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For a general renormalizableN ¼ 1 supersymmetric gauge theorywith a simple gauge groupweverify the
ultraviolet (UV) finiteness of the two-loop matter contribution to the triple gauge-ghost vertices. These
vertices haveone leg of the quantumgauge superfield and two legs corresponding to theFaddeev–Popovghost
and antighost. By an explicit calculation made with the help of the higher covariant derivative regularization
we demonstrate that the sum of the corresponding two-loop supergraphs containing a matter loop is not UV
divergent in the case of using a general ξ-gauge. In the considered approximation this result confirms the
recently proved theorem that the triple gauge-ghost vertices are UV finite in all orders, which is an important
ingredient of the all-loop perturbative derivation of the Novikov-Shifman-Vainshtein-Zakharov relation.
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I. INTRODUCTION

Possible ultraviolet divergences in supersymmetric
theories are restricted by some nonrenormalization theo-
rems. For example, it is well known that the superpoten-
tial of N ¼ 1 supersymmetric gauge theories cannot
receive divergent quantum corrections [1]. Consequently,
the renormalizations of masses and Yukawa couplings
can be related to the renormalization of chiral matter
superfields. However, there are also some other nonre-
normalization theorems even in theories with N ¼ 1
supersymmetry. For example, it is reasonable to consider
the exact Novikov-Shifman-Vainshtein-Zakharov (NSVZ)
β-function [2–5] as a nonrenormalization theorem, because
it relates the renormalization of the gauge coupling constant
to the renormalization of chiral matter superfields.
Moreover, it produces the nonrenormalization theorems
for N ¼ 2 [6–8] and N ¼ 4 [6,7,9,10] supersymmetric
gauge theories [11]. It is important that the nonrenormal-
ization theorems hold only for special renormalization
prescriptions. Strictly speaking, even the nonrenormaliza-
tion of the superpotential requires either a manifestly
supersymmetric superfield quantization or special limita-
tions on a subtraction scheme. Therefore, it is highly
desirable that the regularization and renormalization pro-
cedures be consistent with supersymmetry. Similarly, for
deriving the finiteness of N ¼ 2 supersymmetric gauge

theories beyond the one-loop approximation from the
NSVZ β-function one should use a manifestly N ¼ 2
quantization procedure [12]. Such a procedure can be
constructed with the help of the harmonic superspace
[13–15] and the corresponding invariant regularization
[16]. However, the NSVZ β-function is valid only for
certain renormalization prescriptions, called “the NSVZ
schemes,” which constitute a continuous set [17,18]. It
appeared that such popular renormalization schemes as DR
and MOM do not enter this set, see Refs. [19–23] and
[24,25], respectively. An all-loop prescription for construct-
ing at least one of the NSVZ schemes was given in [26].1

The NSVZ scheme is obtained if a theory is regularized by
the higher covariant derivative method [30,31] (which
includes introducing the Pauli–Villars determinants for
removing one-loop divergences [32]) in the superfield
version [33,34] and the renormalization is made by
minimal subtractions of logarithms [27]. This renormaliza-
tion prescription is usually called HDþMSL [35,36].2

Note that actually the NSVZ β-function is valid in the
HDþMSL scheme because it holds for RGFs defined in
terms of the bare couplings for theories regularized by
higher derivatives independently of a renormalization
prescription. This statement has been verified by numerous
multiloop calculations, see, e.g., [38–44], and can be
used for simple calculation of the β-function in higher
orders [45]. The all-loop proof has been done in
Refs. [26,46–48]. It turned out that for making this proof
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1In the Abelian case a similar prescription has been found
earlier [27] on the base of the results of [28,29].

2For N ¼ 1 SQED the on-shell scheme appears to be another
all-loop NSVZ renormalization prescription [37].
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the NSVZ equation should be rewritten in an equivalent
form [46], which does not contain the coupling con-
stant dependent denominator similarly to the Abelian
case [49,50] and to the exact expression for the Adler
D-function in N ¼ 1 SQCD [51,52]. The equivalence
of both forms of the NSVZ relation can be established
with the help of a nonrenormalization theorem for the
triple gauge-ghost vertices, which is an important
ingredient needed for the perturbative proof of the exact
NSVZ β-function. This theorem has been derived in
[46] for N ¼ 1 supersymmetric gauge theories under
the assumption of the superfield quantization in a
general ξ-gauge. According to this theorem the triple
gauge-ghost vertices in which one line corresponds to
the quantum gauge superfield and two others correspond
to the Faddeev–Popov ghost and antighost are UV finite
in all orders. Earlier similar statements were known for
theories formulated in terms of usual fields in the
Landau gauge ξ → 0 [53,54]. They have been verified
by three- and four-loop explicit calculations in
Refs. [54,55]. In the general ξ-gauge the UV finiteness
of the above mentioned vertices in the supersymmetric
case was demonstrated by an explicit one-loop super-
field calculation in Ref. [46] made with the help of the
higher covariant derivative regularization. In this paper
we partially verify that this statement is also true in the
two-loop approximation. Namely, we will prove that a
part of the two-loop contribution to the triple gauge-
ghost vertices coming from superdiagrams which con-
tain a matter loop is UV finite for theories regularized
by higher covariant derivatives. Note that we will use
this regularization because it naturally produces the
NSVZ scheme and reveals some interesting features
of quantum corrections in supersymmetric theories, see
[42] and references therein. However, calculations of
quantum corrections with this regularization are rather
complicated and to a certain degree are similar to the
ones for higher derivative theories (see, e.g., [56–58]).
The paper is organized as follows. In Sec. II we recall

the superfield formulation of N ¼ 1 supersymmetric
gauge theories together with some aspects of their
regularization by higher derivatives and superfield quan-
tization. The structure of the triple gauge-ghost vertices is
discussed in Sec. III. The calculation of the two-loop
superdiagrams containing a matter loop is described in
Sec. IV, where we prove that their overall contribution is
not UV divergent.

II. N = 1 SUPERSYMMETRIC GAUGE
THEORIES AND THE REGULARIZATION
BY HIGHER COVARIANT DERIVATIVES

We will consider a general renormalizableN ¼ 1 super-
symmetric gauge theory with a single gauge coupling
constant. In the superfield formulation its classical action
is written in the form

S ¼ 1

2e20
Re tr

Z
d4xd2θWaWa þ

1

4

Z
d4xd4θϕ�iðe2VÞijϕj

þ
�Z

d4xd2θ

�
1

4
mij

0 ϕiϕj þ
1

6
λijk0 ϕiϕjϕk

�
þ c:c:

�
;

ð1Þ

where e0 and λ
ijk
0 are the bare gauge and Yukawa couplings,

respectively, and mij
0 is the bare mass matrix. The

Hermitian gauge superfield and its superfield strength
are denoted by V and Wa, respectively. The chiral
matter superfields ϕi lie in a certain representation R of
the gauge group G. In our notations the generators of the
fundamental representation denoted by tA are normalized
by the condition trðtAtBÞ ¼ δAB=2, while the generators of
the representation R are denoted by TA and satisfy the
equations

trðTATBÞ ¼ TðRÞδAB; ðTATAÞij ¼ CðRÞij: ð2Þ

The theory is gauge invariant if the bare masses and
Yukawa couplings are chosen in such a way that

mik
0 ðTAÞkj þmkj

0 ðTAÞki ¼ 0; ð3Þ

λijm0 ðTAÞmk þ λimk
0 ðTAÞmj þ λmjk

0 ðTAÞmi ¼ 0: ð4Þ

Below we will always assume that these equations are
satisfied. Also we will always assume that

mik
0 m

�
0kj ¼ m2

0δ
i
j: ð5Þ

Note that these conditions can be satisfied only for
anomaly free theories. Really, using Eqs. (3) and (5) after
some transformations we obtain

m2
0trðTATBTCÞ ¼ m�

0ijm
jk
0 ðTAÞklðTBÞlmðTCÞmi

¼ −m�
0ijm

mi
0 ðTAÞkjðTBÞlkðTCÞml

¼ −m2
0trðTATCTBÞ: ð6Þ

This implies that the generators TA should satisfy the
anomaly cancellation condition [59]

trðTAfTB; TCgÞ ¼ 0: ð7Þ

Certainly, the absence of the gauge anomalies is also
needed for the renormalizability, which will essentially
be used in what follows.
For quantizing the theory (1) it is convenient to use the

background field method. Moreover, one should take into
account that the quantum gauge superfield is renormalized
in a nonlinear way [60–62]. This has been confirmed by
explicit calculations in the lowest orders of the perturbation
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theory [63,64]. Also explicit calculations demonstrate that
without the nonlinear renormalization the renormalization
group equations are not satisfied [65]. To take into account
the nonlinear renormalization and to introduce the quan-
tum-background splitting, we make the substitution

e2V → e2F ðVÞe2V : ð8Þ

Here V and V denote the quantum and background gauge
superfields, respectively. Note that in this notation the
quantum gauge superfield satisfies the equation Vþ ¼
e−2VVe2V . After the replacement (8) the gauge superfield
strength takes the form

Wa ¼
1

8
D̄2ðe−2Ve−2F ðVÞDaðe2F ðVÞe2VÞÞ: ð9Þ

In this paper we will consider only superdiagrams which
do not contain external lines of the background superfield.
However, for other purposes the background (super)field
method is very useful, so that constructing the generating
functional we will keep the dependence on the background
gauge superfield V.
Following Refs. [66,67], we introduce the regularization

by adding some terms containing higher derivatives to the
action. After this the regularized action can be written in
the form

Sreg ¼
1

2e20
Re tr

Z
d4xd2θWa

�
e−2Ve−2F ðVÞR

�
−
∇̄2∇2

16Λ2

�
e2F ðVÞe2V

�
Adj

Wa

þ 1

4

Z
d4xd4θϕ�i

�
F

�
−
∇̄2∇2

16Λ2

�
e2F ðVÞe2V

�
i

jϕj þ
�Z

d4xd2θ

�
1

4
mij

0 ϕiϕj

þ 1

6
λijk0 ϕiϕjϕk

�
þ c:c:

�
; ð10Þ

where Λ is the dimensionful cutoff parameter of
the regularized theory, and the covariant derivatives are
defined as

