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We discuss a proposal on how gravitational collapse of a null energy condition violating spherically
symmetric fluid distribution can avoid the formation of a zero proper volume singularity and eventually
lead to a Lorentzian wormhole geometry. Our idea is illustrated using a time-evolving wormhole spacetime
in which we show how a collapsing sphere may never reach a zero proper volume end state. The nature of
geodesic congruences in such spacetimes is considered and analyzed. Our construction is inspired from a
recently proposed static wormhole geometry, the multiparameter Simpson-Visser line element, which is
known to unite wormholes and black holes (regular and singular) in a single framework.
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I. INTRODUCTION

Gravity provides a possibility of collapse without limit
due to its attractive nature. For a sufficiently massive
distribution, gravitational collapse can happen when grav-
ity starts to dominate over the internal pressure. What forms
at the end of a collapse has a long-standing issue of
predictability and remains an unresolved question even in
the current context. In the 1930s, Chandrasekhar [1] and
Landau [2] suggested an upper limit to the mass of a
collapsing object beyond which it cannot further support
itself against the inward pull of gravity. Landau [2] and
Eddington [3] showed that a massive stellar distribution
exceeding the Chandrasekhar limit can shrink indefinitely
until it forms an end state from which even light cannot
escape. The first complete study of a star undergoing
gravitational collapse to zero proper volume within the
framework of the general theory of relativity (GR) was
given by Datt [4], Oppenheimer and Volkoff [5],
Oppenheimer and Snyder [6], and their works laid the
foundation of the physics of gravitational collapse. A
spacetime singularity is predicted to form at the end of
gravitational collapse where physical quantities such as
density and pressure as well as geometrical quantities such
as the curvature scalars blow up. In general, such a
collapsed region is expected to remain enveloped within
a horizon barring all information exchanges with a faraway
observer. Such an end state is known as a black hole. It
remains unclear if under increasingly generalized condi-
tions a massive star would necessarily end up in a black

hole or not. A novel attempt at solving this issue came in
the form of the “cosmic censorship hypothesis” [7],
according to which the ultimate spacetime singularity is
necessarily accompanied with the formation of a horizon.
However, there exists no proof of the conjecture, and a
number of counterexamples suggest that, in principle, the
singularity can also remain exposed to a faraway observer.
Such a concept is called a “naked singularity” (Yodzis et al.
[8]; Eardley and Smarr [9]; Christodoulou [10]; Joshi et al.
[11]; Waugh and Lake [12]; Ori and Piran [13]; Joshi et al.
[14]). The problem as of today stands without any complete
theorem that can clearly pick one out of these two
possibilities as the possible end state.
However, besides the above, other possibilities are also

considered through specific examples. For instance,
Choptuik’s study on the collapse of a scalar field minimally
coupled to gravity led to the discovery of “critical phenom-
ena in gravitational collapse” [15] (in analogy with critical
phenomena in phase transitions) where the outcome
depends on the value of one or more parameters defining
the initial condition. For some values of the parameter there
is no spacetime singularity as the scalar field collapses and
eventually disperses leaving behind a flat space [16].
Higher curvature corrections to GR can also produce some
interesting examples; for example, in an fðRÞ theory,
collapsing solutions in general mimic its GR counterpart;
for example, a dust collapse in fðRÞ gravity mimics [17] the
Lemaitre-Tolman-Bondi [18] solution of GR. However, it
has been proved recently that conformal symmetry can
drive a collapsing star in fðRÞ gravity with anisotropic
pressure and heat flux toward a nonsingular end state [19].
A Gauss-Bonnet invariant nonminimally coupled to GR
can also lead to interesting signatures, an area which is
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gaining increasing attention quite recently, in studies of a
singularity-free model of gravitational collapse [20].
In the present manuscript, we propose another interesting

possibility—a gravitational collapse ending with a non-
singular wormhole geometry. We support this claim with an
example of a nonstatic “solution” of the Einstein field
equations which evolves into a static wormhole. A worm-
hole is a concept that defines pathways connecting distant
parts of the same universe or two different universes,
through a “throat” [21,22]. The geometric structure is
tubular which spreads out and becomes asymptotically flat
at the infinities. Converging radial null rays become parallel
at the wormhole throat and eventually diverge on the other
side. In GR, the Schwarzschild solution is a wormhole as
was hinted in [23], although the throat of the Schwarzschild
wormhole pinches off leading to a singularity. In their
seminal work, Einstein and Rosen, while trying to build a
particle model in GR, used the wormhole idea for the first
time. Thus, the Einstein-Rosen bridge [24] is cited as an
early precursor of the modern-day wormhole. The term
“wormhole” was, however, introduced only in the late
1950s in the work on geons and a topological model of
electric charge à laWheeler [25]. In a wormhole geometry,
radial null rays defocus at and around the throat, essentially
due to the violation of the null convergence condition
(NCC) [22,25]. Using GR one can realize that a violation of
the NCC leads to a violation of the null energy condition
(NEC) [26–28]. Most examples of wormhole solutions in
the literature abide by this violation. For instance, the Ellis-
Bronnikov wormhole exists for a phantom (negative kinetic
energy) scalar field [29,30]. However, there are models
where the violation of NCC does not necessarily imply an
energy condition violation [31]. Bhawal and Kar [32],
Maeda and Nozawa [33] studied the existence of a
Lorentzian wormhole in Einstein-Gauss-Bonnet theory
which does not violate NEC. Kar, Lahiri and SenGupta
[34] considered the role of extra-dimensional effects on
wormhole solutions without any exotic matter. The concept
of a wormhole also leads to time machine models which
further enhance interest in the subject [35–37]. More such
examples and different aspects of wormhole geometries
have already been discussed and summarized in recent
literature, quite extensively [38].
We focus on the recently proposed Simpson-Visser

solution [39]. This is a modification of the standard
Schwarzschild spacetime, with an additional parameter
being introduced in the metric which controls the inter-
polation of the metric between a standard Schwarzschild
black hole and a Morris-Thorne traversable wormhole. Our
primary aim is to look into the time evolution of an initially
collapsing geometry that ends up in a similar geometry. We
primarily look into the behavior of geodesic congruences
and confirm that no zero proper volume singularity is
reached at any time. Moreover, from a suitable boundary
matching condition we give an exact collapsing solution,

which slowly evolves into a spherical wormhole geometry
at a nonzero minimum radius. We discuss that this
singularity-free nature of the spacetime lies within its
wormholelike structure, which also leads to a violation
of the null convergence condition. Similar scenarios were
also constructed in a rather old paper by Roman and
Bergmann [40] who gave a model of spherically symmetric
collapse without any singularity as well as a violation of the
weak energy condition. In a sense, this present manuscript
can serve as an extension of such an analysis as we show
that the inhomogeneity of the collapsing core can have
different forms, keeping the qualitative outcome of the
collapse similar, i.e., nonsingular.
Our article is organized as follows. In Sec. II, we recall

the basics on the Simpson-Visser line element and intro-
duce the time evolving generalizations. Section III dis-
cusses the geodesic congruences in such spacetimes and
what we can infer from them. An exact solution is
discussed along with the energy conditions in Sec. IV.
Finally, we conclude with some remarks in Sec. V.

II. THE SIMPSON-VISSER SPACETIME

Our basic mathematical setup begins with the notion of a
regular black hole [41–43]. Regular black holes are non-
singular in nature. We concentrate on one particular
candidate, the solution of Simpson and Visser [39] given
by the metric

ds2 ¼
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ a2

p
�
dt2 −

dl2

1 − 2mffiffiffiffiffiffiffiffiffi
l2þa2

p

− ðl2 þ a2Þðdθ2 þ sin2θdϕ2Þ: ð1Þ

In this definition, the coordinates can vary over the
domains

l ∈ ð−∞;þ∞Þ;
t ∈ ð−∞;þ∞Þ:

For different values of the parameter a, the metric can
yield different geometric structures. When a ¼ 0, we get
the standard Schwarzschild metric. To study either a
regular black hole or a traversable wormhole a ≠ 0 is
the primary condition. Radial null rays in the metric can be
obtained from

dl
dt

¼ �
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ a2

p
�
: ð2Þ

(i) For a>2m, all l∈ð−∞;þ∞Þ gives dl
dt ≠ 0. Therefore

the geometry indicates a traversablewormholewhere
the wormhole throat is a timelike hypersurface at
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l ¼ 0. l < 0 corresponds to a universe on the other
side of the geometry.

