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We carry out the first investigation of the entanglement and mutual information harvesting protocols for
detectors freely falling into a black hole. Working in (1þ 1)-dimensional Schwarzschild black hole
spacetime, we consider two pointlike Unruh-DeWitt detectors in different combinations of free-falling and
static trajectories. Employing a generalization of relative velocity suitable for curved spacetimes, we find
that the amount of correlations extracted from the black hole vacuum, at least outside the near-horizon
regime, is largely kinematic in origin (i.e., it is mostly due to the relative velocities of the detectors).
Second, correlations can be harvested purely from the black hole vacuum even when the detectors are
causally disconnected by the event horizon. Finally, we show that the previously known ‘entanglement
shadow’ near the horizon is indeed absent for the case of two free-falling-detectors, since their relative
gravitational redshift remains finite as the horizon is crossed, in accordance with the equivalence principle.
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I. INTRODUCTION

For the past few decades, entanglement has been viewed
as a resource of quantum information processing [1–3], and
its role in quantum field theory (QFT) and gravity theory
has attracted increasing attention. For example, entangle-
ment theory is often used in the black hole information
problem [4–7], where entanglement is treated as an
intermediary tool for unraveling the quantum nature of
gravity.
The fact that vacuum states in QFT are highly entangled

was first studied formally in [8,9], followed by the opera-
tional formulation by Valentini [10] and Reznik et al.
[11,12]. It was found that an uncorrelated pair of atoms can
extract entanglement from the vacuum of the quantum
fields. This process is more recently known as entangle-
ment harvesting. As a quantum information protocol, a
more simplified model of the atom-field interaction known
as the Unruh-DeWitt (UDW) detector model [13,14] is
widely used to understand the underlying the essential
physics so long as no angular momentum is exchanged.
Recent extensive research on the entanglement harvesting
protocol has shown that it is sensitive to the detectors’
motion (e.g., acceleration [15]), as well as the properties of
the background geometry such as spacetime dimension
[16], curvature, black holes [17–22], causal structure [23],
topology [24], and boundary conditions [25–27].

In this article, we are particularly interested in entangle-
ment harvesting in black hole spacetimes using inertial,
free-falling detectors. So far, the harvesting protocol in a
(rotating) BTZ black hole [19,22], Schwarzschild and
Vaidya spacetimes [21] have been studied using two static
detectors. In both cases, it was found that static detectors
are unable to extract entanglement from the vacuum when
they are close to an event horizon. This entanglement
shadow (or ‘death zone’) appears to be a characteristic
feature of entanglement harvesting in black hole space-
times. However, extraction of entanglement from the black
hole interior has not yet been investigated. What role the
horizon plays in this regard is not obvious. Furthermore,
since the origin of the entanglement shadow is often
attributed to divergent gravitational redshift as the detectors
are placed closer to the horizon, there is warrant for seeing
whether or not this occurs for inertial trajectories.
In this paper we address these two questions by con-

sidering correlation harvesting protocols between two
pointlike two-level detectors when one or both of them
freely fall toward a (1þ 1) dimensionally reduced
Schwarzschild black hole. This lower-dimensional setting
introduces considerable simplification insofar as compli-
cated sums over field modes are avoided (see e.g., [28,29]).
Despite this, the setting is notably more complicated than in
previous studies, particularly in terms of numerical evalu-
ation of the bipartite density matrix of the detectors,
because the free-falling trajectory has a time-dependent
gravitational redshift. To this end, we employ the derivative
coupling variant of the Unruh-DeWitt model [21,30,31] in
order to remove both infrared (IR) ambiguities and the lack

*kgallock@uwaterloo.ca
†e2tjoa@uwaterloo.ca
‡rbmann@uwaterloo.ca

PHYSICAL REVIEW D 104, 025001 (2021)

2470-0010=2021=104(2)=025001(19) 025001-1 © 2021 American Physical Society

https://orcid.org/0000-0002-5213-0347
https://orcid.org/0000-0002-5859-2227
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.025001&domain=pdf&date_stamp=2021-07-01
https://doi.org/10.1103/PhysRevD.104.025001
https://doi.org/10.1103/PhysRevD.104.025001
https://doi.org/10.1103/PhysRevD.104.025001
https://doi.org/10.1103/PhysRevD.104.025001


of Hadamard short-distance property associated with mass-
less scalar fields in two-dimensional spacetimes that plague
the usual linear amplitude coupling. Our approach also
allows us to investigate for the first time harvesting in the
black hole interior.
We present three main results. First, using a generali-

zation of relative velocity suitable for curved spacetimes
[32], we show that the amount of correlations obtained
from the black hole vacuum, at least outside the near-
horizon regime, is largely kinematic in origin. In other
words, it is mostly due to the effective relative velocities of
the detectors rather than intrinsic properties of the gravi-
tational field. From this analysis, we find that when one of
the detectors freely falls (starting at rest from infinity), in
general less entanglement can be harvested than the case
when both detectors are static. Thus we identify relative
velocity (and acceleration) as the main source of degrada-
tion for entanglement harvesting. The kinematic nature of
this effect implies that the same is true in flat space. This
suggests that any intrinsic contribution from the gravita-
tional field that cannot be accounted for this way is
necessarily confined to the near-horizon regime or black
hole interior. We demonstrate this by comparing the
scenario where Alice is free-falling and Bob is static in
the Boulware vacuum (where relative acceleration is
negligible) to the case in flat space where their relative
velocity is the same.
Second, we show that while in general Alice’s free-

falling motion (keeping Bob static) tends to lead to lower
correlations, they can still harvest correlations even when
they are causally disconnected by the horizon (i.e., Alice is
in the black hole interior). When both detectors are free
falling, we can show using a signalling estimator defined in
[21,33] that the increase in efficiency of the harvesting
protocol is in some sense due to increasing assistance from
communication mediated by the field.
Third, we find that for two free-falling detectors the

entanglement shadow is indeed absent. This is in accord
with the equivalence principle and can be attributed to the
fact that the trajectories are inertial so that the relative
gravitational redshift remains finite during horizon cross-
ing. This is in contrast to static detectors, which cannot
maintain static trajectories at the horizon, and is manifest in
the form of increasing local noise as the horizon is
approached, which effectively cuts off all correlations.
Our paper is organized as follows. In Sec. II we review

the construction of a quantum massless scalar field in
Schwarzschild background and the associated coordinate
systems adapted to both static and free-falling observers. In
Sec. III we describe the derivative-coupling variant of the
Unruh-DeWitt particle detector model and review the
notion of signalling estimator for analyzing causal relations
between the two detectors. In Sec. IV we describe our main
results in full detail, and we conclude with some future
directions in Sec. V.

In this paper we use natural units c ¼ ℏ ¼ 1. We take the
metric g to be such that gðV;VÞ ¼ gμνVμVν < 0 if V ¼
Vμ∂μ is a timelike vector, since the metric signature is
ambiguous in two dimensions. We also use the shorthand
x≡ xμ to denote the spacetime events whose coordinates
are given by xμ.

II. KLEIN-GORDON FIELD IN
SCHWARZSCHILD SPACETIME

In the next two sections we first review the geometrical
and quantum field-theoretic aspects of a quantum massless
scalar field in a Schwarzschild background spacetime,
following discussion in [21,31]. We will review three
coordinate systems that are naturally associated with the
three standard vacua—Boulware, Unruh, and Hartle-
Hawking states—and also a coordinate system adapted
to a class of free-falling observers.