∇a ¼ Da; ∇̄ _a ¼ e2F ðVÞe2VD̄ _ae−2Ve−2F ðVÞ: ð11Þ

(The higher derivatives are present inside two regulator
functions RðxÞ and FðxÞ, which rapidly grow at infinity
and are equal to 1 at x ¼ 0.) In our notations, if
fðxÞ ¼ f0 þ f1xþ f2x2 þ � � �, then the subscript Adj
means that

fðXÞAdjY ≡ f0Y þ f1½X; Y� þ f2½X; ½X; Y�� þ… ð12Þ

The gauge fixing term analogous to the background
ξ-gauge in the usual Yang–Mills theory is given by the
expression

Sgf ¼ −
1

16ξ0e20
tr
Z

d4xd4θ∇2VK

�
−
∇̄2∇2

16Λ2

�
Adj

∇̄2V;

ð13Þ
which includes the background covariant derivatives ∇a ≡
Da and ∇̄ _a ≡ e2VD̄ _ae−2V . Also the gauge fixing term
contains one more higher derivative regulator function
KðxÞ, which has the same properties as the functions RðxÞ
and FðxÞ. Then the actions for the chiral Faddeev–Popov
ghosts c and c̄ and the chiral Nielsen–Kallosh ghosts b read

SFP ¼
1

2

Z
d4xd4θ

∂F−1ðṼÞA
∂ṼB

����
Ṽ¼F ðVÞ

ðe2V c̄e−2V þ c̄þÞA

×

��
F ðVÞ

1 − e2F ðVÞ

�
Adj

cþ þ
�

F ðVÞ
1 − e−2F ðVÞ

�
Adj

ðe2Vce−2VÞ
�

B
; ð14Þ

SNK ¼ 1

2e20
tr
Z

d4xd4θbþ
�
K
�
−
∇̄2∇2

16Λ2

�
e2V

�
Adj

b: ð15Þ

To regularize one-loop divergences that survive after
introducing the higher derivatives, we should insert the
Pauli–Villars determinants into the generating functional
[32]. According to [66,67], in the supersymmetric case one

needs two such determinants. The first one can be presented
as a functional integral over three commuting chiral super-
fields φ1, φ2, and φ3 in the adjoint representation of the
gauge group,

DetðPV;MφÞ−1 ¼
Z

Dφ1Dφ2Dφ3 expðiSφÞ; ð16Þ

where
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Sφ ¼ 1

2e20
tr
Z

d4xd4θ

�
φþ
1

�
R

�
−
∇̄2∇2

16Λ2

�
e2F ðVÞe2V

�
Adj

φ1

þ φþ
2 ½e2F ðVÞe2V �Adjφ2 þ φþ

3 ½e2F ðVÞe2V �Adjφ3

�

þ 1

2e20

�
tr
Z

d4xd2θMφðφ2
1 þ φ2

2 þ φ2
3Þ þ c:c:

�
:

ð17Þ

This determinant cancels one-loop divergences generated
by the gauge and ghost superfields. The second Pauli–
Villars determinant removes one-loop divergences pro-
duced by a matter loop. It is given by the functional
integral over the (commuting) chiral superfields Φi in a
representation RPV which admits a gauge invariant mass
term such that MikM�

kj ¼ M2δij,

DetðPV;MÞ−1 ¼
Z

DΦ expðiSΦÞ; ð18Þ

where

SΦ ¼ 1

4

Z
d4xd4θΦþF

�
−
∇̄2∇2

16Λ2

�
e2F ðVÞe2VΦ

þ
�
1

4

Z
d4xd2θMijΦiΦj þ c:c:

�
: ð19Þ

Then the generating functional of the regularized theory
takes the form

Z½V; Sources�

¼
Z

DμðDetðPV;MÞÞcDetðPV;MφÞ−1

× expðiSreg þ iSgf þ iSFP þ iSNK þ iSsourcesÞ; ð20Þ

whereDμ denotes the integrationmeasure, c¼TðRÞ=TðRPVÞ
and Ssources includes all relevant sources. Moreover, to
obtain a theory with a single dimensionful regulariza-
tion parameter, we require that the ratios aφ ≡Mφ=Λ
and a≡M=Λ are constants which do not depend on
couplings. The effective action Γ is constructed according
to the standard procedure, as a Legendre transform of the
generating functional for the connected Green functions
W ≡ −i lnZ.
It is important that both the regularized action and the

above described Pauli–Villars determinants are gauge
invariant. Due to the use of the background field
method the original gauge invariance produces two differ-
ent types of transformations. The background gauge
symmetry

ϕi → ðeAÞijϕj; V → e−A
þ
VeA

þ
; e2V → e−A

þ
e2Ve−A; φ1;2;3 → eAφ1;2;3e−A;

Φi → ðeAÞijΦj; c → eAce−A; c̄ → eAc̄e−A; b → eAbe−A ð21Þ

parametrized by a chiral Lie-algebra valued superfield A
remains unbroken and is a manifest symmetry of the
effective action. In contrast, the quantum gauge invariance
is broken by the gauge fixing procedure. However, the
remaining BRST symmetry produces the Slavnov–Taylor
identities, which can be derived with the help of the
standard procedure [68,69]. The regularized theory de-
scribed by the generating functional (20) is finite (for finite
value of Λ) and gauge invariant. Therefore, no anomalies
can appear in the gauge Slavnov–Taylor identities due to
the absence of ambiguous linearly divergent integrals.3