(ii) For a ¼ 2m, l → 0 always implies dl
dt → 0 for both

positive and negative l. Therefore, a horizon exists at
l ¼ 0 indicating the extremal null throat of a one-
way wormhole.

(iii) For a < 2m, dl
dt ¼ 0 for the values of l satisfyingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2� þ a2
p

¼ 2m. The l-coordinate values corre-
sponding to a pair of horizons are given by l� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ2 − a2

p
.

There is no curvature singularity. At l ¼ 0 we obtain a
finite value of the curvature tensor components and the
scalar invariants.
Let us now rewrite the metric in a slightly different set of

coordinates. A coordinate transformation given as

l2 þ a2 ¼ r2 ð3Þ

transforms the metric in Eq. (1) into

ds2 ¼
�
1 −

2m
r

�
dt2 −

dr2

ð1 − a2

r2Þð1 − 2m
r Þ

− r2dΩ2: ð4Þ

The radial coordinate can now vary over the domain
defined below,

r ∈ ða;þ∞Þ: ð5Þ

The solution in Eq. (4) is a static solution. A time-evolving
metric extension of this geometry may be taken as

ds2 ¼ Aðr; tÞ2dt2 − dr2

ð1 − bðrÞ
r ÞBðr; tÞ2

− Cðr; tÞ2dΩ2; ð6Þ

where the coordinates can vary over the domains

r ∈ ðrw;þ∞Þ;
t ∈ ð0;þ∞Þ; ð7Þ

where rw is supposed to be the throat of the wormhole,
equivalent to a. Our intention here is to study the evolution
of an initially collapsing sphere having a geometry similar
to a simpified form of Eq. (6) and see if it can lead to a
geometry similar to Eq. (4) as the end state of collapse.

III. EVOLUTION OF GEODESIC CONGRUENCES

The final fate of a collapse can be studied using
kinematic variables such as expansion, shear, and rotation
of a geodesic congruence in the geometry. Evolution of
such quantities along a geodesic congruence are governed
by the Raychaudhuri equations [44]. Although the kin-
ematic quantities for geodesic congruences are well studied

for static spacetime geometries [45], a nonstatic collapsing
spacetime has received less attention in this regard [46].
Let us begin with the expansion, defined as the rate of

change of the cross-sectional area orthogonal to the
geodesic flow. Assuming the line element as

ds2 ¼ TðtÞ2½AðrÞ2dt2 − BðrÞ2dr2 − r2dΩ2�; ð8Þ

we note that we have considered the metric coefficients as
separable functions of r and t, for the sake of simplicity.
Moreover, the time evolution of the metric comes in only as
a conformal factor. Spacetime geometries with a similar
symmetry have been found in studies on radiating fluid
spheres, shear-free stars, and scalar field collapse [47].
Here, to realize the underlying wormhole structure one can
replace BðrÞ with 1

ð1−bðrÞ
r Þ12AðrÞ

. The velocity vector is uα ¼
ðt∘; r∘;ϕ∘Þ where “∘” is the derivative with respect to an
affine parameter τ. It satisfies the constraint

uαuα ¼ s; ð9Þ

where s ¼ 1 is for timelike geodesics and s ¼ 0 is for null
geodesics. Assuming θ ¼ π

2
, we find that the geodesics in

the collapsing spacetime have to obey the following
equations:

ϕ∘ ¼ L
r2T2

; ð10Þ

r∘ ¼
�
A2

B2
t∘2 − ðsr2T2 þ L2Þ

r2B2T4

�1
2

; ð11Þ

and

t∘∘ þ 2
_T
T
t∘2 þ 2

A0

A
t∘r∘ − s _T

A2T3
¼ 0; ð12Þ

where a “prime” and a “dot” denote derivatives with respect
to r and t, respectively. L is a constant of integration. The
kinematic quantities are in general studied on a spacelike
hypersurface orthogonal to the congruence, using an
induced metric hαβ defined as

hαβ ¼ gαβ − uαuβ ðα; β ¼ 0; 1; 2; 3Þ; ð13Þ

where uα is timelike and tangent to points on each geodesic.
The transverse metric is orthogonal to uα. We define the
velocity gradient tensor as

Bαβ ¼ ∇βuα: ð14Þ

The tensor Bαβ can be expressed as a sum of three parts—
trace, symmetric traceless, and antisymmetric—and can be
written as
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Bαβ ¼
1

3
hαβΘþ σαβ þ ωαβ; ð15Þ

where

Θ ¼ Bα
α; ð16Þ

σαβ ¼
1

2
ðBαβ þ BβαÞ −

1

3
hαβθ; ð17Þ

ωαβ ¼
1

2
ðBαβ − BβαÞ: ð18Þ

Θ is the expansion scalar, σαβ is the shear tensor, and ωαβ is
the rotation tensor. By virtue of this construction, the shear
and the rotation tensors satisfy hαβσαβ ¼ 0 and hαβωαβ ¼ 0.
We also have gαβσαβ ¼ 0 and gαβωαβ ¼ 0. The evolution
equation for the spatial tensor Bαβ can be written as

uγ∇γBαβ ¼ −BαγBγ
β þ Rγβαδuγuδ; ð19Þ

where Rγβαδ is the Riemann tensor. We are particularly
interested in the trace part of the above equation which
governs the evolution of Θ,

dΘ
dτ

þ 1

3
Θ2 þ σ2 − ω2 þ Rαβuαuβ ¼ 0: ð20Þ

Rαβ is the Ricci tensor, σ2 ¼ σαβσαβ, and ω2 ¼ ωαβωαβ. The
equation for the expansion can predict the tendency of a
family of initially converging geodesics to focus within a
finite “time”—a result known as the focusing theorem [44].
An expansion approaching negative infinity could imply a
mere convergence of the bundle or a focusing toward a
genuine singularity. Using the metric in Eq. (8) and the
geodesic Eqs. (10), (11), and (12) we write the expansion
for the geodesic congruence as

Θ ¼ uα;α ¼
s _T

A2T3t∘
þ AðrÞ

�
1 −

bðrÞ
r

�1
2

Wðr; tÞ; ð21Þ

where

Wðr;tÞ¼
��

2A2t∘2− L2

r2T4

��
1

r
−
A0

A

�
þ s
T2

�
A0

A
−
2

r

��

×

�
A2t∘2− L2

r2T4

�
1þ sr2T2

L2

��
−1
2

: ð22Þ

1. From the rather complicated expression above, we
note that since fA2t∘2 − L2

r2T4 ð1þ sr2T2

L2 Þg−1
2 has to be

real, we require

�
A2t∘2 − L2

r2T4

�
1þ sr2T2

L2

��
≥ 0: ð23Þ

The above condition translates into

r2A2t∘2T4 − sr2T2 − L2 ≥ 0: ð24Þ

Using the equality sign in the above equation and the
standard way of writing roots of a quadratic equa-
tion, we can constrain the minima of the time
evolving conformal factor as follows:

T2 ≥
s

2A2t∘2
� ðr2s2 þ 4A2t∘2L2Þ12

2rA2t∘2
: ð25Þ

2. For a static wormhole with AðrÞ ¼ 1, from Eq. (12)
we note that t∘ ¼ α, where α is a constant. Therefore,
the expansion for a static metric becomes

Θ ¼ 2ðα2 − sÞ12
r

�
1 −

bðrÞ
r

�1
2

: ð26Þ

This vanishes at the throat r ¼ bðrÞ and goes to zero
asymptotically.

