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Mass generation of gauge fields can be universally described by topological couplings in gapped
systems, such as the Abelian Higgs model in (3þ 1) dimensions and the Maxwell-Chern-Simons theory in
(2þ 1) dimensions. These systems also exhibit the spontaneous breaking of higher-form Zk symmetries
and topological orders for level k ≥ 2. In this paper, we consider topological mass generation in gapless
systems. As a paradigmatic example, we study the axion electrodynamics with level k in (3þ 1)
dimensions in background fields that hosts both gapped and gapless modes. We argue that the gapped mode
is related to those in fully gapped systems in lower dimensions via dimensional reduction. We show that
this system exhibits the spontaneous breaking of a higher-form Zk symmetry despite the absence of the
conventional topological order. In the case of the background magnetic field, we also derive the low-energy
effective theory of the gapless mode with the quadratic dispersion relation and show that it satisfies the
chiral anomaly matching.
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I. INTRODUCTION

Understanding the origin of the mass is an important
question in modern physics. Among others, the Higgs
mechanism provides a mechanism to explain the mass
generation of gauge fields, such as the massive gauge bosons
W� and Z0 mediating the weak interaction and massive
photons in superconductivity. One prototype model of this
mechanism is the Abelian Higgs model, where a U(1) gauge
field becomes massive by eating a would-be Nambu-
Goldstone (NG) boson. The mass generation can also be
described in terms of a low-energy effective theory with the
photon and NG boson, called the Stueckelberg theory [1].
However, the Higgs mechanism is not a unique mecha-

nism of the mass generation of gauge fields. In particular, it
has been recently shown that photons can acquire a mass
gap in (3þ 1) dimensions even without the conventional
Higgs mechanism: in the axion electrodynamics in the
presence of background fields, such as a spatially varying
axion field [2,3] or an external magnetic field [4,5], one of
the helicity states of the photons acquires a mass gap, while
the other is gapless with the quadratic dispersion relation.

One can ask for a possible universal description explaining
both the Higgs mechanism and this helicity-dependent
mass generation without the Higgs field.
One such possibility is the mass generation due to a

topological coupling of a one-form gauge field and a
(D − 2)-form gauge field in D-dimensional spacetime [6].
Here, “topological” means that it does not depend on the
metric of the spacetime. Examples in this class of theories
include the BF theory [7–9] with kinetic terms in (3þ 1)
dimensions [10,11], Maxwell-Chern-Simons theory in
(2þ 1) dimensions [12–14], and axion electrodynamics in
(1þ 1) dimensions [15,16]. In particular, the Stueckelberg
theory in D dimensions can be dualized to the one-form
and (D − 2)-form gauge theories with the topological
coupling [6,10].
In this paper, we study the axion electrodynamics with

level k in (3þ 1) dimensions1 with the background fields
above. We argue that the helicity-dependent mass gener-
ation of photons in this theory is related to the topological
mass generation in gapped systems in lower dimensions via
dimensional reduction. What is distinct from the conven-
tional topological mass generation is that this system also
hosts gapless modes; hence, this provides an example of
“topological mass generation in gapless systems.” Since
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1We will refer to the integer appearing in the coefficient of the
axion term as the level k, similar to the case of the BF theory and
Maxwell-Chern-Simons theory.
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this system is gapless, there is no conventional topological
order that can be seen in gapped systems. Nonetheless, we
can show that it exhibits the spontaneous breaking of a
higher-form Zk symmetry similar to the gapped systems
with topological order.2 Moreover, this system also satisfies
the chiral anomaly matching by the gapless modes. In
particular, in the case of the external magnetic field, the
anomaly matching is satisfied by the gapless mode with the
quadratic dispersion relation (in the transverse direction)
that may be understood as the so-called type-B NG mode
associated with the spontaneous breaking of a one-form
symmetry [4] (see also recent discussion [29]).
This paper is organized as follows. In Sec. II, we review

the mass generation mechanisms of gauge fields via
topological couplings in gapped systems, together with
concrete examples, such as the U(1) Abelian Higgs model
in (3þ 1) dimensions, U(1) Maxwell-Chern-Simons theory
in (2þ 1) dimensions, and axion electrodynamics in
(1þ 1) dimensions. We highlight the spontaneous breaking
of higher-form symmetries and its relation to the topologi-
cal order in each of the examples above. In Sec. III, we
study the axion electrodynamics with level k in (3þ 1)
dimensions in background fields. We clarify the relation of
the mass generation mechanism in this gapless system to
those in gapped systems, the spontaneous breaking of a
higher-form Zk symmetry, and how the chiral anomaly
matching is satisfied at low energy. Section IV is devoted to
discussions.
Throughout the paper, aμ denotes a dynamical one-form

gauge field, bμ1…mD−2
a dynamical (D − 2)-form gauge

field, e a dynamical electric field, B an external magnetic
field, and Aμ;Bμν background gauge fields. We use the
“mostly plus” metric signature ημν ¼ diagð−1; 1;…; 1Þ
and define the totally antisymmetric tensor ϵ01…D−1 so
that ϵ01…D−1 ¼ þ1. The D-dimensional element on a D-
dimensional closed subspace, dSμ1���μD , is defined such that it
is antisymmetric with respect to the indices, dSμ1���μD ¼
ϵμ1���μDdSD. We also take the level k to be positive for all the
topological couplings without loss of generality.

II. TOPOLOGICAL MASS GENERATION IN
GAPPED SYSTEMS

In this section, we review the mass generation mecha-
nisms of gauge fields in gapped systems. Although the
discussions and results of this section are already known in
literature, we include them to make this paper self-
contained, as some of them will be used later in Sec. III

as a background. The reader may skip to Sec. III and refer
back when necessary.
As summarized in Table I, the mass generation mecha-

nism in gapped systems can be described by a topological
coupling in arbitrary dimensions [6].

A. U(1) gauge theories with topological couplings

We first consider the mass generation mechanism by the
topological coupling in D-dimensional spacetime [6]. We
introduce a photon described by a U(1) one-form gauge
field aμ, whose gauge transformation law is aμ → aμ þ ∂μλ
with a 2π periodic zero-form gauge parameter λ.
Here, we assume that the mass dimension of aμ is

one. Generically, a p-form is a pth rank antisymmetric
tensor. We normalize aμ by the flux quantization conditionR
S
1
2
fμνdSμν ∈ 2πZ, where fμν ¼ ∂μaν − ∂νaμ is the field

strength of the gauge field, S is a two-dimensional closed
surface without boundaries, and dSμν is the area element
on S.
In D dimensions, one can couple the one-form gauge

field with a U(1) (D − 2)-form gauge field bμ1…μD−2
by

using the totally antisymmetric tensor ϵμ1…μD. We assume
that the mass dimension of bμ1…μD−2

is D − 2. The gauge
transformation of bμ1…μD−2

is given by

bμ1…μD−2
→ bμ1…μD−2

þ
X

σ∈SD−2

sgnðσÞ∂μσð1Þλμσð2Þ…μσðD−2Þ ; ð1Þ

where λμ2…μD−2
is a (D − 3)-form parameter, σ denotes the

permutation of the symmetric group SD−2, and sgnðσÞ ¼
�1 for even and odd σ, respectively. The normalization of
bμ1…μD−2

is
R
ΣD−1

1
ðD−1Þ! hμ1…μD−1

dSμ1���μD−1 ∈ 2πZ, where

hμ1…μD−1
is the field strength

hμ1…μD−1
¼
X

σ∈SD−1

sgnðσÞ∂μσð1Þbμσð2Þ…μσðD−1Þ ; ð2Þ

TABLE I. Mass generation of gauge fields via topological
couplings in various dimensions. The fields aμ, bμ1…μD−2

, bμν, bμ,
and ϕ denote a one-form gauge field, a (D − 2)-form gauge field,
a two-form gauge field, a one-form gauge field, and a scalar field,
respectively. The second column shows the number of massive
degrees of freedom (d.o.f.) of aμ in the presence of the topological
coupling. Note that the number of d.o.f. of massless photons inD
dimensions is D − 2.