However, it is well known that in general the anomalies
can appear in the gauge Slavnov–Taylor identities. The
contradiction is solved if we take into account that one can
introduce the considered regularization (which ensures the
absence of gauge anomalies) only if Eq. (7) and the similar
condition for the generators of the representation RPV

trðTA
PVfTB

PV; T
C
PVgÞ ¼ 0 ð22Þ

are satisfied.4 Otherwise, the gauge symmetry is broken by
the mass terms. However, the gauge anomalies are propor-
tional to the structure (7) even in the case of using N ¼ 1
superfield quantization [70]. This implies that the considered
version of the regularization can be constructed only if the
gauge anomalies are absent, so that no contradiction appears.

III. STRUCTURE OF THE THREE-POINT GAUGE-
GHOST VERTICES AND THEIR FINITENESS

We are interested in the 3-point vertices with two
external ghost legs and one external leg of the quantum
gauge superfield. (Note that similar vertices with a leg of
the background gauge superfield are in general UV
divergent.) There are four different vertices of the consid-
ered structure, namely, c̄þVc, c̄Vc, c̄þVcþ, and c̄Vcþ
depending on the (anti)ghost superfields on the external

3Even in usual QED the Pauli–Villars regularization allows
calculating the anomaly of the axial current in such a way that the
gauge symmetry is automatically unbroken, see, e.g., [59].

4Evidently, the analogous equation is always valid for the
adjoint representation.
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lines. According to [46] all these vertices have the same
renormalization constant Z−1=2

α ZcZV , where Zα, Zc, and ZV
are the renormalization constants for the gauge coupling
constant α ¼ e2=4π, the Faddeev–Popov ghosts, and the
quantum gauge superfield, respectively,

1

α0
¼ Zα

α
; c̄AcB ¼ Zcc̄ARc

B
R; VA ¼ ZVVA

R; ð23Þ

where the subscript R denotes renormalized superfields.
Certainly, it should be noted that the quantum gauge super-
field is renormalized in a nonlinear way. To take this non-
linear renormalization into account, we include an infinite set
of parameters into the function F ðVÞA. Say, in the lowest
nontrivial order it is given by the expression [63,64]

F ðVÞA ¼ VA þ e20y0G
ABCDVBVCVD þ…; ð24Þ

where GABCD ≡ ðfAKLfBLMfCMNfDNK þ permutations of
B;C; andDÞ=6, and contains a parameter y0, which should
also be renormalized. Then the nonlinear renormalization
is reduced to linear renormalizations of VA and of the
parameters y0;… The equation describing the renormaliza-
tion of the parameter y0 in the lowest nontrivial approxima-
tion can be found, e.g., in [65].
The structure of the triple gauge-ghost vertices can

be analyzed with the help of dimensional and chirality
considerations. Using notations similar to the ones in
Ref. [46] we write the corresponding parts of the effective
action as

ΔΓc̄þVc ¼
ie0
4

fABC
Z

d4θ
d4p
ð2πÞ4

d4q
ð2πÞ4 c̄

þAðpþ q; θÞ
	
sðp; qÞ∂2Π1=2VBð−p; θÞ

þ Sμðp; qÞðγμÞ _abDbD̄ _aVBð−p; θÞ þ Sðp; qÞVBð−p; θÞ


cCð−q; θÞ; ð25Þ

ΔΓc̄þVcþ ¼ ie0
4

fABC
Z

d4θ
d4p
ð2πÞ4

d4q
ð2πÞ4 c̄

þAðpþ q; θÞS̃ðp; qÞVBð−p; θÞcþCð−q; θÞ; ð26Þ

where ∂2Π1=2 ≡ −DaD̄2Da=8 is a supersymmetric analog of the transversal projection operator. Differentiating these
expressions with respect to superfields we present the considered Green functions in the form

δ3Γ
δc̄þA

x δVB
y δcCz

¼ −
ie0
16

fABC
Z

d4p
ð2πÞ4

d4q
ð2πÞ4

	
sðp; qÞ∂2Π1=2

− Sμðp; qÞðγμÞ _abD̄ _aDb þ Sðp; qÞ


y
ðD2

xδ
8
xyðqþ pÞD̄2

zδ
8
yzðqÞÞ; ð27Þ

δ3Γ
δc̄þA

x δVB
y δcþC

z
¼ −

ie0
16

fABC
Z

d4p
ð2πÞ4

d4q
ð2πÞ4 S̃ðp; qÞD

2
xδ

8
xyðqþ pÞD2

zδ
8
yzðqÞ; ð28Þ

where δ8xyðqÞ≡ eiqμðxμ−yμÞδ4ðθx − θyÞ.
The one-loop expressions for the functions s, Sμ, S, and S̃ can be found in Ref. [46] (in which they are denoted by f, Fμ,

F, and F̃, respectively). For example, the sum of the tree and one-loop contributions to S is given by the following function
of the Euclidean momenta P and Q5

