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Noncommutative geometry provides both a unified description of the Standard Model of particle physics
together with Einstein-Hilbert action (in Euclidean signature) and some tools to go beyond the Standard
Model. In this paper, we extend to the full noncommutative geometry of the Standard Model the twist (in
the sense of Connes-Moscovici) initially worked out for the electroweak sector and the free Dirac operator
only. Namely, we apply the twist also to the strong interaction sector and the finite part of the Dirac
operator. To do so, we are forced to take into account a violation of the twisted first-order condition. As a
result, we still obtain the extra scalar field required to stabilize the electroweak vacuum and fit the Higgs
mass, but it now has two chiral components. We also get the additive field of 1-forms already pointed out in
the electroweak model, but with a richer structure. Finally, we obtain a pair of Higgs doublets, which are
expected to combine into a single Higgs doublet in the action formula, as will be investigated in the second

part of this work.
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I. INTRODUCTION

Noncommutative geometry [1] (see [2] for a recent
review of the various aspects of the field) provides a
mathematical framework in which a single action formula
yields both the Lagrangian of the Standard Model of
fundamental interactions and the Einstein-Hilbert action
(in Euclidean signature). As an added value, the Higgs field
is obtained on the same footing as the other gauge bosons—
as a connection 1-form—but a connection that lives on a
slightly generalized notion of space, where points come
equipped with an internal structure. Such “spaces” are
described by spectral triples

A H, D (1.1)

consisting in an algebra A acting on a Hilbert space H
together with an operator D on ‘H which satisfies a set of
axioms [3] guaranteeing that—in case A is commutative
and unital—then there exists a (closed) Riemannian spin
manifold M such that 4 coincides with the algebra
C®(M) of smooth functions on M. In other terms, a
spectral triple with A commutative does encode all the
geometrical information of a (closed) Riemannian spin
manifold [4]. These axioms still make sense when A is
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noncommutative and provide then a definition of a non-
commutative geometry as a spectral triple in which the
algebra is not necessarily commutative.

The spectral triple of the Standard Model [5] is built
upon an “almost-commutative algebra”:

C*(M) ® Asm» (1.2)
where M is an even-dimensional closed Riemannian spin
manifold and Agy; a noncommutative matrix algebra that
encodes the gauge degrees of freedom of the Standard
Model. As explained in Ref. [3], this noncommutative
algebra provides the points of M with an internal structure,
in such a way that the Standard Model is actually nothing
but a pure theory of gravity, on a space that is made slightly
noncommutative by multiplying the (infinite-dimensional)
commutative algebra C* (M) with the finite-dimensional
noncommutative Agy;.

After the discovery of the Higgs boson in 2012, it has
been noticed in Ref. [6] that an extra scalar field—usually
denoted o—proposed by particle physicists to cure the
instability of the electroweak vacuum due to the “low mass
of the Higgs” also makes the computation of the Higgs
mass (which is not a free parameter in the noncommutative
description of the Standard Model) compatible with its
experimental value. Various scenarios have been proposed
to make this extra scalar field emerge from the mathemati-
cal framework of noncommutative geometry, all of them
consisting in some modification of one of the axioms, the
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first-order condition (e.g., Refs. [7-13]; see [14] for a
recent review).

In this paper, we push forward one of these scenarios,
consisting in twisting the spectral triple of the Standard
Model. Twists have been introduced by Connes and
Moscovici in Ref. [15] with purely mathematical motiva-
tions. Later, it has been discovered in Ref. [16] that a very
simple twist of the Standard Model produces not only the
extra scalar field o, but also an additive field of 1-form X,
which turns out to be related with Wick rotation and the
transition from the Euclidean to the Lorentzian signature
[17,18]. However, in Ref. [16], the twist was applied only
to the part of the spectral triple that yields the field o,
namely, the subalgebra of Agy; describing the electroweak
interaction and the part of the operator D that contains the
Majorana mass of the neutrinos. For simplicity, the sub-
algebra of Agy describing the strong interaction was left
untouched, and the part of D containing the Yukawa
coupling of fermions was not taken into account. In this
paper, we extend the twisting procedure to the whole
spectral triple of the Standard Model, according to the
following lines.

The twist of gauge theories has been investigated in a
systematic way in Refs. [19,20], where the twisted version
of the first-order condition—introduced by imitation of the
nontwisted case in Ref. [16]—has been put onto solid
mathematical bases. A notion of minimal twist of a spectral
triple has also been defined, which consists in making
several copies of A act on H, leaving D untouched. By
doing so, one produces models with new bosonic fields,
keeping the fermionic content untouched, in agreement
with the state of the art of the Standard Model (indeed, the
metastability of the electroweak vacuum points toward new
scalar fields, but there are no indications of new fermions).
A procedure for minimally twisting any real spectral triple
is to make two copies of the algebra act independently on
the eigenspaces of the grading operator. However, applied
to the Standard Model, this does not produce any extra
scalar field, as explained in Ref. [21].

That is why in this paper we investigate another minimal
twist of the Standard Model that does produce an extra
scalar . The price to pay is a violation of the twisted first-
order condition, which is taken into account following the
way pioneered in Ref. [13] and adapted to the twisted case
in Ref. [22].

Besides the field content of the Standard Model, we find
that the extra scalar ¢ actually decomposes into two chiral
components o, and o; (Proposition 4.6) which are invariant
under a gauge transformation (Proposition 6.6). We also
work out the structure of the 1-form field X, (Proposition
5.5) and study how it behaves under a gauge transformation
(Proposition 6.2). In brief, imposing the same unimodular
condition as in the nontwisted case, we find that the anti-
self-adjoint part of the (generalized) 1-form generated by
the free Dirac operator @ yields exactly the bosonic content

of the Standard Model as in the nontwisted case. But there
is also a self-adjoint part made of two real 1-form fields and
one self-adjoint M;(C)-value 1-form field. Altogether,
these three fields compose the 1-form field X,.

The complete understanding of the physical meaning of
these fields passes through the computation of the fer-
mionic and spectral actions and will be the subject of a
second paper [21].

The paper is organized as follows. In Sec. II, we recall
the basics of the spectral triple of the Standard Model
(Sec. IT A), make explicit the tensorial notations employed
all along the paper (Sec. IIB), and use them to write
explicitly the Dirac operator, the grading, and the real
structure (Sec. I C). Section III deals with the twist. After
recalling the procedure of minimal twisting defined in
Ref. [19], we apply it to the spectral triple of the Standard
Model: The algebra is doubled so as to act independently
on the left and right components of Dirac spinors
(Sec. I A). The grading and the real structure are the
same as in the nontwisted case, and we check explicitly that
one of the axioms (the order-zero condition) still holds in
the twisted case (Sec. III B), as expected from the general
result of Ref. [19]. Section III C is a brief recalling about
twisting fluctuations, that is, the way to generate the
bosonic fields. The detailed computation of these fluctua-
tions is the subject of Secs. IV and V, which contain the
main results of this paper. We first work out the Higgs
sector in Sec. IVA. The main result is Proposition 4.4, in
which we find two Higgs doublets. The extra scalar field o
is generated in Sec. IV B. Its structure as a doublet of real
scalar fields o, and o, is established in Proposition 4.6. In
Sec. V, we compute the twisted fluctuation of the free part ¢
of the Dirac operator. Useful properties of the Dirac
matrices with respect to the twist are worked out in
Sec. VA. The generalized twisted 1-forms generated by
the free Dirac operator are computed in Sec. V B, and the
physical degrees of freedom are identified in Sec. V C. The
structure of the I-form field X, is summarized in
Proposition 5.5 and yields, in Sec. V D, the explicit form
of the twisted fluctuation of the free Dirac operator. In
Sec. VI, we study how all these fields behave under a gauge
transformation. After recalling the basics of gauge trans-
formation for a twisted spectral triple (as stabilized in
Ref. [20]), we apply these techniques to the gauge and the
1-form fields in Sec. VI A and to the scalar fields in Sec. VI
B. We show in Proposition 6.2 that the bosonic fields
transform in the correct way, while the 1-form field is
invariant, up to a unitary transformation on the M;(C)-
value part. The Higgs doublets as well transform as
expected (Proposition 6.5), while the extra scalar field o
is gauge invariant, as shown in Proposition 6.6.

The first section of the Appendix contains notations and
generalities on Dirac matrices. In the second section, we
write explicitly the components of the twisted fluctuation in
terms of the gauge fields (this will be useful in the second
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part of the paper, to compute the action). In the last section
of the Appendix, we check that the twisted first-order
condition is only partially verified.

A. Notations and important comments
regarding the literature

In the first version of this paper, we erroneously thought
the twist we were using was “by grading” and assumed the
twisted first-order condition. Actually, the latter is violated
only by the off-diagonal part of the internal Dirac operator,
and this does not modify the extra scalar field, as explained
before Remark 4.7, nor the gauge invariance of the
fermionic action, as explained before Proposition 6.6.

We work with one generation of fermions (electron e,
neutrino v,,, and quarks up # and down d). The extension to
three generations will be discussed in the second part of the
work [23].

All along the paper, we apply the usual rule of contractions
of indices in alternate up and down positions. Typically,
Greek indices label the coordinates of the manifold.

II. THE NONTWISTED CASE

As a preparation to the twisting, we recall in this section
the main features of the spectral description of the Standard
Model. Besides the original papers (recalled in the text), the
details are extensively discussed in the books [24,25] (for a
more physics-oriented presentation).

A. The spectral triple of the Standard Model

The usual spectral triple of the Standard Model [5] is the
product of the canonical triple of a (closed) Riemannian
spin manifold M of even dimension m:

C®(M),

L*(M,S), 8 (2.1)

with the finite-dimensional spectral triple (called internal)

Asmy = C ® H @ M;5(C), Hp = C32, Dp (2.2)
that describes the gauge degrees of freedom of the Standard
Model. In Eq. (2.1), C*(M) denotes the algebra of smooth
functions on M that acts by multiplication on the Hilbert

space L%*(M, S) of square integrable spinors as

(W) (x) = fw(x) ¥V fel®(M),
w € L*(M,S), x €M, (2.3)
while
@ =—-iy'V, with V,=0,+w, (2.4)

is the Dirac operator on L?>(M, ) associated with the spin

connection w, and the y*’s are the Dirac matrices asso-

ciated with the Riemannian metric g on M:

Y4yt =291 Y op, v=0, m—1 (2.5)
[I is the identity operator on L?(M, S), and we label the
coordinates of M from 0 to m — 1].

In Eq. (2.2), n is the number of generations of fermions,
and Dy is a 32n square complex matrix whose entries are
the Yukawa couplings of fermions and the coefficients of
the Cabibbo-Kobayashi-Maskawa mixing matrix of quarks
and of the Pontecorvo-Maki-Nakagawa-Sakata mixing
matrix of neutrinos. Details are given in Sec. II C, and
the representation of Agy on Hp is in Sec. II B.

The product spectral triple is

C*(M) @ Asm.  H =L*(M.S) ® Hp,

with y,, the product of the Euclidean Dirac matrices
(Appendix 7) and I the identity on Hp.

A spectral triple (A, H, D) is graded when the Hilbert
space comes equipped with a grading (that is, a self-adjoint
operator that squares to I) which anticommutes with D. The
spectral triple (2.1) is graded with grading y . The internal
spectral triple (2.2) is graded, with grading the operator y g
on Hy that takes value +1 on right particles and left
antiparticles and —1 on left particles and right antiparticles.
The product spectral triple (2.6) is graded, with grading

F=rm®7r. (2.7)

Another important ingredient is the real structure, that is,
an antilinear operator that squares to £ and commutes or
anticommutes with the grading and the operator D (the
possible choices define the so-called KO dimension of the
spectral triple). For a manifold, the real structure 7 is given
by the charge conjugation operator. In dimension m = 4, it
satisfies

Jr=-1,  JI=8TF, Trm=rmJd. (28)
The real structure of the internal spectral triple (2.2) is the
antilinear operator J that exchanges particles with anti-
particles on H . It satisfies
J%:H, JFDF:DF‘]F7

Jyr = —vrJF. (2.9)

The real structure for the product spectral triple (2.6) is

J=J®IJr. (2.10)

For a manifold of dimension m = 4, it is such that

J? =, JD =DJ, JT =-TJ. (2.11)

The real structure implements an action of the opposite
algebra A° on H, identifying a° € A° with Ja*J7!.
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This action is asked to commute with the one of A, yielding
the order-zero condition
[a,b°]=0 VYV a€ A, be A. (2.12)
Among the properties of a spectral triple, one particularly
relevant for physical models is the first-order condition

(D, b.a") =0 V a,be A (2.13)

B. Representation of the algebra

To describe the action of Agy ® C®(M) on H in
Eq. (2.6), it is convenient to label the 32n degrees of
freedom of the finite-dimensional Hilbert space Hy by a
multi-index Cla defined as follows.
i) C=0, 1 is for a particle (C =0) or antipar-
ticle (C = 1);

(i) I =0;i with i =1, 2, 3 is the leptocolor index:
I = 0 means lepton, while I =1, 2, 3 are for the
quark, which exists in three colors;

(i) a=1,2;a with a = 1, 2 is the flavor index:

i:I/R, 2:€R, 1:I/L,
2=e¢; for leptons (I = 0), (2.14)
i:MR, izdR, lqu,
2=d; for quarks (I = i). (2.15)

We sometimes use the shorthand notation £§ =
(vr,e;) for the left-handed neutrino and the asso-
ciated lepton and ¢¢ = (u;,d; ) for the pair of left-
handed quarks.
There are 2 x4 x4 =32 choices of triplet of indices
(C,1,a), which is the number of fermions per generation.
One should also take into account an extraindexn = 1,2, 3
for the generations, but in this paper we work with one
generation only and we omit it (we will discuss the number
of generations in the computation of the action [21]). So
from now on
Hp = C32. (2.16)
An element y € H=C®(M)® Hp is thus a 32-
dimensional column vector, in which each component
Wciq is a Dirac spinor in L2(M, S).
Regarding the algebra, unless necessary we omit the
symbol of the representation and identify an element a =
(c,q,m) in C®(M) @ Agy, where

c € C®(M,C),
me COO(M,M3(C)),

q € C*(M,H),
(2.17)

with its representation as bounded operator on H, that is, a
32-square matrix whose Components1

alll (2.18)

are smooth functions acting by multiplication on L*(M, S)
as in Eq. (2.3). Explicitly,”

0 D

(7w

M)

where the 16 x 16 square matrices Q and M have
components

(2.19)

B=sloh, M) =, (2.20)
respectively, where
c p ,
c
Qh = ¢ : M{:< m) . (221
I

a

Here, the overbar denotes the complex conjugate, m
(evaluated at the point x) identifies with its usual repre-
sentation as 3 x 3 complex matrices, and the quaternion ¢
(evaluated at x) acts through its representation as 2 x 2
matrices:

a p

ﬂ-ﬂag(x):(_B a) a,pecC. (222)

C. Finite-dimensional Dirac operator, grading,
and real structure

With respect to the particle and antiparticle index C, the
internal Dirac operator

decomposes into a diagonal and an off-diagonal part

D, D 0 Dgp\?
DY - + 5 D M — +
Dy /¢ D 0 /¢
containing, respectively, the Yukawa couplings of fermions
and the Majorana mass of the neutrino.

(2.24)

lD, J, and S are column indices with the same range as the line
indices C, I, and a (the position of the indices was slightly
different in Ref. [16]; the one adopted here makes the tensorial
computation more tractable).

*The indices after the closing parenthesis are here to recall that
the block entries of A are labeled by the C, D indices, that is,
al =0Q,a: =M, and a? = al = 0.
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The 16 x 16 matrices D, and Dy, are block diagonal with
respect to the leptocolor index I:

14 J
DO

Dj

o)
=
|

(2.25)

where we write # for I = 0 and ¢ for I = 1,2, 3. Each D} is
a 4 x 4 matrix (in the flavor index «):

AN\ P o0\’
D} = (OI k > where k' := < ! 1) . (2.20)
k 0 a 0 kd a

whose entries are the Yukawa couplings of elementary
fermions

ki = (kw km ku’ ku )7

ki = (ke, kqo kqo kq) (2.27)
(three of them are equal because the Yukawa coupling of
quarks does not depend on the color). Similarly, D% is a
4 x 4 matrix (in the flavor index):

ki p
D’{;:( 0>
3/ a

whose only nonzero entry is the Majorana mass of the
neutrino.
In tensorial notations, one has

(2.28)

Dy = k&), (2.29)

(2.30)

=Jp - . —J =
and :{é is a shorthand notation for the tensor :{:’a.

Similarly, the internal grading is
I

=nehd].  (2.31)

where the blocks in the matrix act, respectively, on right
and left particles and then right and left antiparticles, and
we define

I, b L (1 D
= ("), (L),

and nlc)g holds for n?nﬁ. The internal real structure is

0 Ti\?
Jp= < 16) ce =28 ce,
e 0 /¢

(2.32)

(2.33)
where cc denotes the complex conjugation and we define
D._ (0 1>D'
¢ 1 0)¢

III. MINIMAL TWIST OF THE
STANDARD MODEL

(2.34)

In the noncommutative geometry description of the
Standard Model, the bosonic degrees of freedom are
obtained by a so-called fluctuation of the metric, that is,
the substitution of the operator D with D + A + JAJ™!,
where

a,»,bi GA, (31)

A=Y "a[D.by.

is a generalized 1-form (see [3] for details and the
justification of the terminology).

As already noticed in Refs. [5,24], the Majorana mass of
the neutrino does not contribute to the bosonic content of
the model, for D,;, commute with algebra:

[y’ ® Dy,a] =0 VaeA (3.2)
However, in order to generate the o field proposed in
Ref. [6] to cure the electroweak vacuum instability and
solve the problem of the computation of the Higgs mass,
one precisely needs to make D, contribute to the
fluctuation.

To do this, a possibility consists in substituting the
commutator [D, a| with a twisted commutator

[D,a], == Da—p(a)D, (3.3)
where p is a fixed automorphism of 4. This substitution is
the base of the definition of twisted spectral triple [15]
where, instead of asking that [D, a] be bounded for any a
(which is one of the axioms of a spectral triple), one
requires that there exists an automorphism p such that the
twisted commutator [D, a],, is bounded for any a € A. As
shown in Ref. [19], starting with a spectral triple (A, H, D),
where A is almost commutative as in Eq. (1.2), then the
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only way to build a twisted spectral triple with the same
Hilbert space and Dirac operator (which, from a physics
point of view, means that one looks for models with the
same fermionic content as the Standard Model) is to double
the algebra and make them act independently on the left
and right components of spinors (following actually an idea
of Ref. [26]). All this is detailed in the next section.

A. Algebra and Hilbert space

The algebra A of the twisted spectral triple of the
Standard Model is twice the algebra (2.6):

A= (C®(M) ® Asw) ® C?, (3.4)
which is isomorphic to
(C*(M) @ Asm) & (C®(M) ® Asm).  (3.5)

It acts on the same Hilbert space H as in the nontwisted
case, but now the two copies of C®(M) ® Agy act
independently on the right and left components of spinors.
To write this action, it is convenient to view an element of
‘H as a column vector with 4 x 32 = 128 components [4
being the number of components of a usual spinor in
L*(M, S) for m = 4]. To this aim, one introduces two extra
indices to label the degrees of freedom of L%(M,S).

(i) s =r, lis the chirality index;

(i) § =0,1 denotes the particle (0) or antiparticle

part (i).

An element a of Eq. (3.5) is a pair of elements of

Eq. (2.6), namely,

a=(c,c,q,.q¢,mm) (3.6)
with
c,c € C®(M,C0C), q.q' € C*(M,H),
m,m' € C®(M, M;(C)). (3.7)

We make (c, g, m) act on the chiral subspace H,. of H,
consisting in particles and antiparticles whose chirality as
Dirac spinors coincides with chirality in the internal space,
whereas (c’,q’,m') acts on the antichiral subspace H,
consisting in particles and particles whose Dirac and
internal chiralities do not coincide. The chiral subspace
‘H,. is the subspace of H spanned by r,a = 1,2 and 1,
a = 1,2, while H, is spanned by [, & = i, 2 and ra=1,2
(in both cases, C takes both values 1 and 0). In other terms,
a € A acts as in Eq. (2.19), but now the two 64 x 64
matrices Q and M are tensor fields of components

QitJ/i — s ip MitJ/} _ 5éMzﬁJ

ssla S[=Sa> ssla sal>

(3.8)

where &% denotes the product of the two Kronecker
symbols &, and &/. Both Q and M still act trivially (i.e.,
as the identity) on the indices § 7 but no longer on the chiral
indices sz. On the latter, the action is given by

B (Q,)ff )t
(Ql)g K
Mr pJ t
M = (( Jaa J) : (3.9)
(Ml)gl K
with
c B c s
0, = ( ,) . Q,:( ) . (3.10)
q/a 9/ «
and
mQ I, 0 iz
w8 )
0 meL/,
m QI 0 iz
Ml:< ©LhL ) , (3.11)
0 meL/,
where we denote
(") ("),
C:= R m := R
c m/;
/ / J
c=(" ), me=(° . (3.12)
¢ m' )/,

Compared to the usual spectral triple of the Standard
Model, M, ; are no longer trivial in the flavor index a.

Remark 3.1.—If we were using the twist-by grading, we
should permute m with m’ in Eq. (3.11), for on the
antiparticle subspace—i.e., C = 1—then H,. is a subspace
of the —1 eigenspace of the grading (see also Appendix 7
regarding the twist used in Ref. [16]).

The twist p is the automorphism of A that exchanges the
two components of Agy;, namely,

ple,cq,. ¢ .mm') = (c,c,q,q,m',m). (3.13)
In terms of the representation, one has
p(Q) b
pla) = < ) (3.14)
p(M)) ¢
with
p(Q)ih = 8p(Q)%. (M)l = 8ip(M)1),
(3.15)
where
(Q)e ’
pt= ().
(Qr)(l N
(M) t
(Mr)al s

In short, the twist amounts to flipping the left and right
indices [ and r.
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B. Grading and real structure

The operators I' in Eq. (2.7) and J in Eq. (2.10) are the
grading and the real structure for the twisted spectral triple,
respectively, in the sense defined in Refs. [16,19] [the rule
of signs defining the KO dimension is not affected by the
twist; that I commutes with the representation (3.9) follows
from the latter being diagonal but on the a and 7 indices,
where I' is (block-)diagonal]. In particular, as in the
nontwisted case, the real structure implements an action
of the opposite algebra A° on H that commutes with the
one of A. To check this, let us first write down the
representation of the opposite algebra.

Proposition 3.2—For a € A as in Eq. (2.19), one has
(for M of dimension 4)

M 0)\?
JaJ™' = - _ ). (3.17)
0 0/¢
Proof—From Egs. (2.10) and (2.33), one has
0 J ®Lig\2
J:( © 16) . (3.18)
J @l 0 c
Since J=!' = —J by Eq. (2.11), using the representation

(2.19) of a, one obtains (omitting I;4)

E F D

wr—eaa=-(5 (2 25 9)
J 0).\N0 M) \NT 0),
<jMJ 0 >D
0 JoJ

In addition, J commutes with the grading y., [see
Eq. (2.8)], so it is of the form

7. 0\
= , 3.20
J <0 m)fc (3-20)

(3.19)

C

where 7,y are 2 X 2 matrices carrying the §, t indices, such
that 7,7, = J,J, = —I,. From the explicit form (3.8) of
Q and M, one gets (still omitting the indices o and [ in
which J is trivial)

J,(8:0,)7, 0 !
707 = ( (6;0,) o )
0 T80T,/ |
—8iC 0 \' i
= ( SQr L > = -0, (321)
0 —5§Q, P
[(8M,)T, 0 !
IMT = (j (6:M) L >
TJi(6M)T 7
—5iM, 0 \' ;
:< i ) ) _ i, (3.22)
0 —0iM, /|
and, hence, the result. ™

To check the order-zero condition, we denote
b=(d,d,p,p,nn) (3.23)

another element of A with d,d € C®(M,C),
p,p € C°(M,H), and n,n" € C®(M,M;(C)). It acts
on H by Eq. (3.24) as

R D
=" )
NC

where R and N are defined as Q and M in Eq. (3.8), with

d 4 d p

v () =)

D/ a P/ a
n®H2>a'

NI B NI
Nr:( ok / ) ) Nl:( o
n®]12 a
(3.25)

Corollary 3.2.1.—The order-zero condition (2.12) holds.

Proof.—By Proposition 3.2, the order-zero condition
la,JbJ~'] = 0 for all a,b € A is equivalent to [R, M] = 0
and [N, Q] = 0. By Egs. (3.8) and (3.9), one gets (omitting
the indices 57 on which all actions are trivial)

I5/R,. M,] 0
0 [5/R,. M,

(3.24)

B

o =

By Eq. (3.11), one has

])t (3.26)

[67d,m QL] 0

8/R,,M,] =
7Ry M) < 0 [Blpmel)

>ﬁ, (3.27)

which is zero, as can be seen writing §/d =I; ® d and
similarly for [5/p',m" ® I,]. The same holds true for
[5{R s M l] . ]

C. Twisted fluctuation

In the twisted context, fluctuations are similar to
Eq. (3.1), replacing the commutator for a twisted one
[20]. In addition, if the twisted first-order condition does
not hold, one should add a nonlinear term [13,22]. We thus
consider the twisted-covariant Dirac operator

Dy=D+Au+Ay +Ap. (3.28)
where

a,-,bi (S ./4, (329)

Ay = Zai[l)’bi}p’

is a twisted (generalized) 1-form and 12\(1) = JA<1)J‘1 is its
image by the conjugation with the real structure, while
with  a; = Ja,J~' = (a})°,

1

(3.30)
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and p° denotes the automorphism of the opposite algebra
defined as

p(a) = (p~!(a))".

The term A(;) breaks the linearity of the map A —
D+Aq + JA(I)J_1 and vanishes when the twisted first-
order condition (A16) holds (this is a straightforward
adaptation to the twisted context of the result of
Ref. [13]). We need to take it into account for, as explained
in Sec. VII, the twisted first-order condition holds only
partially.

The twisted 1-form decomposes as the sum A =
Ap + A of two pieces: one that we call the finite part
of the fluctuation because it comes from the finite-
dimensional spectral triple, namely,

(3.31)

Af = Z%’[J’M ® Dy, by, aj,bie A, (3.32)

and another one coming from the manifold part of the
spectral triple
A = Zai[‘D’ bi]p’

ai,bi S ./4, (333)

that we call gauge part in the following (terminology will
become clear later).

To guarantee that the twisted covariant operator (3.28) is
self-adjoint, one assumes that the twisted 1-form A is
self-adjoint (Proposition 3.8 in Ref. [22]) (actually, this
is not a necessary condition, but requiring A ) to be self-
adjoint makes sense viewing the fluctuation D — D, as a
three-step process
such that self-adjointness is preserved at each step). This
means that, for physical models, we assume that both the
gauge A and the finite Ay parts are self-adjoint.

So far, the construction works for any even-dimension
manifold M. To build explicitly the Standard Model, from
now on one fixes the dimension of M to m = 4. The
grading and the real structure are

I, 0\’ .
YMm =7 = VRrErErE = ( ) =585 (3.35)
0 L/,
and
~2 0 )
J = ilyicc = i(a z> cc = —initice,  (3.36)
02 9 st

respectively, where cc denotes the complex conjugation
and we define

o (O 1Y e (! t (3.37)
T. = s = . .
o))y -1),
For the internal spectral triple, one has
Ig
_HS
YFP = = ng(s{v
—I,
Iy
0 Ti\?
Tp= ( ‘6> cc = eRs)h (3.38)
e 0 /¢

where the matrix yp is written in the basis left and right
particles and then left and right antiparticles, and we define

I, p o (1 D
= ("), (),

0 1\?
2=\ o) (3:39)
1 0/,
with 72/ holding for 7245, Thus,
Fr'=yy®yr= 1722{);5}& and
J=Ju ® Jp = —in'7i&56) ce. (3.40)

IV. SCALAR PART OF THE
TWISTED FLUCTUATION

The scalar sector of the twisted Standard Model is
obtained from the finite part (3.32) of the twisted 1-form,
which in turn decomposes into a diagonal part (determined
by the Yukawa couplings of fermions)

Ay = Zaib’S ® Dy. b, (4.1)

and an off-diagonal part (determined by the Majorana mass
of the neutrino)

Ay = Za,.[yS ® Dy b, (4.2)

As shown below, the former produces the Higgs sector, the
latter a pair of extra scalar fields.

A. The Higgs sector
We begin with the diagonal part (4.1). We first notice that
the M3(C) part of the algebra (3.4) twist-commutes
with 7> ® Dy.

025011-8



MINIMAL TWIST FOR THE STANDARD MODEL IN ...

