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We present the manifestly covariant Lagrangian of a massless polarized particle that implies all dynamic
and algebraic equations as the conditions of extreme of this variational problem. The model allows for
minimal interaction with a gravitational field, leading to the equations, coinciding with Maxwell equations
in the geometrical optics approximation. The model allows also a wide class of nonminimal interactions,
which suggests an alternative way to study the electromagnetic radiation beyond the leading order of
geometrical optics. As a specific example, we construct a curvature-dependent interaction in Schwarzschild
spacetime, predicting the Faraday rotation of polarization plane, linearly dependent on the wave frequency.
As a result, the Schwarzschild spacetime generates a kind of angular rainbow of light: waves of different
frequencies, initially linearly polarized in one direction, acquire different orientations of their polarization
planes when propagated along the same ray.
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I. INTRODUCTION

In general relativity the electromagnetic radiation, taken
in the approximation of a massless point particle, prop-
agates along null geodesics. However, in modern applica-
tions [1–14] we need to take into account the polarization
degrees of freedom of a light beam. This implies analysis of
Maxwell equations in curved spacetime, a task with quite a
long history, see [15–18] and the recent review [19].
Account of the polarization implies the analysis of effects
of two types. First, interaction of polarization with gravity
could produce the polarization-dependent contributions
into the equation of geodesic line, causing deviation of
trajectories from the null geodesics. In particular, correc-
tions to the trajectory due to helicity of a circularly
polarized light (photon’s spin) are under intensive discus-
sion [20–28], and are considered as a gravitational ana-
logue of Magnus or spin Hall effects of light observed in
medium [29–32]. Second, interaction affects the evolution
of the polarization vector, leading to a number of interesting
consequences. An example is a rotation of the polarization
plane of a linearly polarized beam around the direction of
its propagation in gravitational fields with rotation [15–17,
33–40]. This is considered as a gravitational analogue of
the Faraday effect [41,42].
Various approaches have been used to theoretically

describe and analyze the polarization degrees of freedom
and related effects. Among them are the one-particle
quantum-mechanical interpretation of Maxwell equations

[43–45] and of QFT [46–55], as well as the geometrical
optics approximation to Maxwell equations in curved
space-time [15–17,21–28,33–40,56]. In the geometrical
optics, solutions to the wave equations are sought in
the form A ¼ ReðaeiSÞ. As A can be taken either the
electromagnetic field Fμν [21,22,57], or its vector poten-
tial Aμ [58]. The resulting partial differential equations
can be split in two parts: the (eikonal) equation for the
phase S, Hðx;∇SÞ ¼ 0, and the equations of the form
Fðx;∇a;∇S;…Þ ¼ 0. The latter can be used to determine
the polarization vector a when the phase is already known.
The solution of eikonal equation can be reduced to the
solution of a Hamiltonian equations of classical mechanics
[59,60]. Thereby, with an electromagnetic wave can be
associated the congruence of world lines that are solutions
to these Hamiltonian equations. In the geometrical optics
approximation, they turn out to be null geodesics, while the
polarization vector undergoes parallel transport along these
lines [21,58]. Maxwell equations in an arbitrary curved
background were analyzed in the geometrical optics and
weak field approximations in [15–17]. It was observed that
angular velocity of the polarization plane is due to g0i-
components of the metric. Hence the Faraday rotation is not
expected in the Schwarzschild space, but may occur in Kerr
and other rotational spaces, if the precession is an accu-
mulative effect during the wave propagation. Computing
the total rotation angle in the leading approximation,
Plebansky found [17] that polarization remains unchanged
for the wave that does not penetrate a rotating matter.
However, taking into account the higher-order corrections,
the Faraday rotation has been predicted in Kerr and other*alexei.deriglazov@ufjf.edu.br
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spaces [33–37]. Importantly, for the gravitational Faraday
rotation discussed in the literature, the rotation angle does
not depend on the wave frequency.
The eikonal equation in geometrical optics turns out to

be a closed equation for determining the phase S. As a
consequence, the corresponding Hamiltonian equations
for light rays do not involve the polarization vector. In
particular, the photon’s trajectory does not depend on its
helicity. In recent works [21,26–28] were proposed the
modifications, allowing us to include the polarization
vector into the eikonal equation. This implies equations
for the trajectory with a dependence on helicity, that is,
predicting the gravitational spin-Hall effect.
In the above mentioned approaches, with the light beam

we associate a kind of massless particle, endowed with
extra degrees of freedom describing its polarization or
helicity. Therefore, an interesting task is to develop, in a
systematic form, the manifestly covariant description of a
massless polarized particle in curved spacetime. In the
case of a massive particle with spin, this is achieved
either with help of the Mathisson-Papapetrou-Tulczyjew-
Dixon (MPTD) equations of a rotating body in general
relativity [61], or in the framework of vector model of
spinning particle, see [62,63] and references therein. It
would be natural to take the massless limit of these theories.
However, this turns out to be problematic. First, MPTD
equations in the massless limit contain denominators
proportional to space-time curvature [64], and the flat-
space limit becomes problematic.1 Second, MPTD equa-
tions imply wrong dependence of acceleration on velocity
[63,65] that diverges when v → c, so they hardly can
be expected to describe the ultra relativistic particles
or photons. The vector model with null gravimagnetic
moment is equivalent to MPTD equations [62], and hence
suffers from the same problems. The wrong behavior of
MPTD equations was improved by adding a nonminimal
interaction through unit gravimagnetic moment [65,66].
The gravimagnetic spinning particle has a reasonable
ultrarelativistic behavior, but its massless limit still remains
problematic. A key role in this model play a pair of second
class constraints, with the Poisson bracket fT1; T2g∼
p2 ∼m2. In the massless limit we obtain fT1; T2g ¼ 0,
that is the second-class constraints turn into the first-class,
the latter remove two more degrees of freedom from the
physical sector. In the result, in the massless limit there are
no of physical degrees of freedom in the spin-sector. While
this limiting case could be used to describe helicity [67]
(and therefore its influence on the trajectory), it fails to
describe the evolution of the polarization degrees of free-
dom. Another drawback of both theories is that their
connection with Maxwell’s equations is not clear.

As the formalism of massive spinning particles hardly
can be adapted to the massless case, we can try to develop
the model of a massless polarized particle in an indepen-
dent way. Below we propose one possible version of such a
theory, and see to what extent it is able to capture the
properties of light propagation in curved spacetime.
This work is organized as follows. In Sec. II, with a plane

monochromatic wave we associate a massless polarized
particle, and discuss the variables and constraints appro-
priate for its description. This allows us to give an exact
formulation of the problem under discussion, see the end of
the section. It is known that the inclusion of interaction in a
free theory with Dirac constraints generally represents a
nontrivial task. Nevertheless, in Sec. III we present two
equivalent Lagrangian actions of the massless polarized
particle, which allow for the minimal interaction with an
arbitrary gravitational field. We give their Hamiltonian
formulation and discuss the physical sector of the theory. In
Sec. IV we show that the model admits a wide class of
nonminimal polarization-curvature interactions, and show
that parallel transport of the polarization tensor is disturbed
by the curvature-dependent terms. One specific example of
the nonminimal interaction is discussed in some details in
Sec. V. The obtained equations predict linearly dependent
on the wave frequency Faraday rotation of the polarization
plane even in the Schwarzschild spacetime. In the con-
cluding section we discuss a number of unusual properties
of our model, considered as a Hamiltonian system with
Dirac constraints. Appendix A contains some technical
details and was included to make the work self-contained.
In Appendix B we present detailed analysis of the photon’s
Lagrangian with three auxiliary variables.
Notation. We use Greek letters for indexes of four-

dimensional quantities and Latin letters for the three-
dimensional quantities. Greek and Latin letters from the
beginning of the alphabet are used for indexes in
Minkowski space, xα ¼ ðx0; xaÞ, with the metric ηαβ of
signature ð−;þ;þ;þÞ. Greek and Latin letters from the
middle of the alphabet are used for indexes in curved space,
xμ ¼ ðx0; xiÞ. Our variables are taken in an arbitrary para-
metrization τ, and we denote _xμ ¼ dxμ

dτ . For the four-dimen-
sional quantities we suppress the contracted indexes and
use the notation Nμ

ν _xν ¼ ðN _xÞμ, ω2 ¼ gμνωμων, and so on.
Suppressing the indexes of three-dimensional vectors, we
use bold letters. The Euclidean scalar and vector products
are ðE;BÞ ¼ EaBa, ½E;B�a ¼ ϵabcEbBc.

II. BASIC VARIABLES AND CONSTRAINTS
FOR DESCRIBING A MASSLESS

POLARIZED PARTICLE

We start from solutions to the Maxwell equations
in empty space in the form of plane monochromatic
waves, which can be written as follows (see [56,68] or
Appendix A):

1For instance, in Schwarzschild metric the term SμρRρναβSαβPν

SμνRμναβSαβdoes not depend on the Schwarzschild mass.
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EðxαÞ ¼ e1 cos
ω̃

c
ðk̂x − ctÞ − ϵe2 sin

ω̃

c
ðk̂x − ctÞ;