3. Overall, the first term on the right-hand side (RHS)
of Eq. (21), s _T

A2T3t∘, is negative for an initially
collapsing geometry. While for a homogeneous
spacetime this definitely drives Θ toward negative
∞, indicating a formation of singularity, in the
present case, due to the inhomogeneity in g00 and
g11, it is quite possible for the second term on the
RHS, 1

BðrÞWðr; tÞ, to be positive and dominating. As

a result the formation of a singularity can be avoided.
The special case of TðtÞ ¼ 1, i.e., the static case,

deserves a brief discussion. In this case, retaining the
general form of AðrÞ and BðrÞ, one essentially gets a static
Simpson-Visser metric, resembling the end geometry of the
nonsingular collapse. We note from Eq. (12) that t∘ ¼ α

A2,
where α is a constant. Therefore the expansion for this static
line element becomes

Θ ¼ AðrÞ
�
1 −

bðrÞ
r

�1
2

W1ðrÞ; ð27Þ

where

W1ðrÞ ¼
��

2
α2

A2
−
L2

r2

��
1

r
−
A0

A

�
þ s

�
A0

A
−
2

r

��

×
�
α2

A2
−
L2

r2

�
1þ sr2

L2

��
−1
2

: ð28Þ

For a real expression of Θ we must ensure that
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�
α2

A2
−
L2

r2

�
1þ sr2

L2

��
−1
2

≥ 0: ð29Þ

Using the equality sign in the above equation and the
standard way of writing roots of a quadratic equation, we
constrain metric components as

α2r2 − L2A2 − sA2r2 ≥ 0; ð30Þ

which essentially means that r cannot reach 0, since −L2A2

cannot be positive. The minimum allowed radial value of
the sphere is

r ≥
�

L2A2

α2 − sA2

�
1=2

: ð31Þ

Using the functional form of AðrÞ from Eq. (4), we
simplify the static expansion as in Eq. (27) to plot as a
function of radial coordinate r.
In Fig. 1, we plot the radial distribution of the expansion

(for the time-independent spacetimes) in the range
0 ≤ r ≤ 1. The graph on top shows the expansion where
we have chosen m ¼ 0, which signifies an Ellis wormhole.
The graph in the middle is for a > m, and both of these
parameters are nonzero. This essentially is a static
Simpson-Visser nonsingular geometry. We can see that
Θ never reaches −∞ for these two cases and around r ¼ a,
the wormhole throat forms. The graph at the bottom is for
a ¼ 0, which essentially switches off the characteristics of
a wormhole geometry and leaves behind a Schwarzschild
black hole. Therefore it gives us Θ → −∞ around r ∼ 0.
From Eq. (20), with σ2 ≥ 0 for a congruence of timelike

curves, we recall the timelike convergence condition
given as

Rαβuαuβ ≥ 0: ð32Þ

This is required for geodesic focusing to happen. In the
present setup this general condition is written as

Rαβuαuβ¼−
dΘ
dτ

−
1

3
Θ2−σ2þω2

¼
�
3

�
_T2

T2
−
T̈
T

�
þ A
rB3

f−rA0B0 þBð2A0 þrA00Þg
�

× t∘2þ
�
B2

A2

�
_T2

T2
þ T̈
T

�
þ 1

AB
ðA0B0−A00BÞþ2B0

rB

�

×

�
A2

B2
t∘2−ðL2þr2T2Þ

r2B2T4

�
þ
�
1þ r2

A2

�
_T2

T2
þ T̈
T

�

þrB0

B3
−
ðAþrA0Þ

AB2

�
L2

r4T4
þ4

A0 _T
AT

t∘
�
A2

B2
t∘2

−
ðL2þr2T2Þ
r2B2T4

�1
2

t∘: ð33Þ

So far we have not used any theory of gravity as such.
One can further relate Rαβ to the energy-momentum tensor
Tαβ for a particular theory, thereby arriving at the energy
conditions. The two basic issues at hand are the following:
(a) Could the expansion always be finite? And (b) in that
case, is the convergence condition violated or satisfied? We
will address these points in the forthcoming discussion.

FIG. 1. Evolution of ΘðrÞ as a function of r. The three graphs
signify evolution for a ≠ 0, m ¼ 0 (top), a > m ≠ 0 (middle),
and a ¼ 0 (bottom). For the graph on top, a ¼ 0.03, and for the
graph in the middle, a ¼ 0.05, signify the wormhole throats for
the static Ellis wormhole and Simpson-Visser wormhole solu-
tions, respectively.
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We also discuss the necessary and sufficient conditions
under which a geometry similar to Eq. (8) can describe the
characteristic feature of a wormhole geometry, the throat.
The throat is a spacelike closed two-dimensional surface of
the minimum area. To determine the throat conditions, we
construct an embedding geometry for the metric

ds2 ¼ TðtÞ2½AðrÞ2dt2 − BðrÞ2dr2 − r2dΩ2� ð34Þ

or

ds2 ¼ TðtÞ2
�
AðrÞ2dt2 − 1

ð1 − bðrÞ
r ÞAðrÞ2

dr2 − r2dΩ2

�
:

ð35Þ

We consider the metric Eq. (34) on the spatial slice of
constant t and θ ¼ π=2 and write

dl2 ¼ B2T2dr2 þ r2T2dϕ2: ð36Þ

dl2 is the metric on a surface of revolution ρ ¼ ρðzÞ
embedded in a three-dimensional space with a Euclidean
metric

dl2 ¼ dz2 þ dρ2 þ ρ2dϕ2; ð37Þ

where z, ρ, and ϕ are cylindrical coordinates. Comparing
Eqs. (36) and (37) we get

ρ2 ¼ r2T2; ð38Þ

dz2 þ dρ2 ¼ B2T2dr2: ð39Þ

For a constant t we can write

dρ ¼ Tdr; ð40Þ

and

dρ
dz

¼ 1

ðB2 − 1Þ12 ; ð41Þ

d2ρ
dz2

¼ −
B0B

TðB2 − 1Þ2 : ð42Þ

The throat of the wormhole has the projected shape of a
sphere, located at a certain value of the radial coordinates
r ¼ rw. On an embedding diagram, this sphere of r ¼ rw
simply corresponds to a circle of radius ρ on the surface of
revolution. Naturally, at the throat the radius of the circle
ρðzÞ has a minimum. Conditions for this minimum of ρðzÞ
at r ¼ rw are

dρ
dz

				
rw

¼ 0; ð43Þ

d2ρ
dz2

				
rw

> 0: ð44Þ

Comparing these two sets of equations, we write the first
throat condition for the metric in Eq. (34) as

dρ
dz

				
rw

¼
�

A2ðrÞðr − bðrÞÞ
r − A2ðrÞðr − bðrÞÞ

�1
2

				
rw

; ð45Þ

which means that the first throat condition is simply

rw ¼ bðrÞjrw : ð46Þ

Using Eqs. (42), (44), and (46), we write the second throat
condition as

A2ðrÞ
2TðtÞbðrÞ f1 − b0ðrÞg

			
rw

> 0: ð47Þ

The advantage of the study in this section is that even
without an exact solution of the background collapsing
geometry, we do realize the allowed dynamics in a general
sense and can throw some light on the possible end state of
the collapse. However, having a solution of the field
equations makes the narrative even more clear as one can
then write AðrÞ, BðrÞ, and TðtÞ in some exact form and plot
the evolution of the kinematic quantities. In the next section,
we first write an exact solution of the collapsing fluid
distribution and then study the evolution of expansion and
the null convergence condition for the geodesic congruence.

IV. AN EXACT COLLAPSING SOLUTION AND
THE SIMPSON-VISSER WORMHOLE END STATE

The theory we consider is GR, and we write the action as

A ¼
Z �

R
16πG

þ Lm

� ffiffiffiffiffiffi
−g

p
d4x: ð48Þ

Metric variation of this action leads to the Einstein field
equations

Gμν ¼ κTm
μν: ð49Þ

Lm defines the fluid contribution, and the fluid is assumed
to have pressure anisotropy and a radial heat flux. The
energy-momentum tensor can therefore be written as

Tμν ¼ðρþptÞuμuν−ptgμνþðpr−ptÞχμχνþqμuνþqνuμ:

ð50Þ

qμ ¼ ð0; q; 0; 0Þ is the radial heat flux, ρ is the energy
density, and pt and pr are the tangential and radial pressure,
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respectively. uμ and χμ are the four-velocity and unit
spacelike radial four-vector. The usual normalizations are
given as

uμuμ ¼ 1; χμχμ ¼ −1; χμuμ ¼ 0: ð51Þ

We begin by writing the metric of the interior of an
initially collapsing fluid distribution in the form of Eq. (8),

ds2− ¼ TðtÞ2½AðrÞ2dt2 − BðrÞ2dr2 − r2dΩ2�: ð52Þ

Even before considering the field equations, we deduct
the time evolution of the system from the boundary
matching condition with a suitable exterior geometry.
Since the energy momentum distribution inside the col-
lapsing body has a radial heat flux, we assume the exterior
to be given by a Vaidya metric,

ds2þ ¼
�
1 −

2MðuÞ
R

�
du2 þ 2dudR − R2dΩ2: ð53Þ

The Newtonian mass of the gravitating body is MðuÞ, in
reference with an observer at infinity. The metric in Eq. (53)
is the unique spherically symmetric solution of the Einstein
field equations for null fluid. We assume that the interior
and the exterior geometry are joined through a spherical
surface Σ (a timelike three-space). We require a smooth
matching of these two geometries (for more discussion on
matching of fundamental forms, see for instance [48–50]),
and hence we first demand

ds2− ¼Σ ds2þ; ð54Þ

which is the matching of metric or the first fundamental
form. We also demand the smooth matching of extrinsic
curvatures defined at the boundary hypersurface, i.e.,

K−
ij ¼ Kþ

ij; ð55Þ

with

K�
ij ¼ −n�α

∂2xα

∂ξi∂ξj − n�α Γα
βγ

∂xβ
∂ξi

∂xγ
∂ξj : ð56Þ

The entities defined on the RHS of extrinsic curvature
tensor are

(i) The unit normal vectors to Σ, n�α ,
(ii) Coordinates of two spacetimes, xα,
(iii) Coordinates on the surface Σ, ξi,
(iv) The Christoffel symbols, Γα

βγ .
We also take τ to be a time coordinate on Σ and use Eq. (54)
to write

dt
dτ

¼Σ 1

AT
; ð57Þ

rT ¼Σ RðuÞ; ð58Þ
�
du
dτ

�
−2
¼Σ
�
1 −

2M
R

þ 2
dR
du

�
Σ
; ð59Þ

n�α are found to be

n−α ¼Σ BTδ1α; ð60Þ

and

nþα¼Σ
�
1 −

2M
R

þ 2
dR
du

�
−1=2

�
−
dR
du

δ0α þ δ1α

�
: ð61Þ

With this, the extrinsic curvature components are derived as

K−
ττ ¼Σ −

��
dt
dτ

�
2 A0A
B

T

�
; ð62Þ

K−
θθ ¼Σ

�
rT
B

�
; ð63Þ

K−
ϕϕ ¼ K−

θθsin
2θ; ð64Þ

Kþ
ττ ¼Σ

�
d2u
dτ2

�
du
dτ

�
−1

−
�
du
dτ

�
M
R2

�
; ð65Þ

Kþ
θθ ¼Σ

��
du
dτ

��
1 −

2M
R

�
Rþ dR

dτ
R

�
; ð66Þ

and

Kþ
ϕϕ ¼ Kþ

θθsin
2θ: ð67Þ

We use Eqs. (63) and (66) to write

��
du
dτ

��
1 −

2M
R

�
Rþ dR

dτ
R

�
¼Σ
�
rT
B

�
: ð68Þ

We further simplify Eq. (68) using Eqs. (57), (58), and
(59) and write

M¼Σ rT
2

�
r2

AðrÞ2
_T2

T2
−

1

BðrÞ2 þ 1

�
: ð69Þ

The function mðr; tÞ ¼ rT
2
½ r2

AðrÞ2
_T2

T2 − 1
BðrÞ2 þ 1� is the mass

function derived by Misner and Sharp [51,52]. It gives us
the energy entrapped within the boundary hypersurface.
Now, Eqs. (62), (65), and (57) altogether produces
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�
d2u
dτ2

�
du
dτ

�
−1

−
�
du
dτ

�
M
R2

�
¼Σ −

�
A0

ABT

�
: ð70Þ

Moreover, Eqs. (57), (58), (69), and (68) produce

�
du
dτ

�
¼Σ
�
1

B
þ r _T
AT

�−1
; ð71Þ

whose τ derivative can be used to rewrite Eq. (70) as

�
r

2ABT

��
−2

A0 _T
AT

þ B
A

�
2
T̈
T
−

_T2

T2

þ
�
A2

r2
−

A2

r2B2
− 2

AA0

rB2

���
¼Σ 0: ð72Þ

Using the above constructions we write the continuity of
the metric as

ðrTÞ¼ΣR; ð73Þ

mðt; rÞ¼ΣM: ð74Þ

However, this can also be realized by simply writing the
interior metric Eq. (52) in Eddington retarded coordinates,

ds2− ¼
�
1 −

�
r2

AðrÞ2
_T2

T2
−

1

BðrÞ2 þ 1

��
du2

þ 2dudR − R2dΩ2: ð75Þ

Intriguingly, a generalized metric with a similar form
has already been considered by Simpson, Martin-Moruno,
and Visser [53] as a nonstatic version of the so-called
black-bounce scenario. For a collapsing sphere, we take
that the Σ as a boundary hypersurface is located at some
radial coordinate r ¼ rb. We also define A0 ¼ AðrÞðr¼rbÞ,
A1 ¼ A0ðrÞðr¼rbÞ, B0 ¼ BðrÞðr¼rbÞ, and B1 ¼ B0ðrÞðr¼rbÞ.
With this, the continuity of extrinsic curvature as in
Eq. (72) becomes a time-dependent differential equation,
since the r-dependent functions contribute as constants at
the boundary.

2B0T̈
A0T

−
B0

_T2

A0T2
−
2A1

_T
A0T

−
A0

B0

�
2A1

A0rb
þ 1

r2b
−
B2
0

r2b

�
¼Σ 0: ð76Þ

We write 2A1

B0
¼ λ1 and

A2
0

B2
0

½ 2A1

A0rb
þ 1

r2b
− B2

0

r2b
� ¼ λ2. Therefore,

Eq. (76) becomes

2T̈
T

−
_T2

T2
− λ1

_T
T
− λ2 ¼ 0: ð77Þ

We are interested to see if the above equation has any
solution of the form

TðtÞ ¼ mþ neαfðtÞ: ð78Þ

The time evolution of the function fðtÞ will ensure the
structure and fate of the collapsing geometry. Using this
ansatz in Eq. (77) we write

f̈¼ðmþneαfλ2Þ
2αneαf

−
fnα2 _f2eðαfÞð2mþneαfÞ−αλ1n _feαfðmþneαfÞg

ðmþneαfÞ2αneαf :

ð79Þ

We solve Eq. (79) numerically and study the evolution of
fðtÞ. From Eq. (78) one can note that for a collapsing
solution, α df

dt has to be negative which is one of the
constraints over the numerical solution. Figure 2 shows
the time evolution of the function fðtÞ for α < 0. We have
chosen α ¼ −1 to show a particular case as an example, but
a differently chosen negative value of α simply scales the
qualitative behavior of the evolution. The same applies for
the other parameters as well, m and n, which we choose to
be positive. fðtÞ has an increasing profile as a function
of time and goes to infinity at some finite value of time.

FIG. 2. Evolution of fðtÞ as a function of t. For the graph on
top, λ1 > 0, and for the graph below, λ1 < 0. All the other
parameters, when varied, scale these behaviors while keeping the
qualitative feature fixed.
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The value of λ1 determines this time of divergence of fðtÞ.
In the plots, we have shown that for λ1 < 0, fðtÞ diverges at
a later time than the case where λ1 > 0. In our example, we
have chosen λ1 ¼ �1 and λ2 ¼ −0.01 as an example.
Therefore, for all α < 0, eαfðtÞ decreases as a function of
time. When fðtÞ → ∞, eαt → 0 and therefore TðtÞ ∼m.
Therefore, the collapse forms a geometry with a finite
nonzero radius of a two-sphere, without reaching a zero
proper volume. It is curious that to maintain a collapsing
profile, λ2 must be a negative quantity. For all λ2 > 0, fðtÞ
has a negative evolution, making the scenario noncollaps-
ing. We plot the evolution of the conformal factor TðtÞ in
Fig. 3 for m ¼ n ¼ 1, and α ¼ −10. Thus, the end result
has the form

ds2¼ðmþneαfðtÞÞ2½AðrÞ2dt2−BðrÞ2dr2− r2dΩ2�: ð80Þ

Having determined the time evolution independently, we
now extrapolate the inhomogeneities in the metric coef-
ficients intuitively. The primary constraint we follow is
λ2 < 0. We also keep in mind that the radial functions AðrÞ
and BðrÞ must be so chosen that the metric has a geometry
similar to (4) as well as at the boundary hypersurface
similar to Vaidya. However, a solution written in this
manner is not a unique solution as there can be other

choices of AðrÞ and BðrÞ that satisfy the relevant con-
ditions. This is a special example. We write the solution for
the interior of the stellar body, i.e., for rw < r ≤ rb,

ds2 ¼ ðmþ neαfðtÞÞ2
��

1 −
x1ðrÞ
r

�
dt2

−
dr2

ð1 − bðrÞ
r Þð1 − x2ðrÞ

r Þ
− r2dΩ2

�
: ð81Þ

x1ðrÞ ¼ 2m0eδ
2
1
ðr−rbÞ;

bðrÞ ¼ b20ðr2b − r2Þ=r; ð82Þ

x2ðrÞ ¼ 2m1eδ
2
2
ðr−rbÞ: ð83Þ

rw is the allowed minimum value of r, as discussed through
Eq. (7),

r ∈ ðrw;þ∞Þ;
t ∈ ð0;þ∞Þ: ð84Þ

At the boundary of the stellar body r ¼ rb,

x1 ¼ 2m0;

bðrÞ ¼ 0; ð85Þ

x2 ¼ 2m1: ð86Þ

The properties of the collapsing object are summa-
rized below.

