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We provide a systematic analysis of the multipolar gravitational waveform, energy, and angular
momentum fluxes emitted by a nonspinning test particle orbiting a Kerr black hole along equatorial,
eccentric orbits. These quantities are computed by solving numerically the Teukolsky equation in the time
domain using Teukode and are then used to establish the reliability of a recently introduced prescription to
deal with eccentricity-driven effects in the radiation reaction (and waveform) of the effective-one-body
(EOB) model. The prescription relies on the idea of incorporating these effects by replacing the
quasicircular Newtonian (or leading-order) prefactors in the EOB-factorized multipolar waveform (and
fluxes) with their generic counterparts. To reliably account for strong-field regimes, standard factorization
and resummation procedures had to be implemented also for the circular sector of l ¼ 7 and l ¼ 8

waveform multipoles. The comparison between numerical and analytical quantities is carried out over a
large portion of the parameter space, notably for orbits close to the separatrix and with high eccentricities.
The analytical fluxes agree to ∼2%with the numerical data for orbits with moderate eccentricities (e ≲ 0.3)
and moderate spins (â≲ 0.5), although this increases up to ∼33% for large, positive, black hole spins
(∼0.9) and large eccentricities (∼0.9). Similar agreement is also found for the waveform. For moderate
eccentricities, the EOB fluxes can be used to drive the test-particle dynamics through the nonadiabatic
transition from eccentric inspiral to plunge, merger, and ringdown. Over this dynamics, we construct a
complete EOB waveform, including merger and ringdown, that shows an excellent phasing and amplitude
agreement with the numerical one. We also show that the same technique can be applied to hyperbolic
encounters. In general, our approach to radiation reaction for eccentric inspirals should be seen as a first
step toward EOB modelization of extreme-mass-ratio-inspirals waveforms for LISA.
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I. INTRODUCTION

The gravitational waves (GWs) observed by LIGO
and Virgo [1,2] are generated by the last stages of the
coalescence of compact binary systems with comparable
masses [3]. These systems lose energy and angular
momentum due to GW emission, which causes the
progressive circularization of the orbit. Therefore, most
of the current gravitational wave templates used for
the analysis of the signals adopt the quasicircular approxi-
mation. Nonetheless, dynamical captures are possible in
dense environments, such as active galactic nuclei and
globular clusters, leading to the formation of binaries with
nonvanishing eccentricity, as shown in recent population
studies [4,5]. The dynamical capture scenario is also
relevant for the analysis of GW190521 [6,7]. Other systems
where the eccentricity plays a key role are extreme
mass ratio inspirals (EMRIs), binaries where a compact
stellar object orbits around a supermassive black hole.

Gravitational waves from EMRIs have characteristic
frequencies around the mHz, making them one of the
most relevant sources for the Laser Interferometer Space
Antenna (LISA) [8]. For these reasons, the inclusion
of eccentricity in the current theoretical waveform models
has drawn interest in the last few years, leading to the
realization of many models for bound configurations
with, in general, relatively mild eccentricity, such as
ENIGMA [9], SEOBNRE [10–12], NRSur2dq1Ecc [13],
TEOBResumS [14–16], and Refs. [17–21].
The effective one body approach (EOB) currently

represents the most complete, reliable and predictive
analytical framework able to deal with inspiraling and
coalescing relativistic binaries. By design, the EOB
approach is superior to standard post-Newtonian tech-
niques because it structurally incorporates nonperturbative
elements (e.g., the existence of a last stable orbit) that allow
for a robust computation of observable quantities, like
waveforms and fluxes, also in strong field, i.e., even
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beyond the last stable orbit up to merger. The synergy
between the EOB approach and numerical relativity (NR)
simulations proved highly successful to provide highly
accurate waveform templates for coalescing BBHs and
BNS as observed by LIGO and Virgo. By contrast, systems
with large mass ratios like EMRIs cannot be explored using
NR techniques, while they are naturally described within
the EOB approach. In addition: (i) the extreme mass ratio
limit plays a pivotal role in the EOB development,
especially for what concerns waveforms and fluxes, that
can be informed/compared with numerical results [22–33],
and (ii) a fairly large amount of work has been dedicated to
calculate analytically gravitational self-force terms and
provide comparisons with numerical results [34–40].
The EOB relativistic dynamics relies on three building

blocks: (i) a Hamiltonian; (ii) a prescription for computing
the radiation reaction; (iii) a prescription for computing the
waveform. Typically, points (ii) and (iii) are interconnected,
because the radiation reaction, i.e., the gravitational wave
fluxes of energy and angular momentum, are obtained by
summing together resummed waveform multipoles. In this
respect, Ref. [14] proposed to incorporate noncircular
effects in radiation reaction (and waveform) replacing
the quasicircular Newtonian (pre)factors with their generic
counterparts. Recently [16], improvement of this approach
allowed to build an EOB eccentric waveform model that is
highly faithful with the (tiny) number of eccentric NR
simulations publicly available. Nonetheless, a systematic
understanding and checking of this Newtonian-improved
quantities is missing, despite the preliminary results shown
in Ref. [14]. Historically, the systems made by a small
black hole of mass μ orbiting a large black hole with mass
M such that ν≡ μ=M ≪ 1 proved a useful laboratory to
test and verify ideas or methods within the EOB approach
before adopting them in the comparable-mass case [41].
This practice was in particular followed in Ref. [14], that
highlighted the excellent agreement between analytical and
numerical waveform and fluxes in the test-mass case (see
Fig. 1 therein, limited to geodesic motion with e ¼ 0.3).
The purpose of this paper is to systematically extend the
analysis of [14] up to large values of the eccentricity, also
including the black hole spin. We will thus mainly focus on
analytical/numerical flux comparisons of extreme mass
ratio binaries: a test-mass object orbits around a Kerr black
hole along eccentric equatorial geodesics. The comparisons
of the analytical fluxes with the numerical ones obtained
from the time-domain (TD) code Teukode [28] will provide a
reliability-test of the radiation reaction. We will also test the
reliability of the analytical prescription for the waveform.
Our model should be intended as a first step toward the
modelization of EMRIs within the EOB framework.
An physically more faithful description of EMRIs will
certainly need to include high-order noncircular terms
beyond the leading order in the radiation reaction as well
as results from gravitational self-force theory within the

EOB Hamiltonian (i.e., linear in the mass ratio ν beyond
the geodesic dynamics [42]). This aim goes beyond the
purpose of the present work. As a consequence, most of the
work presented in this paper should be considered as an
exploratory investigation that will be refined further in
the future. In particular, we shall consider an analytical/
numerical agreement for instantaneous eccentric fluxes to
be good if the fractional differences are around or below the
few percents, indicatively ≲5%. For the corresponding
averaged fluxes, we expect smaller differences. For what
concerns eccentric waveforms, we aim at reaching
numerical/analytical fractional differences of a few per-
cents in the amplitude and of a few hundredth of a radian in
the phase difference. We will show that this accuracy,
considered good within our context, is achieved in a large
portion of the parameter space.
The paper is structured as follows. In Sec. II we expose

the Hamiltonian formalism used to describe the dynamics
of a test-particle around a Kerr black hole and the numerical
methods used to perform the simulations. In Sec. III, after a
brief introduction of the EOB model, we describe the
analytical waveform and fluxes in details and the new
improvements introduced to the circular Post-Newtonian
(PN) factors. In Sec. IV, we study the phenomenology of
the fluxes and we compare the numerical and analytical
fluxes to establish the reliability of the radiation reaction.
In Sec. V we provide a comparison between numerical and
analytical waveforms, also showing the full transition from
an eccentric inspiral to plunge, merger and ringdown, as
well as waveforms from dynamical captures.
Through this paper, we will use geometrized units

G ¼ c ¼ 1. Moreover, the time and the phase-space
variables used in this work are related to the physical
ones by t ¼ T=ðGMÞ, r ¼ R=ðGMÞ, pr ¼ PR=μ, and
pφ ¼ Pφ=ðμGMÞ.

II. NUMERICAL WAVEFORMS AND FLUXES

A. Equatorial dynamics around a Kerr black hole

For a test-particle orbiting in the equatorial plane of a
Kerr black hole of dimensionless spin â≡ JBH=M2 the
EOB Hamilton’s equations for spin-aligned objects reduce
to [31,43]

_r ¼
�
A
B

�
1=2 ∂Ĥeq

Kerr

∂pr�
; ð1Þ

_φ ¼ ∂Ĥeq
Kerr

∂pφ
≡Ω; ð2Þ

_pr� ¼
�
A
B

�
1=2

�
F̂ r −

∂Ĥeq
Kerr

∂r
�
; ð3Þ

_pφ ¼ F̂φ: ð4Þ
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Here, F̂ r;φ ≡ F r;φ=ν are the radial and angular components
of the radiation reaction force and Ĥeq

Kerr is the μ-normalized
test-particle Hamiltonian [43], that reads

Ĥeq
Kerr ¼

2âpφ

rr2c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ

�
1þ p2

φ

r2c

�
þ p2

r�

s
: ð5Þ

The metric functions AðrÞ and BðrÞ read

AðrÞ ¼ 1þ 2uc
1þ 2u

ð1 − 2ucÞ; ð6Þ

BðrÞ ¼ 1

1 − 2uþ â2u2
; ð7Þ

where u ¼ 1=r, uc ¼ 1=rc, and rc is the centrifugal radius
defined as [43]

r2c ¼ r2 þ â2 þ 2
â2

r
: ð8Þ

Finally, pr� is the conjugate momentum of the tortoise

coordinate r�, defined as pr� ¼
ffiffiffiffiffiffiffiffiffi
A=B

p
pr. Being planar, the

orbit is fully determined by the choice of the eccentricity e
and the semilatus rectum p. Although it is not possible to
provide a gauge invariant definition of ðe; pÞ, in the test-
particle limit it is natural to define them in analogy with
Newtonian mechanics. For bound orbits, we have

e ¼ rþ − r−
rþ þ r−

; p ¼ 2rþr−
rþ þ r−

; ð9Þ

where r� are the two radial turning points, i.e., the
apastron, rþ, and the periastron, r−. Using the definitions
of eccentricity and semilatus rectum, one finds r� ¼
p=ð1 ∓ eÞ. In order to obtain a link between ðe; pÞ and
the energy and angular momentum ðÊ; pφÞ, we analytically
solve the two-equations system obtained by considering

Ê ¼ Ĥeq
Kerrjpr�¼0 ¼

2âpφ

rr2c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ

�
1þ p2

φ

r2c

�s
ð10Þ

evaluated at the two radial turning points r�, where pr� ¼ 0

by definition. Then for each pair of initial eccentricity and
semilatus rectum ðe0; p0Þ, we obtain the initial energy and
angular momentum ðÊ0; p0

φÞ. Finally, using the convention
that the (cyclic) azimuthal variable φ is set to zero at
apastron, we have all the initial values needed to compute
the evolution of the system through Hamilton’s equations.
For geodesic motion, i.e., when F̂φ ¼ F̂ r ¼ 0, the eccen-
tricity and the semilatus rectum (or, equivalently, Ê and pφ)
are constants of motion.

It is important to consider that for a given Kerr back-
ground, not all the eccentricity-semilatus rectum pairs
produce stable orbits. In fact, in order to have a bound
orbits, the Kerr potential (Eq. (2) of [44]) must have three
roots: ðr̄; r−; rþÞ. When r− ¼ r̄, the bound motion is only
marginally allowed, and when the potential has only two
roots the particle inevitably plunges toward the event
horizon. Therefore, for stable bound orbits we must have
p > ps, where ps is known as separatrix and depends both
on eccentricity and spin. The separatrix can be found as a
root of [44,45]

p2
sðps − 6 − 2eÞ2 þ â4ðe − 3Þ2ðeþ 1Þ2
− 2â2ð1þ eÞps½14þ 2e2 þ psð3 − eÞ� ¼ 0: ð11Þ

Note that in the Schwarzchild case, the separatrix is simply
given by ps ¼ 6þ 2e.

B. Waveform and fluxes

From the particle dynamics, we compute waveforms
and fluxes at leading order in the mass ratio ν. This is
done either numerically, solving the Teukolsky or Regge-
Wheeler-Zerilli (RWZ) perturbation equations [46,47],
or analytically, using suitable resummations of post-
Newtonian results as discussed in Sec. III below. To fix
conventions, let us remind that the waveform is decom-
posed in multipoles hlm as

hþ − ih× ¼ D−1
L

Xlmax

l¼2

Xl
m¼−l

hlm−2Ylm; ð12Þ

whereDL is the luminosity distance and −2Ylm are the spin-
weighted spherical harmonics with weight s ¼ −2. We will
often work with the RWZ-normalized waveform [48]
Ψlm ¼ hlm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðlþ 1Þlðl − 1Þp
. The energy and

angular momentum fluxes at future null-infinity, _E and _J,
can be computed from the multipolar waveform as

_E ¼ 1

16π

Xlmax

l¼2

Xl
m¼−l

j _hlmj2; ð13aÞ

_J ¼ −
1

16π

Xlmax

l¼2

Xl
m¼−l

mℑð _hlmh�lmÞ: ð13bÞ

We will fix lmax ¼ 8, since the contributions of the higher
ones is negligible. In fact, even the l ¼ 8 modes have
typically contributions≲1%, and only in some very strong-
field regimes their contribution can reach the 2%.
For example, we anticipate that for ðâ; e; pÞ ¼ ð0.9; 0.9;
ps þ 0.01Þ, we get a relative contribution to _J of 2.2% (the
(8,8) mode alone contributes to 2.1%). The contribution of
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the subdominant modes to the fluxes will be discussed in
more detail in Sec. IV C.

C. Numerical methods and setup

To apply black-hole perturbation theory to our waveform
(and flux) calculation, we solve, in the time-domain, the
Regge-Wheeler-Zerilli (RWZ) [46,47] or Teukolsky equa-
tions in the presence of a point-particle source, that is
represented by a δ-function. Following a practice intro-
duced long ago [22,49], the δ-function is approximated by a
narrow Gaussian function. In the Schwarzschild back-
ground case, we solve the RWZ equations in the time-
domain using the RWZhyp code developed long ago [24,27],
that notably employs the hyperboloidal layer method [26]
to extract the waveforms at future null infinity, avoiding
errors related to the wave extraction at finite radius. In the
more general case of a rotating black hole, we use Teukode

[28] to solve the Teukolsky equation in the time-domain. In
particular, the code uses horizon-penetrating and hyper-
boloidal coordinates that allow for the inclusion of the
horizon and the future null infinity in the computational
domain [50–52]. The 3þ 1 equation is decomposed
exploiting the axisimmetry of the Kerr spacetime obtaining
a 2þ 1 TD equation for each Fourier m-mode in the
azimuthal direction. Then the wave equation is solved for
gravitational perturbations, obtaining the Weyl scalar Ψ4,
i.e., the contraction of theWeyl scalar with a null-tetrad (the
Hawking-Hartle tetrad in our case). Each waveform multi-
pole is then obtained by a double time integration of the
Weyl scalar, since at infinity ḧlm ¼ Ψlm

4 , where Ψlm
4 is the

multipolar decomposition of Ψ4. Analogously to the
RWZhyp code, the formal Dirac δ functions present in
the source term are approximated using narrow Gaussian
functions. In our simulations, we use horizon-penetrating,
hyperboloidal coordinates with scri-fixing at S ¼ 10 and
resolution of Nr × Nθ ¼ 3600 × 160, where ðNr; NθÞ are
the number of points in the radial and angular directions
respectively. From the Hamiltonian dynamics for the
particle discussed in Sec. II A, we compute the waveforms
and the fluxes at infinity using the two numerical codes
exposed above. Teukode is more general than RWZhyp, but the
computational time is also greater. Nonetheless, we will use
Teukode also for nonspinning cases, with the only exception
of few simulations with large semilatera recta (p ¼ 21, 31).
We will explicitly state when results from RWZhyp are
presented; otherwise, Teukode is understood. An example of
(zoom-whirl) geodesics dynamics (F r ¼ Fφ ¼ 0) with the
corresponding l ¼ m ¼ 2 waveform multipole and fluxes
is shown in Fig. 1.

D. Comparisons with previous work

Both RWZhyp and Teukode have never been used system-
atically for eccentric runs before (see however Ref. [14]),
therefore we need to test the consistency of our results with

published results. To do so, we compare the averaged
fluxes along a radial orbit for both Schwarzschild and Kerr
backgrounds.
For the nonspinning case, the comparisons are shown in

Table I, where our ν-normalized fluxes averaged over a
radial period (see Eq. (38) below) are compared with the
classic TD results of Martel [53], as well as to more recent
gravitation-self-force (GSF) calculations of Barack and
Sago [54] and FD results of Fujita [55]. Note that we
sum the multipoles up to lmax ¼ 8, but in the other works
lmax assumes different values. Despite these differences,
the agreement with previous computations remains satis-
factory, since the higher multipoles are highly subdomi-
nants. We can also observe that among the TD codes,
Teukode is the most accurate one. Note that the difference
between resolutions 3600 × 120 and 5400 × 320 is very
small. Since in the second case the computational time
increases by a factor 6, we will use the former resolution.
We have also compared the instantaneous energy and
angular momentum fluxes of Teukode and RWZhyp in the
cases ðe; pÞ ¼ ð0.3; 9Þ; ð0.5; 11Þ, (0.8,13), and we have
seen that the relative difference between the two numerical
fluxes reaches its maximum at periastron and it is at most
of 0.3%.
In the presence of black hole spin, we have compared the

averaged fluxes for â ¼ 0.5 and e ¼ 0.5 obtained using
Teukode with the results of Glampedakis and Kennefick [56].
The comparison, shown in Table II, highlights the good
agreement, with discrepancies below 0.2%. Note however
that, as above, we fixed lmax ¼ 8, while Ref. [56] sums up

FIG. 1. Top panels: a complete radial orbit of the simulation
with â ¼ 0.6, e ¼ 0.7 and p ¼ ps þ 0.01 ≃ 4.858 and the
corresponding real part of the dominant mode of the numerical
waveform. The dashed vertical line marks the periastron passage.
Bottom panels: energy and angular momentum fluxes summed
up to lmax ¼ 8. Note the zoom-whirl behavior and the periastron
precession. Moreover, it is possible to observe the fluxes (and
waveform) asymmetry that we will discuss in Sec. IV.
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to lmax ¼ 10–17 and this affects the comparison. In fact, in
the first case reported in Table II, the l ¼ 8 modes have a
relative contribution of ∼0.25% to the total fluxes, therefore
including also the multipoles with l > 8 would probably
improve the agreement. Note also that when the semilatus
rectum is increased, the agreement improves, because the
higher modes become less and less relevant. We have also
considered a configuration with â ¼ 0.9, e ≃ 0.3731 and
p ≃ 12.152, calculated both in Ref. [57] and Ref. [56]. In
this case, the contribution of the l ¼ 8modes is only of the
order of 2 × 10−5 due to the large value of p used, and as a
consequence the discrepancy is smaller. Nonetheless,
comparing the energy and angular momentum fluxes with
the results of Ref. [57], we have found, respectively,
discrepancies of 1.4% and of 0.8%, confirming the ∼1%
disagreement already found by Ref. [56]. We can thus
conclude that our numerical computations of the fluxes
along eccentric orbits are consistent with all results already
present in the literature. Our numerical approach is then
expected to faithfully describe fluxes from eccentric orbits
both on Schwarzschild and Kerr spacetimes.

E. Numerical geodesic simulations

In order to meaningfully cover the parameter space, we
run 144 geodesic simulations with Teukode choosing eccen-
tricities e¼ð0;0.1;0.3;0.5;0.7;0.9Þ and spins in the range
â ∈ ½−0.9; 0.9�, typically â ¼ ð0;�0.2;�0.6;�0.9Þ. For
each pair of spin and eccentricity ðâ; eÞ, we have chosen
three different semilatera recta. The first is p ¼ ps þ 0.01,
where ps ¼ psðe; âÞ is the separatrix, while the other two

are selected according to p ¼ pschwpsðe; âÞ=psðe; 0Þ,
where pschw is 9 or 13. Depending on the value of the
semilatus rectum, we will refer to the simulations, respec-
tively, as near, intermediate and distant. The near simu-
lations exhibit a zoom-whirl behavior, while the others
generally have eccentric orbits without whirls at periastron.
The complete list of the Teukode geodesic simulations with
the corresponding averaged fluxes can be found in
Appendix D. Hereafter, when we will report a semilatus
rectum or a separatrix, we will truncate it to the third
decimal.

III. ANALYTICAL WAVEFORMS AND FLUXES

A. Waveform

Let us turn now to the discussion of the factorized and
resummed analytical waveforms and fluxes along eccentric
orbits. The basic ideas are those introduced in Ref. [41] for
the circular case, that proposed a recipe to factorize and
resum the PN-expanded waveform multipoles. A simple
procedure to generalize it to the case of eccentric orbits was
introduced in Ref. [14], that we review here in detail. Each
waveform multipole is factorized as

hlm ¼ hðN;ϵÞ
lm ĥðϵÞlm ¼ hðN;ϵÞ

lm ŜðϵÞĥtaillmðρlmÞl; ð14Þ

where ϵ denotes the parity of the multipole (ϵ ¼ 0 if lþm

is even, ϵ ¼ 1 if lþm is odd), hðN;ϵÞ
lm is the Newtonian

contribution and ĥðϵÞlm is the PN correction. The term ŜðϵÞ is
the effective-source term, i.e., the energy if ϵ ¼ 0 or
the Newton-normalized angular momentum if ϵ ¼ 1;
ĥtaillm ¼ Tlmeiδlm is the tail factor and the ρlm are the
residual amplitude corrections. While the SðϵÞ is general
because it is computed along the general dynamics, the
functions ĥtaillm and ρlm correspond to those obtained in the
circular case (see Appendix A for more details). Following
Ref. [14], the multipolar waveform is generalized to generic
orbits (including open orbits [15,16]) by simply replacing
the Newtonian quasicircular prefactor with its general
expression. We remark that we are considering the wave-
form at leading order in ν, therefore we switch off all the
subleading ν-dependencies in the factors of Eq. (14), except
for the leading Newtonian contribution OðνÞ.

TABLE I. Averaged numerical fluxes computed with RWZhyp and Teukode compared with results present in the literature, see
discussion in the text.

Teukode (TD)
3600 × 160

Teukode (TD)
5400 × 320 RWZhyp (TD) Martel (TD) Barack (GSF) Fujita (FD)

p ¼ 7.50478 h _Ei · 104 3.16885 3.16888 3.17077 3.1770 3.1691 3.16899989184
e ¼ 0.188917 h _Ji · 103 5.96731 5.96737 5.96998 5.9329 5.967608 5.96755215608

p ¼ 8.75455 h _Ei · 104 2.12276 2.12269 2.12718 2.1484 2.1243 2.12360313326
e ¼ 0.764124 h _Ji · 103 2.77643 2.77635 2.78077 2.7932 2.77746 2.77735938996

TABLE II. Numerical averaged fluxes in Kerr spacetime. We
compare the results of Teukode (lmax ¼ 8) with the results
obtained by Ref. [56] (lmax ¼ 10–17). For the last simulation,
only h _EGKi is reported in Ref. [56].

â e p h _Eteuki·103 h _Jteuki·102 h _EGKi·103 h _JGKi·102
0.5 0.5 5.1 4.20753 3.25791 4.21594 3.26383
0.5 0.5 5.5 2.11538 1.89340 2.11797 1.89546
0.5 0.5 6.0 1.19519 1.22870 1.19638 1.22973
0.9 0.3731 12.152 0.023571 0.080743 0.023570 /
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The Newtonian contribution of the waveform is obtained
from the derivatives of the source multipoles, explicitly

hðN;ϵÞ
lm ∝

8<
: IðlÞlm if ϵ ¼ 0

SðlÞlm if ϵ ¼ 1
; ð15Þ

where IðlÞlm and SðlÞlm are the lth-derivatives of the mass
and current source multipoles. For a test-particle orbiting
in the equatorial plane of a Kerr black hole, they are
given by

Ilm ∝ νrle−imφ;

Slm ∝ νrlþ1Ωe−imφ: ð16Þ

For circularized binaries, the derivatives of the radius and
the orbital frequency are zero, but in the more general case
they are not vanishing. Therefore the waveform can be
generalized [14] (at Newtonian level) without neglecting
the derivatives of the radius and of the orbital frequency,

obtaining a general Newtonian contribution hðN;ϵÞtot
lm that can

be separated in circular and noncircular factors, respec-

tively hðN;ϵÞc
lm and hðN;ϵÞnc

lm . Then the full multipolar waveform
can be written as

hlm ¼ hðN;ϵÞc
lm ĥðN;ϵÞnc

lm ĥðϵÞlm; ð17Þ

where

ĥðN;0Þnc
lm ¼ ðhðN;0Þc

lm Þ−1IðlÞlm;

ĥðN;1Þnc
lm ¼ ðhðN;1Þc

lm Þ−1SðlÞlm;

hðN;ϵÞc
lm ¼ hðN;ϵÞtot

lm ðr;Ω; _r ¼ 0; _Ω ¼ 0;…Þ:

For the dominant (2,2) mode, the Newtonian noncircular
correction reads

ĥðN;0Þnc
22 ¼ 1 −

̈r
2rΩ2

−
_r2

2r2Ω2
þ 2i_r

rΩ
þ i _Ω
2Ω2

: ð18Þ

The explicit noncircular corrections for the most relevant
subdominant modes can be found in Appendix B.

B. Energy and angular momentum fluxes

The radiation reaction forces ðFφ;F rÞ are obtained
requiring the equality between the loss of mechanical
energy and angular momentum of the system and the
energy and angular momentum fluxes carried by the GWat
infinity, _E and _J. Using the angular and radial components
of the radiation reaction and the equations of motion, the
balance equations read [58]

_rF r þΩFφ þ _ESchott þ _E ