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It has been shown that non-Abelian solitonic vortex strings supported in four-dimensional (4D)
N ¼ 2 supersymmetric QCD (SQCD) with the UðN ¼ 2Þ gauge group and Nf ¼ 4 quark flavors behave
as critical superstrings. In addition to four translational moduli, the non-Abelian strings under
consideration carry six orientational and size moduli. Together they form a ten-dimensional space
required for a superstring to be critical. The target space of the string sigma model is a product of the
flat four-dimensional space R4 and a Calabi-Yau noncompact threefold Y6, namely, the conifold. The
spectrum of low lying closed string states in the associated type IIA string theory was found and
interpreted as a spectrum of hadrons in 4DN ¼ 2 SQCD. In particular, the lowest string state appears to
be a massless Bogomolny-Prasad-Sommerfeld baryon associated with the deformation of the complex
structure modulus b of the conifold. Here we address a problem of switching on quark masses in 4D
SQCD, which classically breaks the world sheet conformal invariance in the string sigma model. To
avoid this problem we follow a standard string theory approach and use a flux “compactification” to lift
the complex structure modulus of the conifold. Namely, we find a solution of supergravity equations of
motion with nonzero Neveu-Schwarz 3-form flux. It produces a potential for the baryon b, which leads
to the runaway vacuum. Using field theory arguments, we interpret 3-form flux in terms of a particular
choice of quark masses in 4D SQCD. At the runaway vacuum the conifold degenerates to lower
dimensions. We interpret this as a flow from a non-Abelian string to an Abelian one.
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I. INTRODUCTION

It was shown in [1] that the non-Abelian solitonic vortex
string in four-dimensional (4D) N ¼ 2 supersymmetric
QCD (SQCD) with the UðN ¼ 2Þ gauge group and Nf ¼ 4

flavors of quark hypermultiplets becomes a critical super-
string. Non-Abelian vortices were first found in N ¼ 2
SQCD with the gauge group UðNÞ and Nf ≥ N flavors of
quarks [2–5]. The non-Abelian vortex string is 1=2
Bogomolny-Prasad-Sommerfeld (BPS) saturated and,
therefore, has N ¼ ð2; 2Þ supersymmetry on its world
sheet. In addition to four translational moduli character-
istics of the Abrikosov-Nielsen-Olesen strings [6], the non-
Abelian string carries orientational moduli, as well as
the size moduli if Nf > N [2–5] (see [7–10] for reviews).
Their dynamics are described by the effective two-
dimensional (2D) sigma model on the string world sheet
with the target space

Oð−1Þ⊕ðNf−NÞ
CP1 ; ð1:1Þ

which we will refer to as the weighted CP model
[WCPðN;Nf − NÞ].
For Nf ¼ 2N the world sheet sigma model becomes

conformal. Moreover, for N ¼ 2 the number of the orienta-
tional/size moduli is six and they can be combined with
four translational moduli to form a ten-dimensional (10D)
space required for a superstring to become critical [1,11].
In this case, the target space of the world sheet 2D theory
on the non-Abelian vortex string is R4 × Y6, where Y6 is a
noncompact six-dimensional Calabi-Yau (CY) manifold,
the conifold [12,13].
Non-Abelian vortices in UðNÞ theories are topologically

stable and cannot be broken. In particular, monopoles
confined by the non-Abelian string are junctions of two
strings with different orientations rather then string end-
points (see review [9]). Therefore the finite-length strings
are closed.
Thus, we focus on the closed strings and consider CY

“compactification” (Kaluza-Klein reduction) of 10D string
theory associated with the non-Abelian vortex to 4D on the
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conifold Y6.
1 The goal is to identify the closed string states

with the hadrons of 4D N ¼ 2 SQCD. The vortex string
theory at hand was identified as the type IIA string
theory [11].
The first step of this program, namely identifying

massless string states, was carried out in [11,14] using
supergravity approximation. It turns out that most of the
massless modes have non-normalizable wave functions
over the noncompact conifold Y6, i.e., they are not localized
in 4D and, hence, cannot be interpreted as dynamical states
in 4D SQCD. In particular, the 4D graviton and unwanted
vector multiplet associated with deformations of the Kähler
form of the conifold are absent. However, a single massless
BPS hypermultiplet was found at the self-dual point at
strong coupling. It is associated with deformations of a
complex structure of the conifold and was interpreted as a
composite 4D baryon, b.2

Later low lying massive non-BPS 4D states were found
in [15,16] using the little string theory approach (see [17]
for a review).
In this paper we consider 4DN ¼ 2 SQCD with nonzero

quarkmasses. Quarkmasses are the only deformations of the
4D SQCD with given gauge and flavor groups allowed by
N ¼ 2 supersymmetry, which do not involve higher-deriva-
tive operators. It is interesting to study the string theory
response to these deformations. However, making quarks
massive lifts some of the orientational and size moduli of the
non-Abelian string. Generically, this breaks the conformal
invariance of the world sheet WCPð2; 2Þ model (at least
classically) preventing the formulation of the string theory in
this case. This problem is puzzling because from the
standpoint of 4D SQCD switching on quark masses is
physically the most natural deformation one can consider.
To overcome this difficulty, instead of attempting to

interpret mass terms for orientational/size moduli in the
WCPð2; 2Þmodel in terms of 10D supergravity, we propose
from the very beginning to use a flux “compactification” to
describe 4D quark masses in the string theory framework.
The motivation is that fluxes generically induce a potential
for CY moduli lifting flat directions (see, for example, [18]
for a review). On the other hand, in 4D theory we expect that
quark masses also induce a potential for the massless baryon
b associated with the conifold complex structure modulus. In
particular, we know that it acquires the mass

mb ¼ jm1 þm2 −m3 −m4j ð1:2Þ
at nonzeromA dictated for a BPS state by its baryonic charge
[19], where mA, A ¼ 1;…; 4 are quark masses. Thus, we
expect that fluxes in 10D supergravity can be interpreted in
terms of quark masses of 4D SQCD.

Generically, fluxes modify the metric so that the
deformed background is a solution of 10D supergravity
equations of motion. This guarantees the conformal invari-
ance of the deformed world sheet sigma model.
It is known that for type IIA CY “compactifications” the

potential for the Kähler form moduli arise from Ramond-
Ramond (RR) even-form fluxes, while the potential for
complex structure moduli is induced by the Neveu-Schwarz
(NS) 3-form flux H3 [20,21]. Since we are interested in the
potential for the conifold complex structure modulus b, we
consider the NS 3-form H3. It does not break N ¼ 2
supersymmetry in 4D theory [20].
We use a perturbation theory to solve 10D gravity

equations, solving first equations of motion for H3 using
the conifold metric. The back reaction on the metric and the
dilaton arise in the quadratic order inH3 and we neglect this
effect to the leading order at small H3.
Note that if we keep the vacuum expectation value (VEV)

of the baryon b large the curvature of the conifold is
everywhere small and the gravity approximation is justified.
It turns out that H3 flux does not generate a mass

term (1.2) for the baryon b. The mass term vanishes due to
the noncompactness of the conifold. Instead, the H3 flux
produces a potential leading to a runaway vacuum for b. We
still look for the interpretation of the H3 flux in terms of
quark masses. The reason for this is that there is no other
deformation in 4D SQCD (preserving N ¼ 2 supersym-
metry) which produces a scalar potential, except mass
deformation. Using field theory arguments we relate H3 to
a particular choice of quark masses in 4D SQCD. At the
runaway vacuum the deformed conifold degenerates to
lower dimensions. We interpret this as a flow from a non-
Abelian string to an Abelian one.
The paper is organized as follows. In Sec. II we briefly

review 4D N ¼ 2 SQCD and the world sheet sigma model
on the non-Abelian string. Next, we review the massless
baryon b as a deformation of the complex structure of the
conifold and present the conifold metric. In Sec. III we
solve equations of motion for the 3-form H3 and show that
H3 does not induce a mass (1.2) for the b-baryon. Also, we
derive the potential for b leading to the runaway vacuum.
To better understand the behavior of the potential at large b
in Sec. IV, we solve the equations of motion for H3 using
the deformed conifold metric and calculate the potential at
large b. In Sec. V we interpret the H3-form in terms of
quark masses in 4D SQCD. We also discuss the interpre-
tation of the degeneration of the conifold at the runaway
vacuum as a flow from a non-Abelian string to an Abelian
one. Section VI summarizes our conclusions.

II. NON-ABELIAN CRITICAL VORTEX STRING

A. Four-dimensional N = 2 SQCD

As was already mentioned, non-Abelian vortex strings
were first found in 4D N ¼ 2 SQCD with the gauge group

1Here and below we use the term “compactification” in
quotation marks because the conifold is a noncompact CY space.

2The definition of the baryonic charge is nonstandard and will
be given below in Sec. II.
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UðNÞ and Nf ≥ N quark flavors supplemented by the
Fayet-Iliopoulos (FI) [22] term with parameter ξ [2–5].
See, for example, [9] for a detailed review of this theory.
Here, we just mention that at weak coupling g2 ≪ 1, this
theory is in the Higgs phase in which the scalar components
of the quark multiplets (squarks) develop VEVs. These
VEVs break the UðNÞ gauge group, Higgsing all gauge
bosons. The Higgsed gauge bosons combine with the
screened quarks to form long N ¼ 2 multiplets with mass
mG ∼ g

ffiffiffi
ξ

p
.

The global flavor SUðNfÞ is broken down to the so-
called color-flavor locked group. The resulting global
symmetry is

SUðNÞCþF × SUðNf − NÞ × Uð1ÞB ð2:1Þ

(see [9] for more details).
The unbroken global Uð1ÞB factor above is identified

with a baryonic symmetry. Note that what is usually
identified as the baryonic U(1) charge is a part of our
4D theory gauge group. “Our” Uð1ÞB is an unbroken by the
squark VEVs combination of two U(1) symmetries: the
first is a subgroup of the flavor SUðNfÞ, and the second is
the global U(1) subgroup of UðNÞ gauge symmetry.
As was already noted, we consider N ¼ 2 SQCD in the

Higgs phase. N squarks condense; therefore, non-Abelian
vortex strings confine monopoles. In theN ¼ 2 4D theory,
these strings are 1=2 BPS-saturated; hence, their tension is
determined exactly by the FI parameter,

T ¼ 2πξ: ð2:2Þ

However, as we already mentioned, the monopoles cannot
be attached to the string end points. In fact, in the UðNÞ
theories confined monopoles are junctions of two distinct
elementary non-Abelian strings [4,5,23] (see [9] for a
review). As a result, in four-dimensional N ¼ 2 SQCD
we have monopole-anti-monopole mesons in which the
monopole and antimonopole are connected by two con-
fining strings. In addition, in the UðNÞ gauge theory we can
have baryons appearing as closed “necklace” configura-
tions of N × ðintegerÞ monopoles [9]. For the U(2) gauge
group the important example of a baryon consists of four
monopoles [19].
Below we focus on the particular case N ¼ 2 and

Nf ¼ 4 because, as was mentioned in the Introduction,
in this case 4D N ¼ 2 SQCD supports non-Abelian vortex
strings which behave as critical superstrings [1]. Also, for
Nf ¼ 2N the gauge coupling g2 of the 4D SQCD does
not run; the β function vanishes. However, the conformal
invariance of the 4D theory is explicitly broken by the FI
parameter ξ, which defines VEV’s of quarks. The FI
parameter is not renormalized.
Both stringy monopole-anti-monopole mesons and

monopole baryons with spins J ∼ 1 have masses

determined by the string tension ∼
ffiffiffi
ξ

p
, and are heavier at

weak coupling g2 ≪ 1 than perturbative states with masses
mG ∼ g

ffiffiffi
ξ

p
. Thus, they can decay into perturbative states3

and, in fact, at weak coupling we do not expect them to
appear as stable states.
Only in the strong coupling domain g2 ∼ 1 do we expect

(at least some of) the stringy mesons and baryons to
become stable. These expectations were confirmed in
[11,15] where low lying string states in the string theory
for the critical non-Abelian vortex were found at the self-
dual point at strong coupling.
Below we introduce small quark massesmA, A ¼ 1;…4,

assuming that the two first squark flavors with masses m1

and m2 develop VEVs.

B. World sheet sigma model

The presence of the color-flavor locked group
SUðNÞCþF is the reason for the formation of non-
Abelian vortex strings [2–5]. The most important feature
of these vortices is the presence of the orientational zero
modes. As was already mentioned, in N ¼ 2 SQCD these
strings are 1=2 BPS saturated.
Let us briefly review the model emerging on the world

sheet of the non-Abelian string [9].
The translational moduli fields are described by the

Nambu-Goto action and decouple from all other moduli.
Below we focus on internal moduli.
If Nf ¼ N, the dynamics of the orientational zero modes

of the non-Abelian vortex, which become orientational
moduli fields on the world sheet, are described by the 2D
N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ model.
If one adds additional quark flavors, non-Abelian vor-

tices become semilocal—they acquire size moduli [24].
In particular, for the non-Abelian semilocal vortex in
U(2) N ¼ 2 SQCD with four flavors, in addition to the
complex orientational moduli nP (here P ¼ 1, 2), we must
add two complex size moduli ρK (where K ¼ 3, 4)
(see [2,5,24–27]).
The effective theory on the string world sheet is a

two-dimensional N ¼ ð2; 2Þ supersymmetric WCPð2; 2Þ
model [1,11,14].4

This model describes the internal dynamics of the non-
Abelian semilocal string. For details, see, e.g., the
review [9].

3Their quantum numbers, with respect to the global group
(2.1), allow these decays (see [9]).