BðxαÞ ¼ ½k̂;E�; ð1Þ

The unit vector k̂ points the direction orthogonal to a wave
front, ω̃ > 0 is frequency of the wave,2 then T ¼ 2π=ω̃
gives period, and λ ¼ cT is the wavelength. The columns
e1 and e2 are three-dimensional constant vectors. The set
ðk̂; e2; e1Þ consists of mutually orthogonal vectors, which
form the right-handed triad. The set ðk̂;E;BÞ consists of
mutually orthogonal vectors, which also form the right-
handed triad, and jEj ¼ jBj. If we look at the plane of E
and B from the end of the vector k̂, the vectors EðtÞ and
BðtÞ at given point x rotate clockwise when ϵ ¼ þ1, and
counterclockwise when ϵ ¼ −1. Let us fix t and consider
the straight line through x in the direction of k̂, that is,
consider the instantaneous configuration of the wave along
the straight line xþ k̂s, s ∈ R. Then the ends of the vectors
E and B lie on the surface of the elliptical cylinder with
semiaxes je1j and je2j, and make one revolution after the
increment △s ¼ cT. When one of the vectors ei vanishes,
E oscillates along the another vector, and we have the
linearly polarized wave.
Introducing the four-dimensional wave vector

kα ¼ ðk0;kÞ ¼
�
ω̃

c
;
ω̃

c
k̂

�
; k2 ¼ 0; ð2Þ

the phase can be written in the Lorentz-invariant
form: ω̃

c ðk̂x − ctÞ ¼ ηαβkαxβ.
Let us choose some space-time point xα0 ¼ ðct0;x0Þ, and

denote Eðxα0Þ≡ E0, Bðxα0Þ≡B0. Consider the chain of
events

xαðtÞ ¼ ðcðt0 þ tÞ;x0 þ ck̂tÞ; t ∈ ½0; t1�: ð3Þ

We identify them with world line of a particle with velocity
equal to v ¼ dx=dt ¼ ck̂, and the speed equal to the speed
of light, jdx=dtj ¼ c. The electric and magnetic fields of a
plane wave (1) turn out to be constant along the world line:
EðxαðtÞÞ ¼ E0, BðxαðtÞÞ ¼ B0. By this, with given plane
wave we associate a particle, that moves along the null
world line (3) and carries a pair of mutually orthogonal
constant vectors E0 and B0, the latter lie on the plane
orthogonal to the velocity vector, and such that ðv;E0;B0Þ
is the right-handed triad. We call it a massless polarized
particle or, in short, a photon. By construction, it describes
the evolution of electric and magnetic fields of the plane
wave (1) along the world line (3).
Note, that with clockwise and counterclockwise waves is

associated the same particle, that is helicity of a photon is

not taken into account. In addition, the triad ðv;E0;B0Þ no
longer contains an information about the wave frequency,
and its dynamics in Minkowski space is trivial. However,
if our particle can interact with gravity, this simple
model can be useful for discussing some problems of
current interest in the field of black hole physics: (a) What
type of interaction with gravity does the photon allow?
(b) Influence of a polarization-gravity interaction on the
trajectory. (c) Dynamics of the polarization plane of the
wave propagating in a gravitational background.
To describe the trajectory of a photon in a manifestly

covariant way, we take it in a parametric form: xðtÞ →
xαðτÞ ¼ ðctðτÞ;xðτÞÞ, requiring that directions of time and
of evolution parameter coincide (see also Appendix A)

_x0 > 0: ð4Þ

Further, the only simple way to describe covariantly a triad
of orthogonal three-vectors is to consider the following
system of constraints:

p2 ¼ 0; fαβpβ ¼ 0; f̃αβpβ ¼ 0; ð5Þ

where f̃αβ ¼ ϵαβγδfγδ with ϵ0123 ¼ −1 is the tensor dual to
fαβ. Then the three-dimensional quantities

Ea ≡ fa0; Ba ≡ 1

2
ϵabcfbc; then fab ¼ ϵabcBc; ð6Þ

obey the desired properties: E, B, and p are mutually
orthogonal, B ¼ ½p̂;E�, so the triad ðp̂ ¼ p=p0;E;BÞ is
right-handed. Due to the constraints (5), the tensor f has
only two independent components.
The constraints (5) can be “solved” in terms of spacelike

vector ωα orthogonal to pα. Indeed, if we require

p2 ¼ 0; ðω; pÞ ¼ 0 ω2 > 0; ð7Þ

the quantity

fαβ ¼ pαωβ − pβωα; ð8Þ

obeys to the conditions (5). The fields then can be presented
through p and ω as follows

E ¼ p0ωtr; B ¼ ½p;ω�≡ ½p;ωtr�; ð9Þ

where ωtr ¼ NðpÞω is the transverse part of ω, that is the
projection of ω on the plane orthogonal to p with help of
the projector NðpÞab ¼ δab −

papb
p2 .

We associated our particle with unique Fourier mode of
electromagnetic field with the wave vector pα. So the
quantity (8) can be thought as a mechanical analogue of the
field strength Fαβ ¼ ∂αAβ − ∂βAα. Then ωβ is an analogue
of the vector potential Aβ, and ωβ→ωβþαðτÞpβ represents

2We use the notation ω̃ to distinguish the frequency from the
basic variables ωμ that will appear below.
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the analogue of Uð1Þ gauge transformation, that leaves fαβ
invariant. Our basic equations of motion turn out to be
covariant under the gauge symmetry, see the discussion
below the Eq. (35).
We will construct our theory in terms of variables xα and

ωα instead of xα and fαβ, that turns out to be an easier task.
Denote pα and πα the conjugate momenta for xα and ωα. It
is clear from Eqs. (7) and (8) that we need a theory with
rather unusual properties, where the variable ω is involved
in the construction of the physical sector, but its momentum
is not. Models with such properties can be easily con-
structed using the Grassmann variables [69]. Without them,
as we will see, this represents a rather nontrivial task.
Taking all the above into account, we can now formulate

in a more concrete form the problem of constructing a
model of massless polarized particle. We need a variational
problem with the Lagrangian Lðxα;ωαÞ, that has the
following properties.
(1) All expected constraints [in particular, (7)], together

with dynamic equations, should appear as the extreme
conditions of the variational problem.
(2) We need such a set of constraints, that in Hamiltonian

formalism the physical sector contains the observables
xðtÞ, pðtÞ and fαβðtÞ. According to Dirac [70], by observ-
ables we mean the variables with unambiguous dynamics,
see also the discussion below Eq. (35).

(3) The theory should allow interaction with gravity.

III. LAGRANGIAN OF MASSLESS POLARIZED
PARTICLE IN CURVED SPACE-TIME

Massless point particle is described starting from the
variational problem with one auxiliary variable, see
Appendix A. To take into account polarization, we need
more auxiliary variables. Here I propose two different
Lagrangian actions, the first with three and another with
four auxiliary variables. They have the same physical
sector, so any one of them can be used to describe the
massless polarized particle in curved spacetime. I was not
able to find a formulation with less than three auxiliary
variables.
In the first case, our dynamical variables of configuration

space with Minkowski metric ηαβ ¼ ð−;þ;þ;þÞ are
xαðτÞ, ωαðτÞ, e1ðτÞ, e2ðτÞ, e3ðτÞ, α ¼ 0; 1; 2; 3. Under
the Poincaré transformations, x behave as the position
variable: x0α ¼ Λα

βxβ þ aα, and ω is the vectorlike varia-
ble: ω0α ¼ Λα

βω
β. As we saw above, it can be considered a

mechanical analogue of the vector potential AαðxβÞ of
electromagnetic field. The auxiliary variables ei are scalar
functions. Dynamics of the theory is determined by
variational problem with the following Lagrangian action:

S ¼
Z

dτ
1

4e1

�
_x2 þ 1 − e3

1þ e3

ð_xωÞ2
ω2

þ e2 _ω2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_xN _xþ e2 _ωN _ωÞ2 − 4e2ð_xN _ωÞ2

q �
; ð10Þ

where the matrix N is projector on the hyperplane orthogonal to ω

Nαβ ¼ ηαβ −
ωαωβ

ω2
; then N2 ¼ N; Nαβω

β ¼ 0: ð11Þ

Asω2 enters into the denominator, we assumedω2 ≠ 0. We also assume _x2 ≤ 0, then in the (spinless) limit, e2 → 0, e3 → 1,
the functional (10) reduces to the standard Lagrangian action of a massless point particle,

R
dτ 1

2e _x
2. It can also be compared

with that of a massive spinning particle [62]

S ¼
Z

dτ
1

4e

h
_xN _xþ _ωN _ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½_xN _xþ _ωN _ω�2 − 4ð_xN _ωÞ2

q i
−
e
2

�
m2c2 −

α

ω2

�
: ð12Þ

The action (10) does not represent a massless limit of (12).
To obtain it from (12), we need to replace the first term
_xN _x ¼ _x2 − ð_xωÞ2=ω2 on _x2 þ ð1 − e3Þð_xωÞ2=ð1þ e3Þω2,
to remove the projector N from the second term; to insert in
various places the auxiliary variable e2; and then to take the
limit m → 0 and α → 0. In the result, the two theories turn
out to be rather different: in the model of massive spinning
particle there are three constraints of first class and two of
second class, while the massless polarized particle is
subject to four constraints of first class.

To formulate the theory (10) in a curved space-time with
the metric gμνðxρÞ, we fix the position of curve indexes as
follows: xμ and ωμ, and then introduce the minimal
interaction, that is we replace ηαβ → gμν, and the usual
derivative of ω by the covariant one,

_ωα → ∇ωμ ¼ _ωμ þ Γμ
ρσ _xρωσ: ð13Þ

This gives the action
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S ¼
Z

dτ
1

4e1

�
_x2 þ 1 − e3

1þ e3

ð_xωÞ2
ω2

þ e2ð∇ωÞ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_xN _xþ e2∇ωN∇ωÞ2 − 4e2ð_xN∇ωÞ2

q �
; ð14Þ

where _x2 means now gμν _xμ _xν, ωμ ¼ gμνων, and so on. Velocities _xμ, ∇ωμ and projector Nμν transform like contravariant
vectors and covariant tensor, so the action is manifestly invariant under the general-coordinate transformations.
In the Appendix B we show that the functional (14) implies all the desired constraints (5) which, together with dynamical

equations, arise as the conditions of extreme of this variational problem. Hence the theory describes a photon in an arbitrary
gravitational background. Here we discuss a more simple action, with four auxiliary variables ẽ1, ẽ2, ẽ3, and ẽ4

S ¼
Z

dτ
1

2ẽ1
ð_xα þ ẽ4 _ωαÞ

�
ηαβ þ ẽ3

ωαωβ

ω2

�
ð_xβ þ ẽ4 _ωβÞ þ 1

2ẽ2
_ω2: ð15Þ

Invariance of the action under Poincaré transformations gives two Noether charges, they are conjugated momentum for xμ,
and total angular momentum: pα, Jαβ ¼ x½αpβ� þ ω½απβ�. Here pα ¼ ∂L