PHYS. REV. D 104, 025011 (2021)

Lemma 4.1.—For any b € A as in Eq. (3.24), one has

S 0\¢
> ® Dy, b, = , 4.3
roond, (o). @I
where S has components
Stite = SLnt (Do)ILRY = p(R)SEn (Do)iy).  (4.4)

Proof.-—From the explicit forms (2.24) of Dy and (3.24)
of b, one has

5 D
T E
n [’ ® Di.N], /
0"Vp 7 ¢
|
T = 04t (DY) 8N 1 = 8ip(N) et

flou K; BJ uyK Jp
= 51‘ (773 (DS)I(INZ;/K - p(N)S(};I ntu(Dg)K/y)

T\ K J K J
i(muwm—me%

0

In the tensorial notation, S := [y> ® Dy, R] , has components

Sy = ntol(Do) 1 8 Ry — 5K p(R)Skn!, 8, (Do), (4.5)
= 8,(n"(Do)7 Rl — p(R)Sht (D)), (4.6)

which shows (4.4). To show that
¥ ® D{. N, =0. (4.7)

let us denote 7 the left-hand side of the equation above. It has
components

5,007 @8)
(4.9)

0 t 4.10

oD <N,>zf;<us>;£>; 10

Since (D{)K = 6K(D}) and (D})¥ = 65(D{) (with no summation on 7 and J), the upper-left term in Eq. (4.9) is

OO = 09 = (o
where we omitted the /, J indices on n. One has
o= (M, )
(n®@L)k! = (nkﬁ nk{,)’ (4.12)

and similarly for the terms in n’. Restoring the indices, one
has

Kk d J dk! J
k{,n;:(” ) n;k;:( g >
kin), nki ),

where we write k/=0 = k. for the lepton and k"> = k?
for the colored quarks. Again, in the expression above,
there is no summation on / and J: k,n] means the matrix n
in which the 7th line is multiplied by k/, while in n/k;, this
is the Jth column of n which is multiplied by k. Therefore,

(4.13)

K(n®L)-(n®IL)k' = 0. (4.14)

Rf(n/mz))i_ <( 0

! I RJ p
(N QL) ) 7 (4.11)

0 n® Ik’ 0

Similarly, k'(n" ® I,) - (" ® ,)k/ =0, so that
Eq. (4.11)—that is, the upper-left term in Eq. (4.10)—is
zero. The proof that the lower-right term is zero is similar.
Hence (4.7) and the result. [

A similar result holds in the nontwisted case [the
computation is similar as above, with n’ =n, so that
everything boils down to the single equation (4.14)].
The result, however, is not true if one genuinely generalizes
the twist used in Ref. [16]. As explained below, this yields
an additional violation of the twisted first-order condition,
besides the one required to generate the field o. That is why
we do not use this genuine twist but rather the one
presented in Sec. III.

Remark 4.2.—The twist in Ref. [16] was not applied to
the M;(C) part of the algebra. Only C @ H was doubled,
and this yielded an action similar to the one used on the
present paper [modulo a change of notations, the repre-
sentation (4.7) of Ref. [16] coincides with Eq. (3.9)]. A
genuine generalization of this twist consists in making two
copies of M3(C) acting independently on the left and right
components of spinors; namely, a € A acts as in Eq. (3.8),
but now M, ; are given by
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M,=(m@L),, M=(m®IL), (415

Then Lemma 4.1 no longer holds, for the lower-right term
T is not necessarily zero [on the rhs of Eq. (4.11), the first
parentheses now contain only n, and the second only n’, so
that the cancellation (4.14) is no longer true].

We now compute the 1-forms generated by the Yukawa
couplings of the fermions. In order to do so, we extend the
action of the automorphism p to any polynomial in ¢, ¢', p,
P, c, ¢, and d, d'. Namely, p “primes” what is unprimed,
and vice versa. For instance, p(qp’ — c¢'d) = ¢'p — cd'.

Proposition 4.3.—The diagonal part (4.1) of a twisted
1-form is

A D . (A, !
Ay = ( ) ,  where A = 6;5( > (4.16)
0 c Al s
with
a ( WH1>/’
szl a
KH
A =- ) (4.17)
! |
H2k a

where H,;_,, and H}, = p(H, ) are quaternionic fields.

Proof—From Eq. (2.19) and Lemma 4.1, one has
aly’ ® Dy, b], = QS. In components, this gives [using
the explicit forms (3.8) of Q, R]

AP = QUL (Do) RY — p(R)1n!,(Do)ily] - (4.18)
= S 0L (DY)IRY, — p(R)r,(D)S]. (4.19)

where we use 65 (Dy)% = & (D)) (with no summation on /
in the last expression). Since Q is diagonal on the chiral
indices s, the only nonzero components of A are for s =
t =rand s =t = [, namely,

AT = (ALY with
(ADG = (Q)RI(DYS(R,)G = (R)I(DY)A].  (4.20)
AP = 5 (AN with
(ADE = (Q)[-(DYI(R)S + (R)IDL.  (4.21)

From the explicit expression (3.10), (3.25), and (2.26) of
Q,/l, Rr/], and Dé, respectively, one gets

RAN
0,DIR, = ( okp ) ,
g'k'd «
IANA
O,.R,D}y = ( cd’k ) , (4.22)
q'pK .
C/W p
O,D}R, = ( | P ) ,
gk'd’ a
cdk'\”
O,R,D} = ( ) . (4.23)
gp'K! «
Using that ¢, ¢/, d,d’ commute with k', one has
K'H, \’
Ip _ Iy 1
e P
K'H\?
—0,D4R, + Q,R,Djy = _<H’ K ) ; (4.24)
2 a
where
Hy=c(p'=d),  Hy=¢q'(d-p),
Hy=c(p—d).  Hy=q(d - p). (4.25)
This shows the result. u

Imposing now self-adjointness as stressed before (3.34)
at the beginning of this section, we get the following
corollary.

Corollary 4.3.1—A self-adjoint diagonal twisted
I-form (4.1) is parametrized by two independent scalar
quaternionic field H, and H,.

Proof.—The twisted 1-form (4.16) is self-adjoint if and
only if

Hy=H|=H, and H),=H'=H, (4.26)
They are independent as follows from their definition
(4.25). m

Since y°> ® Dy satisfies the twisted first-order condition
(Proposition A.8), it does not contribute to the nonlinear
term A(y) of the twisted fluctuation. Gathering the results of
this section, one thus works out the fields induced by the
Yukawa coupling of fermions via a twisted fluctuation of
the metric.

Proposition 4.4.—A self-adjoint diagonal fluctuation is

Dy, =7’ ®DY+AY+Z;’
<n§5§DO+A

)D, (4.27)

oDy + A

where
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(A, ‘
A:‘%( A>
1/ s

is generated by two quaternionic fields H, and H; as

K HI\?
Ar - ( ) ’
H k! .

Al = < /
Hk

Proof—Remembering that J~! = —J, Proposition 4.3
yields

K'H\?
! ) : (4.28)

a

A, = JAyJ™!
\T 0/ 0/ \-T 0/,
O D
_ , 4.29
( —jAJ‘l>c (4.29)

From the explicit form (3.36) of 7 = —7 and (4.16) of A,
one obtains (omitting the /J and af indices in which the
real structure J is trivial)

—1 Uit A VDt 1 Ui Ar 0 ot
jAj = nsTjAmj{rlvT@ = ’75‘7'-5 - 771,'TL~
0 AZ K

f _ == —A,
0 _Al K

where we used (4.16) and write r?éL fj = —52.

The result follows summing Eq. (4.29) with Ay given in
Proposition 4.3 and Dy given in Eq. (2.24), then using
Corollary 4.3.1 to rename H, and H,. u

In the nontwisted case, the primed and unprimed
quantities are equal, so that one obtains only one quater-
nionic field H, = H;, which combines in the action as

i —éb)
¢ b/

0 0 0
wonen(8 Dl
R

(4.30)

H=H, +H, = ( (4.31)

- <M<<y5 ® D})R — p(N)(7° ® D}))

With Dy given in Eq. (2.29), one computes the upper-
right component C of the matrix above:

tp _ AuitKy v simLs NP VDLS ot st =P
c - Qs&la [kRnuéid:‘KyNM/Lé - kRp(R)uitKynvéb‘:‘Lé]'

ssla
(4.37)

whose complex components ¢; and ¢, identify with the
Higgs doublet. In the twisted case, the complex compo-
nents ¢ , and ¢[1.,2 of H, and H, define two scalar doublets

o= (§) 0= (l)
8 ¢’

which act, respectively, on the right and on the left part of
the Dirac spinors. However, similar to Eq. (4.31), they
appear in the fermionic action only through their linear
combination H, + H; [21]; therefore, there is actually only
one physical Higgs doublet in the twisted case as well.

(4.32)

B. The extra scalar field

The computation of the off-diagonal term (4.2) of the
finite part of the twisted 1-form is easier than for the
diagonal part, because D,, has only one nonzero
component.

Proposition 4.5.—The off-diagonal part (4.2) of a
twisted 1-form is

C D
Ay = ( ) , (4.33)
D C
where
./ C, 1
C — kR6§< > N
Cl s
_ . /D t
D=kgs| ' 4.34
R ( Dl ) K ( )
with
C,=D,=8's, C=D=-E'¢d  (4.35)

where ¢ and ¢’ are complex fields.
Proof.—Using the explicit form (2.24) of Dy, for a in
(2.19) and b in (3.24), one gets

") W,

O((y° ® Dp)N —p(R)(r’ ® DR)))D. (4.36)

C

I
Since Q and N are diagonal in the s index and proportional
to 6@, the nonzero components of C are

(C)1h = kpSL(Q,) N B (N, )T — (R)EEL].

la

(4.38)
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(C)h = keSO [ER (N + (R)EEL]. (4.39)

Explicitly, from the formula (3.10) for Q,/; and (3.25) of R,/ and N,/;, one gets

cs/ brral Fin®l, poordsl = p
eimi-r2= (" ) (7o) e (7))
qé,a O3a n®]12a péla 03a

[ brEld—d=] P (eld-d)E] r oy
- q/5} a 03 - 03 a -

and, similarly,

Q/(-EN, + R,E) = —0'E}]. (4.40)
where we define the scalar fields
c=c(d-d), o =c(d -d). (4.41)

Similarly, one computes that the lower-left component D
of (4.36) has nonzero components

D, = kR§\M(ER, — N\E) = kR6E/ c(d - &)
— kRst =P

5=l 0>

D, = kR§iM,(=ER, + N,E) = kR&.Z ¢/ (—d' + d)

_ _Rsimhl
= —k"8E, 0.

(4.42)

|
An off-diagonal 1-form A, is self-adjoint if and only if
D} = C, and Dj = C, that is,

6 =0, o =4

(4.43)

The part of the twisted fluctuation induced by the
Majorana mass of the neutrino is then easily obtained,
taking into account, however, the contribution of D, to the
nonlinear term A(z), since y5 ® D,, violates the twisted
first-order condition (cf. Proposition A.8).

Proposition 4.6.—An off-diagonal fluctuation is para-
metrized by two independent real scalar fields o, and o;:

Dy, =7’ @Dy ~+Ay+Ay+Ayp
7\ Do+ kpEPE

B 5,< 0 >D (4.44)
\niDj + k=0 0 ¢

(4.45)

a

|
Proof.—As in the proof of Proposition 4.4, one has

o sat < 0 —jDJ>D e
-JCcJ 0 c
with
JCT" = yieiClinttl = -C (4.47)
and similarly for D. Hence,
Ay +JAy = <C‘—(|)—D CJ(;D>:. (4.48)

The nonlinear term is (omitting the summation index)

Ay = a[Ay. b] (4.49)

o
By Proposition 3.2 and the explicit form (4.33) of A;, one
gets

a[AM,za]po:_C‘Z g)D( 0 p(—N)C—CR>D

p(R)D—DN

s

c c

(4.50)

where we use p°(5)=p(b")7) = (o™ (b°))" = (p(b)")" =
p(b), which follows from the definition (3.31) of p°
together with the regularity condition p(a*) = (p~!(a))*
satisfied by p. From Egs. (4.34) and (3.24),

_ . do d
—J
CR = kRag:,§< __0,> ,

d/
- . _/0_ t
sic=kagh (77 ). (@51)
_ i
p(R)D = kR6.§_1a< —Zid)s’
. a ;
DN = k@@g}f( ? _%,> (4.52)
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Remembering Eq. (4.41), one obtains

~M(p(N)C—CR) = kR(iéEfg(E(d_ d)o

F(Ei—fz")d)s

i = |‘7|2 !
= krdiZ;, o , (4.53)

~Q(R'D - DN) = kzd'Ey)

< | | o ) |
| ,| N '
HenCC,

. 0 ko\P 2 t
Ap) :5;5{5<_ R) <|0| /2) . (455)
kg 0 C —|6| s

The explicit form of X follows from Egs. (4.34) and
(4.35), defining

(" ama),

(4.54)

6,=6+0c+ o> and o,=-5 -0 —|d)7.
u

The nonlinear term does not modify the nature of the
extra scalar field o. It simply modifies the relation between
the components ¢, and o, and the elements of the algebra
defining the twisted 1-form, introducing the terms |¢|* and
|6’|? in the equation above.

Remark 4.7 —The field o is chiral, in the sense it has two
independent components ¢, and o;. The one initially
worked out in Ref. [16] was not chiral. This is because,
in the latter case, one does not double M;(C) and identifies
the complex component of m with the complex component
of Q,. This means that the component d’ of N; identifies
with the component d of R,, so that Egs. (4.40) and (4.42)
vanish, that is, C; = D, = 0. Similarly, the component ¢’ of
M, becomes c, so that D; = C,. One thus retrieves the
formula (4.32) of Ref. [16] (in which the roles of ¢ and d
have been interchanged). However, forcing the identifica-
tion of the (nondoubled) M5(C) component with one of the
(doubled) component of C is actually not compatible with
the twist, as explained in greater detail in Ref. [21]. This
problem is resolved in the present paper, where M3(C) is
doubled and there is a minimal violation of the twisted first-
order condition.

As an illustration that the self-adjointness of the 1-form
is not necessary to get a self-adjoint twisted fluctuation (see
Sec. III C), notice that in the proposition above D is self-
adjoint regardless of the self-adjointness of A;. As well,
one does not need to assume that A,, is self-adjoint to
ensure that the fields o, and o, are real.

V. GAUGE PART OF THE TWISTED
FLUCTUATION

In this section, we compute the twisted fluctuation
induced by the free part D = @ ® I of the Dirac operator
(2.6), that is,

D+ A+ TAT, (5.1)

where A is the twisted 1-form (3.33) induced by D, that we
call in the following a free I-form. As will be checked in
Sec. VI, the components of this form are the gauge fields of
the model. There is no nonlinear term A(z), for P does
verify the twisted first-order condition, as shown in
Proposition A.8.

A. Dirac matrices and twist

We begin by recalling some useful relations between the
Dirac matrices and the twist.

Lemma 5.1.—If an operator O on L?*(M,S) twist
commutes with the Dirac matrices,

'O =pO)* ¥ pu (5.2)

for some automorphism p of B(H) and commutes the spin
connection ,, then

9,0], = —ir"d,0. (5.3)

Proof—One has

[Vﬂvw OL, = [Vﬂaw O]p + [yﬂww O]p (54)

On the one side, the Leibniz rule for the differential
operator 0, together with Eq. (5.2) yields

[y*0,, Olw = v*0,0w = p(O)r*O,
=7"(0,0)w + 1Oy — p(O) "0,y
= 7"(0,0)y.

On the other side, by Eq. (5.2),

rw,. 0], =r'o,0 - p(O)fw, = a0 (5.5)
vanishes by hypothesis. Hence, the result. [
This lemma applies, in particular, to the components Q
and M of the representation of the algebra A in Eq. (2.19).
The slight difference is that these components do not act on
L*(M, S) but on L*(M, S) ® C*2. With a slight abuse of
notation, we write
Q= (r' ®1L6)Q.

0,0:=1(0,®1I,,)Q (5.6)

and similarly for M.
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Corollary 5.1.1.—One has

70 = p(O)r*, 9,0], =-iy"9,0, (5.7)

"M =pM)*,  [J.M],=-iy'9,0. (538)
Proof.—From Eq. (3.9) and omitting the internal indices
(on which the action of y* ® I is trivial), one checks from

the explicit form (A2) of the Euclidean Dirac matrices that

0 o*\'/0, 0\’
_ po_
7EQ — P(Q)rg (5,, 0) (0 Qz)

(0 0 ).(o 5).70
0 0 /\& 0/,
The same holds true for the curved Dirac matrices (A4), by
linear combination.

The commutation with the spin connection follows by
remembering that the latter is

(5.9)

6,0 0
w, =Ty, = rﬁ”( "0 L
6,0,

y (5.10)

and so commutes with Q, which is diagonal in the s, ¢
indices and trivial in the §, 7 indices. ]

B. Free 1-form

With the previous results, it is not difficult to compute a
free 1-form (3.33).
Lemma 5.2.—A free 1-form is

0, 0\7?
A=—iyA, with A —( ) . (5.11)
H H 0 Mﬂ c

where we use notations similar to Eq. (5.6), with

Q’,{ = Zp(Qi)auRh M[l = Zp(Ml>aﬂNl (512)

for Q; (M;) and R; (N;) the components of a; (b;),
respectively, as in Eqgs. (2.19) and (3.24).
Proof—Omitting the summation index #, one has

a=an,= (5 0 ) ("0 [a,(;v]p):

/O ONP/7*O,R 0 \P
__l(o M>C< 0 yf‘aﬂN>C

— (p(Q)a,,R 0 )D

- 0 pmaN ), 1

where the last equalities follow from Corollary 5.1.1.
Restoring the index i, one gets the result. [

By computing explicitly the components of A, one finds
that a free 1-form is parametrized by two complex fields cj,
and c},, two quaternionic fields ¢}, and ¢/, and two M;(C)-
valued fields m}, and m/,.

Proposition 5.3.—The components Q, and M, of A in
Eq. (5.11) are, respectively,

. (O t
Qﬂ :53( g [) ’
K7 s

(M, 4
A@:@< J, (5.14)
Mﬂ s
where
c p c! P
Q;—(” > },—(" l) (5.15)
qﬂ a qll a
for
r [ Cn
a=(% )
"
and
i
Cu
%:< H)
"
and
. <m;®]12 0 >ﬁ
M, = 0 Z ,
mﬂ®H2 a
m, Q1 0 4
ML:< e ) (5.16)
0 m, L/,
for
cp J
m’ =
! ( m;)l
and

The complex, quaternionic, and M3 (C)-value fields c,r/ l,

q[/ ! and m,r/ ! respectively, are defined in the proof.

Proof.—The form (5.14) and (5.15) of the components
of A follows calculating explicitly Eq. (5.12) using
Egs. (3.9)—(3.12) for Q; and M; and Eq. (3.25) for R;
and N;. Omitting the i index, one finds
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Q; = QlaﬂRw Q}ll = Qrath
M, = M,;0,N,, ML = M,0,N,. (5.17)
The first two equations yield Eq. (5.15) with
¢, =c'0,d, c}l =c0,d,
@ =q0.p'. 4, =q0,p. (5.18)

and the last two yield m/, = m'd,n and m!, = mg, N, from
which Eq. (5.16) follows with
my, = m'O,n, ml, = mo,n'.
|
Corollary 5.3.1.—A free 1-form A is self-adjoint if and
only if

[

w==C  aqu=—(q)"  m=-(m)". (519)

Proof—From Lemma 5.2 and Corollary 5.1.1, using
that p is a *-automorphism,3 one has
AT = i(A") Ty = iyt p(AF)T, (5.20)

so A is self-adjoint if and only if y*(p(A,)" +A,) = 0.
Since A, is diagonal from the s and 7 indices, the sum

A, =p(A,)" + A, is also diagonal with components A,r/ g
Thus,
0  o*AL\!

“A, = ) 5.21

p0 =, © 1) G2
If this is zero, then for any y*

YrrA i 0 0 5.22
7'y ,,—( 0 &”oﬂAf,)_’ (5.22)

Aﬂ—and, hence, Aﬂ—being trivial in § and ¢, and since
Tré*6* = 265,,, the partial trace on the § and 7 indices of the

v
expression above yields Aj = AL = 0. Therefore,
r(p(A,)" +A,) = 0 implies

p(A)T =—A,. (5.23)

The converse is obviously true. Consequently, A, is self-
adjoint if and only if Eq, (5.23) holds true.

From Egq. (5.11), this is equivalent to p(Q,)" = —Q, and
p(M,)" = =M ; that is, from Eq. (5.14),

’In a twisted spectral triple, the automorphism is not neces-
sarily involutive. What is asked is the regularity condition
p(a*) = (p~"(a))*. In our case, since p~' =p, the latter is
equivalent to p being a x-automorphism.

(Qfl)T =-0, and (ML)"' =-M,. (524)

This is equivalent to Eq. (5.19). m

C. Identification of the physical degrees of freedom

To identify the physical fields, one follows the non-
twisted case [5] and separates the real from the imaginary
parts. We thus define two real fields a, = Rec;, and B, =
—g—zllmc; (g; is a real constant, and the signs are such to

match the notations of Ref. [24]; see Remark 5.6), so that

.g1
ro— — —
cp=a,—i > Bﬂ,

I _ _=zr _ _ _'&
cy = —C, = —a, lzB#.

(5.25)
Moreover, we denote w, and — % Wk for k = 1, 2, 3 the real
components of the quaternionic field g, on the basis
{I,.ic;} of the (real) algebra of quaternions (with g,
another real constant), so that

%

2 W/]jo-kv

. .
4 =wul, —i

. g
q,’, = —(q;)T =-w,l, — l—ZW,’jo*k.

: (5.26)

Finally, we write m;, as the sum of a self-adjoint part g, =
2(m,+m") and an anti-self-adjoint part § (m}, — m;").
We denote Vg and % V! the real-field components of the
latter on the basis {il3, i4,,} of the (real) vector space of
anti-self-adjoint 3 x 3 complex matrices (with {4,,,m =
1...8} the Gell-Mann matrices and g3 a real constant), so

that

My, = g+ VI + i 5 Vi, (5.27)
ml, = ~(m})" = =g, + Vil + i 2V, (5.28)

The cancellation of anomalies is imposed requiring the
unimodularity condition

TrA, = 0. (5.29)

This yields the same condition as in the nontwisted case.
Proposition 5.4.—The unimodularity condition for a
self-adjoint free 1-form yields

(5.30)

Proof—From Proposition 5.3, one gets TrA, =
TrQ, + TrM,. On the one side (neglecting the § and 1
indices),

TrQ, = TrQ;, + TrQ},

= ¢, + &, + Trq), + cl, + ¢, + Trq/, (5.31)
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vanishes by Eq. (5.19), when one notices that Trg" = Trg
for any quaternion g. On the other side,
TrM, = TrM}, + TrM;, = 4Tr{m} + 4Tr{m}/

= 4(cl, + Trm), + cl, + Trm),)

= 4(—ig,B, + 6iVY), (5.32)

where we use ¢} +c,=—ig;B, and mj+ml =
2iVily + 2ig; VA, remembering then that the Gell-
Mann matrices are traceless. Hence, Eq. (5.29) is equivalent

to Eq. (5.30). =
Let us summarize the results of this section in the
following.

Proposition 5.5.—A unimodular self-adjoint free 1-form
A is parametrized by
(i) two real 1-form fields a
M;(C)-value field g,,
(ii) au(1)-value field iB,, a $u(2)-value field iW,, and
a 8u(3)-value field iV,.
Proof —Collecting the previous results, denoting W, :=
Wioy and V, = V4, one has

, and w, and a self-adjoint

! )

cp :aﬂ—i%Bﬂ, c”:_a"_IEB’“ (5.33)

gy =w,l, — i%Wﬂ, gl =-w,]I, — i%Wﬂ, (5.34)
m, = g, + i<%3ﬂ]13 +g—23v,,>,

ml, = —g, + i(%@,]g +%vﬂ). (5.35)

On the oneside, a, and w,, arein C* (M, R) and g, = g,
is in C®(M, M5(C)). On the other side, since B, is real,
iB, € C*(M,iR) is a u(1)-value field. The Pauli matrices
span the space of traceless 2 x 2 self-adjoint matrices; thus,
the field iW, takes a value in the set of anti-self-adjoint such
matrices, that is, 81t(2). Finally, the real span of the Gell-
Mann matrices is the space of traceless self-adjoint elements
of M3(C); hence, iV, is a $1(3)-value field. L]

In the nontwisted case, the primed and unprimed
quantities in Eq. (5.18) and the next equation are equal,
meaning that the right and left components of the fields
(5.33)—(5.35) are equal; hence,

a,=w,=g,=0. (5.36)
That the twisting produces some extra 1-form fields has
already been pointed out for manifolds in Ref. [19] and for
electrodynamic in Ref. [18]. Actually, such a field (improp-
erly called vector field) appeared initially in the twisted
version of the Standard Model presented in Ref. [16], but its
precise structure—a collection of three self-adjoint fields

a,, w,, and g,, each associated with a gauge field of the
Standard Model—had not been worked out there.

In the minimal twist of electrodynamics, there is only
one such field [associated with the U(1) gauge symmetry].
By studying the fermionic action, it gets interpreted as an
energy-momentum 4-vector in Lorentzian signature.
Whether such an interpretation still holds for a,, w,, and
g, will be investigated in a forthcoming paper [21].

Remark 5.6.—In the nontwisted case, the fields B,,, Wﬂ,
and V, coincide with those of the spectral triple of the
Standard Model. More precisely, within the conditions of
Eq. (5.36), then

(i) our ¢, = ¢!, coincides with —iA, of Sec. 15.4 in

Ref. [24].% The self-adjointness condition (5.19)
then implies that Aﬂ is real, in agreement with
Ref. [24]. Then B, = %Aﬂ as defined in Ref. [24]

coincides with our B, =—iZc,=—i2cl, as

g H g H
defined in Eq. (5.25).

(i) Our g;, = q,’l coincides with —iQ, of Sec. 15.4 in
Ref. [24]. The self-adjointness condition (5.19) then
implies that Q, is self-adjoint, in agreement with
Ref. [24]. Then W, = %Qﬂ as defined in Ref. [24]

. . . o k 22 2 ]
coincides with our W, = W0, =iZq, = [ oy

92
in Eq. (5.26).
(iii) The identification of our V, with the one of the
nontwisted case is made after Proposition 5.8.
Remark 5.7.—If one does not impose the self-adjointness
of A, then one obtains two copies of the bosonic contents of
the Standard Model, acting independently on the right and
left components of Dirac spinors. Whether this may yield
physically meaningful models should be investigated else-
where (considering to remove also the self-adjointness of the
finite part of the fluctuation).

D. Twisted fluctuation of the free Dirac operator

We now compute the free part (5.1) of the twisted
fluctuation.

Proposition 5.8.—A twisted fluctuation of the free Dirac
operator P is D, = D + Z, where

U D
Z=A+JAI = —ipt (Z 0 ) with

Z,=rQ®X,+L ®iY,, (5.37)
in which X, and Y, are self-adjoint Agy-value tensor fields

on M with components

(XM)?; = (Xy); = (Yﬂ)ﬁ = (Yu)g =0,

(5.38)

*Beware that @y in the formula of A is iy*0, [24], so that
A = Ay* is the U(1) part of —A, meaning that A, is the U(1)
part of iA,.
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and
. . 2a J
X = (x = [ , 5.39
== (" ) (5.39)
i 0 5 ngy
o= ( b ) o= ( ) (5.40)
i ~#2BL -2V, o 2B -2V,
82w, —a J
(X;,)Z{—< O = ) > : (5.41)
oow,ls =g, /,
517 g1 B/,t _ % (W”)Z J
(YD = (5.42)
: -3 (B 5V,) - (W)L

Proof—With J = —J~! as defined in Eq. (3.18),
one has
JAJT" = —J(=iptA) T = —idp AT
IM,J~!
0

0

= ipJA,J = iy”( 70,71
"

> D

c
where we use that J is antilinear and anticommutes
with y# (Lemma A.7). Noticing that JM,J ' = -M,
and jQﬂj‘l = —Qﬂ [this is shown as in Egs. (3.22) and
(3.21), respectively], one obtains

(5.43)

Explicitly,

(Z)l = cof +

5 . B 2(1” + ing”
(Z,) = 6]+, =

and

(Z,)5 = 4,67 + ohmy, =

(

with

2a,
( (a,,—iffz—lBﬂ)]I3+gﬂ—i(%B,,H3+%

J

= (X7 +i(Y")¥,

9B )1 _-(9_13]1 % )) 26T 26T
(aﬂ+l2 ﬂ)3+gﬂ i\g B +3V, ;

(g;)15] +m},
(47,)38]

I

where, using the explicit forms (5.15) and (5.16) of Qj,
and M,

p p
g e (CL] - Sm
Zﬂ:5zQ#+6§Mﬂzél§< rsJ b _z>
4,67 +6om, /
(5.44)
and
Zl =810, + 5M.. (5.45)

The components of the matrix in the rths of Eq. (5.44) are

) . sl +m’
<qm—%%+%m—(”’ g

(5.46)

with (Z;)ff = (Z;)g = 0 and, using Proposition 5.5,

J
_. i iJ
v)>~@hﬁwmm,
m) 7

2J.

(q,)101

r (5.47)
4,567 +my,

)
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(Z0) = (q)28] +m},

= (Xp)ar +i(Yi)ar-

i (W)
(Z5)0%0 = (qp)es! — ( g

a

The matrices X, and Y}, defined by the equations above
are self-adjoint (notice that W, as defined in Proposition
5.5 is self-adjoint) and such that

Z, =X, +1iY,. (5.48)

The self-adjointness condition (5.24) applied to Eq. (5.45)
yields

Z\ =—(Z,)" ==X, +iY", (5.49)
In other terms, Z}, = X!, + iY}, with
1 _ r l _ yr
XL=-xi, Y,=v. (5.50)

Redefining X, :== X}, = —X}, Y, = Y}, = Y},, one obtains
the result. (]

We collect the components of Z in Appendix 7. There,
we also make explicit that /¥, coincides exactly with the
gauge fields of the Standard Model [including the 311(3)
gauge field V,]. Thus, the twist does not modify the gauge
content of the model. What it does is to add the self-adjoint
part X, whose action on spinors breaks chirality. As shown
in the next section, this field is invariant under a gauge
transformation.

VI. GAUGE TRANSFORMATIONS

A gauge transformation is implemented by an action of
the group U(.A) of unitary elements of .4, both on the
Hilbert space and on the Dirac operator. On a twisted
spectral triple, these actions have been worked out in
Refs. [17,20] and consist in a twist of the original formula
of Connes [3], later generalized without the first-order
condition in Ref. [13]. Explicitly, on the Hilbert space, the
fermion fields transform under the adjoint action of 2/(.A)
induced by the real structure, namely,

w — Aduy = upu=uw’y =uJu*J 'y, uel. (6.1)
On the other hand, the twisted-covariant Dirac operator D,
(3.28) transforms under the twisted conjugate action of

Ad u:

_ig_zz(Wy)ZHS >1

(= B0 )1 - (284,

1

J
= (XQar +i(Yi)ai-

D, — Adp(u)D,Adu*. (6.2)

By Proposition 4.2 in Ref. [22], the operator D ,, viewed as
a function of the components a; and b; of the twisted
I-form A = Ay = ), a;[D, b;], transforms under a gauge
transformation in the operator D 4., where

A" = p(u)[D, u*], + p(u)Au*. (6.3)

This is the twisted version of the law of transformation of
generalized 1-forms in ordinary spectral triples, which, in
turn, is a noncommutative generalization of the law of
transformation of the gauge potential in ordinary gauge
theories.