4Both the orientational and the size moduli have logarithmi-
cally divergent norms (see, e.g., [25]). After an appropriate
infrared regularization, logarithmically divergent norms can be
absorbed into the definition of relevant two-dimensional fields
[25]. In fact, the world sheet theory on the semilocal non-Abelian
string is not exactly theWCPðN; ÑÞmodel [27]—there are minor
differences. The actual theory is called the zn model. Never-
theless, it has the same infrared physics as the model (2.3) [28]
(see also [29]).
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The WCPð2; 2Þ sigma model can be defined as a low
energy limit of the U(1) gauge theory [30], which corre-
sponds to taking the limit of infinite gauge coupling,
e2 → ∞, in the action below. The bosonic part of the
action reads5

S ¼
Z

d2x

�
j∇αnPj2 þ j∇̃αρ

Kj2 þ 1

4e2
F2
αβ þ

1

e2
j∂ασj2

þ 2

����σ þ mPffiffiffi
2

p
����2jnPj2 þ 2

����σ þmKffiffiffi
2

p
����2jρKj2

þ e2

2
ðjnPj2 − jρKj2 − ReβÞ2

�
;

P ¼ 1; 2; K ¼ 3; 4: ð2:3Þ

Here, mA (A ¼ 1;…; 4) are the so-called twisted masses
(they coincide with 4D quark masses), while Reβ is the
inverse coupling constant (2D FI term). More exactly it is
the real part of the complexified coupling constant intro-
duced in Eq. (2.7) below.
The fields nP and ρK have charges þ1 and −1 with

respect to the auxiliary U(1) gauge field, and the corre-
sponding covariant derivatives in (2.3) are defined as

∇α ¼ ∂α − iAα; ∇̃α ¼ ∂α þ iAα; ð2:4Þ

respectively. The complex scalar field σ is a superpartner of
the U(1) gauge field Aα.
Apart from the U(1) gauge symmetry, the sigma model

(2.3) in the massless limit has a global symmetry group

SUð2Þ × SUð2Þ × Uð1ÞB; ð2:5Þ

i.e., exactly the same as the unbroken global group in the
4D theory at N ¼ 2 and Nf ¼ 4. The fields n and ρ
transform in the following representations:

n∶ð2; 1; 0Þ; ρ∶ð1; 2; 1Þ: ð2:6Þ

Here the global “baryonic” Uð1ÞB symmetry is a classically
unbroken (at β > 0) combination of the global U(1)
group, which rotates n and ρ fields with the same phases,
plus U(1) gauge symmetry, which rotates them with
the opposite phases (see [11] for details). The nonzero
twisted masses mA break each of the SU(2) factors in (2.5)
down to U(1).
The 2D coupling constant Re β can be naturally com-

plexified if we include the θ term in the action,

β ¼ Re β þ i
θ2D
2π

; ð2:7Þ

where θ2D is the 2D θ angle.
The number of real bosonic degrees of freedom in

the model (2.3) is 8 − 1 − 1 ¼ 6. Here, 8 is the number
of real degrees of freedom of nP and ρK fields and we
subtracted one real constraint imposed by the D term
condition in (2.3),

jnPj2 − jρKj2 ¼ Re β; ð2:8Þ

in the limit e2 → ∞ and one gauge phase eaten by the
Higgs mechanism. As we already mentioned, these six
internal degrees of freedom in the massless limit can be
combined with four translational moduli to form a 10D
space needed for a superstring to be critical.
At the quantum level, the coupling β does not run in this

theory. Thus, the WCPð2; 2Þ model is superconformal at
zero massesmA ¼ 0. Therefore, its target space is Ricci-flat
and [being Kähler due to N ¼ ð2; 2Þ supersymmetry]
represents a noncompact Calabi-Yau manifold, namely
the conifold Y6 (see [13] for a review).
The WCPð2; 2Þ model (2.3) with mA ¼ 0 was used in

[1,11] to define the critical string theory for the non-
Abelian vortex at hand.
Typically solitonic strings are “thick” and the effective

world sheet theory, like the one in (2.3), has a series of
unknown high derivative corrections in powers of ∂=mG.
The string transverse size is given by 1=mG, where mG ∼
g

ffiffiffi
ξ

p
is a mass scale of the gauge bosons and quarks

forming the string. The string cannot be thin in a weakly
coupled 4D SQCD because at weak coupling mG ∼ g

ffiffiffiffi
T

p
and m2

G is always small in the units of the string tension T
[see (2.2)].
A conjecture was put forward in [1] that at strong

coupling in the vicinity of a critical value g2c ∼ 1 the
non-Abelian string in the theory at hand becomes thin,
and higher-derivative corrections in the world sheet theory
(2.3) are absent. This is possible because the low energy
sigma model (2.3) already describes a critical string and
higher-derivative corrections are not required to improve its
ultraviolet behavior (see [31] for the discussion of this
problem). The above conjecture implies that mGðg2Þ → ∞
at g2 → g2c. As expected, the thin string produces linear
Regge trajectories even for small spins [16].
It was also conjectured in [11] that gc corresponds to the

value of the 2D coupling constant β ¼ 0. The motivation
for this conjecture is that this value is a self-dual point for
theWCPð2; 2Þ model (2.3). Also, β ¼ 0 is a natural choice
because at this point we have a regime change in the
WCPð2; 2Þ model. The resolved conifold defined by the D
term condition (2.8) develops a conical singularity at this
point. The point β ¼ 0 corresponds to τSW ¼ 1 in the 4D

5Equation (2.3) and similar expressions below are given in
Euclidean notation.
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SQCD, where τSW is the complexified inverse coupling
τSW ¼ i 8πg2 þ θ4D

π , where θ4D is the 4D θ angle [19].

A version of the string-gauge duality for 4D SQCD was
proposed [1]: at weak coupling this theory is in the Higgs
phase and can be described in terms of quarks and Higgsed
gauge bosons, while at strong coupling, hadrons of this
theory can be understood as string states formed by the
non-Abelian vortex string.
At nonzero quark masses mA ≠ 0, the model (2.3) is a

mass deformation of the superconformal CY theory on the
conifold. Generically, quark masses break the world sheet
conformal invariance. The WCPð2; 2Þ model in (2.3) can
no longer be used to define a string theory for the non-
Abelian vortex in the massive 4D SQCD.

C. Massless 4D baryon

In this section we briefly review the only 4D massless
state found in the string theory of the critical non-Abelian
vortex in the massless limit [11]. It is associated with the
deformation of the conifold complex structure. As was
already mentioned, all other massless string modes have
non-normalizable wave functions over the conifold. In
particular, the 4D graviton associated with a constant wave
function over the conifold Y6 is absent [11]. This result
matches our expectations since we started with N ¼ 2
SQCD in the flat four-dimensional space without gravity.
We can construct the U(1) gauge-invariant “mesonic”

variables

wPK ¼ nPρK: ð2:9Þ

These variables are subject to the constraint

det wPK ¼ 0: ð2:10Þ

Equation (2.10) defines the conifold Y6. It has the Ricci-
flat Kähler metric and represents a noncompact Calabi-Yau
manifold [12,13,30]. It is a cone which can be parametrized
by the noncompact radial coordinate,

r̃2 ¼ Tr w̄w; ð2:11Þ

and five angles (see [12]). Its section at fixed r̃ is S2 × S3.
At β ¼ 0 the conifold develops a conical singularity, so

both spheres S2 and S3 can shrink to zero. The conifold
singularity can be smoothed out in two distinct ways: by
deforming the Kähler form or by deforming the complex
structure. The first option is called the resolved conifold
and amounts to keeping a nonzero value of β in (2.8).
This resolution preserves the Kähler structure and Ricci-
flatness of the metric. If we put ρK ¼ 0 in (2.3) we get the
CPð1Þ model with the sphere S2 as a target space (with the
radius

ffiffiffi
β

p
). The resolved conifold has no normalizable zero

modes. In particular, the modulus β which becomes a scalar

field in four dimensions has a non-normalizable wave
function over the Y6 and therefore is not dynamical [11].
If β ¼ 0 another option exists, namely a deformation of

the complex structure [13]. It preserves the Kähler structure
and the Ricci-flatness of the conifold and is usually referred
to as the deformed conifold. It is defined by the deformation
of Eq. (2.10), namely

det wPK ¼ b; ð2:12Þ

where b is a complex parameter. Now the sphere S3 can not
shrink to zero—its minimal size is determined by b.
The modulus b becomes a 4D complex scalar field. The

effective action for this field was calculated in [11] using
the explicit metric on the deformed conifold [12,32,33],