Dimensions No. of d.o.f. of aμ Topological coupling

ðD − 1Þ þ 1 D − 1 ϵμ1…μD−2ν1ν2bμ1…μD−2
∂ν1aν2

3þ 1 3 ϵμνρσbμν∂ρaσ
2þ 1 2 ϵμνρbμ∂νaρ
2þ 1 1 ϵμνρaμ∂νaρ
1þ 1 1 ϵμνϕ∂μaν

2Generally, the p-form symmetries are symmetries under
transformations of p-dimensional extended objects [17] (see also
Refs. [18–28]). The symmetry generators are ðD − p − 1Þ-
dimensional topological objects. The symmetry transformations
are generated by the linking of the symmetry generators and the
charged objects.
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ΣD−1 is a (D − 1)-dimensional closed subspace without
boundaries, and dSμ1���μD−1 is the (D − 1)-dimensional
element on ΣD−1.
We start with the following action:

Stop ¼ −
Z

dDx

�
1

8π2v2DðD − 1Þ! jhμ1…μD−1
j2 þ 1

4e2D
jfμνj2

�

þ k
2π

Z
dDx

ϵμ1…μD−2ν1ν2

ðD − 2Þ! · 2! bμ1…μD−2
fν1ν2 ; ð3Þ

where vD is some constant with mass dimension D−2
2

and eD
is a coupling constant with mass dimension 4−D

2
. The first

line describes the kinetic terms of aμ and bμ1…μD−2
, and the

second line is the topological coupling. Note that this
coupling does not depend on the metric of spacetime since
the vector indices are contracted with ϵμ1…μD , and hence, it
is topological.3 The topological term is invariant under the
gauge transformations of aμ and bμ1…μD−2

. The constant k is
restricted as k ∈ Z by the invariance under large gauge
transformations of aμ and bμ1…μD−2

.
Since the topological term is quadratic with the first-

order derivative, it generates the masses of aμ and bμ1…μD−2
.

The equations of motion of aμ and bμ1…μD−2
are

1

e2D
∂νfνμ −

k
2π

ϵν1…νD−2ρμ

ðD − 2Þ! ∂ρbν1…νD−2
¼ 0; ð4Þ

1

4π2v2D
∂ρhρμ1…μD−2 þ k

2π
ϵμ1…μD−2νρ∂νaρ ¼ 0; ð5Þ

respectively. By substituting the former into the latter and
vice versa, we have

ð∂2 − Δ2
DÞfμν ¼ 0; ð∂2 − Δ2

DÞhμ1…μD−2
¼ 0; ð6Þ

where ∂2 ≡ ∂ρ∂ρ and

Δ2
D ¼ ðkeDvDÞ2; ð7Þ

which shows that fμν and hμ1…μD−2
are both massive.

In order to count the physical degrees of freedom, we
locally solve the equations of motion in Eqs. (4) and (5) as

1

e2D
fρμ −

k
2π

ϵν1…νD−2ρμ

ðD− 2Þ! ½bν1…νD−2
− ðD− 2Þ∂ν1 b̄ν2…νD−2

� ¼ 0;

ð8Þ

1

4π2v2D
hρμ1…μD−2 þ k

2π
ϵμ1…μD−2ρσðaσ − ∂σāÞ ¼ 0: ð9Þ

Here, the (D − 3)- and zero-form fields b̄ν2…νD−2
and ā are

possible ambiguities of the solutions, and they can be
absorbed into bμ1…μD−2

and aμ by gauge fixing. Combining
the solutions in Eqs. (8) and (9) with the Bianchi identities
leads to the constraints on the gauge fields,

k
2π

∂ν1bν1…νD−2
¼ 0;

k
2π

∂σaσ ¼ 0; ð10Þ

which provide ðD−1ÞðD−2Þ
2

and 1 constraints, respectively.

Therefore, both aμ and bμ1…μD−2
have D − 1 ¼ DðD−1Þ

2
−

ðD−1ÞðD−2Þ
2

degrees of freedom. Furthermore, bμ1…μD−2
and

aμ are related to each other by the equations of motion, and
the physical degrees of freedom of this system is D − 1.

B. Dual Stueckelberg action

It is known that the action with the topological coupling
in Eq. (3) is dual to the so-called Stueckelberg action [1],

SSt¼−
Z

dDx

�
v2D
2
j∂μχ−kaμj2þ

1

4e2D
jfμνj2

�
; ð11Þ

where χ is a 2π periodic scalar field. The gauge trans-
formation of χ is χ → χ þ kλ with aμ → aμ þ ∂μλ. One can
impose the gauge-fixing condition χ ¼ 0 (unitary gauge)
by using the gauge freedom of aμ. In this gauge, the term
j∂μχ − kaμj2 becomes the mass term of aμ.
The Stueckelberg action describes a massive photon with

(D − 1) polarizations. The equations of motion of aμ and χ
are given by

v2Dkð∂μχ − kaμÞ þ
1

e2D
∂νfνμ ¼ 0; ð12Þ

v2D∂μð∂μχ − kaμÞ ¼ 0; ð13Þ

respectively. Under the gauge condition χ ¼ 0, the equation
of motion of aμ reduces to

ð∂2 − Δ2
DÞaμ ¼ 0; ð14Þ

3More explicitly, this can be seen as follows. As a generic
vector field VμðxÞ transforms under a coordinate transformation
x → x0ðxÞ as VμðxÞ ¼ ∂x0ρ

∂xμ V 0
ρðx0Þ, we have

ϵμ1…μD−2ν1ν2bμ1…μD−2
fν1ν2

¼ ϵμ1…μD−2ν1ν2
∂x0ρ1
∂xμ1 …

∂x0ρD−2

∂xμD−2

∂x0λ1
∂xν1

∂x0λ2
∂xν2 b

0
ρ1…ρD−2

f0λ1λ2

¼ det

�∂x0
∂x
�
ϵρ1…ρD−2λ1λ2b0ρ1…ρD−2

f0λ1λ2 :

Combined with the relation dDx0 ¼ detð∂x0∂xÞdDx, we arrive at

dDxϵμ1…μD−2ν1ν2bμ1…μD−2
fν1ν2 ¼ dDx0ϵρ1…ρD−2λ1λ2b0ρ1…ρD−2

f0λ1λ2 :

Hence, the last term in Eq. (3) is invariant under general
coordinate transformations without the metric.
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with one constraint

kv2D∂μaμ ¼ 0: ð15Þ

The latter corresponds to the constraint in Eq. (10).
These equations show the presence of massive excita-

tions with three polarizations. More explicitly, for the plane
wave ansatz aμ ¼ ϵμðpÞe−iωtþip·x with pμ ¼ ðω; pÞ the D
momentum, we have

ðω2 − p2 − Δ2
DÞϵμðpÞ ¼ 0; ð16Þ

pμϵμðpÞ ¼ 0: ð17Þ

Therefore, it has the mass gap, and one of the polarizations,
ϵ0ðpÞ, vanishes in the rest frame of the massive gauge field.
We now see that the Stueckelberg action is dual to the

action with the topological coupling [6,10]. In other words,
they are (classically) equivalent to each other. To see this,
we introduce the following action:

S0St ¼ −
Z

dDx
�
v2D
2
jwμj2 þ

1

4e2D
jfμνj2

�

þ
Z

dDx
ð−1ÞD−2

2π

ϵμ1…μD−1ν

ðD− 1Þ! hμ1…μD−1
ðwν − ∂νχ − kaνÞ;

ð18Þ

where wμ and hμ1…μD−1
are one- and (D − 1)-form fields,

respectively. Using the equation of motion of hμ1…μD−1
, we

can recover the original action (11). Instead, we can dualize
the action by eliminating χ. First, the equation of motion
of χ is given by ϵμ1…μD−1ν∂νhμ1…μD−1

¼ 0. Then, the
(D − 1)-form field hμ1…μD−1

can be locally expressed by
a (D − 2)-form gauge field bμ1…μD−2

as

hμ1…μD−1
¼
X

σ∈SD−1

sgnðσÞ∂μσð1Þbμσð2Þ…μσðD−1Þ : ð19Þ

The solution is invariant under the gauge transformation
of bμ1…μD−2

,

bμ1…μD−2
→bμ1…μD−2

þ
X

σ∈SD−2

sgnðσÞ∂μσð1Þλμσð2Þ…μσðD−2Þ ; ð20Þ

where λμ2…μD−2
is a (D − 3)-form parameter. Second, the

equation of motion of wμ is

v2Dw
ν ¼ ð−1ÞD−2

2π

ϵμ1…μD−1ν

ðD − 1Þ! hμ1…μD−1
: ð21Þ

Substituting these equations into the action (18), we get the
action with the topological term in Eq. (3).