1. Time evolution of the collapsing object is allowed
until neαfðtÞ → 0. No zero proper volume can be
reached at any value of time. A static geometry is
formed with a wormholelike structure similar to (4),
with a constant conformal factor m.

2. The term ð1 − bðrÞ
r Þ is responsible for the wormhole

geometry equivalent to the Simpson-Visser metric
as in Eq. (4). At the boundary r ¼ rb, the term
b20ðr2b − r2Þ is 0, which indicates that at the boun-
dary, the wormhole structure is not realized. It comes
into picture only inside the collapsing body.

We note here that the Misner Sharp mass function
given in Eq. (69) asymptotically becomes a constant
(Schwarzschild) when the collapse reaches its end
state. This is clear from the time evolving conformal
factor in Eq. (78) which in the limit t → ∞ becomes a
constant. Moreover, when a wormhole geometry
develops as an end state, r → rw which corresponds to
the constant value of the radial coordinate at the wormhole
throat. Therefore, the matching holds at the end of
the collapse as well, with a constant mass func-

tion M ¼ mrw
2
f1 − ð1 − bðrwÞ

rw
Þð1 − x2ðrwÞ

rw
Þg.

FIG. 3. Evolution of TðtÞ as a function of t. For the graph on
top, λ1 > 0, and for the graph below, λ1 < 0. All the other
parameters, when varied, scale these behaviors while keeping the
qualitative feature fixed. We choose m ¼ n ¼ 1, and α ¼ −10.
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From the Einstein field equations one can write the
expression of density, radial and tangential pressure, and
the radial heat flux. As an example we study these entities
for a comoving frame, where the four-velocity field is

uμ ¼ δμ0ffiffiffiffiffiffi
g00

p ; ð87Þ

ρ ¼ 3 _T2

A2T4
−

1

B2T2

�
1

r2
−
2B0

rB
−
B2

r2

�
; ð88Þ

pr ¼−
1

A2T2

�
2T̈
T

−
_T2

T2

�
þ 1

B2T2

�
2A0

Ar
þ 1

r2

�
−

1

r2T2
; ð89Þ

pt ¼−
1

A2T2

�
2T̈
T

−
_T2

T2

�
þ 1

B2T2

�
A00

A
−
A0B0

AB
þ A0

rA
−
B0

rB

�
;

ð90Þ

q ¼ −
2 _TA0

A2B2T4
: ð91Þ

Satisfying the energy conditions in the gravitational
collapse of a fluid distribution essentially implies the
requirement of a “locally positive energy density” every-
where. We are aware of different versions such as the null
energy condition, the weak energy condition (WEC), and
the strong energy condition (SEC). Algebraically they are
written as follows:

NEC1 → jρþ prj − 2jqj ≥ 0; ð92Þ

NEC2 → ρ − pr þ 2pt þ△ ≥ 0; ð93Þ

WEC → ρ − pr þ△ ≥ 0; ð94Þ

SEC → 2pt þ△ ≥ 0; ð95Þ

△ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρþ prÞ2 − 4q2

q
: ð96Þ

For a detailed discussion of the energy conditions for an
imperfect fluid we refer to the work of Kolassis, Santos, and
Tsoubelis [27], as well as Pimentel, Lora-Clavijo, and
Gonzalez [28]. To plot the energy conditions as a function
of time we choose m ¼ n ¼ 1, α ¼ −10, m0 ¼ 0.1,
m1 ¼ 0.11, δ1 ¼ 0.2, δ2 ¼ 0.202, b0 ¼ 2, and rb ¼ 1
and plot the left-hand side (LHS) of the conditions in
Eq. (92). Ideally, m0 ¼ m1 and δ1 ¼ δ2 define a special
case, and we take them to be slightly different from each
other for some additional generality. Figure 4 suggests that
the energy conditions near the boundary of the sphere
r ∼ rb can be satisfied. However, they are clearly violated
inside the collapsing sphere for r < rb. In simple terms, the
fluid distribution abides by the energy conditions as long as

FIG. 4. Energy conditions as a function of time. From top to
bottom in sequence the graphs show the plots of NEC1, NEC2,
WEC, and SEC. Different colored curves in a single graph
denote the evolution for different radial distances from the
center: r ∼ 0.98ðblueÞ, r ∼ 0.9ðyellowÞ, r ∼ 0.8ðgreenÞ, and
r ∼ 0.7ðgreenÞ. The other parameters are chosen as m ¼ n ¼ 1,
α ¼ −10, m0 ¼ 0.1, m1 ¼ 0.11, δ1 ¼ 0.2, δ2 ¼ 0.202, b0 ¼ 2,
and rb ¼ 1.
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the wormhole geometry does not form (At r ¼ rb the
wormhole function is zero.) As soon as r differs reasonably
from rb the energy conditions are violated. This coincides
with the collapse facing some geometric resistance.
Different curves in a single graph show the evolution for
different values of the radial coordinate r, for instance, the
blue curve in all the graphs indicate evolution of the energy
conditions for a shell very close to the boundary hyper-
surface (r ∼ 0.98), followed by subsequent collapsing
shells: yellow for r ∼ 0.95, green for r ∼ 0.8, and red
for r ∼ 0.7.
However, it is also possible to comment on the scenario

in a more general way, using the exact solution in Eq. (81),
the geodesic Eqs. (11) and (12), and the expression for Θ as
in Eq. (21). The evolution of Θ can be studied for the
specific example by using the exact evolution of metric
components and writing dt

dτ as a function of time. This
demonstrates whether the expansion can reach −∞, the
violation/satisfaction of the NCC and associated conse-
quences for the energy conditions, and their correlation
with a nonsingular end state.
For the geodesic congruence, uα ¼ ðt∘; r∘;ϕ∘Þ where ∘

is the derivative with respect to affine parameter τ. In order
to write tðτÞ as a function of τ we solve the geodesic
Eq. (12) numerically using the exact solution for the
metric. The initial condition used to solve the equation is
tð0Þ ¼ 0 and dt

dτ ∼Oð1Þ. For a differently chosen initial
condition the solution can be different, but we believe this
will not affect the qualitative nature of the congruence. In
the numerical solution, one needs to use a value of r; i.e.,
one solves for a particular shell of a collapsing sphere
labeled by r. Of course, different values of r lead to
slightly different solutions; however, we demonstrate here
for only one case, for r ∼ 0.98, i.e., a shell very close to the
boundary hypersurface. For smaller values of r the t vs τ
nature is just scaled, keeping the qualitative nature
unchanged. We plot τ as a function of t, first as data
points and then fit the data using an analytical form
in Fig. 5.
We interpret from the graph that the affine parameter τ is

an increasing function of time t and with time their
relationship becomes linear. This can also be explained
by using the fitted function which is of the form

τ ¼ τ0tþ τ1te−τ2t; ð97Þ

where τ0, τ1, and τ2 are positive constants. For r ∼ 0.98 the
parameter values of τ0 ¼ 0.2, τ1 ¼ τ2 ¼ 0.5 give the best
fit. For other values of r, i.e., for different collapsing shells,
similar fitting can be obtained through a similar exercise.
As time increases, the exponential factor dies down and one
can use t∘ ∼ const for large t. With this, we plot the
expansion from Eq. (21) in Fig. 6, using the exact func-
tional form of TðtÞ, AðrÞ, and BðrÞ. We choose the relevant
parameters to be m ¼ n ¼ 1, α ¼ −10, m0 ¼ 0.1,

m1 ¼ 0.11, δ1 ¼ 0.2, δ2 ¼ 0.202, and b0 ¼ 2. Different
colors as usual show the evolution for different shells of the
sphere labeled by different values of r. There is no zero
proper volume singularity and Θ never reaches −∞.