To write down the transformation A — A%, we need the
explicit form of a unitary u of A. The latter is a pair of
functions on M with a value in

U(C) xU(H) xU(M5(C))~U(1)x SU2) x U(3). (6.4)
Namely,

u= (e e, q.q',mm) (6.5)
with
a,d € C*(M,R),  q.4 €C*(M,S5U(2)),
m.m' € C=(M, U(3)). (6.6)
It acts on H as

(%) o

. it f
where,.followmg Egs. (3.8)—(3.12), one has 2[?5 IIZ = 5;52[?@
and B = 58" with

ssla sal
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BT '
tpJ <§Br)a1
B ( (?Bz)ﬁj) , (6.8)
al 7 s
in which
a p o B
G R L
q a q a
and
B — (m RL 0 )ﬂ
" 0 meL/,
m I, 0 B
231_( 0 m®]I) . (6.10)
2/ a
where we denote
(eia > (eia )J
o = s m := s
e—l(l m I
eta’ eia’ J
oo (“ ) we () e
I

A. Gauge sector

A twisted gauge transformation (6.2) does not neces-
sarily preserve the self-adjointness of the Dirac operator
(because the action of the unitary is twisted on the left, not
on the right). Equivalently, A“ in Eq. (6.3) is not necessarily
self-adjoint, even though one starts with a self-adjoint A.

This may seem as a weakness of the twisted case, since
in the nontwisted case self-adjointness is preserved.
Actually, the possibility to lose self-adjointness allows
one to implement Lorentz symmetry and yields—at least
for electrodynamics [18]—an interesting interpretation of
the component X, of the free fluctuation Z of Proposition
5.8 as a four-vector energy impulsion.

However, regarding the gauge part of the Standard
Model which—as shown below—is fully encoded in the
component (Y, of Z, it is rather natural to ask the self-
adjointness of the free 1-form A to be preserved. This
reduces the choice of unitaries to pair of elements of
Eq. (6.4) equal up to a constant.

Proposition 6.1.—A unitary u whose action (6.3) pre-
serves the self-adjointness of any unimodular self-adjoint
free 1-form A is given by Eq. (6.5) with

ad=a+K, q9=4, m =m. (6.12)

The components (5.11) of A then transform as

¢, = ¢, —id,a, chy >, —id,a,  (6.13)
7,994 +900.4"). 4.~ 994" +9(0.4"). (6.14)
my, > mmym' +m(9,m"),  ml, - mm,m’+m(0,m").
(6.15)

Proof.—From Corollary 5.1.1, one has [with the same
abuse of notations (5.6), now with I5,]

A = p(u)([D, u"], + Au”)

— —i}/”(u(aﬂu*> + uAMu*). (6.16)

Using the explicit forms (6.7) of u and (5.11) of A,, one
finds

i g D
Au}jyﬂ(%{(aﬂm )+ 20, 0 ) |
0 B(9,8) +BM, B/ .

(6.17)

meaning that a gauge transformation is equivalent to the
transformation

0, — AO,AT) +AQ, AT,

M, — B(9,8") + BM,B". (6.18)

From Egs. (5.15) and (5.16), these equations are equiv-
alent to

"—i0,a

¢ u u&

— ei(la”e—ia + C; =c

X~ T

I _ s /
¢y = ¢, — 10,0,

(6.19)
- 4qdq949" +40,47).
g, —>qq.q" +4q(0,4"), (6.20)

my, - mm,m’ +m(0,m"),
ml, — m'mm'" +m'(0,m'"). (6.21)
For any unitary operator g, one has that q(9,q") = q[9,. q"]
is anti-Hermitian (6M being anti-Hermitian as well). Hence,
beginning with a self-adjoint A as in Eq. (5.19), requiring
that A* be self-adjoint is equivalent to

0,4 = 0, (6.22)
99,9 +490.4") =qd'9,9" +4'(9,47).  (623)
m'mlm'" +m' (9,m'") = mm,m’" +m(9,m"). (6.24)

In particular, for qf, the identity, the second of these
equations yields q(aqu) =4'(0,4") for any gq.q.
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Hence, for any ¢/, one has qq.q" = ¢'q,q’". This means

that ¢'7q is in the center of H. Being a unitary, ¢'7q is thus
the identity. So ¢ = ¢’. Similarly, one gets that m''m is in
the center of M;3(C), that is, a multiple of the identity.
Being unitary, m'’m can be only the identity; hence,
m' = m. Thus, (6.19)—(6.21) yield the result. u

These transformations of the components of the free
1-form induce the following transformations of the physical
fields defined in Egs. (5.33)—(5.35).

Proposition 6.2.—Under a twisted gauge transformation
that preserve the self-adjointness of a unimodular free
1-form, the physical fields a, and w, are invariant, g,
undergoes an algebraic (i.e., nondifferential) transformation

(6.25)

;
gy — ng,n’,

and the gauge fields transform as in the Standard Model:

2
B, > B, +—0,a. (6.26)
9
v 2 ¥
W, - qW,.q +§q(8ﬂq ) (6.27)
2i -
V,—>nV,n'——n(d,n"), (6.28)

93

where n = (detm)~"/3m is the SU(3) part of m.

Proof—Applying the gauge transformations (6.13)—
(6.15) to the physical fields defined through Egs. (5.33)-
(5.35), one obtains

ta, ~i% B, ~ ta, - i(%Bﬂ + aﬂa) (6.29)

.g (g .
+w,I, - zéWﬂ - tw, I —i <Equ,,qT + zq(aﬂqT)>,

(6.30)
+g,+ i<%BﬂH3 +g—23v,,>
91

- imgﬂmT+i<6

B,I; + g—;mV”mT - im(aﬂm"')> ,
(6.31)

where the anti-self-adjointness of ¢(d,g") and m(d,m")
guarantees that the rhs of Egs. (6.30) and (6.31) is split into
a self-adjoint and anti-self-adjoint part. The first two
equations above yield Egs. (6.26) and (6.27). Writing
m = ¢n with ¢ = (detm)'/? and n € SU(3), then the
right-hand side of Eq. (6.31) becomes

+ng,n’ + i<<g—6lBM - 8,,9) I; + %nVﬂnT - in@,,n*),
(6.32)

where we use md,m’ = —id,0 +nd,n’. Requiring the
unimodularity condition to be gauge invariant forces one to
identify —@ with §, thus reducing the gauge group U(3) to
SU(3). This yields Egs. (6.25) and (6.28). m

Remark 6.3 —If one does not impose that the twisted
gauge transformation preserves self-adjointness, then the
left and right components of spinors transform independ-
ently. As explained in Remark 5.7, the viability of such
models should be explored elsewhere.

B. Scalar sector

We now study the gauge transformation (6.3) of the
scalar part of the twisted Ay + A, of the twisted 1-form
computed in Sec. IV, beginning with the Yukawa part Ay
in Eq. (4.1).

Lemma 6.4.—Let u be a unitary of A as in Eq. (6.5). One
has

A% = p(u)[y> @ Dy, u'], + p(u)Ayu’

Al D
= ( 0>c’ (6.33)
where
u }j (Au)r !
A 5“( <A">,); (039
with
u\ 0 KI (a/(Hl + ]I)q/T - ]I)
= ((q(H2 +Dat — )k 0 )
(6.35)
o 0 K'(a(H} +T)g" 1)
= ((q'(H; + D)t — DK 0 >

(6.36)

where H , are the components of Ay and a, @, q, @' those
of u.

Proof.—From the formula (4.16) of Ay and (6.7) and
(6.8) of u, one gets

(VA" = (p(%[)AQ[T O>i’

where p(20) A" = 5%/

A,A, 2,
( w (6.37)

t
2A,A,2 >
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where, using Egs. (4.17) and (6.9),

mlA,mI:<“’ )( k"“’l)(”” )
q) \ H,K q"

Kla/qu/T p
_ <qH2aTk' (6.38)
a K'H) N (ot
s o )
q Hik q
_ _< k'aH’qu )ﬁ (6 39)
q/lea/’rkl a’

where we used that k! and k! commute with & and &' and
their conjugates.

The computation of the twisted commutator part in
Eq. (6.33) is similar to that of Ay in Proposition 4.3, with
a; = p(u) and b; = u' for u as in Eq. (6.5), that is,

U D
sl @Dy, = () (640)
0/c
where
el t i p
u:ag( ' ) with u,:< kg]),
ul s $2k| a
ng/ p
u, = —( 1) , (6.41)
HK! a

in which $,_,, and ), = p($,,) are given by Eq. (4.25)
with [remembering Eq. (6.11)]

c=a, ¢ =a, qg=4q, q =q and
d=a', d=a, p=q, P =q7 (642)
that is,
| =g —a), 9, =q(a’ —¢") and
9i=alg' -a), 9 =g -q"). (6.43)
Thus, one obtains Eq. (6.33) with
AY = U+ p(A)AAT
(U, 4 AWAA !
— 55( = ) . (6.44)
u,+AAA

From Eqgs. (6.38) and (6.41), one obtains the explicit forms
of (A*)" and (A")":

(A%), = U, +A,A, AL

( K(9+a'Hq")
(92 +gqHa" K 0

), (6.45)

(A"),=U, +AAA
_( K(9) +aHq")
(95 +q Hya' K 0

>. (6.46)

The final result follows substituting £, , with their explicit
formulas (6.43). u

A unitary u that preserves the self-adjointness of the
unimodular free 1-form (Proposition 6.1) also preserves the
self-adjointness of Ay if, and only if, K = 0. Indeed, in that
case u is twist invariant (i.e., ¢’ = ¢ and &' = &), and one
easily checks that for a self-adjoint Ay (that is, H I =H, =
H,and H|" = H', = H,; by Corollary 4.3.1) then A% is self-
adjoint as well. If K # 0, then H; and H, undergo different
gauge transformations, forbidding A} to be self-adjoint. For
this reason, from now on we take K = 0. With this caveat,
the gauge transformation of Lemma 6.4 then reads as a law
of transformation of the complex components (4.32) of the
quaternionic fields H, and H,.