SkinðbÞ ¼ T
Z

d4xj∂μbj2 log
R̃2
IR

jbj ; ð2:13Þ

where R̃IR is the maximal value of the radial coordinate r̃
introduced as an infrared regularization of the logarithmi-
cally divergent b-field norm. Here the logarithmic integral
at small r̃ is cut off by the minimal size of S3, which is equal
to jbj.
We see that the norm of the modulus b turns out to be

logarithmically divergent in the infrared. The modes with
the logarithmically divergent norm are at the borderline
between normalizable and non-normalizable modes.
Usually such states are considered to be “localized” ones.
We follow this rule. This scalar mode is localized near the
conifold singularity in the same sense as the orientational
and size zero modes are localized on the vortex string
solution.
The field b being massless can develop a VEV. Thus,

we have a new Higgs branch in 4DN ¼ 2 SQCD which is
developed only for the critical value of the 4D coupling
constant τSW ¼ 1 associated with β ¼ 0.
In [11] the massless state bwas interpreted as a baryon of

4D N ¼ 2 QCD. Let us explain this. From Eq. (2.12) we
see that the complex parameter b (which is promoted to a
4D scalar field) is a singlet with respect to both SU(2)
factors in (2.5), i.e., the global world sheet group.6 What
about its baryonic charge? From (2.6) and (2.12) we see
that the b state transforms as

ð1; 1; 2Þ: ð2:14Þ

In particular, it has the baryon charge QBðbÞ ¼ 2.
In type IIA superstring compactifications the complex

scalar associated with deformations of the complex struc-
ture of the Calabi-Yau space enters as a 4D N ¼ 2 BPS
hypermultiplet (see [18] for a review). Other components of

6Which is isomorphic to the 4D global group (2.1) for N ¼ 2,
Nf ¼ 4.
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this hypermultiplet can be restored by N ¼ 2 supersym-
metry. In particular, the 4D N ¼ 2 hypermultiplet should
contain another complex scalar b̃ with baryon charge
QBðb̃Þ ¼ −2. In the stringy description this scalar comes
from a ten-dimensional 3-form (see [18] for a review, as
well as Sec. III C and the Appendix).
To conclude this section, let us present the explicit metric

of the singular conifold (with both β and b equal to zero),
which will be used in the next section. It has the form [12]

ds26 ¼ dr2 þ r2

6
ðe2θ1 þ e2φ1

þ e2θ2 þ e2φ2
Þ þ r2

9
e2ψ ; ð2:15Þ

where

eθ1 ¼ dθ1; eφ1
¼ sin θ1dφ1;

eθ2 ¼ dθ2; eφ2
¼ sin θ2dφ2;

eψ ¼ dψ þ cos θ1dφ1 þ cos θ2dφ2: ð2:16Þ

Here, r is another radial coordinate on the cone while the
angles above are defined at 0 ≤ θ1;2 < π, 0 ≤ φ1;2 < 2π,
0 ≤ ψ < 4π.
The volume integral associated with this metric is

ðVolÞY6
¼ 1

108

Z
r5dr dψ dθ1 sin θ1 dφ1 dθ2 sin θ2dφ2:

ð2:17Þ

The radial coordinate r̃, defined in terms of matrix wPK

[see (2.11)], is related to r in (2.15) via [12]

r2 ¼ 3

2
r̃4=3: ð2:18Þ

III. NS 3-FORM

Now we switch on small quark masses mA, A ¼ 1;…; 4.
We will use the effective 10D supergravity approach to find
the deformed background for our non-Abelian vortex
string. As we already explained in the Introduction, instead
of attempting to interpret twisted mass terms in (2.3) in
terms of 10D gravity, we take a different route. We exploit
the standard string theory approach of flux “compactifica-
tions” to 4D. Namely, we look for the solution of 10D
gravity equations of motion with nonzero NS 3-form, H3,
and then interpret H3 in terms of quark masses. Note that
the 3-form H3 flux does not break N ¼ 2 supersymmetry
in 4D [20].
The motivation to consider the NS 3-form H3 is as

follows. We expect that quark masses should lift the Higgs
branch associated with the massless baryon b. In particular,
the mass term (1.2) for the baryon b appears for generic
values of quark masses as dictated for a BPS state with a
nonzero baryonic charge [19]. On the other hand,

generically, in type IIA compactifications a potential
for Kähler moduli is generated by even-form RR fluxes,
while the potential for complex structure moduli (like our
b-modulus) is induced by the NS 3-form flux [20].
As we already mentioned, for solving gravity equations

of motion we will use the perturbation theory at small H3.
Namely, we will solve equations of motion forH3 using the
conifold metric, neglecting the back reaction on the metric
and the dilaton. These effects appear in the quadratic order
inH3. We also assume that the VEVof the baryon b is large
to make sure that the curvature of the conifold is every-
where small. This justifies the gravity approximation.

A. Solution for NS 3-form at large r

The bosonic part of the action of the type IIA super-
gravity in the Einstein frame is given by

S10D ¼
Z

d10x
ffiffiffiffiffiffiffi
−G

p �
R −

1

2
GMN∂MΦ∂NΦ

−
e−Φ

12
HMNLHMNL −

1

2
e
Φ
2F2

4

�

þ T2

Z
1

2
H3 ∧ C3 ∧ dC3; ð3:1Þ

whereGMN andΦ are 10Dmetric and dilaton, and the string
coupling gs ¼ eΦ. We also keep only the NS 2-form B2 with
the field strength H3 ¼ dB2 and the RR 3-form C3 with the
field strength F4 ¼ dC3. We will need the RR 3-form C3

below to introduce the complex scalar b̃, the bosonic
superpartner of b in the 4D baryonic hypermultiplet.
In this section we will find a solution for the NS 3-form

H3 at large values of the radial coordinate r. Large means
that r̃ is much larger than the minimal radius of the S3 of the
deformed conifold, which is equal to

ffiffiffiffiffiffijbjp
[see (2.12)].

This translates into r ≫ jbj1=3 [see (2.18)]. At large r we
can neglect the deformation of the conifold and use the
metric of the singular conifold. Thus, the 10D space has the
structure R4 × Y6 with the metric

ds210 ¼ T½−ðdtÞ2 þ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2� þ ds26;

ð3:2Þ

where the metric of Y6 is given by (2.15) and T is the string
tension (2.2).
For 2-form B2, we use the ansatz introduced in [33–36]

for type IIB “compactifications” on the conifold. Namely,
we write

B2 ¼ f1ðrÞeθ1 ∧ eφ1
þ f2ðrÞeθ2 ∧ eφ2

; ð3:3Þ

where f1ðrÞ and f2ðrÞ are functions of the radial coordinate
r, while angle differentials are defined in (2.16). This gives,
for the 3-form field strength,
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H3 ¼ f01dr ∧ eθ1 ∧ eφ1
þ f02dr ∧ eθ2 ∧ eφ2

; ð3:4Þ

where prime denotes the derivative with respect to r. This
3-form is closed so the Bianchy identity is satisfied.
In order to find a nonzero solution for H3 we have to

either introduce a source like a D-brane or impose a
nontrivial boundary condition for H3. We use the latter
option and specify the boundary condition forH3 at small r
in Sec. IV B.
The equation of motion for H3 reads

dðe−Φ �H3Þ ¼ e−Φdð�H3Þ ¼ 0; ð3:5Þ

where � denotes the Hodge star and, as we explained above,
we neglect the back reaction on the dilaton to the leading
order in small H3 and assume that the dilaton is constant.
The 10D-dual of H3 is given by

�H3 ¼
T2

3
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ eψ

∧ ðeθ2 ∧ eφ2
rf01 þ eθ1 ∧ eφ1

rf02Þ: ð3:6Þ

Substituting this into the equation of motion (3.5) we find
three equations:

∂rðrf01Þ ¼ 0; ∂rðrf02Þ ¼ 0; ð3:7Þ

and

f01 þ f02 ¼ 0: ð3:8Þ

The nonzero solution to these equations has the form

f1 ¼ −f2 ¼ μ1 log r; ð3:9Þ

where μ1 is a small real parameter which wewill interpret in
terms of quark masses in Sec. V.
This gives, for the 3-form H3,

H3 ¼ μ1
dr
r
∧ ðeθ1 ∧ eφ1

− eθ2 ∧ eφ2
Þ: ð3:10Þ

Essentially, this coincides with the solution obtained in
[33–35] for the NS 3-form in type IIB “compactifications”
on the conifold.