FIG. 5. Evolution of τ as a function of t. m ¼ n ¼ 1, m0 ¼ 0.1,
m1 ¼ 0.11, δ1 ¼ 0.2, δ2 ¼ 0.202, b0 ¼ 2, and rb ¼ 1. The fitting
is done for r ∼ 0.98, τ ¼ τ0tþ τ1te−τ2t, where τ0 ¼ 0.2,
τ1 ¼ τ2 ¼ 0.5.

FIG. 6. Evolution of Θ as a function of t for geodesic
congruence. m ¼ n ¼ 1, m0 ¼ 0.1, m1 ¼ 0.11, δ1 ¼ 0.2,
δ2 ¼ 0.202, b0 ¼ 2, and rb ¼ 1. Curves of different colors
show the evolution for different values of r (blue curve → r ¼
0.95, yellow curve → r ¼ 0.85, green curve → r ¼ 0.75, and
red curve → r ¼ 0.65).
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Eventually the variation of Θ for different collapsing shell
values of r slows down, indicating the formation of a stable
spherical wormholelike geometry as an end state. One can
confirm that for a very low value of the radial coordinate r
(r ≪ rb), Θ is imaginary and evolution is disallowed. We
also plot the distribution of Θ as a function of r, for
different values of time t in Fig. 7. There is no Θ around
r ∼ 0. More interestingly, the evolution has a remarkable
similarity with the static Θ plot as in Fig. 1. The departures
in the static Simpson-Visser metric in Eq. (4) and the
constructed form Eq. (81) is in the functional form ofmðrÞ.
They coincide around the boundary hypersurface
r ¼ rb ¼ 1, as confirmed by the graphs; however, evolu-
tion for small r shows interesting departures. These suggest
that the spherical body around the region of wormhole
throat formation goes into a collapsed phase with time and
around the boundary coincides with a standard static
Simpson-Visser geometry.
Using the LHS of Eq. (33), we plot the convergence

condition to check if Rαβuαuβ ≥ 0 is satisfied or violated.
We plot Rαβuαuβ as a function of time for a geodesic
congruence in Fig. 8 and note that for a geodesic con-
gruence, the convergence condition is always violated.
To summarize the results, a collapsing object having a

geometry similar to the metrics in Eq. (80) or Eq. (81),
containing an imperfect fluid distribution and violating the
null convergence condition, will collapse and form a
wormhole geometry as in Eq. (1) or Eq. (4). There will
be no zero proper volume at any time. It is straightforward
to check that the Ricci and Kretschmann curvature scalars
are finite at all times.
A brief discussion regarding the exterior of the spherical

collapsing body is also in order. As discussed, the exterior
is a Vaidya geometry of an outgoing radial flux. We discuss
a few things assuming that the exterior is a generalized
Vaidya geometry

ds2¼
�
1−

2Mðu;RÞ
R

�
du2−2ϵdudR− r2dΩ2 ðϵ¼�1Þ:

ð98Þ

Mðu; RÞ is the mass function, the energy entrapped within
R. ϵ ¼ �1. For an Eddington advanced time u, ϵ ¼ 1 and
for Eddington retarded time ϵ ¼ −1. We write the Einstein
tensor components for this line element as

G0
0 ¼ G1

1 ¼ −
2M0ðu; RÞ

R2
; ð99Þ

G1
0 ¼

2 _Mðu; RÞ
R2

; ð100Þ

G2
2 ¼ G3

3 ¼ −
M00ðu; RÞ

R
; ð101Þ

where _Mðu; RÞ≡ ∂Mðu;RÞ
∂u andM0ðu; RÞ≡ ∂Mðu;RÞ

∂R . With this,
one is able to write the energy momentum distribution (for
a more detailed discussion see [54]) as

Tμν ¼ TðnÞ
μν þ TðmÞ

μν : ð102Þ

The two different components of the energy momentum
tensor are defined as

TðnÞ
μν ¼ μlμlν; ð103Þ

TðmÞ
μν ¼ ðρþ PÞðlμnν þ lνnμÞ þ Pgμν: ð104Þ

The tensor components are

μ ¼ 2ϵ _Mðu; RÞ
κR2

; ð105Þ

ρ ¼ 2M0ðu; RÞ
κR2

; ð106Þ

FIG. 7. Evolution of Θ as a function of r for geodesic
congruence. m ¼ n ¼ 1, m0 ¼ 0.1, m1 ¼ 0.11, δ1 ¼ 0.2,
δ2 ¼ 0.202, b0 ¼ 2, and rb ¼ 1. Curves of different colors show
the evolution for different values of t (blue curve → t ¼ 0.1,
yellow curve → t ¼ 0.5, and green curve → t ¼ 1.

FIG. 8. Evolution of Rαβuαuβ as a function of t for a geodesic
congruence.
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P ¼ −
M00ðu; RÞ

κR
: ð107Þ

lμ and nμ are two null vectors with the following definition:

lμ ¼ δ0μ; ð108Þ

nμ ¼
1

2

�
1 −

2Mðu; RÞ
R

�
δ0μ − ϵδ1μ; ð109Þ

lλlλ ¼ nλnλ ¼ 0; ð110Þ

lλnλ ¼ −1: ð111Þ

It is quite interesting to note that TðnÞ
μν effectively denotes a

matter field moving along the u ¼ const null hypersurface.
For a general case one usually writes the energy momentum
tensor from this, using an orthonormal basis [55] consisting
of the four vectors

Eμ
0 ¼

lμ þ nμffiffiffi
2

p ; ð112Þ

Eμ
1 ¼

lμ − nμffiffiffi
2

p ; ð113Þ

Eμ
2 ¼

1

r
δμ2; ð114Þ

Eμ
3 ¼

1

r sin θ
δμ3: ð115Þ

This leads to the standard energy momentum tensor
representation of the exterior as

Tab ¼

2
666664

μ
2
þ ρ μ

2
0 0

μ
2

μ
2
− ρ 0 0

0 0 P 0

0 0 0 P

3
777775
: ð116Þ

An energy momentum distribution of this type usually
signifies Type II fluids [56]. Energy conditions for these
fluids have a standard form which is satisfied or violated
depending on the mass function of the system under
consideration. The weak and strong energy conditions are

μ ≥ 0; ρ ≥ 0; P ≥ 0 ðμ ≠ 0Þ; ð117Þ

whereas the dominant energy conditions are

μ ≥ 0; ρ ≥ P ≥ 0 ðμ ≠ 0Þ: ð118Þ

The present manuscript is entirely devoted to the special
case Mðu; RÞ ¼ MðuÞ, and therefore the energy conditions
all simplify to produce the necessary condition

μ ∼ −
2
dMðuÞ
du

κR2
≥ 0: ð119Þ

This is the condition that must be satisfied in the exterior
of the collapsing fluid, in order to satisfy the energy
conditions outside the sphere.
We conclude this section with a note on the special case

A ¼ 1, for which the nature of geodesic congruence and the
expansion were briefly discussed in Sec. III. As the exact
collapsing time evolution is solely based on a smooth
boundary matching with the exterior, one needs to write the
proper matching condition for this special case as well.
Putting A0 ¼ AðrÞðr¼rbÞ ¼ 1 and A1 ¼ A0ðrÞðr¼rbÞ ¼ 0 in
Eq. (76), the matching of extrinsic curvature for this special
case produces a differential equation of the form

2T̈
T

−
_T2

T2
þ 1

r2b

�
1 −

1

B2
0

�
¼ 0; ð120Þ

which leads to either an oscillatory or a bouncing solution
for TðtÞ (instead of collapsing) depending on the sign of
1
r2b
ð1 − 1

B2
0

Þ ¼ g. For all g > 0, the solution is oscillatory and

is not of interest to us. However, for all g < 0, the sphere
goes through a bounce after an initial phase of collapse,

with TðtÞ ∼ cosh ½g1=2
2
ðtþ kÞ�2. This too is an example of a

nonsingular collapse, however, with a different end state, as
during the bounce the collapsing fluid description disperses
away and no static wormhole geometry is reached.

