-order condition.

APPENDIX: MORE EXPLICIT COMPUTATIONS

1. Dirac matrices and real structure

Let σj¼1;2;3 be the Pauli matrices:

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ðA1Þ

In four-dimensional Euclidean space, the Dirac matrices (in
chiral representation) are

γμE¼
�

0 σμ

σ̃μ 0

�
; γ5E ≔ γ1Eγ

2
Eγ

3
Eγ

0
E ¼

�
I2 0

0 −I2

�
; ðA2Þ

where, for μ ¼ 0; j, we define

σμ ≔ fI2;−iσjg; σ̃μ ≔ fI2; iσjg: ðA3Þ

On a (non-necessarily flat) Riemannian spin manifold,
the Dirac matrices are linear combinations of the Euclidean
ones:

γμ ¼ eαμγαE; ðA4Þ

where feαμg are the vierbein, which are real fields on M.
These Dirac matrices are no longer constant on M. This is
a general result of spin geometry that the charge con-
jugation commutes with the spin derivative (see, e.g.,
Proposition 4.18 in Ref. [25]). For the sake of complete-
ness, we check it explicitly for a four-dimensional
Riemannian manifold.
Lemma A.7.—The real structure satisfies

J γμ ¼−γμJ ; Jωs
μ ¼ωs

μJ ; J∇s
μ ¼þ∇s

μJ : ðA5Þ

Proof.—Let us first show that J anticommutes with the
Euclidean Dirac matrices,

fJ ; γμEg ¼ 0: ðA6Þ

From the explicit forms (2.33) of J , this is equivalent to

γ0Eγ
2
Eγ̄

μ
E ¼ −γμEγ0Eγ2E; ðA7Þ

which is true for μ ¼ 0, 2, since then γ̄μE ¼ γμE anticom-
mutes with γ0Eγ

2
E, and is also true for μ ¼ 1, 2, in which case

γ̄μE ¼ −γμE commutes with γ0Eγ
2
E.

Since the spin connection is a real linear combination of
products of two Euclidean Dirac matrices, it commutes
with J . The latter, having constant components, commutes
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with ∂μ and, hence, also with the spin covariant deriva-
tive ∇μ.
These results hold as well in the curved case, for then one

has from Eq. (A4)

fJ ; γμg ¼ eαμfJ ; γαEg ¼ 0: ðA8Þ

▪

2. Components of the gauge sector of the twisted
fluctuation

The components of the free twisted fluctuation of
Proposition 5.8 are Zr

μ ¼ δ_t_sðZr
μÞJβIα given by (we invert

the order of the leptocolor and flavor indices in order to
make the comparison with the nontwisted case easier)

ðZμÞ0_10_1 ¼ 2aμ; ðA9Þ

ðZμÞ0_20_2 ¼ 2aμ þ ig1Bμ; ðA10Þ

ðZμÞ0b0a ¼ δbaðwμ − aμÞ þ i
�
δba

g1Bμ

2
−
g2
2
ðWμÞba

�
; ðA11Þ

ðZμÞj_1i_1 ¼ðaμδji þðgμÞjiÞ− i

�
2g1Bμ

3
δji þ

g3
2
ðVμÞji

�
; ðA12Þ

ðZμÞj_2i_2 ¼ ðaμδji þ ðgμÞjiÞ þ i

�
g1Bμ

3
δji −

g3
2
ðVμÞji

�
; ðA13Þ

ðZμÞjbia ¼ ðδbawμδ
j
i − ðgμÞjiÞ

− i

�
δba

�
g1Bμ

6
δii þ

g3
2
ðVμÞji

�
þ g2

2
ðWμÞbaδji

�
;

ðA14Þ

ðZμÞJ _2I _1 ¼ ðZr
μÞJ _1I _2 ¼ 0: ðA15Þ

One then checks that

i

0BBB@
ðYμÞj_1i_1

ðYμÞj_2i_2
ðYμÞj _bi _a

1CCCA
β

α

¼

0BBBBB@
−i
�
2g1Bμ

3
δji þ g3

2
ðVμÞji

�
i
�
g1Bμ

3
δji −

g3
2
ðVμÞji

�
−i
�
δba
�
g1Bμ

6
δiiþ g3

2
ðVμÞji

�
þ g2

2
ðWμÞbaδji

�
1CCCCCA

β

α

coincides with the matrix Aq
μ of the nontwisted case

[Eq. (1.733) in Ref. [24] ], while

i

0BBB@
ðYμÞ0_10_1

ðYμÞ0_20_2
ðYμÞ0_b0_a

1CCCA
β

α

¼

0BBB@
0

ig1Bμ

i
�
δba

g1Bμ

2
− g2

2
ðWμÞba

�
1CCCA

β

α

coincides with the matrix Al
μ [Eq. (1.734) in Ref. [24] ].