C. Topological order and spontaneous breaking
of higher-form Zk symmetries

Here, we comment on the fact that the system above with
D ≥ 3 has the so-called topological order [30–32] and that
it exhibits the so-called type-B spontaneous symmetry
breaking (SSB) [33–36] of Zk one- and (D − 2)-form
global symmetries [17].4

In order to see the topological nature of the system, we
consider the low-energy limit, where the kinetic terms of
the one- and (D − 2)-form gauge fields are negligible.
Consequently, the theory can be described by the topo-
logical action

SBF ¼ k
2π

Z
dDx

ϵμ1…μD−2ν1ν2

ðD − 2Þ! · 2! bμ1…μD−2
fν1ν2 : ð22Þ

This is the so-called BF theory [7,37]. In this effective
theory, there is no local observable since the field strengths
of the gauge fields are zero by the equations of motion,
fρσ ¼ 0 and hμ1…μD−1

¼ 0. However, there are nonlocal
observables, i.e., the Wilson loop and the vortex world
volume,

WðCÞ ¼ ei
R
C
aμdxμ ; and

VðΣD−2Þ ¼ e
i
R
ΣD−2

1
ðD−2Þ!bμ1…μD−2dS

μ1 ���μD−2
; ð23Þ

respectively. Here, C is a one-dimensional closed loop,
ΣD−2 is a (D − 2)-dimensional closed subspace without
boundaries, and dSμ1���μD−2 is the (D − 2)-dimensional
element on ΣD−2. Physically, the Wilson loop is a world
line of a probe particle with a unit charge and VðΣD−2Þ
is a world volume of a codimension 2 quantized
magnetic vortex, which is a higher-dimensional generali-
zation of Abrikosov-Nielsen-Olesen vortex in (3þ 1)
dimensions [38,39].
The topological excitations can be seen by the correla-

tion function

hWðCÞVðΣD−2Þi≡N
Z

DaμDbν1…νD−2
WðCÞVðΣD−2ÞeiSBF

¼ e
2πi
k LinkðC;ΣD−2Þ; ð24Þ

where N is a normalization factor such that h1i ¼ 1, and
“LinkðC;ΣD−2Þ” denotes the linking number of C and ΣD−2.
Equation (24) can be derived by integrating out theWilson

loop and the vortex world volume [37,40] (see also recent
Refs. [41,42]). To integrate out the Wilson loop first, we
rewrite the line integral

R
C aμdx

μ by the Stokes theorem as

4Generally, type-A and type-B SSB are characterized by the
conditions that commutation relations of the broken symmetry
generators are zero and nonzero, respectively, whichever for
continuous and discrete symmetries.
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Z
C
aμdxμ ¼

Z
∂SC

aμdxμ ¼
Z
SC

1

2
fμνdSμν: ð25Þ

Here, SC is a two-dimensional surface whose boundary is C,
∂SC ¼ Cwith∂ being the boundaryoperator.We then rewrite
the surface integral

R
SC

1
2
fμνdSμν into the spacetime integral

by using the delta function as

Z
SC

1

2
fμνðyÞdSμνðyÞ¼

Z
dDx

Z
SC

dSμνðyÞ1
2
δDðx−yÞfμνðxÞ

¼
Z

dDx
1

2
fμνðxÞJμνðx;SCÞ; ð26Þ

where Jμνðx;SCÞ is defined by

Jμνðx;SCÞ ¼
Z
SC

δDðx − yÞdSμνðyÞ: ð27Þ

In the following, we abbreviate Jμνðx;SCÞ to JμνðSCÞ.
Using Eqs. (25) and (26), the topological action and the

line integral in Eq. (24) can be written as

SBF þ
Z
C
aμdxμ ¼

k
2π

Z
dDx

1

2!

×

�
1

ðD − 2Þ! ϵ
μ1…μD−2ν1ν2bμ1…μD−2

þ 2π

k
Jν1ν2ðSCÞ

�
fν1ν2 :

ð28Þ

The Wilson loop can now be integrated out by the
redefinition

bμ1…μD−2
→ bμ1…μD−2

þ π

k
ϵμ1…μD−2ν1ν2J

ν1ν2ðSCÞ: ð29Þ

Meanwhile, this redefinition transforms the vortex world
volume in Eq. (24) as

Z
ΣD−2

bμ1…μD−2
dSμ1���μD−2

→
Z
ΣD−2

bμ1…μD−2
dSμ1���μD−2

þ
Z
ΣD−2

π

k
ϵμ1…μD−2ν1ν2J

ν1ν2ðSCÞdSμ1���μD−2 : ð30Þ

The integral of the last term leads to the intersection
number of SC and ΣD−2, which is equal to the linking
number of C and ΣD−2

5:

Z
ΣD−2

1

ðD − 2Þ! · 2! ϵμ1…μD−2ν1ν2J
ν1ν2ðSCÞdSμ1���μD−2

¼ LinkðC;ΣD−2Þ: ð31Þ
Therefore, the correlation function is

hWðCÞVðΣD−2Þi ¼ e
2πi
k LinkðC;ΣD−2ÞhVðΣD−2Þi: ð32Þ

The vortex world volume can be similarly integrated out.
In this procedure, the redefinition of aμ does not give an
additional contribution, since the Wilson loop has been
already integrated out. Therefore, we have

hVðΣD−2Þi ¼ 1; ð33Þ
and we arrive at Eq. (24).
Of course, we can first integrate out the vortex world

volume, then integrate out the Wilson loop. In this case,
we have

hWðCÞVðΣD−2Þi ¼ e
2πi
k LinkðC;ΣD−2ÞhWðCÞi; ð34Þ

and

hWðCÞi ¼ 1: ð35Þ
Therefore, we have the same result as Eq. (24).
The topological feature of the correlation function (24) is

that it depends only on the linking number. This is the
topologically ordered phase [30–32], which can generally
be characterized by the condition that the correlation
function of the spatially and temporally extended topo-
logical objects have a nonzero fractional phase if they are
linked to each other.
The fractional phase due to the linking also leads to the

ground-state degeneracy on a compact spatial manifold. To
see this, it is convenient to switch to the operator formalism.
Let us consider the system on the spacetime with a (D − 1)-
dimensional spatial manifoldMD−1 with nontrivial topology
such that both of the Wilson loop and vortex world volume
can topologically wrap subspaces of MD−1. One of the
simplest choice may be MD−1¼SD−2×S1, where SD−2 and
S1 are a (D − 2)-dimensional sphere and a circle, respectively.
Since VðΣD−2Þ is a topological object, the action ofVðΣD−2Þ
on the ground state jΩi does not change the energy of the
system. Therefore, we can choose the ground state as an
eigenstate of VðΣD−2Þ with the eigenvalue eiθ. Meanwhile,
the Wilson loop WðCÞ does not change the energy of the
system.Thus,wehave anotherground state jΩ0i ¼ WðCÞjΩi.
We can show that jΩ0i and jΩi are orthogonal to each other. In
fact, the inner product hΩjΩ0i can be evaluated as

hΩjΩ0i ¼ hΩjWðCÞjΩi ¼ hΩjV−1ðΣD−2ÞWðCÞVðΣD−2ÞjΩi
¼ e

2πi
k hΩjWðCÞjΩi

¼ e
2πi
k hΩjΩ0i: ð36Þ

5We can relate the linking number to a D-dimensional Gauss
linking number by the relation of the delta function and Green’s
function [40].
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and so hΩjΩ0i ¼ 0 for k ≥ 2. Here, we used Eq. (34), which,
in the operator formalism, leads to the equal-time commu-
tation relation

V−1ðΣD−2ÞWðCÞVðΣD−2Þ ¼ e
2πi
k WðCÞ; ð37Þ

ifΣD−2 andC has intersection number onMD−1. SinceWðCÞn
(n ¼ 0;…; k − 1) leads to a different phase, there are k
degenerate ground states.
In the viewpoint of global symmetries, the correlation

function (24) shows that there are spontaneously brokenZk
one- and (D − 2)-form global symmetries for k ≥ 2, and the
symmetry breaking pattern is classified as type B. To see
this, recall that charged objects under the one- and (D − 2)-
form symmetries are WðCÞ and VðΣD−2Þ, respectively. The
relations (34) and (32) mean that the symmetry generators
of the one- and (D − 2)-form symmetries are VðΣD−2Þ and
WðCÞ, respectively. Both of these symmetry transforma-
tions are parametrized by the discrete group Zk, since
hWðCÞkVðΣD−2Þi ¼ 1 and hWðCÞVðΣD−2Þki ¼ 1. Then,
the nonzero vacuum expectation values (VEVs) in
Eqs. (35) and (33) show that the Zk one- and (D − 2)-
form symmetries are spontaneously broken. In addition, the
correlation function (24) shows that the symmetry breaking
pattern is type B, where broken symmetry generators are
also charged objects.
It should be remarked that, for the existence of the

topologically ordered phase, the condition that the system
has a mass gap is essential. If the system is gapless, an
infinitesimal deformation of the Wilson loop or vortex
world volume gives rise to excited states of the one-form
or (D − 2)-form gauge field even in the low-energy limit.
In this case, the states WðCÞjΩi and VðΣD−2ÞjΩi cannot
be ground states. Then, there is no ground-state degen-
eracy even if the system is put on a topologically
nontrivial spatial manifold, and there is no topological
order. In Sec. III, we will consider a gapless system with
the type-B SSB, which may not be a topologically
ordered phase.

D. Examples

Let us now review concrete examples of the mass
generation mechanism above.