V. CONCLUSION

There are unresolved questions regarding the final fate of
a continually collapsing massive star which is among the
overall motivations of the present article. We propose a
nonsingular model of gravitational collapse exploring a
different possibility, that of the formation of a wormhole.
Although wormhole solutions enjoy their fair share of
popularity in gravitational physics, a time-evolving worm-
hole solution (though discussed earlier in [57]) has not been
considered in the context of gravitational collapse. Our
work shows that even a time-dependent wormhole geom-
etry can arise in gravitational collapse, provided the
collapsing fluid violates the relevant energy conditions.
The wormhole structure is similar to the recently proposed
vacuum solution of Simpson and Visser [39] as defined by
the metric in Eq. (1) or a coordinate transformed version
Eq. (4) of the same. We assume that the collapsing object
has a nontrivial time evolution conformal to the static
Simpson-Visser geometry and prove that it can collapse
forever without reaching any zero proper volume
singularity.
We study the evolution using kinematic variables,

especially the expansion, defined as the rate of change
of the cross-sectional area orthogonal to a family of
geodesics. We write the evolution equation of these
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quantities along a geodesic congruence and use the
Raychaudhuri equation. The nature of the expansion of
the congruence suggests the fate of the collapse. Even
without an explicit solution of the field equations, the
Raychaudhuri equation helps us to write the null conver-
gence condition, and checks its violation (as well as the
violation of the energy conditions) during the collapse. We
also give an explicit solution of the field equations with a
comoving four-velocity vector. We discuss that the term
responsible for a wormhole structure comes from the g11
component of the metric and the wormhole geometry is not
realized at the boundary hypersurface r ¼ rb of the
collapsing sphere. This also inspires the fact that most
of the energy conditions are violated inside the collapsing
sphere, but not around the boundary hypersurface. We also
stress upon the fact that due to this nontrivial structure, the
collapsing sphere generates a nontrivial four-acceleration

which contributes in resisting the collapse and a formation
of zero proper volume.
The solutions are written simply from the boundary

matching condition of the two metrics at a suitable
boundary surface. This enables one to avoid any
assumption of equation of state at the outset. The field
equations can be used to study the radiation, density, or
pressure components in a completely general manner.
Moreover, the structure of this solution is quite general
as long as the exterior of a collapsing metric is given by a
radiating Vaidya solution. Albeit, for a different theory one
would require additional constraints on the metric compo-
nents to be satisfied for consistency. For example, in an
fðRÞ theory a similar solution may be valid along with two
additional matching conditions on the Ricci scalar and its
normal derivative. Such a generalization can indeed be
interesting and will be addressed elsewhere.

[1] S. Chandrasekhar, Astrophys. J. 74, 81 (1931).
[2] L. D. Landau, Phys. Z. Sowjetunion 1, 285 (1932).
[3] A. S. Eddington, Mon. Not. R. Astron. Soc. 95, 194 (1935).
[4] B. Datt, Z. Phys. 108, 314 (1938).
[5] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374

(1939).
[6] J. R. Oppenheimer and H. S. Snyder, Phys. Rev. 56, 455

(1939).
[7] R. Penrose, Riv. Nuovo Cim. 1, 252 (1969).
[8] P. Yodzis, H. J. Seifert, and H. M. zum Hagen, Commun.

Math. Phys. 34, 135 (1973); 37, 29 (1974).
[9] D. M. Eardley and L. Smarr, Phys. Rev. D 19, 2239 (1979).

[10] D. Christodoulou, Commun. Math. Phys. 93, 171 (1984).
[11] P. S. Joshi, Global Aspects in Gravitation and Cosmology

(Clarendon Press, Oxford, Oxford University Press,
New York, 1993); P. S. Joshi and I. H. Dwivedi, Commun.
Math. Phys. 146, 333 (1992); Phys. Rev. D 47, 5357 (1993);
Lett. Math. Phys. 27, 235 (1993).

[12] B. Waugh and K. Lake, Phys. Rev. D 40, 2137 (1989); 38,
1315 (1988).

[13] A. Ori and T. Piran, Phys. Rev. Lett. 59, 2137 (1987); Phys.
Rev. D 42, 1068 (1990).

[14] P. S. Joshi, N. Dadhich, and R. Maartens, Mod. Phys. Lett.
A 15, 991 (2000); Phys. Rev. D 65, 101501 (2002); P. S.
Joshi, R. Goswami, and N. Dadhich, Phys. Rev. D 70,
087502 (2004).

[15] M.W. Choptuik, Phys. Rev. Lett. 70, 9 (1993).
[16] P. R. Brady, C. M. Chambers, and S. M. C. V. Goncalves,

Phys. Rev. D 56, R6057 (1997); C. Gundlach, Living Rev.
Relativity 2, 4 (1999); Phys. Rev. Lett. 75, 3214 (1995);
M. D. Roberts, Gen. Relativ. Gravit. 21, 907 (1989); A. V.
Frolov, Phys. Rev. D 56, 6433 (1997).

[17] R. Goswami, A. M. Nzioki, S. D. Maharaj, and S. G. Ghosh,
Phys. Rev. D 90, 084011 (2014).

[18] G. Lemaître, Ann. Soc. Sci. Bruxelles 53, 51 (1933);
R. C. Tolman, Proc. Natl. Acad. Sci. U.S.A. 20, 169
(1934); H. Bondi, Mon. Not. R. Astron. Soc. 107, 410
(1947).

[19] S. Chakrabarti, R. Goswami, S. Maharaj, and N. Banerjee,
Gen. Relativ. Gravit. 50, 148 (2018).

[20] S. Chakrabarti, Eur. Phys. J. C 78, 296 (2018).
[21] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
[22] M. Visser, Lorentzian Wormholes: From Einstein to Hawk-

ing (AIP, College Park, MD, 1995).
[23] L. Flamm, Phys. Z. 17, 448 (1916).
[24] A. Einstein and N. Rosen, Ann. Phys. (N.Y.) 2, 242 (1935).
[25] C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525

(1957).
[26] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure

of Spacetime (Cambridge University Press, Cambridge,
England, 1975).

[27] C. A. Kolassis, N. O. Santos, and D. Tsoubelis, Classical
Quantum Gravity 5, 1329 (1988).

[28] O. M. Pimentel, F. D. Lora-Clavijo, and G. A. Gonzalez,
Gen. Relativ. Gravit. 48, 124 (2016).

[29] H. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[30] K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).
[31] S. Capozziello, F. S. N. Lobo, and J. P. Mimoso, Phys. Rev.

D 91, 124019 (2015); Phys. Lett. B 730, 280 (2014).
[32] B. Bhawal and S. Kar, Phys. Rev. D 46, 2464 (1992).
[33] H. Maeda and M. Nozawa, Phys. Rev. D 78, 024005 (2008).
[34] S. Kar, S. Lahiri, and S. SenGupta, Phys. Lett. B 750, 319

(2015).
[35] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.

Lett. 61, 1446 (1988).
[36] I. D. Novikov, Sov. Phys. JETP 68, 439 (1989).
[37] V. P. Frolov and I. D. Novikov, Phys. Rev. D 42, 1057

(1990).