SðP;QÞ ¼ 1þ e20C2

4

Z
d4K
ð2πÞ4

�
−

ðQþ PÞ2
RKK2ðK þ PÞ2ðK −QÞ2 −

ξ0P2

KKK2ðK þQÞ2ðK þQþ PÞ2

þ ξ0Q2

KKK2ðK þ PÞ2ðK þQþ PÞ2 þ
�
ξ0
KK

−
1

RK

��
−

2ðQþ PÞ2
K4ðK þQþ PÞ2 þ

2

K2ðK þQþ PÞ2

−
1

K2ðK þQÞ2 −
1

K2ðK þ PÞ2
��

þOðα20;α0λ20Þ; ð29Þ

where RK ≡ RðK2=Λ2Þ etc. We see that this expression is finite in the UV region independently of the value of the gauge
parameter ξ0, although some terms inside it are logarithmically divergent. The function S̃ is given by a similar UV finite
expression. In the one-loop approximation the UV finiteness of the functions Sμ and s immediately follows from the fact
that they have the dimensions m−1 and m−2, respectively.

5In our conventions Euclidean momenta are always denoted by capital letters.
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In this paper we would like to verify that a part of the
two-loop contribution to the Green functions (27) and (28)
coming from supergraphs containing a matter loop is UV
finite. The straightforward calculation is rather compli-
cated, especially due to the use of the regularization by
higher covariant derivatives. However, it is possible to
make some simplifications. First, we know that all 4 three-
point gauge-ghost vertices have the same renormalization
constants. Therefore, it is sufficient to calculate only one of
them. In this paper we will consider the function (27).
Moreover, the integrals giving the functions Sμ and s have
the superficial degree of divergence −1 and −2, respec-
tively. This implies that the corresponding divergences can
come only from divergent subdiagrams. For the considered
renormalizable theory these subdivergences are evidently
removed by the renormalization in the previous orders.
Therefore, to find the two-loop contribution to the renorm-
alization constant Z−1=2

α ZcZV , we need to calculate only the
function S. This function can be extracted from the
corresponding part of the effective action [given by
Eq. (25)] by a formal substitution6

V → D̄2H; ð30Þ
where H is a Hermitian superfield, because after this
substitution the expression (25) takes the form

ΔΓc̄þVc ¼
ie0
4

fABC
Z

d4θ
d4p
ð2πÞ4

d4q
ð2πÞ4 c̄

þAðpþ q; θÞ

× Sðp; qÞD̄2HBð−p; θÞcCð−q; θÞ: ð31Þ

Moreover, the calculation of the function S can be done in
the limit of the vanishing external momenta. Really, terms
proportional to external momenta are given by integrals
with a negative superficial degree of divergence, so that
after removing subdivergences by the renormalization in
the previous orders we will obtain UV finite contributions.
Thus, we will extract the function S with the help of the

formal substitution (30) and calculate it in the limit of the
vanishing external momenta, P;Q → 0. Details of this
calculation we describe in the next section.

IV. THE MATTER CONTRIBUTION TO THE
TRIPLE GAUGE-GHOST VERTICES

We will investigate a part of the two-loop contribution to
the three-point gauge-ghost vertices coming from super-
graphs containing a matter loop.7 They are presented in
Fig. 1. Some of the diagrams presented in this figure
include a gray disk which encodes a sum of two diagrams
depicted in Fig. 2. Actually, it corresponds to that part of
the one-loop quantum gauge superfield polarization oper-
ator which comes from diagrams with a matter loop. The
analytic expression for it has been found in Ref. [67]. In the
considered massive case it is written as

ΔΠ ¼ −8πα0TðRÞ
Z

d4L
ð2πÞ4 hðK;LÞ; ð32Þ

where

hðK;LÞ≡ 1

ððK þ LÞ2 − L2Þ
�

F2
L

2ðL2F2
L þm2

0Þ
−

F2
KþL

2ððK þ LÞ2F2
KþL þm2

0Þ

−
m2

0F
0
L

Λ2FLðL2F2
L þm2

0Þ
þ m2

0F
0
KþL

Λ2FKþLððK þ LÞ2F2
KþL þm2

0Þ
−

F2
L

2ðL2F2
L þM2Þ

þ F2
KþL

2ððK þ LÞ2F2
KþL þM2Þ þ

M2F0
L

Λ2FLðL2F2
L þM2Þ −

M2F0
KþL

Λ2FKþLððK þ LÞ2F2
KþL þM2Þ

�
; ð33Þ

and primes denote derivatives with respect to the arguments, e.g., F0
L ≡ F0ðL2=Λ2Þ. The polarization operatorΠ is related to

the two-point Green function of the quantum gauge superfield. Taking into account that quantum corrections to this function
are transversal due to the Slavnov–Taylor identities [68,69], we can present the corresponding part of the effective action in
the form

Γð2Þ
V − Sð2Þgf ¼ −

1

8π
tr
Z

d4k
ð2πÞ4 d

4θVð−k; θÞ∂2Π1=2Vðk; θÞd−1q ðα0; λ0; k2=Λ2Þ: ð34Þ

6This substitution is needed only for extracting a certain part of the Green function, so that it is not essential that the expression D̄2H is
not Hermitian.