3. Twisted first-order condition

For a twisted spectral triple, there is a natural twisted
version of the first-order condition (2.13) that was intro-
duced in Ref. [16] and whose mathematic pertinence has
been investigated in detail in Refs. [19,20], namely,

½½D; b�ρ; a∘�ρ∘ ¼ 0; a; b ∈ A; ðA16Þ

where ρ∘ ∈ AutA∘ is the automorphism of the opposite
algebra A∘ induces in Eq. (3.31) by the twisting auto-
morphism ρ ∈ AutA.
Proposition A.8.—The free part =∂ ⊗ IF and the diagonal

part γ5 ⊗ DY of the Dirac operator satisfy the twisted first-
order condition (A16), while the off-diagonal part γ5 ⊗ DM
violates it.
Proof.—For =∂ ⊗ IF, using Eq. (3.17) and Corollary

5.1.1, one gets

½½∂ ⊗ IF; b�ρ; JaJ−1�ρ∘ ¼ iγμ
� ½∂μR; M̄�

½∂μN; Q̄�

�D

C

:

ðA17Þ

The top-left entry reads (omitting the s and _s indices for
simplicity)

½∂μR; M̄� ¼
� ∂μd½I4; m̄�JI

∂μp0½I4; m̄0�JI

�β

α

¼ 0: ðA18Þ

Similarly, one shows that ½∂μN; Q̄� ¼ 0; hence, =∂ ⊗ IF
satisfies the twisted first-order condition.
For the diagonal part γ5 ⊗ DY , Lemma 4.1 and

Eq. (3.17) yield
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½½γ5 ⊗ DY; b�ρ; JaJ−1�ρ∘ ¼ −
� ½S; M̄�ρ∘ 0

0 0

�D

C

: ðA19Þ

In tensorial notation,

½S; M̄�ρ∘ ¼ δ_t_s½ηus ðD0ÞJγIαRtβ
uγ; M̄

tβJ
sαI�ρ∘ − δ_t_s½ρðRÞuγsαηtuðD0ÞJβIγ ; M̄tβJ

sαI�ρ∘ : ðA20Þ

The right-hand side of Eq. (A20) is (omitting the indices _s, α, and I)�
D0Rr

−D0Rl

�t

s

�
M̄r

M̄l

�t

s

−
�
M̄l

M̄r

�t

s

�
D0Rr

−D0Rl

�t

s

−
�
RlD0

−RrD0

�t

s

�
M̄r

M̄l

�t

s

þ
�
M̄l

M̄r

�t

s

�
RlD0

−RrD0

�t

s

¼
�
D0RrM̄r − M̄lD0Rr − RlD0M̄r þ M̄lRlD0

−D0RlM̄l þ M̄rD0Rl þ RrD0M̄l − M̄rRrD0

�
: ðA21Þ

From the explicit form (2.26) of D0, (3.11) of Ml=r, and (3.25) of Rr=l, one checks that

D0RrM̄r ¼ M̄lD0Rr ¼
�

0 k̄p0m̄0

kdm̄ 0

�
;

RlD0M̄r ¼ M̄lRlD0 ¼
�

0 k̄ m̄0 d0

km̄p 0

�
; ðA22Þ

so that the upper-left term in Eq. (A21) is zero. The same is true for the lower-right term; hence, ½S; M̄� ¼ 0.
This shows that Eq. (A19) vanishes, which is equivalent to the proposition.
For the off-diagonal part γ5 ⊗ DM, one has (omitting the s and _s indices for simplicity)

½γ5 ⊗ DM; b�ρ ¼
�

0 γ5ΞJβ
IαkRðd − d0Þ

γ5ΞJβ
Iα k̄Rðd − d0Þ

�D

C

; ðA23Þ

and, hence,

½½γ5 ⊗ DM; b�ρ; JāJ−1�ρ∘ ¼ −
�

0 γ5ΞKγ
Iα kRðd − d0ÞQJβ

Kγ − ρðMKγ
Iα Þγ5ΞJβ

KγkRðd − d0Þ
� � � 0

�D

C

; ðA24Þ

whose top-right entry reads

γ5ΞKγ
Iα kRðd − d0ÞQJβ

Kγ − ρðMKγ
Iα Þγ5ΞJβ

KγkRðd − d0Þ ¼ kRδ
_t
_sΞ

Jβ
Iα

�
σ þ σ0

−ðσ þ σ0Þ

�t

s

ðA25Þ

and is nonzero. ▪
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