∂ _xα and πα ¼ ∂L
∂ _ωα. Note that x½αpβ� and ω½απβ� are not

preserved separately. Note also that pα and πα are not proportional to _xα and _ωα, see Eqs. (39) below. Introducing the
minimal coupling in (15), we obtain the action

S ¼
Z

dτ
1

2ẽ1
ð_xμ þ ẽ4∇ωμÞ

�
gμν þ ẽ3

ωμων

ω2

�
ð_xν þ ẽ4∇ωνÞ þ 1

2ẽ2
ð∇ωÞ2: ð16Þ

A. Hamiltonian formulation

To study the theory (16), we use the Hamiltonian
formalism, which is well adapted for the analysis of a
constrained theory [70–72]. Conjugate momenta for xμ, ωμ

and ẽi are denoted as pμ, πμ and pei. Since pei ¼ ∂L
∂ _̃ei ¼ 0,

the momenta pei represent the trivial primary constraints,
pei ¼ 0. Further, πμ ¼ ∂L

∂ _ωμ ¼ ∂L
∂Dων ¼ 1

ẽ2
∇ωμ þ ẽ4

ẽ1
½gμνþ

ẽ3
ωμων

ω2 �ð_xν þ ẽ4∇ωνÞ. Computing pμ, we need to take
into account that _x enters into ∇ω, so pμ ¼ ∂L

∂ _xμ þ∂L
∂Dων

∂Dων

∂ _xμ ¼ 1
e1
½gμνþ ẽ3

ωμων

ω2 �ð_xνþ ẽ4∇ωνÞþ πνΓν
μρω

ρ. We

see that pμ is not a covariant object, so it is convenient
to introduce the canonical momentum

Pμ ¼ pμ − πσΓσ
μρω

ρ: ð17Þ

Contrary to pμ, the canonical momentum is a four vector,
so we expect that Hamiltonian and equations of motion will
be written in terms of this quantity. The obtained expres-
sions for the momenta imply the relations

Pμ ¼
1

ẽ1

�
gμν þ ẽ3

ωμων

ω2

�
ð_xν þ ẽ4∇ωνÞ; πμ ¼

1

ẽ2
∇ωμ þ ẽ4Pμ; ð18Þ

which can be solved with respect to velocities as follows:

_xμ ¼ ðẽ1 þ ẽ2ẽ4ÞPμ − ẽ2ẽ4πμ þ
ẽ1ẽ3
1þ ẽ3

Pω
ω2

ωμ; ∇ωμ ¼ ẽ2ðπμ − ẽ4PμÞ: ð19Þ

The Hamiltonian is obtained excluding velocities from the expression

H ¼ p_xþ π _ωþ pei
_̃ei − Lþ λipei ≡ P _xþ π∇ωþ pei

_̃ei − Lþ λipei; ð20Þ

where λi are the Lagrangian multipliers for the primary constraints. Substituting (19) into (20), we obtain the Hamiltonian.
Then the Hamiltonian form of the variational problem (16) reads

SH ¼
Z

dτp_xþ π _ωþ pei
_̃ei −H

¼
Z

dτp_xþ π _ωþ pei
_̃ei −

�
1

2
ðẽ1 þ ẽ2ẽ4ÞP2 þ ẽ2

2
π2 þ ẽ2ẽ4Pπ þ ẽ1ẽ3

2ð1þ ẽ3Þω2
ðPωÞ2 þ λipei

�
: ð21Þ
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The fundamental Poisson brackets fxμ; pνg ¼ δμν and fωμ; πνg ¼ δμν imply rather complicated brackets for P

fxμ;Pνg ¼ δμν; fPμ;Pνg ¼ Rμνρδπ
ρωδ ≡ Θμνðx; π;ωÞ; ð22Þ

fωμ;Pνg ¼ −Γμ
νρω

ρ; fπμ;Pνg ¼ πρΓρ
μν; fgμν;Pρg ¼ ∂ρgμν; ð23Þ

where Rμνρδ is the tensor of curvature and Γμ
νρ is the

Christoffel connection. The equations governing the evo-
lution can be obtained either by variation of (21) with
respect to all variables, or according to the Hamilton’s
prescription: dq=dτ ¼ fq;Hg.
Preservation in time of primary constraints, _pei ¼

fpei; Hg ¼ 0, gives the algebraic equations of second stage
of the Dirac procedure. They imply that all solutions of the
variational problem (if any) lie on the constraints surface

P2 ¼ 0; Pπ ¼ 0; π2 ¼ 0; ð24Þ

Pω ¼ 0: ð25Þ

We deal with a rather exotic variational problem, leading to
the Hamiltonian that contains the square of a constraint,

ẽ1ẽ3
2ð1þẽ3Þω2 ðPωÞ2. This term cannot contribute to equations of

motion, and we can omit it from the Hamiltonian. This
turns out to be crucial for obtaining the theory with desired

properties. It is not difficult to construct the Lagrangian
action which gives the Hamiltonian containing the con-
straint Pω instead of its square. This gives a different
theory, with the physical sector without a reasonable
interpretation. We also rename the auxiliary variables as
follows: ẽ1 þ ẽ2ẽ4 ¼ e1, ẽ2 ¼ e2,

ẽ1ẽ3
1þẽ3

¼ e3, ẽ2ẽ4 ¼ e4.
Then the expression

H ¼ e1
2
P2 þ e2

2
π2 þ e4Pπ; ð26Þ

can be equally used as the Hamiltonian of our theory.
Importantly, to describe all the trajectories, it is sufficient to
work with the positively defined dynamical variable
e1ðτÞ > 0, then P0 > 0, see Appendix A.
For the latter use, let us obtain the algebraic equations of

third stage of the Dirac procedure. The constraint π2 is of
first class, so it automatically preserved in time. For the
remaining constraints we have

fPω; Hg ¼ 0 ⇒ e1ωΘP þ e4ωΘπ ¼ 0; fPπ; Hg ¼ 0 ⇒ e1πΘP ¼ 0; fP2; Hg ¼ 0 ⇒ e4πΘP ¼ 0; ð27Þ

that is we obtained two more constraints. They are absent in Minkowski space, and their appearance in interacting theory
would mean its inconsistency. As we show below, the constraints surface (24) consists of four regions. Only in one of them
our theory admits a self-consistent interaction with an arbitrary gravitational field. In this region the third-stage constraints
will be automatically satisfied.
When evaluating the expressions (27), appear many terms containing the connection Γ and derivatives of the metric. They

all cancel out with each other in such a way that the resulting expression is a scalar function. The following identities:

∂ρgμνωμων ¼ 2ωμΓμ
ρνω

ν; ωμ∂μgρνων ¼ 2Γρ;μνω
μων;

πδð∂μgδν − Γδ;μνÞPν ¼ PνΓν
μδπ

δ; ∇gμν ¼ 0; ∂ρgμνPμων ¼ −∂ρgμνPμων; ð28Þ

are useful for testing these cancellations. The same happens when obtaining the Hamiltonian equations dq=dτ ¼ fq;Hg,
they are3

_xμ ¼ e1Pμ þ e4πμ; ð29Þ

∇Pμ ¼ Θμνðe1Pν þ e4πνÞ≡ Θμν _xν; ð30Þ

∇ωμ ¼ e2πμ þ e4Pμ; ð31Þ

∇πμ ¼ 0: ð32Þ

3There are also the equations for auxiliary variables: _ei ¼ λi, _pei ¼ 0. They have a simple meaning: dynamics of ei is not at all fixed,
therefore, we do not write them out further.
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All noncovariant terms either cancel out or covariantize the
derivative: d=dτ → ∇. Taking this into account, in practical
calculations of Poisson brackets we can ignore the brack-
ets (23).
To analyze the obtained theory, we start from the

constraints (24). We write them in tetrad formalism [68]:
ηαβPαPβ ¼ 0, ηαβPαπβ ¼ 0 and ηαβπαπβ ¼ 0, with the
Minkowski metric ηαβ ¼ ð−;þ;þ;þÞ. Using rotations
and Lorentz boosts, we can choose the coordinate system,
where Pα and πα, satisfying these constraints, acquire the
form

Pα ¼ ðP0; ϵP0; 0; 0Þ; πα ¼ ðπ0; ϵπ0; 0; 0Þ; ð33Þ

where ϵ ¼ �1 is the sign of P0. Taking this into account,
we conclude that our constraints have the following
four solutions: (a) Pα ¼ πα ¼ 0, (b) Pα ¼ 0, π2 ¼ 0,
(c) πα ¼ σPα, P2 ¼ 0, and (d) πα ¼ 0, P2 ¼ 0.
Contracting these equalities with tetrad field, we conclude
that they remain valid for the curve indexes as well. In
accordance with these solutions, our theory consist of four
sectors. Let us analyze them one by one.
(a) Pμ ¼ πμ ¼ 0. Together with (29), this implies _x0 ¼ 0,

in contradiction with Eq. (4). Therefore, in this sector our
variational problem (16) has no solutions.
(b) Pμ ¼ 0, π2 ¼ 0. Equation (30) then reads

e4Rμνρσπ
νπρωσ ¼ 0. Taking e4 ¼ 0, we arrive at _x0 ¼ 0

once again, that is our variational problem (16) has no
solutions in this sector.
(c) πμ ¼ σPμ, P2 ¼ 0 and Pω ¼ 0. The dynamical

equations (29)–(32) turn into

_xμ ¼ ðe1 þ e4σÞPμ; ∇Pμ ¼ ðe1 þ e4σÞΘμνPν;

∇ωμ ¼ ðe2σþ e4ÞPμ; ½ _σgμν þ σðe1 þ e4σÞΘμν�Pν ¼ 0:

ð34Þ

They are written for 13 dynamical variables xμ, Pμ, ωμ and
σ. If we assume ðe1 þ e4σÞ ≠ 0, we have 16 differential
equations for 13 variables, that cannot be satisfied on a
general background. Taking ðe1 þ e4σÞ ¼ 0, we arrive at
_x0 ¼ 0. Therefore, in this sector our variational problem
(16) has no solutions.
(d) πμ ¼ 0, P2 ¼ Pω ¼ 0. In this sector we have