7We will consider only two-loop supergraphs in which a matter loop corresponds to the usual superfields ϕi and the Pauli–Villars
superfields Φi. The supergraphs with a loop of the Pauli–Villars superfields φ1;2;3 produce contributions proportional to C2

2, so that it is
natural to investigate them together with the two-loop supergraphs without matter loops.
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Then the polarization operator is defined by the equation

d−1q ðα0;λ0;k2=Λ2Þ−α−10 Rðk2=Λ2Þ≡−α−10 Πðα0;λ0; k2=Λ2Þ:
ð35Þ

From the above equations it is possible to write the exact
propagator of the quantum gauge superfield in terms of the
function Π,

2i

�
1

ðR − ΠÞ∂2
−

1

16∂4
ðD2D̄2 þ D̄2D2Þ

�
ξ0
K

−
1

R − Π

��

× δ8xyδ
AB; ð36Þ

where δ8xy ≡ δ4ðxμ − yμÞδ4ðθx − θyÞ. Using this equation it
is easy to construct expressions for various superdiagrams

containing insertions of the polarization operator and,
in particular, for the superdiagrams with a gray disk
in Fig. 1.
To construct vertices containing ghost lines, it is

necessary to take into account Eq. (24) and use the
equations

V
1 − e2V

¼ −
1

2
þ 1

2
V −

1

6
V2 þ 1

90
V4 þOðV6Þ; ð37Þ

V
1 − e−2V

¼ 1

2
þ 1

2
V þ 1

6
V2 −

1

90
V4 þOðV6Þ: ð38Þ

Then we see that vertices with ghost legs are generated by
the expression

FIG. 1. The superdiagrams giving a matter contribution to the three-point gauge-ghost vertices in the two-loop approximation. A gray
disk denotes the sum of two subdiagrams presented in Fig. 2.

FIG. 2. Superdiagrams producing a matter contribution to the one-loop polarization operator of the quantum gauge superfield.
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SFP ¼
Z

d4xd4θ

�
1

4
cþAc̄A þ 1

4
c̄þAcA þ ie0

4
fABCðc̄A þ c̄þAÞVBðcC þ cþCÞ − e20

12
fABC

× fCDEðc̄A þ c̄þAÞVBVDðcE − cþEÞ − e40
180

fABCfCDEfEFGfGHIðc̄A þ c̄þAÞVBVDVF

× VHðcI − cþIÞ − 3

4
e20y0G

ABCDðc̄A þ c̄þAÞVCVDðcB − cþBÞ þ…

�
: ð39Þ

The term containing y0 is essential even for calculating
the two-loop anomalous dimension of the ghost super-
fields, see Ref. [65] for details. Therefore, it is
certainly needed for calculating the two-loop contri-
bution to the triple gauge-ghost vertices. However, it is
not essential for obtaining its part proportional to
C2TðRÞ (which we are interested in), so that the
effects of the nonlinear renormalization can be ignored
in this paper. Also we see that the vertices with two
ghost and three gauge lines are absent and, therefore,
we need not include the corresponding superdiagrams
into Fig. 1.
It is convenient to divide the superdiagrams presented in

Fig. 1 into three groups.

(1) The superdiagrams (1), (5), and (6), in which an
external gauge leg is attached to a gauge internal line.

(2) The superdiagrams (13), (14), and (15) containing an
insertion of the one-loop polarization operator (32)
and an external gauge leg attached to a ghost line.

(3) The other superdiagrams (2), (3), (4), (7), (8), (9),
(10), (11), and (12) in which an external gauge line is
attached to a matter loop.

Let us demonstrate that the sum of superdiagrams in each
of these groups is UV finite.
1. First, we consider the superdiagrams (1), (5), and (6).

They include a triple gauge vertex in which [after the
replacement (30)] one leg corresponds to D̄2H. The original
expression for the triple gauge vertex is written as

ΔSV3 ¼ ie0
16

fABC
Z

d8xVADaVBRð∂2=Λ2ÞD̄2DaVC

þ ie0
128Λ2

fABC
X∞
n¼1

rn
Xn−1
α¼0

Z
d8x

�∂2

Λ2

�
α

D2D̄2DaVAVB

�∂2

Λ2

�
n−1−α

D̄2DaVC; ð40Þ

whereVA are components of the quantum gauge superfield, d8x≡ d4xd4θ, and the coefficients rn are defined by the equation

RðxÞ ¼ 1þ
X∞
n¼1

rnxn: ð41Þ

After making the replacement (30) for one gauge leg, we obtain the expression

ie0
16

fABC
Z

d8x
	
D̄2HADaVBRð∂2=Λ2ÞD̄2DaVC þ VADaD̄2HBRð∂2=Λ2ÞD̄2DaVC




þ ie0
128Λ2

fABC
X∞
n¼1

rn
Xn−1
α¼0

Z
d8x

�∂2

Λ2

�
α

D2D̄2DaVAD̄2HB

�∂2

Λ2

�
n−1−α

D̄2DaVC: ð42Þ

This vertex is a part of diagrams (1), (5), and (6) which contribute to the function S defined by Eq. (25). If D̄2H stands on the
gauge external line, then the corresponding loop integrals are logarithmically divergent. Therefore, if more than two
supersymmetric covariant derivatives act on the superfieldH, the corresponding contribution isUVconvergent and vanishes in
the limit of the vanishing external momenta. (In the considered renormalizable theory all subdivergences are removed by the
renormalization in the previous orders.) This implies that the term containing DaD̄2H can be omitted. Integrating the
supersymmetric covariant derivatives by parts, omitting terms with more than 2 derivatives acting onH, and using the identity
D̄2D2D̄2 ¼ −16D̄2∂2, the vertex under consideration can be rewritten as