A. Schwarzschild geometry

Consider a (3þ 1)-dimensional Schwarzschild space-
time described by the metric

ds2 ¼ −fðrÞdt2s þ
1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð1Þ

fðrÞ ¼ 1 −
rs
r
; ð2Þ

where rs ¼ 2GM is the Schwarzschild radius and M ≥ 0 is
the ADMmass. It is convenient to writeM ¼ GM so that rs
has units of length. The standard Schwarzschild coordi-
nates are given by ðts; r; θ;ϕÞ, where the subscript S will be
useful because we will later be considering another coor-
dinate system. For static spherically symmetric black holes,
this metric is valid only for r > rs due to the coordinate
singularity at r ¼ rs. The null hypersurface r ¼ rs defines
the event horizon of the black hole.
We can extend the coordinate system by first introducing

the tortoise coordinate r⋆ defined by

r⋆ ≔ rþ rs ln

���� rrs − 1

����; ð3Þ

and then defining the null coordinates v ≔ ts þ r⋆;
u ≔ ts − r⋆. With this, the metric now reads

ds2 ¼ −
rs
r
e−

r
rse

v−u
2rs dudvþ r2ðdθ2 þ sin2 θdφ2Þ: ð4Þ

Finally, introducing new coordinates

U ≔ −2rse−u=2rs ; V ≔ 2rsev=2rs ; ð5Þ

the extension to region II in Fig. 1 is obtained by
considering the coordinate system ðU; v; θ;ϕÞ where
U; v ∈ R and the metric reads

GALLOCK-YOSHIMURA, TJOA, and MANN PHYS. REV. D 104, 025001 (2021)

025001-2



ds2 ¼ −
2r2s
r

e−
r
rs
þ v

2rsdUdvþ r2ðdθ2 þ sin2 θdϕ2Þ: ð6Þ

Note that here r is an implicit function of U and v. The
maximal analytic extension is obtained by considering
the coordinate system ðU;V; θ;ϕÞ where U;V ∈ R and
the metric reads

ds2 ¼ −
rs
r
e−r=rsdVdU þ r2ðdθ2 þ sin2 θdφ2Þ: ð7Þ

Thus we have obtained three distinct coordinate
systems for the Schwarzschild black hole spacetime:
Schwarzschild coordinates with metric (1), Eddington-
Finkelstein coordinates1 with metric (6), and Kruskal-
Szekeres coordinates with metric (7). These three
coordinate systems are naturally adapted for definitions
of the three standard vacuum states of quantum fields in
this background spacetime, as we will see in the next
subsection.
Finally, in this paper we will consider a class of

free-falling observers that are infalling from infinity,
possibly towards the curvature singularity at r ¼ 0.
For this purpose, it will not be sufficient for us to
simply solve for radial geodesics in Schwarzschild coor-
dinates because the coordinate systems do not apply for
free fallers inside the horizon. The coordinate system
we need for this class of observers that is also regular
at the event horizon r ¼ rs is the Painlevé-Gullstrand
(PG) coordinate system (see [34] and references therein),
which is constructed based on a free-falling observer’s
proper time.

The PG coordinate system is adapted to free-falling
observers starting at rest at spatial infinity, with metric
given by

ds2 ¼ −fðrÞdt2PG þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
dtPGdrþ dr2

þ r2ðdθ2 þ sin2 θdφ2Þ; ð8Þ

where tPG is the PG (coordinate) time. The PG coordinates
ðtPG; r; θ;ϕÞ for infalling observers are obtained from the
Schwarzschild metric (1) by using the coordinate trans-
formation

tPG ¼ tþ 2rs

� ffiffiffiffi
r
rs

r
þ 1

2
ln

����
ffiffiffiffiffiffiffiffiffi
r=rs

p
− 1ffiffiffiffiffiffiffiffiffi

r=rs
p þ 1

����
�
; ð9Þ

Time reparametrization invariance allows us to fix tPG ¼ 0
at the singularity r ¼ 0 and so tPG < 0 for all r > 0. A
remarkable property of the PG coordinates is that the
induced metric at constant tPG slices are flat; thus proper
distances between two fixed radial coordinates r1, r2 will
be given simply by Δr ¼ jr2 − r1j.
In what follows, we will consider the (1þ 1)-

dimensional reduction of the Schwarzschild spacetime,
by truncating the angular part. While we will lose the
physics that depends on angular variables such as the
graybody factors due to the gravitational potential (asso-
ciated with spherical harmonic parts of the wave equation)
and the physics associated with orbital motion, much of the
essential features of quantum field theory in curved space-
times will remain. For example, the detailed balance
condition associated with detector thermalization in the
Hartle-Hawking state can be obtained [21,31]. This dimen-
sional reduction allows us to borrow conformal techniques
and obtain closed-form expressions for the two-point

FIG. 1. Conformal diagram for Schwarzschild spacetime, following [21].

1Strictly speaking Eddington-Finkelstein coordinates refer to
coordinates (u; r; θ;φ) or ðv; r; θ;φÞ, but we will borrow this
name because they share the same region of validity (regions I
and II) without any analytic extension.
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functions of the quantum field, thus simplifying the setup
considerably.

B. Klein-Gordon field and vacuum two-point functions

Let ϕðxÞ be a real-valued massless Klein-Gordon
field in (1þ 1)-dimensional Schwarzschild spacetime.
The Klein-Gordon equation is given by

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞϕ ¼ 0; ð10Þ

where g ≔ det gμν is the metric determinant. After canoni-
cal quantization, the quantum field admits Fourier mode
decomposition of the form

ϕ̂ðxÞ ¼
Z

dkðâkukðxÞ þ â†ku
�
kðxÞÞ: ð11Þ

The mode (eigen)functions fukðxÞg satisfy the orthogon-
ality conditions

ðuk; uk0 Þ ¼ δðk − k0Þ; ðu�k; u�k0 Þ ¼ −δðk − k0Þ;
ðuk; u�k0 Þ ¼ 0; ð12Þ

where ðf; gÞ is the Klein-Gordon inner product of f, g
given by

ðf; gÞ ¼ −i
Z
Σ
dΣμ ffiffiffiffiffiffi

−g
p ðf∇μg� − g�∇μfÞ ð13Þ

with respect to the Cauchy surface Σ.
The definition of a vacuum state of the field depends on

the choice of timelike Killing vector field with respect to
which the positive frequency modes ukðxÞ are defined
[21,31,35]. There are three standard choices of vacuum
states that are unitarily inequivalent and are associated with
different regions of spacetime:
(a) Boulware vacuum j0Bi, with ukðxÞ being positive

frequency with respect to ∂t. The state is defined
on exterior region I of Fig. 1.

(b) Unruh vacuum j0Ui, with ukðxÞ being positive fre-
quency with respect to ∂U on H− and ∂v on I−. The
state is defined on regions I and II of Fig. 1.

(c) Hartle-Hawking vacuum j0Hi, with ukðxÞ being
positive frequency with respect to horizon generators
∂U and ∂V . The state is defined on the full maximally
extended Schwarzschild spacetime regions I–IV
of Fig 1.

The Boulware vacuum is the vacuum state that reproduces
the Minkowski vacuum in the large r limit, whereas the
Hartle-Hawking vacuum is the vacuum state that reprodu-
ces a thermal state in flat space in the large r limit. The
Unruh vacuum is, by construction, one that mimics
radiation outflux, effectively by replacing the ingoing
Hartle-Hawking modes with ingoing Boulware modes.

In terms of field observables, the distinct vacua (denoted
j0αi where α ¼ B, U, H) can be specified by the vacuum
Wightman two-point functions,

Wαðx; x0Þ ≔ Trðϕ̂ðxÞϕ̂ðx0Þj0αih0αjÞ; ð14Þ

and all higher n-point vacuum correlation functions can be
obtained as products of the vacuum two-point functions.
For each vacuum state (here α ¼ B, U, H) we have

WBðx; x0Þ ¼ −
1

4π
log ½−Λ2ðΔu − iϵÞðΔv − iϵÞ�; ð15aÞ

WUðx; x0Þ ¼ −
1

4π
log ½−Λ2ðΔU − iϵÞðΔv − iϵÞ�; ð15bÞ

WHðx; x0Þ ¼ −
1

4π
log ½−Λ2ðΔU − iϵÞðΔV − iϵÞ�; ð15cÞ

where Λ > 0 is an IR cutoff inherent in (1þ 1) massless
scalar field theory.
We make a parenthetical remark that in principle, one

could try to perform canonical quantization with respect to
the PG coordinates where the vacuum state (which we may
call PG vacuum j0PGi) is associated with a freely falling
observer (see e.g., [36–38] for related discussions). This
will be slightly more involved due to the cross term in the
metric. However by construction this state will be regular
across the horizon and is well-defined on regions I and II of
the Schwarzschild spacetime. We expect that essential
qualitative features of our results in the context of entan-
glement harvesting will be similar to Hartle-Hawking and
Unruh vacua, and we relegate explicit calculations for
canonical quantization in PG coordinates for future work.
Following [21,30,31], we shall use a particular model of

detector-field interaction known as the derivative coupling
detector model. The reason for this choice is that the
Wightman functions (15a)–(15c) have two shortcomings;
they do not possess the Hadamard short-distance property
[39,40], and they have an IR ambiguity associated with
massless fields in two-dimensional QFT with no boundary
conditions. Instead, since we are interested in only the two-
point functions evaluated along the support of each
detector, we will only need to calculate the pullback of
the two-point functions along the detectors’ trajectories,
and consider the proper time derivatives associated with the
two trajectories xðτÞ and x0ðτ0Þ:

AαðxðτÞ; x0ðτ0ÞÞ ¼ Trð∂τϕ̂ðxðτÞÞ∂τ0 ϕ̂ðx0ðτ0ÞÞj0αih0αjÞ:
ð16Þ

The proper time derivatives remove the IR ambiguity from
the Wightman function and the resulting two-point func-
tions mimic the short-distance behavior of the Wightman
distribution in (3þ 1) dimensions. It also retains all other
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essential features such as invariance under time translation
generated by the respective timelike Killing fields that
define each vacuum state. Past results have suggested that
qualitatively similar results to the linear amplitude coupling
model (without proper time derivative) are obtained in flat
space and (1þ 1)-dimensional spacetimes with moving
mirrors [26,41].
More explicitly, the proper time derivative two-point

function reads

ABðτ; τ0Þ ¼ −
1

4π

�
_u _u0

ðu − u0 − iϵÞ2 þ
_v _v0

ðv − v0 − iϵÞ2
�
; ð17aÞ

AUðτ;τ0Þ ¼−
1

4π

�
_U _U0

ðU−U0− iϵÞ2þ
_v_v0

ðv−v0− iϵÞ2
�
; ð17bÞ

AHðτ;τ0Þ ¼−
1

4π

�
_U _U0

ðU−U0− iϵÞ2þ
_V _V 0

ðV−V 0− iϵÞ2
�
; ð17cÞ

where we used the shorthand Aαðτ; τ0Þ≡AαðxðτÞ; x0ðτ0ÞÞ,
_y≡ ∂τ½yðτÞ�, and _y0 ≡ ∂τ0 ½yðτ0Þ�. We stress that in general τ
and τ0 in the derivative coupling Wightman functions
are proper times associated with distinct trajectories xðτÞ
and x0ðτ0Þ; thus in general dτ=dτ0 ≠ 1 due to relative
gravitational and kinematic redshifts of the two trajectories.
For the rest of this paper we will denote Aαðτ; τ0Þ≡
AαðxðτÞ; x0ðτ0ÞÞ in Eq. (17a)–(17c) the vacuum two-
point functions and not the original Wightman functions
(15a)–(15c).

III. SETUP

In this section, we review the UDW detector model.
We employ the derivative coupling model so that we can
avoid the IR ambiguity, which appears in the case of a
linearly coupled UDW detector in (1þ 1)-dimensional
spacetimes (see [21] and the references therein). To
examine the properties of correlations extracted from the
vacuum, we will use the perturbation theory to obtain the
density operator ρAB of two detectors.

A. Derivative coupling UDW model

Let us consider two observers, Alice and Bob, each of
them carrying a pointlike UDW detector. The detector
consists of a two-level quantum system with the energy gap
Ω, interacting locally with the quantum scalar field along
the detector’s trajectory. In this case, we are interested in the
pullback of the field operator along the detector’s trajectory
ϕ̂ðxjðτjÞÞ, where xjðτjÞ denotes the trajectory of each
detector parametrized by proper time τj. The interaction
Hamiltonian of the detector and the field is conveniently
described in terms of the detector’s proper time, given by

Ĥ
τj
j ðτjÞ¼ λjχjðτjÞμ̂jðτjÞ⊗ ∂τj ϕ̂ðxjðτjÞÞ j∈ fA;Bg; ð18Þ

where the monopole moment μ̂j and the switching function
of each detector is given by

μ̂jðτjÞ ¼ jejihgjjeiΩjτj þ jgjihejje−iΩjτj ; ð19Þ

χjðτjÞ ¼ exp

�
−
ðτj − τj;0Þ2

σ2j

�
; ð20Þ

where jgji and jeji are ground and excited states of detector
j. In what follows we will assume that the detectors are
identical, in that it has the same coupling strength λj ¼ λ,
energy gap Ωj ¼ Ω and switching duration σj ¼ σ in their
own proper frames. The parameter τ0;j denotes the peak of
the switching function. Note that this Hamiltonian gen-
erates time translation with respect to τj.
The total interaction Hamiltonian of the system is

conveniently written in terms of a common coordinate
time t (in this work we will consider either t ¼ ts; tPG) as

Ĥt
IðtÞ ¼

dτA
dt

ĤτA
A ðτAðtÞÞ þ

dτB
dt

ĤτB
B ðτBðtÞÞ; ð21Þ

where we have used the time-reparametrization property
[42,43]. The time evolution is given by the unitary

ÛI ¼ T exp

�
−i

Z
∞

−∞
dtĤt

IðtÞ
�
; ð22Þ

where T is a time-ordering symbol. For sufficiently weak
coupling the time evolution operator can be expanded as a
Dyson series

ÛI ¼ 1þ Ûð1Þ þ Ûð2Þ þOðλ3Þ; ð23Þ

where ÛðkÞ is of order λk given by

Ûð1Þ ¼ −i
Z

∞

−∞
dtĤt

IðtÞ; ð24Þ

Ûð2Þ ¼ −
Z

∞

−∞
dt
Z

t

−∞
dt0Ĥt

IðtÞĤt0
I ðt0Þ: ð25Þ

Our primary interest in the entanglement harvesting
protocol is to extract entanglement from a vacuum using
spacelike separated detectors when they are initially
uncorrelated. To this end we set the initial density operator
ρ0 of the total system to be the product state

ρ0 ¼ jgAihgAj⊗ jgBihgBj⊗ j0αih0αj; α∈ fB;U;Hg:
ð26Þ

Then the total density operator ρtot after the time-evolution
ÛI is
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ρtot ¼ ÛIρ0Û
†
I ¼ ρ0 þ

X2
iþj¼1

ρði;jÞ þOðλ3Þ; ð27Þ

where we defined ρði;jÞ ≔ ÛðiÞρ0ÛðjÞ†. The composite
density operator for two detectors, ρAB is obtained by
tracing out the field; ρAB ¼ Trϕ½ρtot�. Note that after tracing
out the degrees of freedom, ρð1;0Þ and ρð0;1Þ do not
contribute to the density matrix ρ̂AB due to vanishing
one-point vacuum correlation functions.
By choosing bases jgAijgBi ¼ ½1; 0; 0; 0�⊤, jgAijeBi ¼

½0; 1; 0; 0�⊤, jeAijgBi ¼ ½0; 0; 1; 0�⊤, and jeAijeBi¼
½0;0;0;1�⊤, ρAB takes the following form,

ρAB ¼

2
666664

1 − LAA − LBB 0 0 M�

0 LBB LBA 0

0 LAB LAA 0

M 0 0 0

3
777775
þOðλ4Þ:

ð28Þ

The matrix elements are given by

Lij ¼ λ2
Z

∞

−∞
dτi

Z
∞

−∞
dτ0jχiðτiÞχjðτ0jÞe−iΩðτi−τ

0
jÞ

×AαðxiðτiÞ; xjðτ0jÞÞ; ð29Þ

M ¼ −λ2
Z

∞

−∞
dτA

Z
∞

−∞
dτBχAðτAÞχBðτBÞeiΩðτAþτBÞ

× ½ΘðtðτAÞ − tðτBÞÞAαðxAðτAÞ; xBðτBÞÞ
þ ΘðtðτBÞ − tðτAÞÞAαðxBðτBÞ; xAðτAÞÞ�; ð30Þ

where ΘðzÞ is Heaviside step function and the pullback of
the Wightman function along the trajectories of both
detectors reads

AαðxiðτiÞ; x0jðτ0jÞÞ ¼ h0αj∂τi ϕ̂ðxiðτiÞÞ∂τ0j
ϕ̂ðxjðτ0jÞÞj0αi:

ð31Þ

LAA and LBB are the transition probabilities of Alice and
Bob, respectively. M and LABð¼ L�

BAÞ corresponds to the
nonlocal terms that simultaneously depend on both trajec-
tories; M is responsible for entangling two detectors and
LAB is used for calculating the mutual information.
Let us comment on the choice of coordinate systems.

The coordinate system xμ is chosen in such a way that it
specifies the coordinates of two detectors. In (1þ 1)-
dimensional Schwarzschild spacetime, such a coordinate
system could be the Schwarzschild, Eddington-Finkelstein,
Kruskal-Szekeres, PG coordinate systems, etc. For the two
static detectors case considered in [21], any one of the
coordinate systems above can be used. However, this is not

true when one of the detectors is free falling and enters the
black hole; Schwarzschild coordinates cannot be used since
it prevents us from analyzing the horizon-crossing moment.
For this purpose, the coordinate system adapted to free-
falling observers will be the simplest for our purposes both
conceptually and numerically. The calculations of the
geodesic equation for the free-falling trajectories in terms
of the double null coordinates are given in Appendix.
In this paper, we will employ the PG coordinate

system to examine the harvesting protocol, that is, the
time parameter t used in (22) will be tPG, and so the
Heaviside step functions in (30) become

ΘðtPGðτAÞ − tPGðτBÞÞ; ΘðtPGðτBÞ − tPGðτAÞÞ: ð32Þ

This choice is possible since the time ordering is preserved
when the detectors have negligible spatial extent [44].
Let us now move on to the measures of correlation,

concurrence [45] and mutual information [1]. We use
concurrence as a measure of the amount of entanglement
extracted from a vacuum. Given the density matrix (28),
concurrence C½ρAB� takes the form [24,46]

C½ρAB� ¼ 2maxf0; jMj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAALBB

p
g þOðλ4Þ: ð33Þ

Although there are other entanglement measures such as
negativity [16,47], concurrence gives a nice intuition for
entanglement harvesting; entanglement can be extracted
when the nonlocal jMj is greater than the local noise
contribution

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAALBB

p
. In this sense M is responsible for

entanglement extraction and the probabilities LAA, LBB act
as a noise.
We are also interested in mutual information I½ρAB�,

which tells us how much general correlations, including
classical ones, are extracted. It is defined by [1]

I½ρAB� ≔ S½ρA� þ S½ρB� − S½ρAB�; ð34Þ

where S½ρ� ≔ −Tr½ρ ln ρ� is the von Neumann entropy. In
the case of (28), the mutual information is known to be [16]

I½ρAB� ¼ Lþ lnLþ þ L− lnL−

− LAA lnLAA − LBB lnLBB þOðλ4Þ; ð35Þ

where

L� ¼ 1

2

�
LAA þ LBB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA − LBBÞ2 þ 4jLABj2

q �
:

ð36Þ

If the two detectors do not have entanglement but have
nonzero mutual information, then the correlations between
them must be either classical correlation or nonentangle-
ment quantum correlations such as discord [48,49].
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B. Causality for the two detectors

In [16,41], there is an emphasis on the fact that
entanglement harvesting protocol is most relevant when
the two detectors in question are spacelike separated (or at
least approximately so). This is reasonable because generic
interactions will produce correlations between detectors.
This is true for the Unruh-DeWitt model for arbitrary
choice of physical parameters such as energy gap and
switching duration. This is because for generic interactions,
communication between detectors will generate entangle-
ment unless the channel on ρAB induced from the global
detector-field unitary is entanglement breaking [50,51]. For
instance, in the case of degenerate detectors or instanta-
neous switching, entanglement extraction from the QFT
vacuum is impossible [51,52]. It was also shown in [51]
how entanglement extraction from the vacuum might be
assisted by allowing some form of communication between
the two detectors.
The point is that for generic setups of detector-field

interaction, the quantum channelΦðρABÞ ¼ TrϕðÛρ0Û
†Þ is

not an entanglement-breaking channel. Consequently, in
general the nonzero concurrence (and mutual information)
harvested in this protocol will be a mixture of contribu-
tions purely from the field vacuum extraction and also
from the communication between the two detectors. Since
the setup we consider is both perturbative and generic
(i.e., not in the entanglement-breaking regimes such as
where detectors have degenerate gaps or the switching is
instantaneous), nonzero concurrence and mutual informa-
tion would suggest that the purely vacuum contribution is
also nonzero. Therefore, we do not attempt to enforce that
the detectors are strictly spacelike separated unless other-
wise stated.
In the case where the causal relations are important, we

will provide a measure of how causally disconnected the
two detectors are. Following [21,33], we introduce a
signalling estimator E which serves as a primitive tool to
analyze the causal relations between the two detectors. We
take the signalling estimator to be2

E ≔
λ2

2
Im

�Z
∞

−∞
dτA

Z
∞

−∞
dτBχðτAÞχðτBÞ

× h0j½∂τA ϕ̂ðxAðτAÞÞ; ∂τBϕ̂ðxBðτBÞÞ�j0i
�
: ð37Þ

We have removed the subscript α from the vacuum state
since the field commutators are c numbers. This estimator
is useful for the following reason: due to finite switching
times for both detectors, it is classically challenging to
determine if Alice is in the causal complement of Bob or

not since it will require nontrivial ray tracing for the entire
spatiotemporal support of both detectors, even if the
detectors are pointlike. This provides us with a relatively
cheap measure of how spacelike/timelike two detectors are;
the main drawback is that it does not allow us to clearly
quantify how much of the correlations harvested is due to
communication-assisted contributions and how much is the
truly vacuum harvesting part.
A cautionary note is in order here. The signalling

estimator is crude insofar as it is not quite an entanglement
monotone; this will become apparent in what follows. Thus
nonzero jEj can only indicate that some of the concurrence
is due to field-mediated communication channel between
Alice and Bob. Conversely, zero jEj guarantees that the
entanglement harvested is purely from the vacuum of the
quantum field as the detectors are causally disconnected.
Likewise, small jEj is indicative that most of the harvested
entanglement is not due to a communication channel. The
sign of E is secondary3 and in what follows we shall plot jEj
whenever it is conceptually clearer to do so.
Note that the signalling estimator E is in terms of the

commutator of the proper time derivative of the field along
the two detectors’ trajectories instead of the field commu-
tator ½ϕ̂ðxAðτAÞÞ; ϕ̂ðxBðτBÞÞ�. This is because for the
derivative-coupling Unruh-DeWitt model, one can show
that the leading order correction4 to Bob’s density matrix

ρð2ÞB ≔ TrAρ
ð2Þ
AB due to Alice’s detector depends only on the

commutator ½∂τA ϕ̂ðxAðτAÞÞ; ∂τBϕ̂ðxBðτBÞÞ�. The calcula-
tion proceeds analogously up to Eq. (24) in [33].
Furthermore, since the signalling component depends
on proper time derivatives, it means that the communi-
cation contribution of the harvesting protocol mimics
(3þ 1)-dimensional setting, in that the commutator only
has support on the light cone. Therefore, communication
mediated by the massless scalar field will only occur if the
supports of the switching functions of Bob’s detector
overlap with the lightlike boundary of Alice’s causal past/
future and vice versa. This means that they only can
communicate via the scalar field if the support of the
Gaussian of one detector intersects the causal past/future
of the other detector.
Finally, we remark that the Gaussian switching can be

effectively taken to have compact support despite the
infinite exponential tails. We define strong support to be
the interval ½−5σ þ τj;0; 5σ þ τj;0�, where τj;0 are the
Gaussian peaks defined in each detector’s rest frame.
The switching function χðτjÞ can be taken to be negligible
outside of this interval. This sort of strong support
approximation has been shown to be reasonable for
detector-field interaction studies [21,33].

2Strictly speaking we only need the modulus jEj since what is
more relevant is the spatial interval or region where E is
approximately zero: the nonzero value of E itself is secondary.

3Indeed, the absolute value jEj is the definition of signalling
estimator in [33].

4Here ρð2ÞAB contains all terms of order λ2 in Eq. (28).
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IV. RESULTS AND DISCUSSIONS

In this section we present our main results for entangle-
ment and mutual correlation harvesting for various param-
eter choices and detector trajectories. We define dðri; rjÞ to
be the proper distance between the coordinate radii ri, rj,
and write dAB ≔ dðrA; rBÞ for the proper separation
between two detectors.
It is clear that for two static detectors dAB is unambigu-

ous, but for free-falling detectors the proper distance
between them changes with time. Therefore, there is a
need to find some sort of effective proper distance that
works for free-falling scenarios. For this purpose, we use
the locations of the peaks of Alice and Bob’s Gaussian
switching functions (given in terms of the peak proper
times τA;0 and τB;0 of the detectors) as reference points as
follows:
(a) If Alice and Bob are static (we will call this the SS

scenario), we take dAB to be measured when both
peaks are at some constant-tPG slice. Since both are
static, their separation dAB computed this way is also
valid even if the switching peaks are translated along
their respective trajectories.

(b) If Alice is free-falling and Bob is static (we will call
this the FS scenario), we take dAB to be measured with
respect to the peaks of their Gaussian switching, thus
effectively locating Alice at rA ¼ rðτA;0Þ and Bob at
some fixed rB. We stress that both detector trajectories
are parametrized by different proper times due to
gravitational redshift, i.e., dτA=dτB ≠ 1.

(c) If both detectors are free-falling from infinity (we will
call this theFFscenario) initially at rest, then the proper
distance is given by dAB ¼ jrðτA;0Þ − rðτA;0 þ constÞj
with the constant to be determined. This is because
in this case both detector trajectories can be para-
metrized by the same proper time and hence the proper
distance is completely controlled by the difference
τB;0 − τA;0 ¼ constant.

This means that the role of the free-falling motion in
contrast to the static one is encoded in the support and peak
of the switching functions. The three scenarios are depicted
in Fig. 2.

We will compute all quantities in units of the switching
width σ. Since the coupling strength for the derivative
UDW model has units of ½Length�ðn−1Þ=2 where n is the
number of spatial dimensions, we can define λ̃ ≔ λσðn−1Þ=2.
In (1þ 1) dimensions, this gives λ̃ ¼ λ (i.e., λ is already
dimensionless) but we will use λ̃ in this section to remind
ourselves that the coupling strength of the (derivative)
UDW model is dimension dependent.
All the results below are obtained numerically using the

technique involving numerical contour integration outlined
in [21], with a modification for the evaluation of the
nonlocal term M in (28); the free-falling trajectory
introduces some numerical instability that makes it difficult
to work with the Heaviside step function directly.
Consequently, the computation is done by approximating
the step function using a smooth analytic function; for our
purposes we use the fact that

ΘðzÞ ¼ lim
k→∞

�
1

2
þ 1

2
tanh kz

�
; ð38Þ

and define an approximate step function5 to be

ΘkðzÞ ≔
1

2
þ 1

2
tanh kz; ð39Þ

where k is fixed but sufficiently large. The choice of k will
in fact be dependent on the choice of the contour size (i.e.,
the value of ϵ in the iϵ prescription), which for generic
situations requires small ϵ for large k.

A. Free-falling Alice, static Bob (FS)

In Fig. 3 we plot the concurrence and mutual information
as functions of Alice’s proper distance from the horizon at

(a) (b) (c)

FIG. 2. Penrose diagrams for three cases: (a) SS, (b) FS, and (c) FF.

5The analysis of this technique is given in [53], which includes
the performance of this approximation along with other possible
choices of analytic functions and variations of the contour. We
also note that the numerical evaluation is done using Mathema-
tica 10 [54], as it is (surprisingly) more stable than the newer
versions and in some cases the newer versions may even compute
the wrong answers on physical grounds.
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the exterior of the black hole for both Unruh and Hartle-
Hawking vacuum states and we compare the FS and SS
scenarios.
We observe that the SS scenario has larger concurrence

than the FS scenario, and this is true even when both
detectors are far from the black hole. The entanglement
shadow near the horizon is wider for the FS case, whereas
for the SS case the shadow is much smaller in comparison
[see inset in Fig. 3(a)]. The generic result here is that when
one detector is free falling, the bipartite entanglement
harvesting is less potent than the static case. We will revisit
this issue later in order to see to what extent this can be
explained by relative velocities between the two detectors.
We remark that the results for the SS case differ somewhat
from those a previous study of harvesting in (1þ 1)-
dimensional collapsing shell spacetime [21] because the
protocols are implemented slightly differently; here the
switching peaks of the detectors are turned on at the same

constant tPG slices, while in [21] the detectors are turned on
at the same constant proper time τ0 (in their own frames).
The relative redshift factor is markedly different, and hence
the entanglement shadow size is different [very small in
Fig. 3(a) inset].
However for mutual information harvesting, notably the

FS scenario can outperform the SS case very near to the
horizon, as we show in Fig. 3(c). The overall behavior for
mutual information harvesting is similar to concurrence in
that the FS case is less efficient in extracting correlations
from the field, although there is nonzero mutual informa-
tion in general. This behavior is only possible because
generically there is no entanglement shadow for mutual
information in this framework, unlike the situation when
one computes entanglement monotones such as concur-
rence and negativity.
Next, we consider how the harvesting protocol depends

on the black hole masses, as we show in Fig. 4. In general,
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FIG. 3. Concurrence and mutual information are plotted as a function of the effective proper distance of Alice from the horizon for
both the SS and FS scenarios. Here we chose Ωσ ¼ 2;M=σ ¼ 5; dAB=σ ¼ 2. (a) Concurrence near the horizon, where
dðrA; rsÞ=σ ∈ ½0.001; 1�. (b) Concurrence further away from the horizon at dðrA; rsÞ=σ ∈ ½1; 100� with the inset covering very far
regime dðrA; rsÞ=σ ∈ ½105; 105 þ 1�. (c) Mutual information near the horizon, where dðrA; rsÞ=σ ∈ ½0.001; 1�. (d) Mutual information
further away from the horizon at dðrA; rsÞ=σ ∈ ½1; 100�.
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we see that the smaller mass black holes allow for better
harvesting efficiency for both concurrence and mutual
information. However, due to nontrivial roles of curvature
and communication between two detectors, the variation
of concurrence and mutual information as we vary
detector distances from the horizon is generally not
monotonic. This is especially so for mutual information,
where we see that sufficiently far from the horizon, the
behavior flips and detectors harvest mutual information
less for smaller masses; we verified at large distances [see
inset of Fig. 4(d)] that the curves flip again, and we again
obtain the result that larger mass leads to less correlation
harvested.
A natural question that arises is to what extent the

results obtained thus far depend only on the kinematic
properties of the detectors (i.e., their velocities) and how
much of it comes from the intrinsic properties of the
background spacetime (i.e., the curvature). As it turns out,

the UDW formalism is not very sensitive to spacetime
curvature and much of the results here can be simulated
using the corresponding flat space result, at least in the
exterior geometry of the black hole sufficiently distant
from the horizon. In order to better understand this
kinematical aspect of the harvesting protocol, we will
consider concurrence and mutual information for the
Boulware vacuum and compare the results with the
Minkowski vacuum analog.6

For this comparison to work, we will use the notion of
intrinsic relative velocities in general relativity. The idea is
that since in curved spacetimes M the connection is not
flat, one cannot compare vectors belonging to tangent
spaces at different points directly. Consequently, in the
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FIG. 4. Concurrence and mutual information are plotted for various black hole masses in both the FS and SS scenarios as a function of
Alice’s proper distance from the horizon. As a benchmark we use the Unruh vacuum and we consider three different massesM=σ ¼ 5,
10, 20. We fix the other parameters as Ωσ ¼ 2; dAB=σ ¼ 2. (a) Concurrence near the horizon at dðrA; rsÞ=σ ∈ ½0.001; 1�. We see that the
FS case vanishes close to the horizon. (b) Concurrence further away at dðrA; rsÞ=σ ∈ ½1; 100�. The entanglement shadow in the SS case
increases with increasing M [21]. (c) Mutual information near the horizon at dðrA; rsÞ=σ ∈ ½0.001; 1�. (d) Mutual information further
away at dðrA; rsÞ=σ ∈ ½1; 100�.

6A similar comparison has been carried out between Rindler
and Schwarzschild spacetimes [55].
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presence of curvature one cannot naïvely compute relative
velocities between two observers at two different events p,
q because a vector ua in TpM is not a priori related to
vectors in TqM. However, for spacetimes with well-
defined spacelike foliations one can generalize the notion
of relative velocities by making use of generalized version
of spacelike simultaneity in flat space. Formally, given
four-velocity ua ∈ TpM, spacelike simultaneity is given
by the so-called Landau submanifold Lp;u, defined via the
submersion Φ∶M → R with ΦðqÞ ¼ gðexp−1p q; uÞ ¼
gμνðexp−1p qÞμuν where exp is the exponential map [32].
In other words, spacelike simultaneity is defined by the
spacelike hypersurface obtained as the regular level set
Lp;u ¼ Φ−1ð0Þ. This defines the so-called kinematic rela-
tive velocity (see [32] and references therein for other
definitions of relative velocities that can be defined in
general relativity).
For Schwarzschild geometry, the notion of kinematic

relative velocity (KRV) can be defined using the Landau
submanifold above, and boils down to a simple formula in
terms of the metric function fðrÞ. If Alice and Bob are both
static observers at fixed radii, the KRV is zero. For the FS
scenario where Alice is free falling from infinity, her KRV
relative to Bob is given by [32]

VA;kinjB ¼ −fðrBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

fðrAÞ2
E2

r ∂
∂r

����
B
; ð40Þ

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r0

p
and r0 is the initial radius of the

free-falling trajectory at rest [56]. In our FS scenario, we
have r0 → ∞ so that E ¼ 1 and the magnitude of the KRV
is given simply VAB ≔ jVA;kinj ¼ fðrBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrAÞ2

p
. Note

that VAB depends on τA since a free-falling detector has
nonzero proper acceleration; in this case, Alice’s proper
acceleration can be shown to be [see Eq. (A4) in Appendix]

aðτAÞ ≔
ffiffiffiffiffiffiffiffiffiffi
aμaμ

p ¼ −
M

rðτAÞ2
: ð41Þ

If the detectors are far enough from the black hole and/or
the support of the Gaussian is sufficiently small, then the
variation of Alice’s radial velocity across the Gaussian
support can be considered approximately constant, equal to
the value at Alice’s Gaussian peak. In this case, the KRV is

given approximately by VAB;0 ≔ fðrBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrðτA;0ÞÞ2

q
where τA;0 is the Gaussian peak of Alice. We can then
compare the concurrence and mutual information of
the corresponding scenario in Minkowski space where
Alice has relative velocity VAB with respect to Bob for
the same derivative coupling UDW model.7

We compare the concurrence and mutual information in
the FS scenario in the Boulware vacuum against the
corresponding Minkowski vacuum scenario with the same
constant relative velocity VAB;0 in Fig. 5. The flat space
version (shown in orange in Fig. 5) corresponds to Bob at
rest in an inertial frame and Alice boosted away from Bob,
with dAB ¼ 2σ measured from the peaks of both Gaussian
switching functions. The relevant scale is given by
aðτA;0Þσ ≈ 10−5 ≪ 1 (thus the constant velocity approxi-
mation is valid across the Gaussian support) and VAB;0 ≲
0.08 which is almost in the relativistic regime. Observe that
for this setup, most of the correlations at dðrA; rsÞ ∼
300σ − 500σ can be accounted for by the correct relative
velocity alone (hence purely kinematic). Therefore, the
relative motion between the detectors (measured by KRV)
is the most relevant physics that explains why correlations
in the FS scenario are consistently lower than the SS
counterpart in Figs. 3 and 4. At distances much farther than
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FIG. 5. Concurrence and mutual information for the FS scenario are plotted for the Boulware vacuum and compared to the KRV in the
Minkowski vacuum. Ωσ ¼ 2;M=σ ¼ 1; dAB=σ ¼ 2, and stationary and boosted inertial detectors in (1þ 1)-dimensional Minkowski
spacetime with Ωσ ¼ 2; dAB=σ ¼ 2.

7All we need to change is the definition of the null coordinates
into u; v ¼ t ∓ r in the definition of Wightman distribution for
the Boulware vacuum (17).
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500σ, the concurrence and mutual information harvesting
are practically indistinguishable from flat space. As we
approach the horizon the correlation harvested will start to
be different for fixed σ as more nonuniformity in the
accelerated motion is captured by the Gaussian support.
We remark that this does not mean the effect of

gravitational field is absent from the harvesting protocol;
in fact our analysis based on the kinematic relative velocity
is a manifestation of local flatness and the equivalence
principle, since small enough Gaussian support is equiv-
alent to looking at a small enough region of spacetime (the
detector is already pointlike). The fact that the black hole is
present will be manifest in other ways; for instance, insofar
as Alice cannot signal to detectors near future null infinity
Iþ once Alice falls into the black hole, or that Alice will hit
the singularity in finite proper time. Also, by putting Bob in
static trajectory such that the switching peak is sufficiently
near to future timelike infinity iþ while Alice is inside the
black hole, it is guaranteed that any correlation harvested is
from the QFT vacuum (without a communication compo-
nent) since they are both causally disconnected by the
future horizon Hþ. In [21] it was shown how signalling
estimator for static detectors is already generally nontrivial
in some finite region in the exterior: since the field
commutator is state-independent, the nontrivial signalling
is gravitational in nature as the classical solutions to the
Klein-Gordon equation depend on curvature (reflected by
the nontrivial wave operator ∇μ∇μ).

B. Dependence of harvesting with
signalling between detectors

Our analysis so far has been focused on the detector
trajectories, regardless of whether the detectors harvest

correlations purely from the vacuum or potentially assisted
by communication. We would like to understand to what
extent the harvesting protocol in this particular setup is
assisted by a communication channel between the detectors
mediated by the quantum field.
To this end, we consider the signalling estimator for

Alice and Bob’s trajectories, as shown in Fig. 6. The orange
lines denote the light rays that can reach or emanate from
the endpoints of Alice’s Gaussian support, indicating the
region along Bob’s trajectory at which Bob can send or
receive signals from Alice (via the coupling with the
massless scalar field). We divide the regions along Bob’s
trajectory into four parts, shown in Fig. 6. Regions (i) and
(iii) do not allow signalling between both detectors: this is
expected from the fact that the commutator of the (proper-
time derivative of the) field has support only on the lightlike
region. Region (ii) is where Bob can signal to Alice when
the Gaussian support of Bob’s detector intersects the orange
lines, whereas region (iv) is where Alice can signal to Bob.
Notice that region (iv) is wider than region (ii).
For a given choice of Alice and Bob’s detector param-

eters, the signalling region between Alice and Bob medi-
ated by the detector-field interaction can be quantified by a
single parameter δ and the PG coordinates. As depicted in
Fig. 6(a), we first find the constant tPG slice that crosses
Alice’s Gaussian peak τA;0. This is simply given by
tPG ¼ τA;0. Bob is stationary at the radial coordinate8 rB ¼
rs þ dðrA; rsÞ þ dAB and we suppose that Bob has the
freedom to decide when to switch the detector on (for fixed
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FIG. 6. Penrose diagram of the schematics of Alice and Bob’s positions, and the corresponding signalling estimator between Alice and
Bob as a function of the “time-delay” parameter for the FS scenario. Here we choseM=σ ¼ 5; dAB=σ ¼ 5 and dðrA; rsÞ=σ ¼ 1. The red
and blue stripes denote the strong support of Alice’s and Bob’s Gaussian switching, and the orange lines denote the light rays that
emanate or arrive at the endpoints of Alice’s strong support.

8Recall that in PG coordinates, the spatial slices are flat. Thus
the coordinate separation between two radial coordinates ri, rj
is equivalently given by the proper separation Δr ¼ jri − rjj ¼
dðri; rjÞ. This is not true for Schwarzschild coordinates.
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width σ). The parameter δ gives a measure of time delay of
Bob’s switching away from the tPG ¼ τA;0 line (the con-
stant-tPG slice that matches Alice’s Gaussian peak) and it is
given by

δ ≔ τB;0 −
ffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ

p �
τA;0 − 2rs

ffiffiffiffiffi
rB
rs

r
− rs ln

ffiffiffiffiffiffiffiffiffiffiffi
rB=rs

p
− 1ffiffiffiffiffiffiffiffiffiffiffi

rB=rs
p þ 1

�
:

ð42Þ

Note that δ > 0 if the Gaussian peak τB;0 is located in the
future of the constant tPG ¼ τA;0 line.
The signalling estimator between the two detectors as a

function of δ=σ is given in Fig. 6(b); we see that it is not an
entanglement monotone, as expected. By comparing with
Fig. 6(a), we see that as δ varies from regions (i)–(iv), we
see that the communication between Alice and Bob can be
precisely captured using the signalling estimator E (or
rather the absolute value jEj). Indeed the signalling esti-
mator jEj is very sharp and narrow in region (ii) because the
support of Bob’s Gaussian switching crosses the small
region where Bob can send signals to Alice via the field.
Region (iv), where Bob can receive signals from Alice, is
very wide compared to (ii), and this manifests in jEj ≠ 0 for
a wide range of δ. Regions (i) and (iii) have vanishing jEj
because Bob is outside the signalling region. In region (v) δ
is large enough that Bob is again causally disconnected
from Alice.
We can now clarify whether the harvesting protocol we

studied earlier is communication-assisted or not. By com-
puting the signalling estimator for the results in Fig. 3, we
conclude that indeed the harvesting protocol is communi-
cation-assisted because jEj ≠ 0, as we show in the left plot
of Fig. 7. In the language of Fig. 6, this also means that for
dAB ¼ 2σ, region (iii) is so small that it cannot completely
contain the Gaussian support of Bob; hence the commu-
tator cannot vanish as δ increases from (ii) to (iv).

In view of this, we can ask whether the protocol still
allows for entanglement harvesting with free-falling Alice
when Bob is causally disconnected from Alice; the answer
is yes, as we show in the right plot of Fig. 7. In this case we
have chosen the setup parameters and manipulated the
time-delay parameter δ such that the detectors are causally
disconnected. Indeed, we see that the two detectors can still
have nonzero concurrence9 purely from vacuum entangle-
ment harvesting since jEj ≈ 0. Conversely, from the left
diagram in Fig. 7 we also see that a nonzero communication
channel mediated by the field (jEj > 0) does not guarantee
that two detectors can harvest entanglement. This is
analogous to the situation when a quantum communication
channel is entanglement breaking.
Last but not least, we consider the final FS scenario

when Alice’s Gaussian support is completely contained
inside the black hole, as shown in Fig. 9. Here the
crucial point is that Alice can never communicate to
Bob because her causal future is completely contained in
the black hole interior, although there are values of δ < 0
where Bob can still signal to Alice. Since Bob is static in
the exterior, it is necessary that dAB be big enough for
Alice’s strong support to be completely inside the black
hole and the black hole mass also needs to be big enough
relative to the Gaussian width for the whole support to fit
inside. An example that fits these requirements is given by
Ωσ¼ 2;M=σ¼ 10;dðrA;0Þ=σ¼ 14, and dðrB; rsÞ=σ ¼ 7.
For this choice, the concurrence is zero but the mutual
information is still nonzero, as seen from Fig. 8(b).
While inFig. 8(b) the concurrence is zero,wehave indirect

numerical evidence that with large enough Ω harvesting
nonzero concurrence across the horizon is possible. This is
based on numerical evidence that jMj − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LAALBB
p
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FIG. 7. Concurrence and signalling estimator as a function of proper distance from the horizon for FS scenario. Left:
Ωσ ¼ 2;M=σ ¼ 5; dAB ¼ 2σ, as done in Fig. 3. Right: M=σ ¼ 5;Ωσ ¼ 5; dAB=σ ¼ 5. Here we chose δ=σ ¼ 1 so that two detectors
cannot communicate at large dðrA; rsÞ.

9Mutual information is generically nonzero everywhere except
possibly when Alice approaches the curvature singularity, so
nonzero concurrence is a more relevant and decisive measure.

HARVESTING ENTANGLEMENT WITH DETECTORS FREELY … PHYS. REV. D 104, 025001 (2021)

025001-13



steadily with Ω. Unfortunately, due to highly oscillatory
phase in the nonlocal matrix element M, we are unable to
plot the results for Ωσ ≳ 4.6. This numerical trend is
commensurate with similar ones observed in flat space
[16], an expanding (de Sitter) universe [17], and the BTZ
black hole [19]. In the latter study [19], once concurrence is
nonzero for sufficiently large Ω (in units of σ−1), it remains
nonzero as Ω increases and tends to zero in the limit
Ωσ → ∞. This is because on general grounds local noise
Ljj decreases and jMj increases asΩ increases, although the
behavior of jMj is in general not monotonic.
Thus, despite the horizon cutting off causal connection

from Alice to Bob, we expect the harvesting protocol can
still extract entanglement from the vacuum with suitably
chosen energy gap of the detector (and optimizing over
other parameters). Note that mutual information harvesting
is generically nonzero, as shown in Fig. 8(b).
In Fig. 8, the mutual information harvested decreases

with increasing δ. Thus it seems that the harvesting
protocol depends on how late Bob’s detector is turned
on even though the proper separation between the two
detectors are the same. This can be traced to the fact that
while theWightman two-point functions are stationary with
respect to coordinate t (Schwarzschild or PG), it is not
stationary with respect to the respective proper times τA and
τB, i.e., AαðτA; τBÞ ≠ AαðτA − τBÞ, since there is relative
gravitational and kinematical redshift between the two
trajectories. This is true even for two static detectors at
two different radii, and hence is also true for any FS
scenarios where the two trajectories do not share the same
proper time parametrization. In that sense, the harvesting
protocol is sensitive to the relative proper time delay
between both detectors, i.e., making one of the detectors

turn on much later in the future generically decreases the
mutual information and concurrence between them.10

We comment on the implementation of the harvesting
protocol when Alice is inside the black hole. Strictly
speaking, since Alice and Bob are causally disconnected
by the horizon, there is no physical procedure for checking
the entanglement by themselves. This is because neither
party can collect the other party’s detectors and perform
state tomography of the joint system. For this particular
scenario, we can follow similar principle as outlined in e.g.,
[17]: essentially, one has to consider a third party, say
Charlie, who follows a trajectory that is contained in the
causal futures of both Alice and Bob’s detectors. Charlie
will then collect information from both parties and perform
state tomography on their behalf. Note that Charlie also
needs to fall inside the black hole, since Alice’s causal
future is contained in the black hole interior. In contrast,
when both detectors are outside, Alice and Bob can simply
reconvene after the interactions have been turned off,
although they can also employ a third party to do the joint
state tomography.

C. Alice and Bob free falling (FF)

We close the section by briefly analyzing the FF
scenario, i.e., when both Alice and Bob are free falling
towards the black hole. In this paper we only consider the

(a)

1 5 10 15 20
0

(b)

0.00001

0.000015

0.00002

5. 10 6

FIG. 8. Schematics of the FS scenario when Alice’s strong support is completely contained in the black hole interior. Here we chose
Ωσ ¼ 2;M=σ ¼ 10; dðrA; 0Þ=σ ¼ 14, and dðrB; rsÞ=σ ¼ 7. Alice turns her detector on after she enters the black hole while Bob is
staying outside. For this choice of parameters, mutual information harvested between the causally disconnected detectors are still
manifestly nonzero, although the concurrence is zero in this case.

10Generically this is because by varying δ there will be a value
δmax where it attains a maximum for both concurrence and mutual
information, since the same reasoning should hold if Bob is
turned on “too early” in the asymptotic past. For derivative
coupling, the lightlike support of the commutator implies that
switching on too early also disables communication.
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free-falling trajectory initially at rest at spatial infinity since
the adapted coordinate system is precisely the PG coor-
dinates. Thus for this FF setup, Alice and Bob follow the
same timelike trajectory but with different switching peaks.
This simpler setup has the advantage that the derivative-
coupling Wightman functions are expressible in relatively
simple terms, since the radially infalling geodesics are
relatively straightforward to implement. Note that due to
the derivative coupling with the field, the support of
½∂τA ϕ̂ðxAðτAÞÞ; ∂τBϕ̂ðxBðτBÞÞ� is lightlike. Thus, being
along the same timelike trajectory does not guarantee
field-mediated communication between them.
As shown in Fig. 9(a), without loss of generality we set

Bob’s detector to switch on earlier than Alice’s. This
simulates the effect of Alice free falling ahead of Bob.
The effective proper separation dAB between the detectors is
fixed with respect to their Gaussian peaks. That is, given
Alice’sGaussianpeakat τA;0 anda fixedproper distancedAB,
we can work out at what proper time τB;0 Bob’s Gaussian
peak should be. More explicitly, given Alice’s (effective)
proper distance from the horizon dA ≔ dðrA; 0Þ, their
Gaussian peaks can be written purely in geometric terms as

τA;0 ¼ −
dA
3

ffiffiffiffiffiffiffiffi
2dA
M

r
; ð43Þ

τB;0 ¼ −
dA þ dAB

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðdA þ dABÞ

M

r
: ð44Þ

We can study the harvesting protocol in a manner analogous
to the SS or FS scenarios for any choice of dA and dAB.

Figure 9(b) depicts the signalling estimator and the con-
currence between two freely falling detectors whenΩσ ¼ 5;
M=σ ¼ 50; dAB=σ ¼ 5.
We immediately notice from Fig. 9(b) that the previously

known entanglement shadow near the horizon [19,21] is
absent; the freely falling detectors can harvest entangle-
ment from the interior and exterior of the black hole. First,
note that in the SS scenario, the closer the detectors are to
the horizon, the lower the value of jMj − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LAALBB
p

as the
noise term Ljj dominates the nonlocal term jMj [19,21].
On general grounds, it can be shown that for fixed proper
separation dAB, jMj remains finite as Alice (and hence
Bob) is brought closer to the horizon (in fact vanishes in
this limit), whilst LAA > jMj (for sufficiently small dAB
we have LAA ∼ LBB). This behavior is a generic result of
the fact that static detectors cannot remain static at the
horizon, manifest as an infinite gravitational redshift factor.
In contrast, the equivalence principle requires that free-
falling observers (or detectors) experience nothing peculiar
across the horizon. Free-falling detectors do not experience
divergent gravitational redshift at the horizon, and so in
generic FF situations the entanglement shadow is absent as
both detectors cross the horizon along a radial geodesic.
Moreover, Fig. 9(b) shows that the amount of harvested

entanglement (in blue) increases as the detectors reach the
singularity. At early stages after horizon crossing, jEj is
small and most of the entanglement harvested is from the
vacuum. As the singularity is approached, we can (using
analogous ray-tracing analysis from previous subsections)
see that as the singularity is approached, Bob becomes able
to signal to Alice, which is manifest as increasing nonzero
jEj (in red). Therefore, up until the point at which Alice’s
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FIG. 9. Schematics of two detectors in the FF scenario. Here we setΩσ ¼ 5;M=σ ¼ 50; dAB=σ ¼ 5. (a) The Penrose diagram of freely
falling detectors, with Alice infalling first towards the singularity followed by Bob. The horizontal axis is Alice’s proper distance from
the singularity, and the event horizon is at rs=σ ¼ 2M=σ ¼ 100. Alice cannot signal to Bob via the coupling to the field but can receive
signals from Bob when they are close to the singularity. (b) The modulus of signalling estimator jEj=λ̃2 (red) and the concurrence (blue)
between the two free-falling observers.
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Gaussian tail approaches the singularity (beyond which we
cannot make any conclusions at a semiclassical level),
entanglement harvesting becomes increasingly communi-
cation assisted for this particular setup.
Finally we make a comment regarding the generality of

this FF scenario. There are extra complications in both
analytic and numerical evaluation of the detectors’ reduced
density matrix if we consider generalized free-falling
coordinates associated with free-falling observers initially
at rest at finite radial coordinate r0 (see [34] for the
generalized coordinates adapted to different free-falling
observers). This modified scenario is very useful in
principle because we can minimize the effect of relative
velocities of the detectors when they are very close to the
black hole or even inside; our current setup necessarily
requires that Alice has non-negligible (possibly relativistic)
velocities that may by itself suppress the quality of the
harvesting protocol. We leave this finite-radius free-falling
scenario for future work.