Θμν ¼ 0. As a consequence, Eqs. (27) are satisfied.
Dynamical equations of this sector are

_xμ ¼ e1Pμ; ∇Pμ ¼ 0; ∇ωμ ¼ e4Pμ: ð35Þ

They are covariant under the gauge transformations
ωμ → ωμ þ αPμ, e4 → e4 þ _α.
This is the only region of constraints surface where the

interacting theory possesses solutions. Let us discuss the
physical sector of this theory. Neither constraints nor

equations of motion determine the variables e1 and e4.
Fixing the functions e1ðτÞ and e4ðτÞ in an arbitrary way, the
equations (35) turn into the normal system of Hamiltonian
equations for determining the variables x, P and ω. Solu-
tions of the system will depend therefore on the arbitrary
functions e1ðτÞ and e4ðτÞ, so all the basic variables in our
theory have an ambiguous evolution. The variables with
ambiguous dynamics do not represent observable quan-
tities, so we need to look for a set of variables subject to
closed system of equations, that does not involve e1ðτÞ
and e4ðτÞ.
For this purpose, we introduce the polarization tensor

fμν ¼ Pμων − Pνωμ: ð36Þ

As a consequence of Eqs. (35), it undergoes the parallel
transport along the null geodesics xμðτÞ. In particular, it
has the causal evolution. The variables xμ, Pμ ≡ gμνPν, fμν
and e1 obey the following closed system of differential
equations:

_xμ ¼ e1Pμ; ∇Pμ ¼ 0; ∇fμν ¼ 0: ð37Þ

They are accompanied by the algebraic relations

P2 ¼ 0; fμνPν ¼ 0; f̃μνPν ¼ 0; ð38Þ

implied by the basic constraints P2 ¼ Pω ¼ 0. The dual
tensor in curved space is defined as follows: f̃μν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

p
ϵμνρσfρσ, ϵ0123 ¼ −1. The remaining ambi-

guity due to e1, contained in these equations, is related
with reparametrization invariance, and disappears when
we take our variables in the coordinate-time para-
metrization4 xiðtÞ.
Excluding Pμ from the system (37) and (38), we obtain

generally covariant equations for the trajectory ∇ _xμ
e1
¼ 0,

gμν _xμ _xν ¼ 0. They describe the null geodesic line taken in
an arbitrary parametrization τ, see Sect. 6.5.1 in [72].
So, we confirmed that physical sector of the Lagrangian

theory (16), minimally interacting with gravity, coincides
with that of Maxwell equations, taken in the geometrical
optics approximation [21,22], the Eqs. (37) and (38).
Denote Ei ≡ fi0, Bi ≡ 1

2
ϵijkfjk. In the Minkowski space

the constraints (38) imply, that p, E, and B are mutually
orthogonal and B ¼ ½p̂;E�, so the triad ðp̂≡ p=p0;E;BÞ
is right-handed, and moves with the speed of light in the
direction p. This, in essence, is our massless polarized
particle. As we noticed in Sec. II, it can be used to study
the evolution of electric and magnetic fields of a plane
monochromatic wave along a chosen ray.

4In Minkowski space, we can find the causal variables within
an arbitrary parametrization. They are the polarization fαβ,
momenta pα, and the orbital angular momentum x½αpβ�.
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We recall that the models of massive spinning particle
[62] predict the deviation of particle trajectory from a
geodesic line due to the curvature-dependent contribution
to the geodesic equation: ∇Pμ ¼ − 1

4
RμνρσSρσ _xν. In the

massless case, such a terms are considered as responsible
for the gravitational spin-Hall effect [27,28]. In our model
such a term, although it appears in the intermediate
calculations (30), nevertheless disappeared from the final
answer (37). Its appearance in Eq. (30) is an inevitable
consequence of the covariantization (14), but it vanishes
in the region (d) of the constraints surface, where our
theory is a self-consistent. In the result, the minimal
interaction of the polarization ω with gravity does not
alter the trajectory of our particle, that still remains
the null geodesics, ∇Pμ ¼ 0, P2 ¼ 0. This is also
consistent with Maxwell equations. When formulating
the Maxwell equations in curved space, we do not need
to covariantize the derivatives in skew-symmetric product
Fμν ¼ ∂μAν − ∂νAμ. As a consequence, in the geometri-
cal optics approximation, light rays propagate along the
null geodesics [21,58].
In spacetimes endowed with torsion, the equation of

spinning particle could be modified as follows [73]:∇Pμ ¼
− 1

4
RμνρσSρσ _xν þ PρTρ

μνPν, and the torsion-dependent
term survives in the massless limit. Note, however, that
the resulting deviation from the geodesic line is not due to
the particle’s polarization.
For completeness, we present the physical content of the

sectors (b) and (c) of our model in Minkowski space. Here
the Eqs. (29)–(32) read

_xα ¼ e1pα þ e4πα; _pα ¼ 0;

_ωα ¼ e2πα þ e4pα; _πα ¼ 0: ð39Þ

In the sector (b) we have _xα ¼ e4πα, _πα ¼ 0, _fαβ ¼ 0,
π2 ¼ 0, where fαβ ¼ π½αωβ�. These equations describe
massless particle which carries the constant tensor fαβ
without any special properties.
In the sector (c) we have _xα ¼ ðe1 þ e4σÞpα, _pα ¼ 0,

_fαβ ¼ 0, _σ ¼ 0, p2 ¼ fαβpβ ¼ f̃αβpβ ¼ 0, where fαβ ¼
p½αωβ�. These equations describe a massless polarized
particle with an extra scalar degree of freedom σ.

B. Equations of motion in the parametrization
of coordinate time

To complete the analysis of physical sector of the model
(37), (38), let us find a complete set of independent
dynamical variables with unambiguous dynamics. We
present all the details of this calculation, with the aim to
show a peculiar property of the massless particle, that will
be crucial when discussing nonminimal interactions.
We use the equation P2 ¼ 0 to exclude P0, representing

it through the remaining variables P ¼ ðP1;P2;P3Þ

P0 ¼ gP þ
ffiffiffiffiffiffiffiffiffiffiffi
PγP

p ffiffiffiffiffiffiffiffiffiffi−g00
p : ð40Þ

In all equations below, the notation P0 means this
function of P. By g and γ we denoted components of
(3þ 1)-decomposition of the original metric: gi ¼ − g0i

g00
,

γij ¼ gij −
g0ig0j
g00

, see Sec. 84 in [68]. Further, using the
reparametrization covariance of Eqs. (37) and (38), we take
the coordinate time t as the parameter, τ ¼ t. Then the
equation for x0 can be used to represent e1 as e1 ¼ c=P0.
Note that e1 > 0 implies P0 > 0. For the remaining
positions we have dxi=dt ¼ cPi=P0. This prompts to work
with a reducible set of variables, leading to separation of
variables in the resulting system. We replace

ðP1;P2;P3Þ → ðω̃; P̂1; P̂2; P̂3Þ; ω̃ ¼ cP0 > 0;

P̂i ¼ Pi

P0
: ð41Þ

As a consequence of (40), the variables P̂i obey the identity

gP̂ þ
ffiffiffiffiffiffiffiffiffiffiffi
P̂γP̂

q
ffiffiffiffiffiffiffiffiffiffi−g00

p ¼ 1; ð42Þ

so only two of them are independent, and Eq. (41) is an
invertible change of variables. It is convenient also to
denote

P̂μ ¼ ð1; P̂Þ: ð43Þ

For the new variables, the Eqs. (37) and (38) imply

∇tω̃ ¼ 0; ð44Þ

dx
dt

¼ cP̂; ð45Þ

∇tP̂ − cP̂Γ0
μνP̂

μP̂ν ¼ 0; or

dP̂i

dt
þ cðΓi

μν − P̂iΓ0
μνÞP̂μP̂ν ¼ 0; ð46Þ

∇tfμν ¼ 0; ð47Þ

fμνP̂
ν ¼ f̃μνP̂

ν ¼ 0: ð48Þ

Note that ω̃ does not enter into equations for other
variables.
As a consequence of (42), velocity of the particle obeys

the relation g dx
dt þ 1ffiffiffiffiffiffiffi−g00

p
ffiffiffiffiffiffiffiffiffiffiffiffi
dx
dt γ

dx
dt

q
¼ c. This implies that

speed of the photon, measured in the laboratory of a static
observer, is equal to the speed of light [68]. In space-time
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with static metric, g0i ¼ 0, this relation acquires more
transparent form: gij

dxi
dt

dxj
dt ¼ −c2g00.

Equations (44)–(47) form a Hamiltonian system, there-
fore the Cauchy problem for them has a unique solution.
Dirac’s procedure guarantees that any solution will satisfy
the constraints (42) and (48) at all instants, if they are
satisfied at the initial instant of time. So the constraints can
be taken into account by an appropriate choice of the initial
conditions. Taking this into account, we conclude that
physical sector of the theory (16) consist of eight inde-
pendent Dirac observables. Two of them are contained in
fμν and describe the polarization degrees of freedom. Five
independent observables among x and P̂ describe the
position and the direction of motion of the photon. Besides,
there is one more observable ω̃ ¼ cP0. It is presented also
in the theory of massless particle without polarization, see
Appendix A. Thus, the number of observables in the theory
of a massless particle is one more than the number of
variables with physical interpretation. In the theory of a
massless point particle, there is no room for the physical
interpretation of this observable. However, such a possibil-
ity exists in the case of a massless polarized particle,
associated with a plane wave.
Indeed, note that according to the relations (41) and (42),

in the flat space limit the variables ω̃ and p̂ are related with
the original variables as follows: p̂ ¼ p=jpj, ω̃ ¼ cjpj.

So the unit vector p̂ is normal to the wave front, while ω̃ can
be identified with the frequency of the wave, that represents
our particle. In other words, we identify Pμ with the four-
dimensional wave vector (2). We assume this interpretation
of P0 in the next section. This fixes the dimension of
conjugate momenta of a massless particle: ½Pμ� ¼ 1=cm.

IV. NONMINIMAL INTERACTION OF
POLARIZED PARTICLE WITH
SPACETIME CURVATURE

The inclusion of an interaction, preserving the physical
sector of a free theory with Dirac constraints, generally
represents a nontrivial task [74–85]. Here we discuss
the possibility to switch on a nonminimal interaction of
the massless polarized particle with gravity within the
Hamiltonian variational problem (21). The interaction must
be introduced so that the (deformed) constraints still admit
the subsurface πν ¼ P2 ¼ Pω ¼ 0 as one of the solutions.
It is remarkable, that this condition is fulfilled when any
function πμΩμðx;P; fÞ, with Ω orthogonal to P

PμΩμ ¼ 0; ð49Þ

is added to the Hamiltonian. Indeed, let us consider the
variational problem

SH ¼
Z

dτp_xþ π _ω −
�
e1
2
ðP2 þ 2πμΩμðx;P; fÞÞ þ e2

2
π2 þ e4Pπ þ e3

2ω2
ðPωÞ2

�
: ð50Þ

This implies the constraints

P2 þ 2πμΩμ ¼ 0; Pπ ¼ 0; π2 ¼ 0; Pω ¼ 0; ð51Þ

the equations of motion

_xμ ¼ e1Pμ þ e4πμ þ e1πνfxμ;Ωνg;
∇Pμ ¼ Θμνðe1Pν þ e4πνÞ þ e1πνfPμ;Ωνg;
∇ωμ ¼ e2πμ þ e4Pμ þ e1Ωμ þ e1πνfωμ;Ωνg;
∇πμ ¼ e1πνfπμ;Ωνg; ð52Þ

and the third-stage equations

e1ðωΘP þ ðPΩÞÞ þ e1πνfPω;Ωνg þ e4ωΘπ ¼ 0; e1πΘP þ e1πνfPπ;Ωνg ¼ 0;

− 2e4πΘP þ πνfΩν; e2π2 þ 2e4Pπg ¼ 0: ð53Þ

In the sector (d) of the constraints surface, the Eqs. (53) are satisfied, while equations of motion for the variables xμ, Pμ and
fμν ¼ P½μων� are (37) and (38), except the dynamical equation for f, that now reads

∇fμν ¼ e1P½μΩν�: ð54Þ

Hence the parallel transport of f is disturbed by nonminimal interaction.
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Let us discuss a number of specific examples. If we
restrict ourselves with the linear on curvature and polari-
zation interactions, the terms with desired property (49)
are Ωμ ∼ Rμ

νρδPνf̃ρδ, and Ωμ ∼ Rμ
νρδPνfρδ. Choosing the

interaction with the dual tensor f̃μν, the interaction term in
the Hamiltonian is

Hint ¼ κ̃e1πμRμ
σρδPσ f̃ρδ; ð55Þ

where κ̃ is a coupling constant. Then Eq. (54) reads

∇fμν ¼ e1κ̃P½μRν�σρδPσf̃ρδ: ð56Þ

In the coordinate-time parametrization we obtain the
Eqs. (44)–(46), (48) and

∇tfμν ¼ κ̃ ω̃ P̂φgφ½μRν�σρδP̂
σ f̃ρδ; ð57Þ

where, as it was combined above, ω̃ ¼ cP0 represents the
frequency of the photon, and P̂σ ¼ ð1;Pi=P0Þ.
We assumed that Pμ of the massless particle has

the dimension of a wave vector, ½Pμ� ¼ 1=cm. Then
the coupling constant has the dimension ½κ̃� ¼ 1=cm2.
Combining the dimensional constants at our disposal, we
can write κ̃ ¼ l2Pκ, where κ is already dimensionless, and

lP ¼
ffiffiffiffiffi
ℏG
c3

q
is the Planck length. The linear interaction then

will be very small, being suppressed by square of the
Planck length ∼10−66 cm. Therefore we consider a non-
linear interactions, using the nonlinearity to adjust
the dimension of the interaction term. We can try to
divide Eq. (55) on any one expression of the form:
ðRσλμνRσλμνÞ12; ð∇σRσ

λμν∇δRδλμνÞ13; ð∇δRσλμν∇δRσλμνÞ13;…,
all them are of dimension 1=cm2. The interaction, con-
structed with help of

ffiffiffiffiffiffi
R2

p
term, does not vanish in the limit

of plane space M → 0, so we reject it. The second term is
not appropriate, since it vanishes on-shell due to the
Bianchi identity: ∇σRσ

λμν ¼ ∇μRλν −∇νRλμ ¼ 0. Using
the third term, we have the interaction

Hint ¼ κe1
πμRμ

νρδPνf̃ρδ

ð∇R;∇RÞ13 ; ð58Þ

where κ is a dimensionless coupling constant. This implies
the equation of motion

dfμν
dt

¼ cΓσ
μρP̂

ρfσνþ cΓσ
νρP̂

ρfμσ þ κω̃
P̂φgφ½μRν�σρδP̂

σf̃ρδ

ð∇R;∇RÞ13 :

ð59Þ

The right-hand side of this equation is a sum of torques due
to minimal and nonminimal interactions. This equation
shows that parallel transport of polarization tensor is

disturbed by space-time curvature. Besides, contrary to
the minimal interaction case, the wave frequency ω̃ now
entered into the equation of motion for f. So, the rotation of
polarization vector around the direction of light propaga-
tion in curved space is different for the photons of different
frequencies, propagating along the same trajectory. Due to
this, our equations predict an interesting effect that could be
called an angular rainbow of light in a curved spacetime. It
is discussed in the next section.

V. NONMINIMAL INTERACTION WITH
CURVATURE OF SCHWARZSCHILD

SPACETIME: FREQUENCY-DEPENDENT
ROTATION OF THE POLARIZATION PLANE

Let us write an explicit form of Eq. (59) in
Schwarzschild spacetime and in the leading order approxi-
mation. We consider the Schwarzschild metric in the
coordinates, where its spatial part acquires the conformally
flat form [68]

gμνdxμdxν ¼ −
ð1 − α

4jxjÞ2
ð1þ α

4jxjÞ2
ðdx0Þ2 þ

�
1þ α

4jxj
�

4

dxdx:

ð60Þ

We use the notation α ¼ 2MG=c2, jxj ¼
ffiffiffiffiffiffiffiffi
xixi

p
and

x̂i ¼ xi
jxj. In the 1=c2 approximation the metric reads

gμνdxμdxν ≈
�
−1þ α

jxj
�
ðdx0Þ2 þ

�
1þ α

jxj
�
dxdx; ð61Þ

then the inverse metric is g00 ¼ −1 − α
jxj, g0i ¼ 0 and

gij ¼ ð1 − α
jxjÞδij. The nonvanishing Christoffel symbols

Γμ
νρ ¼ 1

2
gμσð∂νgρσ þ ∂ρgνσ − ∂σgνρÞ in 1=c2 approxima-

tion are

Γ0
0i ¼ Γi

00 ¼
α

2jxj2 x̂
i;

Γi
jk ¼ −

α

2jxj2 ðδ
ijx̂k þ δikx̂j − δjkx̂iÞ: ð62Þ

Then the nonvanishing curvature components Rσ
λμν ¼

∂μΓσ
λν − ∂νΓσ

λμ þ Γσ
βμΓβ

λν − Γσ
βνΓβ

λμ read

R0
i0p ¼ Ri

00p ¼ −
α

2jxj3 ðδ
ip − 3x̂ix̂pÞ;

Ri
jkp ¼ α

2jxj3 ½δ
ikðδjp − 3x̂jx̂pÞ − δipðδjk − 3x̂jx̂kÞ

þ δjpðδik − 3x̂ix̂kÞ − δjkðδip − 3x̂ix̂pÞ�: ð63Þ

Consider the algebraic relations (38). In curved space,
the second equation from (38) does not contain the metric,
and for fμν determined in (36), this formally implies the
same consequences as in Minkowski space
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fμνP̂
ν ¼ 0 implies ðE; P̂Þ ¼ 0; E ¼ −½P̂;B�: ð64Þ

Other equations in (38) involve the metric, but owing to its
diagonal form, their consequences have an almost
Euclidean form

ϵμνρσP̂
νgραgσβfαβ implies ðP̂;BÞ ¼ 0; B¼−

g11
g00

½P̂;B�;

gμνPμPν ¼ 0 implies ðP̂;P̂Þ ¼−
g00
g11

; ð65Þ

then ðB;BÞ ¼ ðg11g00
Þ2ðE;EÞ. Hence in the Schwarzschild

metric, the set ðE;B; P̂Þ in 1=c2 approximation can be
considered as the right-handed triplet of mutually orthogo-
nal vectors. If we neglect 1=c2 terms in these expressions,
the vector P̂ is of unit length, while E and B are of the
same length.
We now estimate the rate of variation of the polari-

zation vector Ei ¼ fi0, implied by the Eq. (59) in the
Schwarzschild metric. Note that Γ and R are of order 1=c2.
So the leading contribution of terms with Γ into Eq. (59) is
of order 1=c, and next-to-leading order contribution is of
order 1=c3. The leading contribution of terms with R is
of order 1=c

2
3, and next-to-leading order contribution is of

order 1=c
8
3. Computing the leading contributions into

Eq. (59), we can use the approximation gμν ¼ ημν for all
other quantities which appear in this equation. Direct
computation gives the following result

dE
dt

¼ MG
cjxj2 ½½x̂;B� þ ðx̂;EÞP̂ − ðP̂;EÞx̂�

− κω̃

�
12MG
5c2jxj

�1
3½ð1 − ðx̂; P̂Þ2Þ½P̂;E�

− 2ðx̂;BÞx̂þ ðx̂; P̂Þðx̂;BÞP̂� þ P̂ × ð…Þ: ð66Þ
This expression has the expected asymptotics: dE

dt → 0 as
jxj → ∞ or M → 0. We expand the total torque T [that is
the right-hand side of (66)] with respect to the basis
ðP̂; Ê; B̂Þ. Then the component TP is responsible for
nutation of the plane ðE;BÞ, keeping it orthogonal to
the direction of motion. The component TE gives a
variation rate of the length of E. The component TB gives
a variation rate of the polarization plane ðE; P̂Þ around the
vector P̂. Applying the projector B̂iB̂j to Eq. (66), we
obtain the explicit form of TB as follows

dE
dt

����
B
¼ −κω̃C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12MG
5c2jxj

3

s
½P̂;E�≡ ½Ω;E�;

where C≡ 1 − ðx̂; P̂Þ2 − 2ðx̂; B̂Þ2: ð67Þ
As it should be [17,33–36], all 1=c-terms of Eq. (66),
originated from the minimal interaction, do not contribute

into Eq. (67). The leading contribution into Faraday
rotation in Schwarzschild field is exclusively due to the
nonminimal interaction (58).
Note that ðx̂; P̂Þ2 ¼ 1 and ðx̂; B̂Þ2 ¼ 0 as jxj → ∞. At

the point of perihelion xp (the point of closest approach to
the Schwarzschild center), we have ðx̂; P̂Þ2 ¼ 0 and
ðx̂; B̂Þ2 ≤ 1. So the angular function C has the following
properties:
(A) C → 0 as jxj → ∞;
(B) CðxpÞ ¼ þ1 if B is orthogonal to the plane of

motion (E is on the plane of motion);
(C) CðxpÞ ¼ −1 if B is on the plane of motion (E is

orthogonal to the plane of motion).
Equation (67) has a clear interpretation for the typical

scattering process, when an ingoing at t ¼ −∞ polarized
particle is propagated toward the region of Schwarzschild
field, and then it is observed in the asymptotically
Minkowski region at t ¼ þ∞. Equation (67) states that
the axis E precess around the vector Ω ∼ P̂ with the
angular velocity jΩj ¼ κω̃jCj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12MG=5c2jxj3

p
∼ 1=c

2
3. An

ingoing linearly polarized at t ¼ −∞ wave, entering into
the region with nonvanishing curvature, will experience the
Faraday rotation of polarization plane, and will appear at
t ¼ þ∞ with the polarization plane rotated with respect to
that of at t ¼ −∞.
Consider the case of ingoing linearly polarized wave of

given frequency, and with the vector E on the plane of
motion. Then ðx̂; B̂Þ ≈ 0 during all scattering process, so
the angular function C grows starting from 0 up to 1 when
x → xp, and then decreases up to 0 when x → ∞. This
means that precession accumulates during evolution. In
particular, this might be an important effect in the study of
photon spheres near the horizon of black holes [5,6,10,11].
If the vector E of ingoing photon is orthogonal to the

plane of motion, we have −2ðx̂; B̂Þ ¼ −2 at the point of
perihelion. Then the angular function has an opposite sign:
CðxpÞ ¼ −1, and the vector E will rotate in the opposite
direction, as compared with the previous case.
According to Eq. (67), the rotation angle linearly

depends on the wave frequency ω̃. Therefore the
Schwarzschild spacetime plays a role of dispersive media
for the polarization axes of the waves with different
frequency. Consider the linearly polarized light beam
composed of photons with different frequencies but with
the same polarization axis at t ¼ −∞. They will follow the
same trajectory, but leave the region with a different
orientation of the polarization axes for the waves with
different frequency, forming the angularly distributed rain-
bow, produced by the nonminimal polarization-curvature
interaction (58).

VI. CONCLUSION

We developed the manifestly covariant formalism, des-
cribing a triad of mutually orthogonal vectors ðp;E;BÞ,
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moving with the speed of light in the direction of p. The
triad can be considered as a massless polarized particle, and
used to capture some properties of light waves in curved
spacetime. We presented two equivalent Lagrangian
actions, (14) and (16), which can be used to describe the
particle. The model allows for both minimal and non-
minimal interactions with an arbitrary gravitational field.
For the minimally interacting particle, the Eqs. (37) and
(38) state that it propagates along the null geodesic, while
the polarization tensor undergoes the parallel transport
along the ray. Hence they coincide with the Maxwell
equations, taken in the geometrical optics approximation.
Nonminimal interaction with curvature is not unique, it can
be constructed on the base of any function Ωμðx;P; fÞ
obeying the consistency condition (49). This generally
disturb the parallel transport of the polarization tensor:
∇fμν ¼ e1P½μΩν�. To understand the meaning of this
correction, we analyzed this equation for one specific
choice of Ων, in the leading order approximation in
Schwarzschild spacetime, see Eq. (67). It predicts the
Faraday rotation of light, linearly dependent on the fre-
quency of the wave. The specific properties of the non-
minimal interaction can be enumerated as follows:
(1) Faraday rotation is presented even in the Schwarzs-

child spacetime.
(2) It depends on the frequency, leading to an angular

rainbow effect, that is to angular dispersion of
polarization axes for electromagnetic waves with
different frequencies, propagating along the same
ray in a curved spacetime.

(3) Faraday rotation due to the curvature is of order
1=c

2
3, that is more than due to Γ-terms in Kerr space.

The presented model can be viewed as an attempt to go
beyond the leading approximation of geometrical optics.
Indeed, according to the modifications beyond the geo-
metrical optics approximation [27,28], namely the curva-
ture-dependent interactions could be responsible for the
gravitational spin-Hall effect. Concerning the gravitational
Faraday effect, it requires to take into account the next-to-
leading order approximation [33–35], and hence involve
derivatives of the connection. If these contributions can be
written in a covariant form, we expect that they also should
depend on the curvature. So, our simple model suggests an
alternative way for analysis of these effects by constructing
nonminimal curvature-dependent interactions.
By construction, our model does not take into account

the helicity of a photon, so it seems to be too simple
to capture the spin-Hall effect. However, it is interesting
that the Hall-type correction Rμνρσπ

ρωσ _xν inevitably
appeared in the intermediate equation (30). According to
the recent works [27,28], namely such a term could be
responsible for the gravitational spin-Hall effect of light.
But in our model it vanishes in the region (d) of the
constraints surface, where our theory is self-consistent. One
possibility to improve this point is to relax the constraints

system (38), assuming a nonstandard dispersion relation
instead of P2 ¼ 0, as it was suggested in [21,27,28].
However, it is not clear to me how to do this in a way
that is consistent with the requirement of coordinate
independence of the speed of light in general relativity.
To construct the massless polarized particle with desired

properties, we had to join together a number of unusual
tricks within the framework of Dirac formalism. They can
be summarized as follows.
(1) The constraints surface (24), (25) consist of four

sectors, each with its own physical content. Only the
sector (d) describes a massless polarized particle and
admits a consistent coupling with gravity.

(2) Conjugate momenta πμ for ωμ do not participate in
the construction of the physical sector, because of all
them vanish on the subsurface (d).

(3) The model is based on the Hamiltonian, which
contains a term quadratic in the Dirac constraint,
or, in short, the nonstandard Hamiltonian. Let us
discuss this point in some detail. It should be noted
that some general statements on the structure of a
constrained system, proved in [71], do not apply to
this case. To illustrate this, let us compare two toy
models, one with the standard and another with
nonstandard Hamiltonians. Consider the following
first-order action on a phase space with conjugated
pairs x, p and y, π:

S ¼
Z

dτp_xþ π _y − ½Hðx; p; πÞ þ λπ�; ð68Þ

where H is a function that does not depend on y.
Then the constraint π ¼ 0 is conserved in time,
_π ¼ fπ; H þ λπg ¼ 0, so π ¼ 0 is the only (first
class) constraint of the model. Hamiltonian equa-
tions read

_x ¼ ∂H
∂p ; _p ¼ −

∂H
∂x ;

_y ¼ λþ ∂H
∂π ; _π ¼ 0: ð69Þ

Since the variation rate of y is an arbitrary function
λðτÞ, dynamics of y is ambiguous, and it is an
unobservable quantity. In amore traditional language,
thevariabley is not invariant under the local symmetry
δy ¼ ϵ, δλ ¼ _ϵ, presented in the action (68). Hence
the physical sector of the theory consist of the
variables x and p with unambiguous dynamics. All
this is in correspondence with general statements
about the structure of a constrained system [70–72].

Next, let us consider the model with nonstandard
Hamiltonian

S ¼
Z

dτp_xþ π _y − ½Hðx; p; πÞ þ λπ2�; ð70Þ
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with the same function H. Once again, π ¼ 0 is the only
first-class constraint of the model. But the Hamiltonian
equations are now different

_x ¼ ∂H
∂p ; _p ¼ −

∂H
∂x ;

_y ¼ ∂H
∂π ; _π ¼ 0: ð71Þ

In particular, there is no ambiguity in these equations at
all. This implies a different physical sector. Although the
variable π is still the first-class constraint, its conjugate y
has a causal dynamics. Hence, the physical sector of the
theory consist of the variables x, p and y. This does not fit
the general statements [70–72]. The reason is that these
statements were proved under the assumption that con-
straints of the complete theory and of its quadratic appro-
ximation have a similar structure, see Sect. 2.2 in [71]. This
assumption does not hold for a theory with nonstandard
Hamiltonian. In view of the appearance of physically
interesting models with a nonstandard Hamiltonian, it
becomes interesting to generalize the standard formalism
of constrained systems to this case. We will look at this
issue in a future publication.
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APPENDIX A: AUXILIARY MATERIAL

1. Plane monochromatic wave

Consider Maxwell equations in empty space

∂0E − ½∇;B� ¼ 0; ∂0Bþ ½∇;E� ¼ 0; ðA1Þ

ð∇;EÞ ¼ 0; ð∇;BÞ ¼ 0; ðA2Þ

and look for their solutions of the form

EðxαÞ ¼ e1 cos qαxα þ e2 sin qαxα; ðA3Þ

BðxαÞ ¼ b1 cos qαxα þ b2 sin qαxα: ðA4Þ

Computing the derivative ∂0 of Eqs. (A1), we find that the
Klein-Gordon equations □E ¼ □B ¼ 0 are consequences
of the Maxwell equations. Substitution of the anzatz (A3)
into the Klein-Gordon equation allow us to fix q0 as
follows:

q20 − q2 ¼ 0; then q0 ¼ ϵjqj; ϵ ¼ signðq0Þ ¼ �1: ðA5Þ

Substituting the anzatz (A3) into Eqs. (A2) we find that E
and B lie on the plane orthogonal to q