SOUMYA CHAKRABARTI and SAYAN KAR PHYS. REV. D 104, 024071 (2021)

024071-14

https://doi.org/10.1086/143324
https://doi.org/10.1093/mnras/95.3.194
https://doi.org/10.1007/BF01374951
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1007/BF01646443
https://doi.org/10.1007/BF01646443
https://doi.org/10.1007/BF01646032
https://doi.org/10.1103/PhysRevD.19.2239
https://doi.org/10.1007/BF01223743
https://doi.org/10.1007/BF02102631
https://doi.org/10.1007/BF02102631
https://doi.org/10.1103/PhysRevD.47.5357
https://doi.org/10.1007/BF00739581
https://doi.org/10.1103/PhysRevD.40.2137
https://doi.org/10.1103/PhysRevD.38.1315
https://doi.org/10.1103/PhysRevD.38.1315
https://doi.org/10.1103/PhysRevLett.59.2137
https://doi.org/10.1103/PhysRevD.42.1068
https://doi.org/10.1103/PhysRevD.42.1068
https://doi.org/10.1142/S0217732300000992
https://doi.org/10.1142/S0217732300000992
https://doi.org/10.1103/PhysRevD.65.101501
https://doi.org/10.1103/PhysRevD.70.087502
https://doi.org/10.1103/PhysRevD.70.087502
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevD.56.R6057
https://doi.org/10.12942/lrr-1999-4
https://doi.org/10.12942/lrr-1999-4
https://doi.org/10.1103/PhysRevLett.75.3214
https://doi.org/10.1007/BF00769864
https://doi.org/10.1103/PhysRevD.56.6433
https://doi.org/10.1103/PhysRevD.90.084011
https://doi.org/10.1073/pnas.20.3.169
https://doi.org/10.1073/pnas.20.3.169
https://doi.org/10.1093/mnras/107.5-6.410
https://doi.org/10.1093/mnras/107.5-6.410
https://doi.org/10.1007/s10714-018-2472-3
https://doi.org/10.1140/epjc/s10052-018-5798-9
https://doi.org/10.1119/1.15620
https://doi.org/10.1016/0003-4916(57)90049-0
https://doi.org/10.1016/0003-4916(57)90049-0
https://doi.org/10.1088/0264-9381/5/10/011
https://doi.org/10.1088/0264-9381/5/10/011
https://doi.org/10.1007/s10714-016-2121-7
https://doi.org/10.1063/1.1666161
https://doi.org/10.1103/PhysRevD.91.124019
https://doi.org/10.1103/PhysRevD.91.124019
https://doi.org/10.1016/j.physletb.2014.01.066
https://doi.org/10.1103/PhysRevD.46.2464
https://doi.org/10.1103/PhysRevD.78.024005
https://doi.org/10.1016/j.physletb.2015.09.039
https://doi.org/10.1016/j.physletb.2015.09.039
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevD.42.1057
https://doi.org/10.1103/PhysRevD.42.1057


[38] S. V. Sushkov and S.W. Kim, Gen. Relativ. Gravit. 36, 1671
(2004); S. V. Sushkov, Phys. Rev. D 71, 043520 (2005); F.
Lobo, Phys. Rev. D 71, 084011 (2005); 71, 124022 (2005);
F. S. N. Lobo and M. A. Oliveira, Phys. Rev. D 80, 104012
(2009); M. H. Dehghani and S. H. Hendi, Gen. Relativ.
Gravit. 41, 1853 (2009); P. Kanti, B. Kleihaus, and J. Kunz,
Phys. Rev. Lett. 107, 271101 (2011); T. Harko, F. S. N.
Lobo, M. K. Mak, and S. V. Sushkov, Phys. Rev. D 87,
067504 (2013); R. Shaikh and S. Kar, Phys. Rev. D 94,
024011 (2016).

[39] A. Simpson and M. Visser, J. Cosmol. Astropart. Phys. 02
(2019) 042.

[40] T. A. Roman and P. G. Bergmann, Phys. Rev. D 28, 1265
(1983).

[41] J. M. Bardeen, Conference Proceedings of GR5 (Tbilisi,
USSR, 1968), p. 174.

[42] T. A. Roman and P. G. Bergmann, Phys. Rev. D 28, 1265
(1983).

[43] S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).
[44] A. Raychaudhuri, Phys. Rev. 98, 1123 (1955).
[45] A. Dasgupta, H. Nandan, and S. Kar, Phys. Rev. D 79,

124004 (2009); S. Ghosh, A. Dasgupta, and S. Kar, Phys.
Rev. D 83, 084001 (2011).

[46] R. Shaikh, S. Kar, and A. DasGupta, Phys. Rev. D 90,
124069 (2014).

[47] M.M. Som and N. O. Santos, Phys. Lett. 87A, 89 (1981);
S. R. Maiti, Phys. Rev. D 25, 2518 (1982); B. Modak,

J. Astrophys. Astron. 5, 317 (1984); A. Banerjee, S.
Choudhury, and B. Bhui, Phys. Rev. D 40, 670 (1989);
D. Schafer and H. F. Goenner, Gen. Relativ. Gravit. 32, 2119
(2000); S. Chakrabarti and N. Banerjee, Phys. Rev. D 95,
024015 (2017).

[48] W. Israel, Nuovo Cimento B 44, 1 (1966); 48, 463
(1966).

[49] N. O. Santos, Mon. Not. R. Astron. Soc. 216, 403
(1985).

[50] R. Chan, Mon. Not. R. Astron. Soc. 316, 588 (2000).
[51] C. W. Misner and D. Sharp, Phys. Rev. 136, B571 (1964);

M. Cahill and G. McVittie, J. Math. Phys. (N.Y.) 11, 1382
(1970).

[52] M. E. Cahill and G. C. McVittie, J. Math. Phys. (N.Y.) 11,
1382 (1970).

[53] A. Simpson, P. Martin-Moruno, and M. Visser, Classical
Quantum Gravity 36, 145007 (2019).

[54] V. Husain, Phys. Rev. D 53, R1759 (1996); J. D. Brown and
V. Husain, Int. J. Mod. Phys. D 06, 563 (1997); C. Barrabes
and W. Israel, Phys. Rev. D 43, 1129 (1991).

[55] A. Wang and Y. Wu, Gen. Relativ. Gravit. 31, 107
(1999).

[56] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Spacetime (Cambridge University Press, Cambridge,
England, 1973).

[57] S. Kar, Phys. Rev. D 49, 862 (1994); S. Kar and D. Sahdev,
Phys. Rev. D 53, 722 (1996).

WORMHOLE GEOMETRY FROM GRAVITATIONAL COLLAPSE PHYS. REV. D 104, 024071 (2021)

024071-15

https://doi.org/10.1023/B:GERG.0000032159.46106.63
https://doi.org/10.1023/B:GERG.0000032159.46106.63
https://doi.org/10.1103/PhysRevD.71.043520
https://doi.org/10.1103/PhysRevD.71.084011
https://doi.org/10.1103/PhysRevD.71.124022
https://doi.org/10.1103/PhysRevD.80.104012
https://doi.org/10.1103/PhysRevD.80.104012
https://doi.org/10.1007/s10714-009-0756-3
https://doi.org/10.1007/s10714-009-0756-3
https://doi.org/10.1103/PhysRevLett.107.271101
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.94.024011
https://doi.org/10.1103/PhysRevD.94.024011
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1103/PhysRevD.28.1265
https://doi.org/10.1103/PhysRevD.28.1265
https://doi.org/10.1103/PhysRevD.28.1265
https://doi.org/10.1103/PhysRevD.28.1265
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRev.98.1123
https://doi.org/10.1103/PhysRevD.79.124004
https://doi.org/10.1103/PhysRevD.79.124004
https://doi.org/10.1103/PhysRevD.83.084001
https://doi.org/10.1103/PhysRevD.83.084001
https://doi.org/10.1103/PhysRevD.90.124069
https://doi.org/10.1103/PhysRevD.90.124069
https://doi.org/10.1103/PhysRevD.25.2518
https://doi.org/10.1007/BF02714547
https://doi.org/10.1103/PhysRevD.40.670
https://doi.org/10.1023/A:1001991223754
https://doi.org/10.1023/A:1001991223754
https://doi.org/10.1103/PhysRevD.95.024015
https://doi.org/10.1103/PhysRevD.95.024015
https://doi.org/10.1007/BF02710419
https://doi.org/10.1093/mnras/216.2.403
https://doi.org/10.1093/mnras/216.2.403
https://doi.org/10.1046/j.1365-8711.2000.03547.x
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1063/1.1665273
https://doi.org/10.1063/1.1665273
https://doi.org/10.1063/1.1665273
https://doi.org/10.1063/1.1665273
https://doi.org/10.1088/1361-6382/ab28a5
https://doi.org/10.1088/1361-6382/ab28a5
https://doi.org/10.1103/PhysRevD.53.R1759
https://doi.org/10.1142/S0218271897000340
https://doi.org/10.1103/PhysRevD.43.1129
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1103/PhysRevD.49.862
https://doi.org/10.1103/PhysRevD.53.722