1. U(1) Abelian Higgs model in (3 + 1) dimensions

The first example is the U(1) Abelian Higgs model in
(3þ 1) dimensions. In the dual theory of the Abelian Higgs
model, the mass of the gauge field is generated by a
topological coupling with a two-form gauge field [11,43].
We consider a Higgs field Φ in a U(1) gauge theory. The

U(1) charge of Φ is k, Φ → eikλΦ with aμ → aν þ ∂μλ,
where aμ and λ are a U(1) one-form gauge field and a zero-
form gauge parameter, respectively. We introduce the action

SAH¼−
Z

d4x

�
v2

2
j∂μΦ− ikaμΦj2þVðjΦjÞþ 1

4e2
jfμνj2

�
;

ð38Þ

where VðjΦjÞ is a potential of the Higgs field such that the
Higgs field develops a nonzero VEV hΦi ¼ vffiffi

2
p .

Well below the mass of the radial excitation of the Higgs
field, the low-energy effective action of this theory can be
written by the Stueckelberg action

SAH;eff ¼ −
Z

d4x

�
v2

2
j∂μχ − kaμj2 þ

1

4e2
jfμνj2

�
: ð39Þ

In (3þ 1) dimensions, the Stueckelberg action describes a
massive photon with three polarizations.
One can dualize the effective action (39) to a two-form

gauge theory. By the same procedure explained in Sec. II B,
we arrive at the following action with a topological
coupling of the one- and two-form gauge fields:

SAH;dual ¼
Z

d4x
�
−

1

8π2v2 · 3!
jhμνρj2 −

1

4e2
jfμνj2

þ k
8π

ϵμνρσbμνfρσ

�
; ð40Þ

where bμν is the two-form gauge field and hμνρ ¼ ∂μbνρ þ
∂νbρμ þ ∂ρbμν is the field strength. The topological term
give rises to the masses of aμ and bμν.
The phase of the Abelian Higgs theory can be classified

by the type-B SSB of Zk one- and two-form symmetries.
Here, the charged objects under the one- and two-form
symmetries are the Wilson loop of a probe particle WðCÞ
and the world surface of a quantized magnetic vortex string
VðSÞ, with a two-dimensional closed world surface S. This
is the Abrikosov-Nielsen-Olesen vortex string [38,39]. The
generators of the one- and two-form symmetries are VðSÞ
and WðCÞ, respectively. Explicitly, the correlation function
of WðCÞ and VðSÞ is evaluated by the BF theory as

hWðCÞVðSÞi ¼ e
2πi
k LinkðC;SÞhVðSÞi

¼ e
2πi
k LinkðC;SÞhWðCÞi

¼ e
2πi
k LinkðC;SÞ: ð41Þ

The first line means that WðCÞ and VðSÞ are the symmetry
generator and the charged object under the Zk two-form
symmetry, respectively. The second line means that VðSÞ
and WðCÞ are the symmetry generator and the charged
object under the Zk one-form symmetry, respectively. The
third line shows that both of the Zk one- and two-form
symmetries are broken spontaneously, and the correlation
functions of the broken symmetry generators is finite; thus,
this can be classified as the type-B SSB. The Higgs phase is

NAOKI YAMAMOTO and RYO YOKOKURA PHYS. REV. D 104, 025010 (2021)

025010-6



further classified as a topologically ordered phase [32],
since both of the extended charged objects obey the
nontrivial braiding statistics.

2. Topological coupling with two one-form gauge fields

We then consider the (2þ 1)-dimensional version of the
action (3). The action is given by

S3D ¼ −
Z

d3x

�
1

4e23D
jfμνj2 þ

1

16π2v23D
jhμνj2

−
k
2π

ϵμνρbμ∂νaρ

�
; ð42Þ

where e3D is a coupling constant with mass dimension 1=2
and v3D is a constant with mass dimension −1=2. The
action gives one massive photon with two polarizations.
This theory is characterized by the type-B SSB of twoZk

one-form global symmetries. The charged objects are

Wilson loops ei
R
C
aμdxμ and ei

R
C
bμdxμ . Again, the correlation

function is

hei
R
C
aμdxμei

R
C0 bμdx

μi ¼ e
2πi
k LinkðC;C0Þhei

R
C0 bμdx

μi
¼ e

2πi
k LinkðC;C0Þhei

R
C
aμdxμi

¼ e
2πi
k LinkðC;C0Þ: ð43Þ

These relations show that the generators of the two Zk

one-form symmetries are ei
R
C
aμdxμ and ei

R
C0 bμdx

μ

, and the

charged objects are ei
R
C0 bμdx

μ

and ei
R
C
aμdxμ , respectively.

Furthermore, both of them exhibit the type-B SSB, and
so it is a topologically ordered phase. Note that this action
is dual to the (2þ 1)-dimensional Stueckelberg action

S3D;St ¼ −
Z

d3x

�
v23D
2

j∂μχ − kaμj2 þ
1

4e23D
jfμνj2

�
; ð44Þ

which is the low-energy effective theory of the (2þ 1)-
dimensional Abelian Higgs model.

3. U(1) Maxwell-Chern-Simons theory in
(2+ 1) dimensions

In the above discussion, we have introduced two
independent one-form gauge fields. However, one can
introduce a topological term by using a single one-form
gauge field in (2þ 1) dimensions, called the Chern-Simons
term. This is a specific feature of the (2þ 1)-dimensional
theory.
Consider the Maxwell-Chern-Simons action

SMCS ¼
Z

d3x

�
−

1

4e23D
jfμνj2 þ

k
4π

ϵμνρaμ∂νaρ

�
: ð45Þ

The equation of motion of aμ is

1

e23D
∂νfνμ þ

k
2π

ϵμνρ∂νaρ ¼ 0: ð46Þ

From an argument similar to the one used in Sec. II A, the
Chern-Simons term generates the mass of the photon
as [12–14]

ð∂2 − Δ2
3DÞfμν ¼ 0; Δ2

3D ¼
�
ke23D
2π

�
2

: ð47Þ

By using the plane wave ansatz with Eq. (46), we can show
that there is one massive degree of freedom in this theory.
In the low-energy limit, the Maxwell-Chern-Simons

theory reduces to the Chern-Simons theory

SCS ¼
k
4π

Z
d3xϵμνρaμ∂νaρ: ð48Þ

The observable of the theory is the Wilson loop

WðCÞ ¼ ei
R
C
aμdxμ . The correlation function of two

Wilson loops has a nonzero fractional phase if they are
linked to each other,

hWðCÞWðC0Þi ¼ e
2πi
k LinkðC;C0ÞhWðC0Þi ¼ e

2πi
k LinkðC;C0Þ: ð49Þ

Therefore, this theory is again in a topologically ordered
phase, characterized by the type-B SSB of Zk one-form
symmetry. In the present case, in particular, the generator of
the one-form symmetry is the charged object itself.

4. Axion electrodynamics in (1 + 1) dimensions

The final example is an axion-photon system in (1þ 1)
dimensions, which we will call the axion electrodynamics
in (1þ 1) dimensions in this paper. The higher-form
symmetries in this system were studied in the context of
its fermionic version, the charge-k Schwinger model, in
Refs. [44,45] (see also Ref. [46]). In (1þ 1) dimensions, a
massless photon has no on-shell dynamical degrees of
freedom. However, the photon can have a dynamical degree
of freedom if it becomes massive, e.g., by a topological
coupling with a scalar field [15,16].
We introduce the following action:

S2D ¼
Z

d2x

�
−

1

4e22D
jfμνj2 −

v22D
2

j∂μϕj2 þ
k
2π

ϵμνaμ∂νϕ

þ 1

2e22D
∂μðaνfμνÞ

�
; ð50Þ

where ϕ is a 2π periodic scalar field, which is the (1þ 1)-
dimensional version of (D − 2)-form, e2D is a coupling
constant, and v2D is some constant. The third term
k
2π ϵ

μνaμ∂νϕ is a topological coupling between the photon
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and the scalar field. The last term is a boundary term for the
kinetic term of the photon, which is needed to have a
consistent energy momentum tensor with the equation of
motion of aμ [47–53], but it will be irrelevant to the
following discussion.
The equations of motion of aμ and ϕ are

1

e22D
∂νfνμ þ

k
2π

ϵμν∂νϕ ¼ 0;

v22D∂μ∂μϕþ k
2π

ϵμν∂μaν ¼ 0; ð51Þ

which can be rewritten as

ð∂2 − Δ2
2DÞfμν ¼ 0; ð∂2 − Δ2

2DÞ∂νϕ ¼ 0; ð52Þ

respectively, where

Δ2
2D ¼

�
ke2D
2πv2D

�
2

: ð53Þ

The Bianchi identity with the local solutions of Eq. (51)
after gauge fixing,

fμν ¼ e22Dk
2π

ϵμνϕ; ∂μϕ ¼ −
v22Dk
2π

ϵμνaν; ð54Þ

leads to

k
2π

∂νaν ¼ 0: ð55Þ

Note that the solution of the equation of motion of aμ does
not lead to any constraint on ϕ. Therefore, the physical
degrees of freedom is one, since ϕ is constrained by fμν

in Eq. (51).
The low-energy limit is again described by the topo-

logical coupling

S2D;top ¼
k
2π

Z
d2xϵμνaμ∂νϕ: ð56Þ

The observables are the Wilson loop WðCÞ ¼ ei
R
C
a and a

two-point object IðP;P0Þ ¼ eiϕðPÞ−iϕðP0Þ. Of course, a one-
point object can also be an observable. However, it is
convenient to use this two-point object, since it can
measure the difference of the values of ϕ separated by
the Wilson loop.
The correlation function is

hWðCÞIðP;P0Þi ¼ e
2πi
k LinkðC;ðP;P0ÞÞ; ð57Þ

where the linking of the loop C and the two points ðP;P0Þ
denotes the configuration where the point P intersects with
C when P is continuously moved to P0. The phase of this

system is classified by the type-B SSB of the Zk one- and
zero-form symmetries [17,19–21,54,55].