Proposition 6.5.—Let Ay be a self-adjoint diagonal
I-form parametrized by two quaternionic field H, and
H;. Under a gauge transformation induced by a twist-
invariant unitary u = (a,a,q,q,m, m), the components

1, and (/511‘2 of H, and H, transform, respectively, as

<¢1+1)4q<¢1+1>e_,4a
¢ ¢ ’
P +1 PN
( ¢, )ﬁ"< ¢, ) '

Proof—Ay being self-adjoint means that Eq. (4.26)
holds. A twist-invariant unitary satisfies Eq. (6.12) with
K =0. Under these conditions, comparing the for-
mula (4.17) of Ay with its gauge transformed counterpart

(6.35) and (6.36), one finds that the fields H, and H,
undergo the same transformation:

(6.47)

H, - q(H, +T)a" -1,

H - q(H, +T)a" -1 (6.48)

Written in components (4.32), with g;; the components of
q, these equations read

7 = qu(P] +1)e ™ + grpphe ™ -1,

Py = qua(@h + 1)e™™ + grpghe™™, (6.49)

and similarly for (,{)11'2. In matricial form, these equations are
nothing but Eq. (6.47). [
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The transformations (6.47) are similar to those of the
Higgs doublet in the Standard Model (see, e.g., Proposition
11.5 in Ref. [25]). In the twisted version of the Standard
Model, we thus obtain two Higgs fields, acting independ-
ently on the left and right components of the Dirac spinors.
However, as we already mentioned, the two have no
individual physical meaning on their own, since they
appear in the fermionic action only through the linear
combination i = (H, + H;)/2. Therefore, there is actually
only one physical Higgs doublet in the twisted case as well.

In conclusion, we check that the scalar field o is gauge
invariant. As explained below Eq. (6.2), this invariance is
not affected by the nonlinear term and is encoded within the
transformation

Ay~ Ay = p(W)ly> ® Dy, u'], + p(u)Ayu’.  (6.50)

Proposition 6.6.—Under a gauge transformation
induced by a twist-invariant unitary u, the real fields o,
and o, parameterizing a self-adjoint off-diagonal fluc-
tuation (Proposition 4.6) are invariant.

Proof—The result amounts to showing that A, is
invariant under Eq. (6.50). Since u = p(u) by hypothesis,
the twisted commutator in Eq. (6.3) coincides with the
usual one [y° ® D, u'] which is zero by Eq. (3.2). The
explicit forms (4.33) of Ay, and (6.7) of u yield

(6.51)

. 2[C‘BT>
uAyu' = .

( BDA

From Eq. (4.35), one checks that ACB" has components
(omitting the global factor k6% and & per A1)

2A,C, B! = oA,E/ B} = 65, (6.52)
A,CB = —c'WAE'B =65,  (6.53)

where we use the explicit forms (6.9)—(6.11) of 2 and

B to get AE/ B} = eiamle~ic — =/ and similarly for
Eq. (6.53). Hence, uAyu’ = A,;, and the result. "

VII. CONCLUSION

We have worked out the field content of a twisted version
of the spectral triple of the Standard Model. The physical
meaning of these fields will be made precise by the
computation of the fermionic action in the second part
of this work [23], as well as the possibility of gauge
transformations induced by non-twist-invariant unitaries
and their relation with Lorentzian signature.

As shown in Ref. [21], the twisted first-order condition
needs to be violated in order to generate the extra scalar
field . This forbids one to apply the twist by grading of
Ref. [20], since the latter always preserves this condition.
However, this violation has no real importance, being

reabsorbed in the definition of the components of o. In
this sense, the model presented here is the one that
minimally violates the twisted first-order condition.

APPENDIX: MORE EXPLICIT COMPUTATIONS

1. Dirac matrices and real structure

Let 6,3 be the Pauli matrices:

(0 () )

In four-dimensional Euclidean space, the Dirac matrices (in
chiral representation) are

0 o b O
_ , 5 = 1,2,3.,0 __ , A2
7’142 = (5” 0 ) VE=VYEVEVEYE = ( 0 —]12> ( )

where, for u = 0, j, we define

ot = {Hz, —l()'j}, ot = {]12, lGj} (A3)

On a (non-necessarily flat) Riemannian spin manifold,
the Dirac matrices are linear combinations of the Euclidean
ones:

= e (A4)

where {ef}} are the vierbein, which are real fields on M.
These Dirac matrices are no longer constant on M. This is
a general result of spin geometry that the charge con-
jugation commutes with the spin derivative (see, e.g.,
Proposition 4.18 in Ref. [25]). For the sake of complete-
ness, we check it explicitly for a four-dimensional
Riemannian manifold.

Lemma A.7.—The real structure satisfies
I=-rTJ, Jwp=wpJ, JIV,=+V,J. (AS)

Proof.-—Let us first show that J anticommutes with the
Euclidean Dirac matrices,

{J.7E} =0. (A6)

From the explicit forms (2.33) of J, this is equivalent to

YRVETE = ~VEVRVEs (A7)
which is true for y = 0, 2, since then ¥y = y% anticom-
mutes with y%y%, and is also true for # = 1, 2, in which case
7 = —y4 commutes with yy%.

Since the spin connection is a real linear combination of
products of two Euclidean Dirac matrices, it commutes
with J. The latter, having constant components, commutes

025011-22



MINIMAL TWIST FOR THE STANDARD MODEL IN ...

PHYS. REV. D 104, 025011 (2021)

with Gﬂ and, hence, also with the spin covariant deriva-
tive V,,.

These results hold as well in the curved case, for then one
has from Eq. (A4)

(7.7} = ei{T re}r = 0. (A8)

2. Components of the gauge sector of the twisted
fluctuation

The components of the free twisted fluctuation of
Proposition 5.8 are Z = 5@(2{,)?5 gi\./en- by .(we invert
the order of the leptocolor and flavor indices in order to
make the comparison with the nontwisted case easier)

(2,)0! = 2a,, (A9)
(Z,)% =24, + ig, B,. (A10)
|
(¥, (=i 5 (v,)])
A (5

ib
(Yﬂ).l{d a

coincides with the matrix A} of the nontwisted case
[Eq. (1.733) in Ref. [24]], while

(v,)0] ’
! (¥,)63
Y%/,
0 /
ig1B,

. 1B,
(8025 -5 (W,)0)

a

coincides with the matrix AL [Eq. (1.734) in Ref. [24]].

3. Twisted first-order condition

For a twisted spectral triple, there is a natural twisted
version of the first-order condition (2.13) that was intro-
duced in Ref. [16] and whose mathematic pertinence has
been investigated in detail in Refs. [19,20], namely,

[D.b], ], =0, abeA  (Al6)

A 9By g
(Zﬂ)gla7 = &b (wH — aﬂ) + l<5ZT” —f(WﬁZ), (A11)

@)=+ @) -1 (5 A+ 2w, an)

- . . B . .
@ =0+ @)+ (58 - 2w any

(Z,) = (8hw,8] = (g,)])

. nB, . g i\ L9 -
~i(on (ke Ll ) + Zowtal).

(Zﬂ);iz = (Z/rt);zl =0.

One then checks that

B

15 =5(v,)])

2

—i(& (a5 (v]) +5 (W8]

a

where p° € AutA° is the automorphism of the opposite
algebra A° induces in Eq. (3.31) by the twisting auto-
morphism p € AutA.

Proposition A.8.—The free part @ ® I and the diagonal
part > ® Dy of the Dirac operator satisfy the twisted first-
order condition (A 16), while the off-diagonal part y° ® D,,
violates it.

Proof—For @ ® I, using Eq. (3.17) and Corollary
5.1.1, one gets

R, M P
16 ® I b, JaJ ] . = iy”<[ A [0,N Q])

C
(A17)

The top-left entry reads (omitting the s and § indices for

simplicity)
_ 0,d[L,, m]/ p

[0,R, M| = < el I ) =0. (Al8)

a

ayp/ []I4’ rﬁ,]{

Similarly, one shows that [8#N, Q] = 0; hence, @ ® I
satisfies the twisted first-order condition.

For the diagonal part y°> ® Dy, Lemma 4.1 and
Eq. (3.17) yield
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[[},5 ® Dy,b}/),-,a]_l]po — _( [S, M]pc g)D (A19)

In tensorial notation,

o J J J 7
[S. 8], = 8, (Do) 1aRiy. M), = 8i1p(R)Sai (Do) My . (A20)
The right-hand side of Eq. (A20) is (omitting the indices $, @, and 1)
Y N G el G A G |
_D()Rl s Ml s Mr s _DORI s
(" (" a) ( a ) (7 ).
—R,Dy / Ml s Mr s =R.Dy / ¢
(DOR,M, — M DR, — R,DyM, + M,R,D, ) (A21)
- —~DoR,M; + M,DyR; + R,DoM, — M,R,D; )
From the explicit form (2.26) of Dy, (3.11) of M;,,, and (3.25) of R,/;, one checks that
_ _ 0 kp'm
DoRer == MIDORr - _ )
kdm 0
o 0 km'd
R\ DyM, = M|R,Dy = ( - ) (A22)
kmp 0
so that the upper-left term in Eq. (A21) is zero. The same is true for the lower-right term; hence, [S, M] = 0.
This shows that Eq. (A19) vanishes, which is equivalent to the proposition.
For the off-diagonal part y> ® D,,, one has (omitting the s and § indices for simplicity)
0 Ve  ke(d - d')
[r® ® Dy b, = ( s , . > : (A23)
1akr(d = d') c
and, hence,
0 yENkg(d—d p(MIN P EL kg(d —d')\”
’ .. 0 c
whose top-right entry reads
Sk NP sef : igip( 00 '
VS kR(d_d)QKy _/)(Mla) '—‘KykR(d d) - kR6 s —la / (A25)
—(o+0)
and is nonzero. m
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