ðei;qÞ ¼ 0; ðbi;qÞ ¼ 0; then ðE;qÞ ¼ 0; ðB;qÞ ¼ 0:

ðA6Þ

Substituting the anzatz (A3) into Eqs. (A1) we obtain
expression for bi through ei, and B through E

bi ¼ −
1

ϵjqj ½q; ei�; then B ¼ −
1

ϵjqj ½q;E�: ðA7Þ

Further, we note that the vectors ei can be considered as
mutually orthogonal. To see this, we rewrite (A3) as
follows:

E ¼ e1 cosðqxþ α − αÞ þ e2 sinðqxþ α − αÞ
¼ c1 cosðqxþ αÞ þ c2 sinðqxþ αÞ; ðA8Þ

where c1 ≡ e1 cos α − e2 sin α, c2 ≡ e1 sin αþ e2 cos α.
Choosing the angle α from the orthogonality condition

ðc1; c2Þ ¼ 0, we find that either tan 2α ¼ − 2ðe1;e2Þ
e2
1
−e2

2

, or

α ¼ π=4. The phase α in (A8) can be removed by shifting
the time origin, q0x0 ¼ q0ðx00 − α=q0Þ, and we arrive at the
expression (A3) with orthogonal vectors ci in the place
of ei.
It is convenient to rewrite the phase factor qαxα in (A3) in

terms of a redundant set of variables, which have a direct
interpretation. For the wave with ϵ ¼ þ1 we write

qαxα ¼ jqjctþ qx ¼ ω̃

c
ðct − k̂xÞ; jk̂j ¼ 1; ðA9Þ

that is we make the change of variables ðq1; q2; q3Þ →
ðω̃; k̂1; k̂2; k̂3Þ where ω̃ ¼ cjqj, k̂i ¼ −qi=jqj. For the wave
with ϵ ¼ −1 we write

qαxα ¼ −jqjctþ qx ¼ −
ω̃

c
ðct − k̂xÞ; jk̂j ¼ 1;

ðA10Þ

that is in this case we make the change of variables with
another choice of k̂i: ðq1; q2; q3Þ → ðω̃; k̂1; k̂2; k̂3Þ where
ω̃ ¼ cjqj, k̂i ¼ qi=jqj.
Collecting these results, the plane wave solutions to

Maxwell equations read

MASSLESS POLARIZED PARTICLE AND FARADAY ROTATION … PHYS. REV. D 104, 025006 (2021)

025006-13



EðxαÞ ¼ e1 cos
ϵω̃

c
ðct − k̂xÞ þ e2 sin

ϵω̃

c
ðct − k̂xÞ

≡ e1 cos
−ω̃
c

ðct − k̂xÞ − ϵe2 sin
−ω̃
c

ðct − k̂xÞ
≡ e1 cos ηαβkαxβ − ϵe2 sin ηαβkαxβ;

BðxαÞ ¼ ½k̂;E�; ðA11Þ

where we introduced the Lorentz-invariant expression for
the phase in terms of four dimensional wave vector

kα ¼
�
ω̃

c
;
ω̃

c
k̂

�
; k2 ¼ 0: ðA12Þ

The unit vector k̂ points the direction orthogonal to a wave
front, ω̃ > 0 is frequency of the wave, T ¼ 2π=ω̃ gives
period, and λ ¼ cT is the wavelength. The set ðk̂;E;BÞ
consists of mutually orthogonal vectors which form the
right-handed triad, and jEj ¼ jBj. The plane of k̂ and E is
called the plane of polarization.
If we look at the plane of E and B from the end of the

vector k̂, the vectors EðtÞ and BðtÞ rotate clockwise when
ϵ ¼ þ1, and counterclockwise when ϵ ¼ −1. To see this,
consider the plane wave in special coordinates constructed
as follows. As ðk̂; e1; e2Þ are orthogonal constant vectors,
take the coordinate system with x-axis along the vector k̂
and with z-axis along e1. In these coordinates we can write

k̂ ¼

0
B@

1

0

0

1
CA; e2 ¼

0
B@

0

ϵ2e2y
0

1
CA; e1 ¼

0
B@

0

0

e1z

1
CA; ðA13Þ

where e1z and e2y are positive numbers and ϵ2 ¼ �1. The
electric field in these coordinates acquires the form

Ex ¼ 0; Ey ¼ ϵ2e2y sin
ϵω̃

c
ðct − xÞ;

Ez ¼ e1z cos
ϵω̃

c
ðct − xÞ; then

E2
z

e21z
þ E2

y

e22y
¼ 1: ðA14Þ

The wave with thisE we call the ðϵ; ϵ2Þ-wave. Then ðþ;þÞ
and ð−;−Þ waves are clockwise and are indistinguishable.
Similarly, ð−;þÞ and ðþ;−Þ waves are counterclockwise
and are indistinguishable. So, it is sufficient to consider
only ðþ;þÞ and ð−;þÞ waves, that is those with ϵ2 ¼ þ1.
Then the sign of ϵ determines their helicity. Besides, when
ϵ2 ¼ þ1, the set ðk̂; e2; e1Þ is the right-handed triad.
Consider the plane wave with nonvanishing e1, e2 at a

fixed point x. According to Eqs. (A14) and (A11), the ends
of EðtÞ and BðtÞ lie on ellipses with semiaxes je1j and je2j.
They rotate in their own plane, and the angle of rotation
is βðtÞ ¼ arctanðEy=EzÞ. Then the angular velocity is

dβ=dt¼ ϵω̃ðje1jje2j cos
2 ϵω̃

c ðct− k̂xÞ þ je2j
je1j sin

2 ϵω̃
c ðct− k̂xÞÞ−1.

It is a constant for circular polarization, when je1j ¼ je2j.
One revolution occurs in the period T ¼ 2π=ω̃. Let us now
fix t and consider the straight line through x in the direction
of k̂, that is we consider the instantaneous configuration
of the wave along the straight line xþ k̂s, s ∈ R. Then
the ends of the vectors E and B lie on the surface of the
elliptical cylinder, and make one revolution after the
increment △s ¼ cT. When one of the vectors ei vanishes,
E oscillates along the another vector, and we have the
linearly polarized wave. The linearly polarized waves with
ϵ ¼ �1 are indistinguishable.

2. Variational problem for the massless
point particle

To describe the massless point particle, we need a varia-
tional problem producing the following set of trajectories:

xðtÞ ¼ x0 þ cv̂t; xi0; v̂
i ∈ R; v̂2 ¼ 1: ðA15Þ

It turns out to be sufficient to work with the action

S ¼
Z

dτ
1

2e
ηαβ _xα _xβ; ðA16Þ

with positively defined auxiliary variable, eðτÞ > 0, and
within the class of increasing parametrizations, dx0=dτ> 0.
This implies, that conjugated momentum for x0 with the
upper index: p0 ¼ η0α ∂L

∂ _xα ¼ − ∂L
∂ _x0 is a positively defined

function. To confirm these claims, consider the action

S ¼
Z

dt
1

2e
ð _x2 − c2Þ; ðA17Þ

with positively defined dynamical variable eðtÞ. This
implies the equations

d
dt

�
1

e
dx
dt

�
¼ 0;

dx
dt

¼ c2: ðA18Þ

As eðtÞ > 0, these equations imply 1
e
dx
dt ¼ b ¼ const,

e ¼ c=jbj. Substituting this e into the previous equation
and integrating it, we arrive at the desired answer (A15)
with v̂ ¼ b=jbj. Changing the variable of integration in
(A17) from t to tðτÞ, where tðτÞ is an increasing function:
dt=dτ > 0, we obtain the reparametrization invariant action
(A16) with eðτÞ≡ dt

dτ eðtðτÞÞ > 0. The action also implies
the equations of motion with the set of solutions being
(A15). Besides, the action (A16) immediately implies p0 ¼
_x0=e > 0 for all inertial observers.
The theory (A16) has the following peculiar property: in

the Hamiltonian formulation of the model, one of the Dirac
observables has no physical interpretation. Indeed, in the
Hamiltonian formulation we have
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_xα ¼ epα; _pα ¼ 0; p2 ¼ 0: ðA19Þ

Excluding p0 with help of the algebraic equation, and
taking t as a parameter, τ ¼ t, we obtain six variables with
definite dynamics: dx

dt ¼ c p
jpj,

dp
dt ¼ 0. This prompts to

work with the reducible set of variables: ðp1; p2; p3Þ →
ðp0; p̂1; p̂2; p̂3Þ, where p0 ¼ jpj, p̂i ¼ pi=jpj. They obey

the equations dx
dt ¼ cp̂, dp̂

dt ¼ 0, jp̂j ¼ 1, dp0

dt ¼ 0. The
observables xðtÞ and p̂ðtÞ describe the position and the

direction of motion of the light particle. The observable
p0ðτÞ has no interpretation in the theory of a massless point
particle. The same result follows from the Hamiltonian
analysis of the action (A17).

APPENDIX B: PHOTON’S LAGRANGIAN WITH
THREE AUXILIARY VARIABLES

Here we construct Hamiltonian formulation for the
theory (14) with three auxiliary variables

S ¼
Z

dτ
1

4e1

�
_x2 þ 1 − e3

1þ e3

ð_xωÞ2
ω2

þ e2ð∇ωÞ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_xN _xþ e2∇ωN∇ωÞ2 − 4e2ð_xN∇ωÞ2

q �
; ðB1Þ

and show that this implies all the desired constraints (5) which, together with dynamical equations, arise as the conditions of
extreme of this variational problem. Hence the theory describes a photon in an arbitrary gravitational background.