III. TOPOLOGICAL MASS GENERATION IN
GAPLESS SYSTEMS

From now on, we consider the topological mass gener-
ation in gapless systems. As such an example, we focus on
the axion electrodynamics with level k in (3þ 1) dimensions
in a background magnetic field [4,5] or a spatially varying
axion field [2,3]. In these backgrounds, there appear a
gapped mode and a gapless mode with the quadratic
dispersion relation ω ∼ p2 depending on the helicity states.
It has also been argued that the latter gapless mode may be
understood as the type-B NG mode associated with the
spontaneous breaking of a one-form symmetry [4]. We here
argue that the helicity-dependent mass generation can be
explained from a topological viewpoint.
The action is given by

SEM;ϕ½ϕ; a� ¼
Z

d4x

�
−

1

4e2
jfμνj2 −

v2

2
j∂μϕj2

þ k
16π2

ϕfμνf̃
μν

�
; ð58Þ

where ϕ is a 2π periodic pseudoscalar field and
f̃μν ≡ 1

2
ϵμνρσfρσ. The constant k is again restricted as

k ∈ Z owing to the invariance under the large gauge
transformation of aμ and the periodicity ϕ → ϕþ 2π.
The last term k

16π2
ϕfμνf̃

μν is the topological term that does
not depend on the metric of spacetime. Unlike the previous
examples in gapped systems, this is a cubic interaction term
and it does not directly contribute to the dispersion relations
of excitations in the system. However, it becomes quadratic
in dynamical fields in the presence of a background
magnetic field (e.g., hf12i ≠ 0) or a spatially varying axion
field (e.g., h∂3ϕi ≠ 0), which can modify their dispersion
relations. We note in passing that the same type of action
appears in QCD coupled to QED at low energy, where the
role of ϕ is played by charge neutral pion π0 and jkj ¼ 1.
Without the topological term, this system would have a

shift symmetry ϕ → ϕþ c with c being a constant. The
Noether current associated with this symmetry is jμ5 ¼
−2v2∂μϕ that satisfies ∂μj

μ
5 ¼ 0. Here, we chose the

normalization of jμ5 such that, when jkj ¼ 1, it matches
that of the axial current carried by pions in the case of QCD.
However, this shift symmetry is broken by the presence of
the topological term, and consequently, the conservation
law is modified to

∂μj
μ
5 ¼

k
8π2

fμνf̃
μν: ð59Þ

This can be regarded as the chiral anomaly of this
system.
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In the following, we will clarify the mechanism of the
helicity-dependent mass generation and the properties of
this system in detail.

A. Mass generation and gapless modes

1. Background magnetic field

First, we consider the system with a homogeneous
background magnetic field, hf12i ¼ Bz > 0. The equation
of motion of ϕ, f03 ¼ −ez and f̃12 ¼ ϵ1203f03 ¼ −ez at the
linearized level read

v2∂μ∂μϕ −
kBz

4π2
ez ¼ 0; ð60Þ

−
1

e2
∂μ∂μez þ

kBz

4π2
ð−∂2

t þ ∂2
zÞϕ ¼ 0: ð61Þ

The equations of motion in momentum space can be
summarized in the matrix form

 
v2ðω2 − p2Þ − kBz

4π2

− kBz

4π2
ðω2 − p2

zÞ 1
e2 ðω2 − p2Þ

!�
ϕ

ez

�
¼ 0; ð62Þ

where pμ ¼ ðω; pÞ ¼ ðω; px; py; pzÞ.
One can show that there are one gapless mode with

the quadratic dispersion (in the transverse direction with
respect to Bz) and one gapped mode,6

ω2
gapless ¼ p2

z þ
1

Δ2
B
p4⊥ þOðp6Þ;

ω2
gapped ¼ Δ2

B þ 2p2⊥ þ p2
z þOðp4Þ; ð63Þ

where p⊥ ¼ ðpx; py; 0Þ and

Δ2
B ¼

�
keBz

4π2v

�
2

: ð64Þ

The corresponding eigenvectors are

�
ϕ

ez

�
∝

 ΔB
ev þOðp2Þ

p4⊥
Δ2

B
− p2⊥ þOðp6Þ

!
;

�
ϕ

ez

�
∝

 
ΔB
ev þOðp2Þ

Δ2
B þ p2⊥ þOðp4Þ

!
; ð65Þ

for the gapless and gapped modes, respectively. The
gapless mode with the quadratic dispersion in the trans-
verse direction in Eq. (63) can be understood as the type-B
NG mode associated with the spontaneous breaking of the
one-form symmetry [4].
We now show that the gapped mode in Eq. (65) is related

to the gapped mode in the axion electrodynamics in (1þ 1)
dimensions in Sec. II D 4 via dimensional reduction.
A simple way to see this is that the topological term
ϵμν12ϕfμνhf12i in the present theory in the external mag-
netic field has the same structure as the topological term
ϵμνϕfμν in the axion electrodynamics in (1þ 1) dimen-
sions. To be more concrete, consider the gapped mode in z
direction by setting pμ ¼ ðω; 0; 0; pzÞ. Then, the eigenstate
along the z direction, ez ¼ e2kBz

4π2
ϕ, has the same structure as

Eq. (54) but with the additional factor Bz
2π. This factor, as

well as the ratio between the mass gaps of the two theories,

ΔB

Δ2D
¼ Bz

2π
; ð66Þ

can simply be understood as the Landau degeneracy in the
transverse direction with respect to Bz.
In this way, the mass generation in the axion electro-

dynamics with the external magnetic field in (3þ 1)
dimensions is related to the one in the axion electrody-
namics in (1þ 1) dimensions. As photons have only one
physical degree of freedom in the latter, this argument
explains that only one of the two helicity states acquires the
mass gap in the former, and hence, this is a helicity-
dependent mass generation.

2. Spatially varying axion background

We can similarly discuss the mass generation of photons
in the spatially varying axion background field where
h∂iϕi ≠ 0. In this background, the equation of motion of
aμ is

1

e2
∂μfμν −

k
4π2

ϵiνρσ

2
h∂iϕifρσ ¼ 0: ð67Þ

In the following, we assume that the variation of the axion
field is positive and homogeneous along the z direction,
h∂zϕi > 0. In this case, there is a gapped mode of a
linear combination of ex and ey propagating in the z
direction [2,3].
The equations of motion of ex and ey in momentum

space are summarized as

 
1
e2ð−ω2þp2

yþp2
zÞ − 1

e2pxpyþ ik
4π2

h∂zϕiω
− 1

e2pxpy− ik
4π2

h∂zϕiω 1
e2ð−ω2þp2

xþp2
zÞ

!�
ex
ey

�
¼0:

ð68Þ

6The longitudinal component of the dispersion relation for the
gapless mode ω2

gapless;k ¼ p2
z is due to the anomalous charge

n ¼ − kBz

4π2
∂zϕ in the presence of the background magnetic field.

When one further introduces a background charge such that the
local charge neutrality condition is satisfied, then this contribu-
tion would vanish [4,5].
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The dispersion relations can be found as

ω2
gapless ¼

1

Δ2
ϕ

p2p2
z þOðp6Þ;

ω2
gapped ¼ Δ2

ϕ þ p2⊥ þ 2p2
z þOðp4Þ; ð69Þ

where

Δ2
ϕ ¼

�
ke2

4π2
h∂zϕi

�
2

: ð70Þ

The corresponding eigenvectors are

�
ex
ey

�
∝
� pxpy − ijpjjpzj þOðp4Þ
p2
y þ p2

z − 1
Δ2

ϕ
p2p2

z þOðp6Þ
�
;

�
ex
ey

�
∝

 
pxpy − i

�
Δ2

ϕ þ p2⊥þ2p2
z

2

�
þOðp4Þ

−ðΔ2
ϕ þ p2

x þ p2
zÞ þOðp4Þ

!
ð71Þ

for the gapless and gapped modes, respectively.
This gapped mode is related to the one in the Maxwell-

Chern-Simons theory in (2þ 1) dimensions in Sec. II D 3.
One can see that the topological coupling k

4π2
ϵ3νρσh∂zϕi has

the same structure as the topological coupling k
2π ϵ

νρσ in
the Maxwell-Chern-Simons theory. For the gapped mode,
e.g., along the y direction with the momentum pμ ¼
ðω; 0; py; 0Þ, Eq. (71) becomes

Δϕex ¼ iωgappedey: ð72Þ

This takes the same form as Eq. (46) with μ ¼ y and px ¼ 0

up to the factor − h∂zϕi
2π . This factor is reflected in the

difference of the gaps between the two theories,

Δϕ

Δ3D
¼ h∂zϕi

2π
: ð73Þ

As photons have only one physical degree of freedom in
the Maxwell-Chern-Simons theory in (2þ 1) dimensions,
this argument also explains that only one helicity state of
photons acquires the mass gap in the system with the
spatially varying axion field in (3þ 1) dimensions.