ie0
16

fABC
Z

d8x

�
D̄2HADaVBRð∂2=Λ2ÞD̄2DaVC − 2

X∞
n¼1

rn
Xn−1
α¼0

�∂2

Λ2

�
α

DaVAD̄2HB

�∂2

Λ2

�
n−α

D̄2DaVC

�
: ð43Þ

In the second termwe integrate the usual space-time derivatives by parts andomit terms proportional to the externalmomentum
−pμ (of the superfield H). Then with the help of the equation
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X∞
n¼1

rnnxn ¼ xR0ðxÞ ð44Þ

we present the vertex in the limit p → 0 in the form

ie0
16

fABC
Z

d8xD̄2HADaVB

×

�
R

�∂2

Λ2

�
þ 2∂2

Λ2
R0
�∂2

Λ2

��
D̄2DaVC: ð45Þ

Again integrating by parts (with respect to the last derivative
D̄2 and the usual derivatives inside the round brackets) and
omitting terms vanishing in the limit p → 0 we can present
this expression as a product of a symmetric (with respect to
the permutation of the indices B and C) tensor and the
antisymmetric structure constants fABC. Certainly, such a
product vanishes. Therefore, the vertex in which an external
D̄2H-leg is attached to an internal line of the quantum gauge
superfield is equal to 0 in the limit of vanishing external
momenta. This implies that all diagrams containing such
vertices are finite. In particular,we see that the superdiagrams
(1), (5), and (6) in Fig. 1 are finite.
2. Superdiagrams (13), (14), and (15) also give UV finite

contributions. Indeed, the ghost propagator is proportional
to either

D2
xD̄2

y

4∂2
δ8xy; or

D̄2
xD2

y

4∂2
δ8xy ð46Þ

depending on a sequence of the ghost vertices. As we have
already discussed above, if at least one supersymmetric

covariant derivative (certainly, except for D̄2 inside D̄2H)
acts on external lines, then a superdiagram evidently
vanishes in the limit of the vanishing external momenta.
Let us consider a triple vertex with an external ghost leg

and integrate by parts with respect toD2 or D̄2 coming from
ghost propagator (46). For the superdiagram (15) this is
illustrated in Fig. 3. All possible terms in which covariant
derivatives act on the external ghost leg are finite.
Therefore, divergences can arise only if D2 or D̄2 act on
the propagator of the quantum gauge superfield producing
the expressions

D2

�
1

R∂2
−

1

16∂4
ðD2D̄2 þ D̄2D2Þ

�
ξ0
K

−
1

R

��
¼ ξ0D2

∂2K
;

D̄2

�
1

R∂2
−

1

16∂4
ðD2D̄2 þ D̄2D2Þ

�
ξ0
K

−
1

R

��
¼ ξ0D̄2

∂2K
:

ð47Þ

The remaining derivatives D2 or D̄2 act on the polarization
operator, which is transversal due to Eq. (34). Therefore,
from the equations

D2∂2Π1=2 ¼ 0; D̄2∂2Π1=2 ¼ 0 ð48Þ

we conclude that the considered contribution vanishes.
Certainly, this argumentation is valid for each of the
superdiagrams (13), (14), and (15).
3. In the remaining supergraphs in Fig. 1 an external

gauge leg is attached to a matter loop. In other words, these
superdiagrams contain subdiagrams presented in Fig. 4. If
higher covariant derivatives are used for a regularization,
then the matter propagators are given by the expressions

hϕ�iðxÞϕjðyÞi ¼ −
iF

4ð∂2F2 þm2
0Þ
D2

xD̄2
yδ

8
xyδ

i
j;

hϕiðxÞϕjðyÞi ¼ −
i

∂2F2 þm2
0

ðm�
0ÞijD̄2

xδ
8
xy;

hϕ�iðxÞϕ�jðyÞi ¼ −
i

∂2F2 þm2
0

mij
0D

2
xδ

8
xy; ð49Þ

where x and y are superspace points, and the regulator
function F [introduced in Eq. (10)] depends on ∂2.

FIG. 4. The subdiagrams obtained by attaching an external D̄2H-leg to the matter part of the one-loop polarization operator.