B. A generalization

In this section we make a generalization of our solution
(3.10) for H3. Let us define two real 3-forms on Y6,

α3 ≡ dr
r
∧ ðeθ1 ∧ eφ1

− eθ2 ∧ eφ2
Þ ð3:11Þ

and

β3 ≡ eψ ∧ ðeθ1 ∧ eφ1
− eθ2 ∧ eφ2

Þ: ð3:12Þ

They are both closed [34,35]:

dα3 ¼ 0; dβ3 ¼ 0: ð3:13Þ

Moreover, using the conifold metric (2.15) one can check
that their 10D-duals are given by

�α3 ¼ −
T2

3
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ β3;

�β3 ¼ 3T2dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ α3; ð3:14Þ

where the first relation was already shown in the previous
section [see (3.6)].
The above relations ensure that both 10D-dual forms

satisfy equations of motion

d � α3 ¼ 0; d � β3 ¼ 0: ð3:15Þ

Therefore, we can generalize our solution (3.10) for H3 by
writing

H3 ¼ μ1α3 þ
μ2
3
β3; ð3:16Þ

where μ2 is another real parameter, while the factor 1
3
is

introduced for convenience. ThisH3-form satisfies both the
Bianchi identity and equations of motion (3.5).
3-Forms (3.11) and (3.12) form a basis similar to the

simplectic basis of the harmonic α and the β3-forms for
compact CYs (see, for example, review [18]). In particular,Z

Y6

α3 ∧ α3 ¼
Z
Y6

β3 ∧ β3 ¼ 0; ð3:17Þ

while

Z
Y6

α3 ∧ β3 ∼ −
Z

dr
r
∼ − log

R3
IR

jbj : ð3:18Þ

Here RIR is the maximal value of the radial coordinate r
introduced to regularize the infrared logarithmic diver-
gence, while at small r the integral is cut off by the minimal
size of S3 which is equal to jbj. This logarithmic behavior
will play an important role below. Note that this logarithm
is similar to the one which determines the metric for the
b-baryon in (2.13).7

C. Mass term for b̃-baryon

Generically, in type IIA compactifications the potential
for complex structure moduli comes from two sources:
the topological term and the kinetic term for B2 in the 10D

7Note that R3
IR ∼ R̃2

IR [see (2.18)].
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action, namely, the last and the first terms in the second line
of (3.1), respectively [20]. In this section we consider the
topological term.
Following the standard procedure for compactifications

on CY 3-folds [18], we expand the 10D potential C3 as

C3 ¼ C4D
3 þ b̃1α3 þ

1

3
b̃2β3: ð3:19Þ

Here C4D
3 ðxÞ is the part of the 10D potential C3 oriented in

4D which depends only on 4D coordinates xμ. Real 4D
scalar fields b̃1 and b̃2 can be combined into a complex
scalar, b̃ðxÞ ¼ b̃1ðxÞ þ ib̃2ðxÞ, which, together with the
complex scalar b, forms a bosonic part of the 4D baryonic
hypermultiplet.
In the Appendix we calculate kinetic terms for 4D scalars

b̃1;2 using the last two last terms in (3.19) to calculate the
4-form field strength F4 ¼ dC3. We show that scalars b̃1;2
acquire the same logarithmic metric as the complex scalar b
[see (2.13)], as dictated by 4D N ¼ 2 supersymmetry.
In order to obtain the mass term for b̃, we, following

[20], saturate the last factor dC3 in the topological term in
(3.1) by the 4D potential, C4D

3 ðxÞ. Dualizing this to a 4D
scalar eðxÞ, dC4D

3 ðxÞμνδγ ¼ eðxÞεμνδγ , we get

Z
1

2
H3∧C3∧dC3¼

1

2

Z
d4x

�
e
Z
Y6

H3∧C3

�
: ð3:20Þ

Now we substitute here our solution for the H3-form (3.16)
and the expansion (3.19). This gives the contribution to the
4D action,

T2

Z
d4xeðμ2b̃1 − μ1b̃2Þ log

R3
IR

jbj ; ð3:21Þ

where we used (3.17) and (3.18).
Combining this with the kinetic term for C4D

3 in (3.1), we
get the part of the 4D action depending on the scalar e∶

Se4D ¼ T2

Z
d4x

�
1

2
ðVolÞY6

eΦ=2e2

þ eðμ2b̃1 − μ1b̃2Þ log
R3
IR

jbj
�
: ð3:22Þ

Here, ðVolÞY6
∼ R6

IR is the infinite volume of the conifold
[see (2.17)]. Integrating the scalar e out, we finally get the
mass term for b̃∶

Smassðb̃Þ ¼ −
T2eΦ=2

2ðVolÞY6

Z
d4xðμ2b̃1 − μ1b̃2Þ2

×
�
log

R3
IR

jbj
�

2
����
RIR→∞

→ 0: ð3:23Þ

We see that the mass term for the baryon b̃ vanishes. In
contrast to type IIA compactifications on compact CY
spaces, where the topological term in (3.1) produces mass
terms for scalar superpartners of complex structure moduli
[20], in our case it goes to zero due to the non-normal-
izability of C4D

3 . In terms of quark masses we interpret the
result in (3.23) as follows. The NS 3-form H3 corresponds
to a particular choice of quark masses for which mb ¼ 0
[see (1.2)]. We will come back to the interpretation ofH3 in
terms of quark masses later in Sec. V.
In fact, this result is a test of the consistency of our

approach. To see this, note that the mass term (3.23) gives
mass to a particular combination of b̃1 and b̃2, while the
orthogonal combination remains massless. If this term were
nonzero this would signal the breaking of N ¼ 2 super-
symmetry in 4D. On the other hand, we know that quark
masses do not break N ¼ 2 supersymmetry in 4D SQCD.