B. Spontaneous breaking of higher-formZk symmetries

Here, we discuss higher-form symmetries and their
breaking of this theory in the presence of the background
magnetic field or the spatially varying axion field.

1. Higher-form symmetries without background fields

We first review that the theory has Zk zero- and one-
form symmetries as well as U(1) one- and two-form

symmetries [56]. For simplicity, we first consider the
case without background fields and we will discuss the
case with background fields later in Sec. III B 3. By using
the equations of motion of ϕ and aμ derived from the
action (58), we can show that there are conserved currents
of electric zero- and one-form symmetries,

jμEϕ ¼ −v2∂μϕ −
k

16π2
ϵμνρσaνfρσ;

jμνEa ¼ −
1

e2
fμν þ k

8π2
ϵμνρσϕfρσ: ð74Þ

In addition, the Bianchi identities for ϕ and aμ give the
following conserved currents of magnetic two- and one-
form symmetries:

jμνρMϕ ¼ 1

2π
ϵμνρσ∂σϕ; jμνMa ¼

1

2π
ϵμνρσ∂ρaσ; ð75Þ

respectively. Note that the normalizations of the currents
are determined by the flux quantization conditions. We can
construct topological objects from these currents,

UEϕðeiαEϕ ;VÞ ¼ e−iαEϕ
R
V

ϵμνρσ
3!

jμEϕdS
νρσ

; ð76Þ

UEaðeiαEa ;SÞ ¼ e−iαEa
R
S

ϵμνρσ
2!2!

jμνEadS
ρσ

; ð77Þ

UMϕðeiαMϕ ; CÞ ¼ e−iαMϕ

R
C

ϵμνρσ
3!

jμνρMϕdx
σ

; ð78Þ

UMaðeiαMa ;SÞ ¼ e−iαMa

R
S

ϵμνρσ
2!2!

jμνMadS
ρσ

; ð79Þ

where eiαEϕ ; eiαEa ; eiαMϕ ; eiαMa ∈ Uð1Þ parametrize the sym-
metry generators and V is a three-dimensional closed
subspace without boundaries. They are topological since
they are invariant under small deformations of V, S, and C
by the equations of motion or Bianchi identities. We put
the minus signs in the prefactors of Eqs. (76)–(79) for
convenience.
However, UEϕ and UEa are not physical observables for

generic αEϕ and αEa due to the large gauge transformation of
aμ and the 2π periodicity of ϕ. The invariance under the large
gauge transformation and the periodicity requires that the
parameters eiαEϕ and eiαEa are constrained as eiαEϕ ; eiαEa ∈ Zk.
Note that this argument is similar to the quantization of the
Chern-Simons level in (2þ 1) dimensions [57]. Therefore,
the symmetry groups of UEϕ and UEa are Zk, while the
symmetry groups of UMϕ and UMa are U(1).
Let us explain the detail. For UEϕ, the relevant term is

e−ik
αEϕ

8π2

R
V
aν∂ρaσdSνρσ , which is subject to the large gauge

transformation. In order to make the integrand manifestly
gauge invariant, we introduce a four-dimensional space X4

whose boundary is V, ∂X4 ¼ V, to write
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e−ik
αEϕ

8π2

R
V
aν∂ρaσdSνρσ ¼ e

−ik
αEϕ

16π2

R
X4

d4xfμνf̃
μν

: ð80Þ

We require that the term should not depend on the choice of
the four-dimensional space. This requirement leads to the
constraint on the parameter eiαEϕ. By choosing a four-
dimensional space X0

4 different from X4, such that
∂X0

4 ¼ V, we have

e−ik
αEϕ

8π2

R
V
aν∂ρaσdSνρσ ¼ e

−ik
αEϕ

16π2

R
X4

d4xfμνf̃
μν

¼ e
−ik

αEϕ

16π2

R
X0
4

d4xfμνf̃
μν

:

ð81Þ
Therefore, the integral is independent of the choice of the
redundant space if the following condition is satisfied:

e
−ik

αEϕ

16π2

R
Y4

d4xfμνf̃
μν

¼ 1; ð82Þ
where Y4 ¼ X4 − X0

4 is a four-dimensional manifold that
has no boundary, ∂Y4 ¼ ∂X4 − ∂X0

4 ¼ 0, but it can gen-
erally have cycles which can be wrapped by the field
strength fμν. Since

R
Y4
d4xfμνf̃

μν ∈ 16π2Z by the flux
quantization condition, the parameter αEϕ is constrained
as eiαEϕ ∈ Zk in order to satisfy the condition (82).

For UEa, the relevant term is e
ikαEa
8π2

R
S
ϕfμνdSμν , which

changes under the transformation ϕ → ϕþ 2π as

e
ikαEa
8π2

R
S
ϕfμνdSμν → e

ikαEa
4π

R
S
fμνdSμνe

ikαEa
8π2

R
S
ϕfμνdSμν : ð83Þ

To make it invariant under this transformation, we require

e
ikαEa
4π

R
S
fμνdSμν ¼ 1; ð84Þ

which constrains the parameter αEa as eiαEa ∈ Zk by the
flux quantization condition 1

2!

R
S fμνdS

μν ∈ 2πZ.

2. Symmetry transformations

Next, we consider the charged objects that transform
under the extended topological objects:

(i) For the electric Zk zero-form symmetry generated
by UEϕ, the charged object is a particle at a point P
in the spacetime,

IðqEϕ;PÞ ¼ eiqEϕϕðPÞ; ð85Þ
where qEϕ ∈ Z is the charge of the particle. The
transformation law is given by the correlation
function

hUEϕðeiαEϕ ;VÞIðqEϕ;PÞi¼eiαEϕqEϕLinkðV;PÞhIðqEϕ;PÞi:
ð86Þ

The derivation of this relation will be given at
the end of Sec. III B 2. Since eiαEϕ ∈ Zk and
qEϕLinkðV; PÞ ∈ Z, we have eiαEϕqEϕLinkðV;PÞ ∈ Zk.

(ii) For the electric Zk one-form symmetry generated
by UEa, the charged object is the Wilson loop

WðqEa; CÞ ¼ eiqEa
R
C
aμdxμ . The symmetry transfor-

mation is given by

hUEaðeiαEa ;SÞWðqEa; CÞi
¼ eiαEaqEaLinkðS;CÞhWðqEa; CÞi: ð87Þ

(iii) For the magnetic U(1) two-form symmetry gener-
ated by UMϕ, the charged object is a vortex world
surface VðqMϕ;SÞ, which can be characterized by
the winding number around a loop C,Z

C
∂μϕdxμ ¼ 2πqMϕLinkðC; SÞ: ð88Þ

The symmetry transformation is

hUMϕðeiαMϕ ; CÞVðqMϕ;SÞi
¼ eiαMϕqMϕLinkðC;SÞhVðqMϕ;SÞi: ð89Þ

(iv) For the magnetic U(1) one-form symmetry gener-
ated by UMa, the charged object is the ’t Hooft loop,
i.e., a monopole world line TðqMa; CÞ, which can be
characterized by the presence of the magnetic flux
through a closed surface S (e.g, a sphere S2),

1

2

Z
S
fμνðxÞdSμν ¼ 2πqMaLinkðS; CÞ: ð90Þ

The symmetry transformation is

hUMaðeiαMa ; CÞTðqMa; CÞi
¼ eiαMaqMaLinkðS;CÞhTðqMa; CÞi: ð91Þ

Let us derive Eq. (86) as an example. The key relation is
the following:

SEM;ϕ½ϕ; a� − αEϕ

Z
d4xjμEϕJμðVÞ

¼ SEM;ϕ½ϕ − αEϕJðΩVÞ; a� ð92Þ

up to the trivial divergence that can be regularized by
adding a local counterterm. Here, ΩV is a four-dimensional
subspace whose boundary is V, ∂ΩV ¼ V, and the symbols
JμðVÞ and JðΩVÞ are abbreviations of Jμðx;VÞ and
Jðx;ΩVÞ, which are defined by

Jμðx;VÞ ¼
ϵμνρσ
3!