FIG. 3. For the superdiagrams (13), (14), and (15) in the limit of
the vanishing external momenta with the help of the integration
by parts one can achieve that the supersymmetric covariant
derivatives act on the gauge superfield propagator.
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The vertices in the regularized theory should be calculated
taking into account the presence of higher derivatives in the
action. For example, to obtain the simplest triple vertex

depicted in Fig. 5, we first present the regulator function in
the second term in Eq. (10) in the form FðxÞ ¼ F0 þ F1xþ
F2x2 þ � � � Then we extract terms linear in the quantum
gauge superfield from all parts of the resulting expression.
They will contain the sums of the form

q2n þ ðqþ pÞ2q2ðn−1Þ þ � � � þ ðqþ pÞ2n

¼ ðqþ pÞ2ðnþ1Þ − q2ðnþ1Þ

ðqþ pÞ2 − q2
: ð50Þ

Calculating them using this equation and writing the result
in terms of the function FðxÞ we obtain the expression

1

2

Z
d4θ

Z
d4p
ð2πÞ4

d4q
ð2πÞ4

�
ϕ�ið−q − p; θÞVi

jðp; θÞϕjðq; θÞ
ðqþ pÞ2Fqþp − q2Fq

ðqþ pÞ2 − q2

−
1

16
D̄2ϕ�ið−q − p; θÞVi

jðp; θÞD2ϕjðq; θÞ
Fqþp − Fq

ðqþ pÞ2 − q2

�
; ð51Þ

where

ϕjðq; θÞ≡
Z

d4xϕjðx; θÞeiqαxα etc: ð52Þ

Vertices with a larger number of gauge legs can be found similarly, but the calculations and the resulting expressions are
much more complicated.
Using the explicit expressions for vertices and propagators we find the contributions of the superdiagrams presented in

Fig. 4. Investigating them it is necessary to take into account that the considered theory satisfies Eqs. (7) and (22). After a
rather nontrivial calculation we have obtained that in the limit p → 0 their sum is proportional to

e30f
ABCTðRÞ

Z
d4θD̄2HAð0; θÞ

Z
d4k
ð2πÞ4 ½D̄ _a; Db�VBðk; θÞVCð−k; θÞðγμÞ _ab

Z
d4q
ð2πÞ4

ð2qþ kÞμ
ðqþ kÞ2 − q2

×FqþkFq

�
1

q2F2
q −m2

0

−
1

q2F2
q −M2

−
1

ðqþ kÞ2F2
qþk −m2

0

þ 1

ðqþ kÞ2F2
qþk −M2

�
: ð53Þ

(Certainly, here we omitted the integral over d4p, because we are interested only in the form of the momentum integral in the
limit p → 0, and a numerical coefficient, which will not be essential below.) Evidently, after theWick rotation the integral in
this equation,

Iμ ≡
Z

d4Q
ð2πÞ4

ð2Qþ KÞμFQþKFQ

ðQþ KÞ2 −Q2

�
1

Q2F2
Q þm2

0

−
1

Q2F2
Q þM2

−
1

ðQþ KÞ2F2
QþK þm2

0

þ 1

ðQþ KÞ2F2
QþK þM2

�
; ð54Þ

will be proportional to Kμ. Taking into account that

Kνð2Qþ KÞν ¼ ðQþ KÞ2 −Q2; ð55Þ

we see that it can equivalently be presented in the form

Iμ ¼
KμKν

K2
Iν ¼

Kμ

K2

Z
d4Q
ð2πÞ4 FQþKFQ

�
1

Q2F2
Q þm2

0

−
1

Q2F2
Q þM2

�

−
Kμ

K2

Z
d4Q
ð2πÞ4 FQþKFQ

�
1

ðQþ KÞ2F2
QþK þm2

0

−
1

ðQþ KÞ2F2
QþK þM2

�
¼ 0: ð56Þ

FIG. 5. The triple gauge-matter vertex, which in theories
regularized by higher covariant derivatives is given by Eq. (51).
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The last equality is obtained after the change of the integra-
tion variable Qμ → −Qμ − Kμ in the second integral if we
take into account that F−Q ¼ FQ and F−Q−K ¼ FQþK . This
change of variable is possible, because the above integral is
only logarithmically divergent due to the contribution of
the Pauli–Villars superfields.
Due to Eqs. (53) and (56) the sums of the superdiagrams

(2), (3), (9), (12) and (4), (7), (8), (10), (11) turn out to be UV
finite.
Thus, we conclude that in the limit of the vanishing

external momenta the sum of supergraphs presented in Fig. 1
vanishes. This, in turn, implies that for nonvanishing external
momenta this sum (expressed in terms of the renormalized
couplings) is given by finite integrals in the exact agreement
with the nonrenormalization theorem for the triple gauge-
ghost vertices.

V. CONCLUSION

In this paper we have demonstrated that a part of the
two-loop contribution to the three-point gauge-ghost vertices
proportional to C2TðRÞ, which comes from superdiagrams
containing a matter loop, is finite in the UV region. These
vertices have two external ghost legs and one leg of the
quantum gauge superfield. The calculation has been done
with the help of the higher covariant derivative regularization

in the limit of the vanishing external momenta for a general
ξ-gauge. The result completely agrees with the general
statement derived in Ref. [46], according to which the
considered vertices are finite in all orders of the perturbation
theory. Unlike some similar previous results [53,54], it was
proved in the case of using the superfield formulation of
N ¼ 1 supersymmetric gauge theories for a general ξ-gauge.
In the supersymmetric case this statement turned out to be a
very important step for the perturbative derivation of the non-
Abelian NSVZ β-function made in Refs. [26,46,47]. That is
why the result of this paper can be treated as a check of a
certain part of this proof. However, it should be noted that the
total two-loop contribution to the three-point gauge-ghost
vertices also includes terms proportional to C2

2, which were
not considered in this paper. We hope to analyze them in the
forthcoming publications.
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