V. CONCLUSION

We have analyzed the harvesting protocol for both
entanglement and mutual information in (1þ 1)-dimen-
sional Schwarzschild spacetime involving a combination of
static and freely falling detectors. Employing the derivative
coupling UDW model, which removes the IR ambiguity
and mimics the Hadamard short-distance property of
massless scalar field in (3þ 1)-dimensional case, we
considered three possible scenarios for comparison based
on Alice and Bob’s detector trajectories: static-static (SS),
free-falling-static (FS), and both free-falling (FF).
First, we found that within perturbation theory, the

concurrence and the mutual information for the FS scenario
is always less than that of the SS scenario. We identified the
origin of this relative inefficiency to be largely kinematic,
insofar as the relative velocity between the detectors is the
main cause the degradation of correlations. This calculation
is enabled by the generalization of relative velocities in
curved spacetimes [32]. A comparison of the FS scenario in
the Boulware vacuum to the case of two detectors with the
same relative velocity in Minkowski spacetime confirms
this. Moreover, the so-called entanglement shadow (or
‘death-zone’) near the horizon for the FS case is much
larger than that of the SS one found previously [19,21,22].
It is an interesting question as to whether or not there are
contributions to the amount of correlations harvested that
can be attributed to “truly intrinsic” properties of the
gravitational field that the concept of generalized relative
velocities exclude. Our results, at least for sufficiently large
distance from the black hole, suggest that this would occur
only for near-horizon regimes or within black hole interior.
Second, we investigated to what extent the harvesting

protocol is communication assisted by examining the
signalling estimator E in (37) and studying the causal
relation between the detectors. We were able to show that in

the FS scenario the detectors can harvest entanglement
purely from the QFT vacuum. In addition, when the
detectors are causally disconnected by the event horizon,
we show that they can still harvest correlations as well
directly from the field vacuum. Note that due to the
derivative coupling, timelike separated detectors cannot
communicate via the field since the support of commutator
of the proper time derivative of the field is lightlike.
Finally, we analyzed a simple scenario involving both

detectors free-falling towards the black hole, where both
detectors follow the same geodesic but they turn on the
detectors in different times. We find that the entanglement
shadow is absent; this is in accord with the equivalence
principle, and can be attributed to the fact that nothing
peculiar should happen during horizon crossing for detec-
tors on inertial trajectories. This is in contrast to static
detectors, which require increasing local acceleration as the
horizon is approached, and which cannot remain static at
the horizon.
There are several interesting future directions that can be

pursued based on our results. It would be most interesting
to confirm cross-horizon entanglement harvesting. This
might be done by considering free-falling detectors at finite
radii in the bulk geometry, employing adapted coordinates
outlined in [34]. Although this would minimize the relative
velocities via the initial conditions imposed on the trajec-
tories, it would be at the price of greater complexity in the
evaluation of the density matrix elements of the detectors
(especially numerically). Second, it would be interesting to
consider the free-falling detector scenario when the black
hole has different interior structure (such as regular black
holes without a curvature singularity [57,58]). It would also
be interesting to see how these results can be reconciled
with techniques based on master equations (see, e.g.,
[59,60] and references therein). We leave these interesting
directions for future work.
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APPENDIX: THE GEODISIC EQUATIONS AND
THE NULL COORDINATES

In this Appendix we calculate the solution to the radial
geodesic equation in Schwarzschild coordinates, with
the goal of expressing the null coordinates u, v, U, V
that appear in the definition of derivative coupling
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Wightman functions as functions of the free-falling
detector’s proper time.
Consider a freely falling observer who is initially at rest

at r0 > 2M. The geodesic equations for a radially infalling
observer are given by [61]

̈t ¼ −
2M

r2fðrÞ _t _r; ðA1Þ

̈r ¼ −
fðrÞM
r2

_t2 þ M
r2fðrÞ _r

2; ðA2Þ

where the dotted derivative refers to the derivative with
respect to proper time. The differential equation is also
supplemented with a constraint for a massive test particle,
namely that the geodesic is timelike,

−1 ¼ gμν _xμ _xν ¼ −fðrÞ_t2 þ 1

fðrÞ _r
2; ðA3Þ

where _xμ ¼ dxμ=dτ is the four-velocity. By multiplying
M=r2 on both sides of (A3) and substituting into (A2),
we get

̈r ¼ −
M
r2

: ðA4Þ

By integrating this with the initial conditions, rðτ0Þ ¼ r0;
_rðτ0Þ ¼ 0, where τ ¼ τ0 is the initial proper time, we
obtain

_r ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs
r
−
rs
r0

r
: ðA5Þ

Assuming that the observer starts from r0 ¼ ∞, the
geodesic equations reduce to

_t ¼ 1

1 − rs=r
; ðA6Þ

_r ¼ −
ffiffiffiffiffiffiffiffiffi
rs=r

p
; ðA7Þ

and so r can be obtained as [30]

rðτÞ ¼ rs

�
τ

τs

�2
3

; ðA8Þ

where τs ¼ −4M=3 is the horizon-crossing time. Note that
τ∈ð−∞;0Þ, and the observer reaches the singularity
as τ→ 0−.
Let us rewrite the geodesic equations in terms of the two

null coordinates v; u ¼ ts � r⋆ and the Kruskal-Szekeres
null coordinates V ¼ 2rsev=ð2rsÞ and U ¼ −2rse−u=ð2rsÞ. By
using (A6) and (A7), we get

_v ¼ 1

1þ ffiffiffiffiffiffiffiffiffi
rs=r

p ; ðA9Þ

_u ¼ 1

1 −
ffiffiffiffiffiffiffiffiffi
rs=r

p ; ðA10Þ

_V ¼ V
2rs

1

1þ ffiffiffiffiffiffiffiffiffi
rs=r

p ; ðA11Þ

_U ¼ −
U
2rs

1

1 −
ffiffiffiffiffiffiffiffiffi
rs=r

p ; ðA12Þ

for r > 0. Note that due to the local nature of the
differential equations, the geodesic equations expressed
in terms of these null coordinates extend into the black
hole interior, in contrast to the Schwarzschild coordinate
version which is only valid in the exterior region.
Substituting (A8) into these differential equations, we
can obtain closed form expressions for u, v, U, V as
functions of infalling τ,

vðτÞ ¼ τ − 2rsx
1
3ðτÞ þ rsx

2
3ðτÞ þ 2rs ln½1þ x

1
3ðτÞ�; ðA13Þ

uðτÞ¼ τ−2rsx
1
3ðτÞ− rsx

2
3ðτÞ−2rs ln½−1þx

1
3ðτÞ�; ðA14Þ

VðτÞ ¼ 2rse
τ
2rs exp

�
−x1

3ðτÞ þ 1

2
x
2
3ðτÞ

�
ð1þ x

1
3ðτÞÞ; ðA15Þ

UðτÞ ¼ 2rse
− τ
2rs exp

�
x
1
3ðτÞ þ 1

2
x
2
3ðτÞ

�
ð1 − x

1
3ðτÞÞ; ðA16Þ

where xðτÞ ¼ τ=τs. One can check that at the singularity
r ¼ 0, we get UV ¼ 4r2s , as expected. Furthermore, these
null coordinates take the extended values in the relevant
regions; for instance, while the coordinate transforma-
tions for U, V are given for U < 0; V > 0, the solutions
UðτÞ, VðτÞ can take all real values and hence include the
black hole interior.
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