Z
V
δ4ðx − yÞdSνρσðyÞ ð93Þ

and
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Jðx;ΩVÞ ¼
Z
ΩV

d4yδ4ðx − yÞ; ð94Þ

respectively. As in the case of JμνðSCÞ in Eq. (27), they are
introduced such that

1

3!

Z
V
ϵμνρσj

μ
EϕdS

νρσ ¼
Z

d4xjμEϕJμðVÞ;Z
ΩV

d4x∂μj
μ
Eϕ ¼

Z
d4xJðΩVÞ∂μj

μ
Eϕ: ð95Þ

In particular, JðΩVÞ satisfies

∂μJðΩVÞ ¼ JμðVÞ: ð96Þ

Now, the left-hand side of Eq. (86) can be evaluated
by the redefinition ϕðxÞ − αEϕJðΩVÞ → ϕðxÞ on the right-
hand side of Eq. (92) as

hUEϕðeiαEϕ ;VÞIðqEϕ;PÞi ¼ eiαEϕqEϕJðP;ΩVÞhIðqEϕ;PÞi:
ð97Þ

Since JðP;ΩVÞ ∈ Z is the intersection number of P and
ΩV , it counts the linking number LinkðV; PÞ. Therefore, we
obtain the relation (86).

3. Higher-form symmetries with background fields

We can describe the external magnetic field and
spatially varying axion field in terms of background
gauge fields coupled to the symmetry generators of
the electric zero- and one-form symmetries. For this
purpose, we introduce one- and two-form gauge fields Aμ

and Bμν. At the linear order of Aμ and Bμν, we can gauge
the action (58) by adding the coupling terms

R
d4xjμEϕAμ

and 1
2

R
d4xjμνEaBμν. However, the invariance under the

large gauge transformation of aμ and the periodicity
ϕ → ϕþ 2π requires that the background gauge fields
should be flat connections satisfying

kAμ ¼ ∂μĀ and kBμν ¼ ∂μB̄ν − ∂νB̄μ; ð98Þ

respectively. Here, Ā and B̄μ are zero- and one-form gauge
fields that are normalized by the flux quantization con-
ditions,

R
C ∂μĀdxμ ∈ 2πZ and

R
S ∂μB̄νdSμν ∈ 2πZ. The

couplings of the currents to the background gauge fields
are invariant under the gauge transformations

Aμ → Aμ þ ∂μΛ; Ā → Āþ kΛ; ð99Þ

and

Bμν → Bμν þ ∂μΛν − ∂νΛμ; B̄μ → B̄μ þ kΛμ: ð100Þ

Here, Λ and Λμ are zero- and one-form gauge parameters
normalized as

R
C ∂μΛdxμ ∈ 2πZ and

R
S ∂μΛνdSμν ∈ 2πZ,

respectively.
Now, let us specify the background gauge field that

describes the spatially varying axion field or external
magnetic field. For the spatially varying axion field, we
choose Aμ ¼ δzμh∂zϕðzÞi. This choice corresponds to
Ā ¼ khϕðzÞi satisfying RC ∂μĀdxμ ¼ 0. The coupling termR
d4xjμEϕAμ leads to the desired coupling

k
8π2

Z
d4xϵ3μνρh∂zϕðzÞiaμ∂νaρ: ð101Þ

Similarly, the external magnetic field can be realized by
choosing Bμν¼ðδxμδyν−δyμδxνÞBz with B̄ν¼ 1

2
kðxδyν−yδxνÞBz

satisfying
R
S ∂μB̄νdSμν ¼ 0. The coupling term

1
2

R
d4xjμνEaBμν yields

k
4π2

Z
d4xϕf03Bz: ð102Þ

We can also couple the system to Aμ and Bμν at the
nonlinear order. These couplings can be added by the
replacements ∂μϕ → ∂μϕ −Aμ and fμν → fμν − Bμν in
Eq. (58), respectively. The dynamical fields transform
under the gauge transformations in Eqs. (99) and (100) as

ϕ → ϕþ Λ; ð103Þ

and

aμ → aμ þ Λμ; ð104Þ

respectively.7 The spatially varying axion field and external
magnetic field can also be realized by the above choices.
In the gauged action, the magnetic one- and two-form

symmetries can be explicitly broken, in general. The gauge
invariance under Eqs. (99), (100), (103), and (104) requires
the symmetry generators should be deformed as

e
iαMa
4π

R
S
ðfμν−BμνÞdSμν for the magnetic one-form symmetry and

e
iαMϕ
2π

R
C
ð∂μϕ−AμÞdxμ for the magnetic two-form symmetry.

However, the presence of the background fields may violate
the 2π periodicity of the parameters αMa and αMϕ by
fractional phases due to the relations 1

2

R
S BμνdSμν ∈ 2π

k Z
and

R
C Aμdxμ ∈ 2π

k Z. In the case of the spatially varying
axion field or the external magnetic field, these symmetries
are preserved since the background fields do not lead to
fractional phases.

7Technically, the nonlinear gauging of the electric one-form
symmetry violates the periodicity ϕ → ϕþ 2π, and we should
gauge the two-form symmetry simultaneously [58]. However,
such a violation is absent if we focus on the external magnetic
field or the spatially varying axion field discussed in this paper.
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4. Higher-form symmetry breaking

Here, we explain the higher-form symmetry breaking in
the presence of the external fields. In this system, the Zk
zero- and one-form symmetries and U(1) one-form sym-
metry can be spontaneously broken.8

We are interested in the breaking of the electric one-form
symmetry characterized by a nonzero VEV of the Wilson
loop. Consider a pair of static charges with opposite signs.
We assume that the distance of the charges is R and they are
created at t ¼ 0 and annihilated at t ¼ T. Under this
assumption, the VEV of the Wilson loop is

hWðqEa; CÞi ¼ e−TVðRÞ; ð105Þ

where VðRÞ is the potential energy. To evaluate VðRÞ, we
consider the propagator of the gapless modes in the static
limit ω ¼ 0.
Let us first consider the case with the background

magnetic field. To see whether the symmetry breaking
occurs, we look at the kinetic term of ϕ and aμ,

Lkin ¼
1

2

�
vϕ 1

e a
μ

�
D
�

vϕ
1
e a

μ

�
: ð106Þ

Here, the matrixD in momentum space, which corresponds
to the inverse propagator, is given by

DðpÞ ¼
 

−p2 i ΔB
2Bz

ϵνρστhfστipρ

−i ΔB
2Bz

ϵμρστhfστipρ −ημνp2

!

≡
�−p2 b†

b −ημνp2

�
; ð107Þ

where b ¼ ðiΔBpz; 0; 0;−iΔBωÞT and we used the
Feynman gauge. As we are interested in the static
Wilson loop in the infrared (IR) regime, we consider the
propagator at ω ¼ 0,

D−1ðpÞ ¼ 1

p4 þ Δ2
Bp

2
z

0
BBB@

−p2 −iΔBpz 0T

iΔBpz p2 0T

0 0 −δij
p4þΔ2

Bp
2
z

p2

1
CCCA:

ð108Þ

The nontrivial eigenvalues of the matrix due to Bz

are �ðp4 þ Δ2
Bp

2
zÞ−1=2. Among them, the eigenvalue

ðp4 þ Δ2
Bp

2
zÞ−1=2 corresponds to an unphysical mode and

we discard it.9

The potential VðxÞ due to this mode in the IR limit is
given by the inverse Fourier transformation of the propa-
gator at ω ¼ 0,

lim
jxj→∞

VðxÞ ∝ lim
jxj→∞

Z
d3p
ð2πÞ3

1

ðp4 þ Δ2
Bp

2
zÞ1=2

eip·x ¼ 0;

ð109Þ

and hence, the VEV of the Wilson loop is

hWi ∼ lim
jxj→∞

e−TVðxÞ ≠ 0: ð110Þ

Therefore, the electric Zk one-form symmetry is broken
spontaneously.
We can also show the spontaneous breaking of the

electric one-form symmetry in the case with the spatially
varying axion background field. In this case, the matrix in
Eq. (106) can be written as

DðpÞ ¼
�−p2 0

0 −ημνp2 − iΔϕϵ
3μρνpρ

�
: ð111Þ

In the static limit ω ¼ 0, the nontrivial eigenvalues of the
propagator due to h∂zϕi is −ðp4 þ Δ2

ϕp
2⊥Þ−1=2. Here we

discarded the eigenvalue ðp4 þ Δ2
ϕp

2⊥Þ−1=2 that corresponds
to an unphysical mode. Similar to the argument above, the
potential due to this mode in the limit jxj → ∞ vanishes,
and thus, the electric Zk one-form symmetry is broken
spontaneously.