Conjugate momenta for xμ, ωμ and ei are denoted as pμ, πμ and pei. Since pei ¼ ∂L
∂ _ei ¼ 0, the momenta pei represent

the trivial primary constraints, pei ¼ 0. Expressions for the remaining momenta, pμ ¼ ∂L
∂ _xμ and πμ ¼ ∂L

∂ _ωμ, can be written in
the form

Pμ ¼
1

2e1

�
_xμ − Kμ þ

1 − e3
1þ e3

ð_xωÞ
ω2

ωμ

�
;

Kμ ≡ T−1
2½ð_xN _xþ e2∇ωN∇ωÞðN _xÞμ − 2e2ð_xN∇ωÞðN∇ωÞμ�; ðB2Þ

πμ ¼ e2
2e1

ð∇ωμ − RμÞ;

Rμ ≡ T−1
2½ð_xN _xþ e2∇ωN∇ωÞðN∇ωÞμ − 2ð_xN∇ωÞðN _xÞμ�; ðB3Þ

where it was denoted T ¼ ð_xN _xþ e2∇ωN∇ωÞ2 − 4e2ð_xN∇ωÞ2. In these expressions also appeared the canonical
momentum

Pμ ≡ pμ − πρΓρ
μνω

ν: ðB4Þ

Contrary to pμ, the canonical momentum is a four vector, so we expect that Hamiltonian and equations of motion will be
written in terms of the covariant quantity Pμ. The functions Kμ and Rμ obey the following identities

K2 ¼ _xN _x; R2 ¼ ∇ωN∇ω; KR ¼ −_xN∇ω;

_xRþ∇ωK ¼ 0; _xK þ e2∇ωR ¼ T
1
2 ωK ¼ ωR ¼ 0;

ω_x ¼ 2e1
nþ 1

Pω; ω∇ω ¼ 2e1
e2

ωπ: ðB5Þ

Computing the expression PNπ with use of (B2), (B3), and (B5), we arrive at one more primary constraint

PNπ ¼ 0: ðB6Þ

The Hamiltonian is obtained excluding velocities from the expression

H ¼ p_xþ π _ω − Lþ λðPNπÞ þ λipei; ðB7Þ

where λ and λi are the Lagrangian multipliers for the primary constraints. To obtain the manifest form of H, we note the
equalities
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p_xþ π _ω≡ P _xþ π∇ω ¼ 2L; P2 þ 1

e2

�
π2 þ ðωπÞ2

ω2

�
þ e3

ðPωÞ2
ω2

¼ 2

e
L; ðB8Þ

that can be verified with use of (B2)–(B5). Using them in (B7), we obtain the Hamiltonian. The corresponding Hamiltonian
action reads

SH ¼
Z

dτp_xþ π _ω −H ¼
Z

dτp_xþ π _ω −
�
e1
2
P2 þ e1

2e2

�
π2 þ ðωπÞ2

ω2

�
þ e1e3

2ω2
ðPωÞ2 þ λðPNπÞ þ λipei

�
: ðB9Þ

It is accompanied by the brackets (22) and (23).
Preservation in time of primary constraints, _pei ¼

fpei; Hg ¼ 0, gives the algebraic equations of second stage

of the Dirac procedure: P2 ¼ 0, π2 þ ðωπÞ2
ω2 ¼ 0, and

ðPωÞ2
ω2 ¼ 0. They imply that all solutions of the variational

problem (if any) lie on the constraints surface

P2 ¼ 0; Pπ ¼ 0; π2 þ ðωπÞ2
ω2

¼ 0; Pω ¼ 0:

ðB10Þ

The term e1e3
2ω2 ðPωÞ2 is a square of the constraint ðPωÞ ¼ 0,

and can be omitted from the Hamiltonian, that reads

H ¼ e1
2

�
P2 þ 1

e2

�
π2 þ ðωπÞ2

ω2

��
þ λðPNπÞ þ λipei:

ðB11Þ

For the latter use, let us obtain the algebraic equations of
third stage of the Dirac procedure. The constraint π2 þ
ðωπÞ2=ω2 ¼ 0 is of first class, so it automatically preserved
in time. For the remaining constraints we have

fPω; Hg ¼ 0 ⇒ e1ωΘP þ λωΘπ ¼ 0;

fPπ; Hg ¼ 0 ⇒ e1πΘP þ λ
ωπ

ω2
ωΘπ ¼ 0;

fP2; Hg ¼ 0 ⇒ λðπΘP − ωΘPÞ ¼ 0: ðB12Þ

The last equation is a consequence of the other two, so it
can be omitted from the consideration. The remaining
two equations can be presented in an equivalent form as
follows:

e1ωΘP þ λωΘπ ¼ 0; e1PΘNπ ¼ 0; ðB13Þ

that is we have an equation for determining the Lagrangian
multiplier λ, and a new constraint. These equations are
absent in Minkowski space, and their appearance in
interacting theory would mean its inconsistency. As we
show below, the constraints surface (B10) consist of
three regions. Only in one of them our theory admits a
self-consistent interaction with an arbitrary gravitational
field. In this region, Eqs. (B13) will be automatically
satisfied.
Computing the Hamiltonian equations dq=dτ ¼ fq;Hg,

we obtain

_xμ ¼ e1Pμ þ λNπμ; ∇Pμ ¼ Θμνðe1Pν þ λNπνÞ≡ Θμν _xν;

∇ωμ ¼ e1
e2

�
πμ þ ωπ

ω2
ωμ

�
þ λPμ; ∇πμ ¼ −

ωπ

ω2

�
e1
e2

Nπμ − λPμ

�
: ðB14Þ

To analyze the resulting theory, it is convenient to rewrite all the equations in terms of variables xμ, Pμ, ωμ, Πμ, where

Πμ ¼ πμ − ð1þ
ffiffiffi
2

p
Þωπ
ω2

ωμ; then ωπ ¼ −
1ffiffiffi
2

p ωΠ; πμ ¼ Πμ −
1þ ffiffiffi

2
pffiffiffi
2

p ωΠ
ω2

ωμ: ðB15Þ

Then the constraints (B10) acquire a more transparent form

P2 ¼ 0; PΠ ¼ 0; Π2 ¼ 0; ðB16Þ

Pω ¼ 0; ðB17Þ

while the dynamical equations (B14) turn into

_xμ ¼ e1Pμ þ λNΠμ; ðB18Þ
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∇Pμ ¼ Θμνðe1Pν þ λNΠνÞ; ðB19Þ

∇ωμ ¼ e1
e2

�
Πμ − ð1þ

ffiffiffi
2

p
ÞωΠ
ω2

ωμ

�
þ λPμ; ðB20Þ

∇Πμ ¼
ωΠffiffiffi
2

p
ω2

�
e1
e2

ð2þ
ffiffiffi
2

p
ÞΠμ þ ð1þ

ffiffiffi
2

p
ÞλPμ

�
; ðB21Þ

where nowΘμν ≡ RμνρδΠρωδ. Let us analyze the constraints
(B16). We write them in tetrad formalism: ηαβPαPβ ¼ 0,
ηαβPαΠβ ¼ 0, and ηαβΠαΠβ ¼ 0, with the Minkowski
metric ηαβ ¼ ð−;þ;þ;þÞ. Using rotations and Lorentz
boosts, we can choose the coordinate system, wherePα and
Πα, satisfying these constraints, acquire the form

Pα ¼ ðP0; ϵP0; 0; 0Þ; Πα ¼ ðΠ0; ϵΠ0; 0; 0Þ; ðB22Þ

where ϵ ¼ �1 is the sign of P0. Taking this into account,
we conclude that our constraints have the following
four solutions: (a) Pα ¼ Πα ¼ 0, (b) Pα ¼ 0, Π2 ¼ 0,
(c) Πα ¼ σPα, P2 ¼ 0, and (d) Πα ¼ 0, P2 ¼ 0.
Contracting these equalities with tetrad field, we conclude
that they remain valid for the curve indexes as well. In
accordance with these solutions, our theory consist of four
sectors. Let us analyze them one by one.
(a) Pμ ¼ Πμ ¼ 0. Together with (B18), this implies

_x0 ¼ 0, in contradiction with Eq. (4). Therefore, in this
sector our variational problem (B1) has no solutions.
(b) Pμ ¼ 0, Π2 ¼ 0. Equation (B19) then reads

λRμνρσðNΠÞνΠρωσ ¼0. Taking either λ¼ 0 or ðNΠÞν ¼ 0,

we arrive at _x0 ¼ 0 once again, that is our variational
problem (B1) has no solutions in this sector.
(c) Πμ ¼ σPμ, P2 ¼ 0 and Pω ¼ 0. This implies

ωΠ ¼ σωP ¼ 0, so the dynamical equations (B18)–(B21)
turn into

_xμ ¼ ðe1 þ λσÞPμ; ∇Pμ ¼ ðe1 þ λσÞΘμνPν;

∇ωμ ¼
�
e1
e2

σ þ λ

�
Pμ; ½ _σgμν þ σðe1 þ λσÞΘμν�Pν ¼ 0:

ðB23Þ

They are written for 13 dynamical variables xμ, Pμ, ωμ and
σ. If we assume ðe1 þ λσÞ ≠ 0, we have 16 differential
equations for 13 variables, that cannot be satisfied on a
general background. Taking ðe1 þ λσÞ ¼ 0, we arrive at
_x0 ¼ 0. Therefore, in this sector our variational problem
(B1) has no solutions.
(d) Πμ ¼ 0, P2 ¼ Pω ¼ 0. In this sector we have

Θμν ¼ 0. As a consequence, the constraints P2 ¼ 0 and
Pω ¼ 0 are of first class. Besides, Eqs. (B13) are satisfied.
We note also that Eq. (B15) implies πμ ¼ 0. Dynamical
equations of this sector are

_xμ ¼ e1Pμ; ∇Pμ ¼ 0; ∇ωμ ¼ λPμ: ðB24Þ

They coincide with Eqs. (35), with the auxiliary variable e4
renamed as λ. Continuing the analysis, as it was done at the
end of Sec. III, we arrive at Eqs. (37) and (38).
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