D. The potential for the baryon b

As we already mentioned in the type IIA compactifica-
tions, another source of the potential for complex structure
moduli come from the kinetic term for B2 in (3.1). Writing
this term as

−
e−Φ

12

Z
H3 ∧ �H3; ð3:24Þ

and substituting here our solution (3.16), we get

−T2e−Φðμ21 þ μ22Þ
Z

d4x log
R3
IR

jbj ; ð3:25Þ

where we used (3.14) and (3.18). Thus, the scalar potential
has the form

VðbÞ ¼ constT2e−Φðμ21 þ μ22Þ log
R3
IR

jbj : ð3:26Þ

The potential (3.26) is proportional to the same infrared
logarithm which enters the metric (2.13) for the baryon b.
We see that the Higgs branch for b is lifted and we have a
runaway vacuum with VEV

hjbji → R3
IR → ∞: ð3:27Þ

In fact, our solution (3.16) is found using the metric of the
singular conifold and therefore is valid at r ≫ jbj1=3. Thus,
the potential (3.26) can be trusted at small jbj where the
logarithm is large and we cannot really use it at jbj ∼ R3

IR.
In the next section, we consider the case of large jbj and
confirm our conclusion in (3.27) that the VEVof the baryon
b tends to infinity.
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IV. DEFORMED CONIFOLD

In the previous section we have seen that the 3-form H3

lifts the Higgs branch for the baryon b and pushes the VEV
of b towards large jbj, jbj ∼ R3

IR. To study the behavior of
the potential VðbÞ in this case we have to find the solution
for H3 on the deformed conifold assuming that the radial
coordinate r ∼ jbj1=3. First, we briefly review the metric of
the deformed conifold and then we solve equations of
motion for H3.

A. Metric of the deformed conifold

The metric of the deformed conifold has the form
[12,32,33]

ds26 ¼
1

2
jbj2=3KðτÞ

�
1

3K3ðτÞ ðdτ
2 þ e2ψÞ þ cosh2

τ

2
ðg23 þ g24Þ

þ sinh2
τ

2
ðg21 þ g22Þ

�
; ð4:1Þ

where angle differentials are defined as

g1 ¼ −
1ffiffiffi
2

p ðeϕ1
þ e3Þ; g2 ¼

1ffiffiffi
2

p ðeθ1 − e4Þ;

g3 ¼ −
1ffiffiffi
2

p ðeϕ1
− e3Þ; g4 ¼

1ffiffiffi
2

p ðeθ1 þ e4Þ; ð4:2Þ

while

e3 ¼ cosψ sin θ2dφ2 − sinψdθ2;

e4 ¼ sinψ sin θ2dφ2 þ cosψdθ2 ð4:3Þ

[see also (2.16)].
Here,

KðτÞ ¼ ðsinh 2τ − 2τÞ1=3
21=3 sinh τ

; ð4:4Þ

and the new radial coordinate, τ, is defined as

r̃2 ¼ jbj cosh τ ¼
�
2

3

�3
2

r3: ð4:5Þ

In the limit of large τ, the metric (4.1) reduces to the
metric (2.15) of the singular conifold.
Results of the previous section show that we have a

runaway vacuum with jbj ∼ R3
IR, so we are interested in the

metric (4.1) in the limit of small τ, τ ≪ 1. In this limit, the
metric of the deformed conifold takes the form

ds26jτ→0 ¼
1

2
jbj2=3

�
2

3

�1
3

�
1

2
dτ2 þ 1

2
e2ψ þ g23 þ g24

þ τ2

4
ðg21 þ g22Þ

�
: ð4:6Þ

The last term here corresponds to the collapsing sphere S2,
while the sphere S3 associated with three angular terms in
the first line has a fixed radius in the limit τ → 0 [12,33].
The radial coordinate r approaches its minimal value with

r3jmin ¼
�
3

2

�3
2jbj ð4:7Þ

at τ ¼ 0.
The square root of the determinant of the metric,

ffiffiffiffiffi
g6

p
∼ jbj2 cosh2 τ

2
sinh2

τ

2

����
τ→0

∼ jbj2τ2; ð4:8Þ

vanishes at τ ¼ 0, which shows the degeneration of the
conifold metric.

B. NS 3-form at small τ

In this section we consider an extrapolation of our
solution for H3 obtained for large r to the region of small
values of τ. For simplicity, we will consider an extrapo-
lation of the solution (3.10), taking μ2 ¼ 0 in (3.16).
At large values of the radial coordinate τ, the 2-form

potential B2 is proportional to

B2 ∼ eθ1 ∧ eφ1
− eθ2 ∧ eφ2

ð4:9Þ

[see (3.3) and (3.9)]. The closed 2-form on the right-hand
side can be rewritten in terms of angular differentials g.
Explicitly, we have

eθ1 ∧ eφ1
− eθ2 ∧ eφ2

¼ g1 ∧ g2 þ g3 ∧ g4: ð4:10Þ

Therefore, it is natural to look for a solution for B2 at
arbitrary τ using the ansatz

B2 ¼ pðτÞg1 ∧ g2 þ kðτÞg3 ∧ g4; ð4:11Þ

where p and k are functions of the radial coordinate τ. This
ansatz was used in [33] for the type IIB “compactification”
on the deformed conifold.
The ansatz (4.11) gives for the field strength

H3 ¼ p0dτ ∧ g1 ∧ g2 þ k0dτ ∧ g3 ∧ g4

−
1

2
ðp − kÞeψ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ; ð4:12Þ

where we used the identity [33]
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dðg1∧g2−g3∧g4Þ¼−eψ ∧ ðg1∧g3þg2∧g4Þ: ð4:13Þ

Here, primes denote derivatives with respect to τ.
In particular, at large τ we have p ¼ k ¼ μ1=3, where we

rewrite solution (3.10) in terms of τ using relation (4.5)
at τ → ∞.
Calculating the 10D-dual of (4.12), we get

�H3 ¼ T2dx0 ∧ dx1 ∧ dx2 ∧ dx3

∧
�
p0coth2

�
τ

2

�
eψ ∧ g3 ∧ g4

þ k0tanh2
�
τ

2

�
eψ ∧ g1 ∧ g2

−
1

2
ðp − kÞdτ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ

�
: ð4:14Þ

Then the equation of motion (3.5) gives two equations:

4∂τ

�
p0

τ2

�
−
1

2
ðp − kÞ ¼ 0;

1

2
∂τðτ2k0Þ þ ðp − kÞ ¼ 0; ð4:15Þ

which we write down in the limit of small τ. To derive
(4.15) we used the identity [33]

dðg1∧g3þg2∧g4Þ¼eψ ∧ ðg1∧g2−g3∧g4Þ: ð4:16Þ

The solution of these equations at small τ has the form

kðτÞ ≈ μ1τ; pðτÞ ≈ −
μ1
80

τ5; ð4:17Þ

up to an overall constant.
To conclude this section, we note that at τ ¼ 0 our

solution (4.12) tends to a constant,

H3ðτ ¼ 0Þ ¼ μ1dτ ∧ g3 ∧ g4; ð4:18Þ

which we impose as boundary conditions at S3, which does
not shrink at τ ¼ 0. These boundary conditions ensure a
nonzero solution for H3.