C. Low-energy effective theory and
chiral anomaly matching

Since the system has gapped modes with the mass gap
ΔB;ϕ, one can derive a low-energy effective theory for
gapless modes well below ΔB;ϕ by integrating out these
gapped modes. One expects that the chiral anomaly in
Eq. (59) should also be encoded in such a low-energy
effective theory, since it is invariant under the renormaliza-
tion. This is the ’t Hooft anomaly matching. In the case of
the spatially varying axion field, this is satisfied simply by

8In relativistic systems, the U(1) two-form symmetry cannot be
broken spontaneously in (3þ 1) dimensions due to the higher-
form generalization [17,59] of the Coleman-Mermin-Wagner-
Hohenberg theorem [60–62]. In nonrelativistic systems, this
theorem may be relaxed due to the modification of the propagator
of a NG mode [63]. It is an open question whether the Coleman-
Mermin-Wagner-Hohenberg theorem for higher-form sym-
metries can also be relaxed in nonrelativistic systems.

9In order to understand the fact that the eigenstate associated
with the eigenvalue ðp4 þ Δ2

Bp
2
zÞ−1=2 is unphysical, it is conven-

ient to consider the case without the external magnetic field,
where D ¼ diagð−p2; p2;−p2;−p2;−p2Þ. In this case, one of
the eigenvalues of D−1, − 1

ω2−p2, which reduces to
1
p2 when ω ¼ 0,

corresponds to an unphysical ghost mode due to the gauge-fixing
term. In our system, the eigenvalue ðp4 þ Δ2

Bp
2
zÞ−1=2 corresponds

to this unphysical mode, since it becomes 1
p2 when B ¼ 0.
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ϕ with the linear dispersion relation. On the other hand, in
the case of the background magnetic field, the chiral
anomaly matching is satisfied by the gapless mode with
the quadratic dispersion relation (63), as we will show
below.
Let us consider the case with the homogeneous

background magnetic field. We define complex scalar
fields10

ψ ≡
ffiffiffiffiffiffi
ΔB

2

r
eiΔBt

�
vϕþ i

az
e

�
;

ψ� ≡
ffiffiffiffiffiffi
ΔB

2

r
e−iΔBt

�
vϕ − i

az
e

�
; ð112Þ

from which we can write

vϕ ¼ 1ffiffiffiffiffiffiffiffiffi
2ΔB

p ðe−iΔBtψ þ eiΔBtψ�Þ;
az
e
¼ −

iffiffiffiffiffiffiffiffiffi
2ΔB

p ðe−iΔBtψ − eiΔBtψ�Þ: ð113Þ

Inserting these relations into the original Lagrangian (58)
and retaining the terms at the leading order in derivatives
under the counting ∂t ∼ ∂z ∼ ∇2⊥, where ∇⊥ ≡ ð∂x; ∂y; 0Þ,
we derive the low-energy effective theory to the second
order in fields,

LEFT¼
i
2
ψ�∂t

↔
ψ −

1

ΔB
∇⊥ψ� ·∇⊥ψþ

ffiffiffiffiffiffiffiffiffi
2ΔB

p
e

∂zatReðe−iΔBtψÞ

þ1

e

ffiffiffiffiffiffi
2

ΔB

s
∂za

μ
⊥∂μImðe−iΔBtψÞ− 1

4e2
jf⊥μνj2; ð114Þ

up to total derivative terms, where ∂t

↔ ≡ ∂⃗t − ∂⃖t, Vμ
⊥ ≡

ðVt; Vx; Vy; 0Þ for a generic vector Vμ, and f⊥μν ≡ ∂μa⊥ν −
∂νa⊥μ . It is clear that we have only gapless modes in this
low-energy effective theory. In particular, the gapless mode
ψ has the quadratic dispersion relation (63) in the trans-
verse direction as it should.
We note that the number of physical degrees of freedom

in this effective theory decreases by one (which corre-
sponds to the gapped mode) compared with that in the
original theory (58). This can be understood from the
fact that the number of physical degrees of freedom is
equal to the number of real fields when the kinetic term is
second order in time derivatives, while it is equal to the
number of complex fields (or half of the number of real
fields) when the kinetic term is first order in time
derivatives [66].

The symmetries of this effective theory that we are
interested in are as follows11:

(i) Gauge symmetry

a⊥μ → a⊥μ þ ∂⊥
μ λ;

Imðe−iΔBtψÞ → Imðe−iΔBtψÞ þ 1

e

ffiffiffiffiffiffi
ΔB

2

r
∂zλ; ð115Þ

with λ a zero-form gauge parameter, which origi-
nates from the gauge symmetry aμ → aμ þ ∂μλ in
the original theory (58).

(ii) Anomalous shift symmetry

Reðe−iΔBtψÞ → Reðe−iΔBtψÞ þ
ffiffiffiffiffiffi
ΔB

2

r
vc; ð116Þ

with c a constant, which originates from the anoma-
lous shift symmetry ϕ → ϕþ c in the original
theory (58).

In this effective theory, the canonical momentum of ψ is

π ≡ ∂LEFT

∂ð∂tψÞ
¼ i

2
ψ�: ð117Þ

From the canonical commutation relation ½ψðxÞ; πðyÞ� ¼
i
2
δðx − yÞ,12 we find

½ψðxÞ;ψ�ðyÞ� ¼ δðx − yÞ: ð118Þ

Alternatively, one can derive the commutation relation
(118) by substituting Eq. (113) into the commutation
relation in the original theory (58),

v2½ϕðxÞ; ∂tϕðyÞ� ¼ iδðx − yÞ; ð119Þ

and using the relation v∂tϕ ≈ ΔB
az
e at low energy.

One way to check how the chiral anomaly is satisfied in
this effective theory is to look at the anomalous commutator
between the vector charge n and axial charge n5. For this
purpose, let us derive the expressions of n and n5 in terms
of ψ . The vector charge of the effective theory is given by

n≡ −
δSEFT
δat

¼ −
ffiffiffiffiffiffiffiffiffi
2ΔB

p
e

∂z½Reðe−iΔBtψÞ�: ð120Þ

On the other hand, the axial charge in the theory (58) is
n5 ¼ 2v2∂tϕ, which, in terms of ψ reads

10This procedure is similar to the one used to derive the
nonrelativistic limit of the relativistic field theory for real scalar
fields; see, e.g., Refs. [64–66].

11We will not discuss the higher-form symmetries of the theory
(114) because, as we only focus on the kinetic terms, the higher-
form symmetries turn out to be enhanced compared to the full
theory with the interaction terms. A systematic construction of
the full effective field theory based on the symmetries is deferred
to future work.

12The factor 1=2 here is due to the two-sided derivative ∂t

↔
in

Eq. (114).
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n5 ¼ 2v

ffiffiffiffiffiffi
2

ΔB

s
∂t½Reðe−iΔBtψÞ�: ð121Þ

By using Eq. (118), we arrive at

½nðxÞ; n5ðyÞ� ¼ −i
k
2π2

Bz∂zδðx − yÞ: ð122Þ

This is the anomalous commutator [67] that is responsible
for the chiral anomaly,13 and the anomaly matching is
correctly satisfied in this effective theory.

IV. DISCUSSIONS

In this paper, we studied the axion electrodynamics with
level k in (3þ 1) dimensions in background fields as a
paradigmatic example of topological mass generation in
gapless systems. We have shown that this system exhibits
the spontaneous breaking of the Zk one-form symmetry for
k ≥ 2 even in the absence of the conventional topologi-
cal order.
Since the low-energy effective theory of QCD coupled to

QED corresponds to the axion electrodynamics in Eq. (58)
with jkj ¼ 1 as mentioned in the main text, one can ask
whether the case with jkj ≥ 2 can be realized in physical

systems. One such possibility is the “axionic charge density
wave” (CDW) [69] in multi-Weyl semimetals. The multi-
Weyl semimetal [70,71] is a type of Weyl semimetal in
which pairs of monopoles and antimonopoles with a
generic integer charge k appear in momentum space and
where the chiral anomaly relation (59) is realized. In Weyl
semimetals, the interaction effect may lead to the dynami-
cal chiral symmetry breaking by the pairing between
electrons and holes with opposite chiralities and, conse-
quently, a NG mode ϕ, which may be regarded as an
“axion” field, appears [69]. It has been recently reported
that evidence of such an axionic CDW is experimentally
observed in the Weyl semimetal ðTaSe4Þ2I for jkj ¼ 1 [72].
If the axion CDW is realized in multi-Weyl semimetals with
jkj ≥ 2, the effective theory for the NG mode ϕ coupled to
dynamical electromagnetic fields at low energy there is the
axion electrodynamics with level k.
In this paper, we also constructed the low-energy effective

theory (114) for the gapless mode with the quadratic
dispersion relation, starting from the theory (58) in the
external magnetic field by integrating out the gapped modes.
It would be interesting to develop a systematic construction
of this kind of low-energy effective theory based on the
breaking pattern of zero- and higher-form symmetries with-
out referring to the details of a microscopic theory.
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