C. The potential for the baryon b at large jbj
Substituting solutions for H3 and its 10D-dual given by

(4.12) and (4.14) to the kinetic term (3.24), we get

−
e−Φ

12

Z
H3 ∧ �H3 ∼ −μ21T2e−Φ

Z
d4xdττ2; ð4:19Þ

where only the function kðτÞ (4.17) contributes to the
leading order in τ. Thus, the potential for b takes the form

VðbÞ ¼ const μ21T
2e−Φτ3max; ð4:20Þ

where τmax is the infrared cutoff with respect to the radial
coordinate τ, related to RIR as follows:

jbj coshðτmaxÞ ¼
�
2

3

�3
2

R3
IR ð4:21Þ

[see (4.5)].
As we already explained, we expect that in our runaway

vacuum, b is large and close to RIR, and therefore τmax is
small. Expanding cosh τ at small τ, we get

τmax ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
IR − ð3

2
Þ32jbj

jbj

s
: ð4:22Þ

This gives the potential for the baryon b at large jbj∶

VðbÞ ¼ const μ21T
2e−Φ

�
R3
IR − ð3

2
Þ32jbj

jbj
	3

2

: ð4:23Þ

We see that to minimize the potential, jbj becomes large
and approaches the infrared cutoff

hjbji ¼
�
2

3

�3
2

R3
IR → ∞: ð4:24Þ

As we expected earlier in Sec. III D, we get a runaway
vacuum.
In fact, τ3max, which enters (4.20), is the volume of the

three-dimensional ball bounded by the sphere S2 of the
conifold with the maximum radius τmax. It shrinks to zero
as b tends to its VEV (4.24). To avoid singularities we
can regularize the size of S2 by introducing small nonzero
β, which makes the conifold “slightly resolved” [see (2.8)].
We take the limit β → 0 at the last step. Then the value
of the potential and all its derivatives vanish in the vacuum
(4.24) at jbj ¼ hjbji; for example,

VðbÞjjbj¼hjbji ¼ const μ21T
2e−Φ

β3

R9=2
IR

→ 0: ð4:25Þ

In particular, the mass term for b is zero. This is in
accordance with N ¼ 2 supersymmetry in 4D SQCD,
since the mass of b̃ is zero [see (3.23)].
To summarize, the H3-form flux produces the following

effects.
(i) The Higgs branch of the baryon b in 4D SQCD is

lifted.
(ii) The vacuum is of a runaway type, hjbji → ∞.
(iii) At the runaway vacuum the sphere S2 of the conifold

degenerates, while the radius of the sphere S3 tends
to infinity.
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We will interpret this degeneration in terms of N ¼ 2
SQCD in Sec. V B.

V. INTERPRETATION IN TERMS OF 4D SQCD

A. 3-form flux in terms of quark masses

In this section we interpret the NS 3-form H3 in terms of
quark masses of 4D N ¼ 2 SQCD. For Nf ¼ 4 we have
four complex mass parameters. However, a shift of the
complex scalar a, a superpartner of the U(1) gauge field,
produces an overall shift of quark masses. This can be also
seen in theWCPð2; 2Þmodel (2.3) on the world sheet of the
non-Abelian string; a constant shift of the scalar σ makes an
overall shift of quark masses. Thus, in fact, we have three
independent complex mass parameters in our 4D SQCD.
For example, we can choose three mass differences,

m1 −m2; m3 −m4; m1 −m3; ð5:1Þ

as independent parameters.
On the string theory side, our solution (3.16) for the

3-form H3 is parametrized by two real parameters, μ1
and μ2. Thus, we expect that the nonzero H3-flux can be
interpreted in terms of a particular choice of quark masses,
subject to two complex constraints.
One constraint we already discussed. We know that H3

does not produce a mass term for the b-baryon. This
ensures that

m1 þm2 −m3 −m4 ¼ 0 ð5:2Þ

[see (1.2)].
To derive the second constraint, we consider the exact

twisted superpotential for the WCPð2; 2Þ model (2.3)
obtained by integrating out n and ρ supermultiplets. It is
a generalization [37,38] of the CPðN − 1Þ model super-
potential [30,39–41] of the Veneziano-Yankielowicz
type [42]. In the present case Nf ¼ 2N ¼ 4, it reads:

WWCPðσÞ ¼
1

4π

�X
P¼1;2

ð
ffiffiffi
2

p
σ þmPÞ ln ð

ffiffiffi
2

p
σ þmPÞ

−
X
K¼3;4

ð
ffiffiffi
2

p
σ þmKÞ ln ð

ffiffiffi
2

p
σ þmKÞ

þ 2π
ffiffiffi
2

p
σβ þ const

�
; ð5:3Þ

where we use one and the same notation σ for the twisted
superfield [30] and its lowest scalar component.
To study the vacuum structure of the theory, we

minimize this superpotential with respect to σ to obtain
the 2D vacuum equationY

P¼1;2

ð
ffiffiffi
2

p
σ þmPÞ ¼ e−2πβ

Y
K¼3;4

ð
ffiffiffi
2

p
σ þmKÞ: ð5:4Þ

Consider the limit β → 0 in this equation. In this limit, (5.4)
reduces to the following quadratic equation:

2πβð
ffiffiffi
2

p
σÞ2 þ ð

ffiffiffi
2

p
σÞðm1 þm2 −m3 −m4Þ

þm1m2 −m3m4 ¼ 0: ð5:5Þ

The second term here is zero due to the constraint (5.2).
Two roots of (5.5) read

ffiffiffi
2

p
σ ¼ �

�
1

2πβ
ðm1m2 −m3m4Þ

	
1=2

����
β→0

→ ∞: ð5:6Þ

However, infinite VEVs of σ cost infinite energy for
nonzeroH3. To see this, observe that from the string theory
side we learned that the VEV of b goes to infinity [see
(4.24)]. Then Eq. (4.5) shows that the radial coordinate r̃ is
very large, which means that (some of) the n’s and ρ’s
become infinitely large [see (2.11)]. Given the infinite VEV
of σ this makes first two terms in the second line of the
WCPð2; 2Þ action (2.3) infinite.
To avoid this we impose the second constraint, namely

m1m2 −m3m4 ¼ 0: ð5:7Þ

Now, let us solve two constraints in (5.2) and (5.7) for
masses m3 and m4 as functions of m1 and m2. Finding,
say, m4 from (5.2) and substituting it into (5.7), we get a
quadratic equation for m3,

m2
3 −m3ðm1 þm2Þ þm1m2 ¼ 0: ð5:8Þ

Two roots of this equation read

m3 ¼ m1; m4 ¼ m2 ð5:9Þ

and

m3 ¼ m2; m4 ¼ m1: ð5:10Þ

These two options are essentially the same, up to the
permutation of quarks q3 and q4. Let us choose the first
option in (5.9).
The above arguments lead us to the conclusion that the

H3-flux can be interpreted in terms of the single mass
difference ðm1 −m2Þ. Thus, we complexify the parameters
μ1;2 and identify

μ≡μ1þ iμ2 ¼
ffiffiffiffi
gs
T

r
ðm1−m2Þ; m3 ¼m1; m4 ¼m2:

ð5:11Þ

Now, in terms of quark masses our solution (3.16) for the
NS 3-form reads
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H3 ¼
ffiffiffiffi
gs
T

r �
Reðm1 −m2Þα3 þ

1

3
Imðm1 −m2Þβ3

	
; ð5:12Þ

while the potential (3.26) for the baryon b becomes

VðbÞ ¼ constTjm1 −m2j2 log
R3
IR

jbj : ð5:13Þ

Similarly we can rewrite our solution (4.12) for H3

obtained at large jbj in terms of ðm1 −m2Þ.

B. Degeneration of the conifold

If we take the limit of large jm1 −m2j ≫
ffiffiffi
ξ

p
in 4D

SQCD keeping the constraint (5.9), non-Abelian degrees of
freedom decouple and U(2) gauge theory flows to N ¼ 2
supersymmetric Abelian theory with the gauge group
Uð1Þ × Uð1Þ and Nf ¼ 4 quark flavors. For example, off-
diagonal gauge fields acquire large masses ∼jm1−m2j and
decouple.8 However, in this paper we consider the limit of
small quark masses on the string theory side and therefore
cannot make jm1 −m2j large. At small jm1 −m2j ≪

ffiffiffi
ξ

p
,

our 4D SQCD remains to be U(2) gauge theory.
On the other hand, in the world sheet WCPð2; 2Þ model

on the non-Abelian string the story is different. This theory
is conformal and has no scale. Therefore, once we switch
on nonzero ðm1 −m2Þ there is no notion of smallness
of this deformation. We see a dramatic effect as soon as
ðm1 −m2Þ becomes nonzero.
Classically there are two branches in the WCPð2; 2Þ

model (2.3) associated with VEVs of σ,

ffiffiffi
2

p
σ ¼ −m1 ð5:14Þ

or

ffiffiffi
2

p
σ ¼ −m2: ð5:15Þ

Let us choose the first branch for definiteness. Then fields
nP¼2 and ρK¼4 acquire masses jm1 −m2j and decouple in
the infrared. The low energy effective theory at scales
below jm1 −m2j is the WCPð1; 1Þ model,

S ¼
Z

d2x

�
j∇αn1j2 þ j∇̃αρ

3j2 þ 1

4e2
F2
αβ

þ 1

e2
j∂ασj2 þ 2jσj2jn1j2 þ 2jσj2jρ3j2

þ e2

2
ðjn1j2 − jρ3j2 − ReβÞ2

�
; ð5:16Þ

where much in the same way as in (2.3), the limit e2 → ∞
is assumed and we made the shift ð ffiffiffi

2
p

σ þm1Þ →
ffiffiffi
2

p
σ.

The number of real degrees of freedom in (5.16) is
4 − 1 − 1 ¼ 2, where 4 is the number of real degrees of
freedom of n1 and ρ3 and, much in the sameway as in (2.3),
we subtract 2 due to the D-term constraint in (5.16) and the
U(1) phase eaten by the Higgs mechanism.
Physically, the WCPð1; 1Þ model describes an Abelian

semilocal vortex string supported in the N ¼ 2 super-
symmetric U(1) gauge theory with Nf ¼ 2 quark flavors.
This vortex has no orientational moduli, but it has one
complex size modulus ρ3 (see [24–26]). Thus, we can think
that upon switching on ðm1 −m2Þ a non-Abelian string
flows to an Abelian one.
The low-energy WCPð1; 1Þ model is also conformal.

Moreover, it was shown in [43] that in the nonlinear sigma
model formulation it flows to a free theory on R2 in the
infrared. Thus, in fact, switching on ðm1 −m2Þ with the
constraint (5.9) does not break the conformal invariance on
the world sheet; it just reduces the number of degrees of
freedom transforming a non-Abelian string into an Abelian
one. The string theory which one would associate with the
sigma model (5.16) is noncritical.
This supports our interpretation of the flux “compacti-

fication” on the conifold in terms of quark masses. On the
string theory side, switching on ðm1 −m2Þ is reflected in
the degeneration of the conifold, which effectively reduces
its dimension. Also in the limit jbj → ∞, the radius of the
sphere S3 of the conifold becomes infinite and it tends to a
flat three-dimensional space. This matches the field theory
result [43] that theWCPð1; 1Þ model flows to a free theory
in the infrared. It would be tempting to interpret the extra
coordinate of the sphere S3 of the conifold in the limit
jbj → ∞ as a Liouville coordinate for a noncritical string
associated with the sigma model (5.16). This is left for a
future work.
To conclude, we note that although 4D SQCD gets

just slightly deformed as we switch on small ðm1 −m2Þ at
weak coupling, this deformation becomes much more
pronounced at strong coupling. Namely, at τSW ¼ 1 [which
corresponds to β ¼ 0 in (2.3)] the nonperturbative Higgs
branch gets lifted and we have a runaway vacuum (4.24) for
the stringy baryon b.

VI. CONCLUSIONS

In this paper we considered the NS 3-form flux “com-
pactification” for the string theory of the critical non-
Abelian vortex supported in N ¼ 2 SQCD with gauge
group U(2) and Nf ¼ 4 quark flavors. Using the super-
gravity approach, we found a solution for the 3-form H3 to
the leading order at small H3 neglecting the back reaction
on the conifold metric and the dilaton. The nonzero 3-form
H3 generates a potential for the complex structure modulus
b of the conifold, which is interpreted as a BPS baryonic

8In addition to masses mG ∼ g
ffiffiffi
ξ

p
due to the Higgs mechanism

(see [9] for a review).
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hypermultiplet in 4D SQCD at strong coupling. This
potential lifts the Higgs branch formed by VEVs of b
and leads to a runaway for b, hjbji → ∞.
We interpret the 3-form H3 as a quark mass deformation

of 4D SQCD. The reason for this interpretation is that there
is no other deformation in 4D SQCD preserving N ¼ 2
supersymmetry, which produces a scalar potential. We
use field theory arguments to relate the 3-form H3 to the
quark mass difference ðm1 −m2Þ [see (5.12)] subject to the
constraint (5.9).
At the runaway vacuum the conifold degenerates to

lower dimensions. This qualitatively matches with a flow
to the WCPð1; 1Þ model (5.16) on the string world sheet,
which is expected if one switches on the mass difference
ðm1 −m2Þ. This flow can be thought of as a flow from a
non-Abelian string to an Abelian one.
As a direction of a future research we can mention the

finding of exact solutions of 10D supergravity equations
with a nonzero NS 3-form flux. This would allow us to
describe the limit of large ðm1 −m2Þ in terms of the string
theory. In this limit, non-Abelian degrees of freedom in 4D
SQCD with U(2) gauge group decouple and the theory
flows to an Abelian Uð1Þ × Uð1Þ theory.
Another challenging problem is to find supergravity

deformations associated with other choices of quark masses
in 4D SQCD.

ACKNOWLEDGMENTS

The author is grateful to A. Gorsky, E. Ievlev, A. Losev,
and M. Shifman for very useful and stimulating discus-
sions. This work was supported by William I. Fine
Theoretical Physics Institute of the University of
Minnesota.

APPENDIX: KINETIC TERM FOR B̃-BARYON

In this Appendix we calculate kinetic terms for 4D
scalars b̃1;2 which arise from the expansion of the 10D
3-form potential C3 in (3.19). Assuming that scalars b̃1;2
depend only on 4D coordinates xμ and dropping the 4D
3-form C4D

3 (we consider it in Sec. III C), we write

F4 ¼ dC3 ¼ ∂μb̃1dxμ ∧ α3 þ
1

3
∂μb̃2dxμ ∧ β3: ðA1Þ

Calculating the 10D-dual of this form we get

�F4 ¼ −
1

33!
T2εμνγδ∂μb̃1dxν ∧ dxγ ∧ dxδ ∧ β3

þ 1

3!
T2εμνγδ∂μb̃2dxν ∧ dxγ ∧ dxδ ∧ α3; ðA2Þ

where we used (3.14).
Now, writing the kinetic term for C3 in (3.1) asZ

F4 ∧ �F4; ðA3Þ

we finally get

Skinðb̃Þ ¼ T
Z

d4xfj∂μb̃1j2 þ j∂μb̃2j2g log
R3
IR

jbj ; ðA4Þ

where we used (3.17) and (3.18).
We see that scalars b̃1;2 have the same logarithmic metric

as the complex scalar b. As we already mentioned, the
complexified scalar b̃; together with b, forms a bosonic part
of the 4D baryonic hypermultiplet.
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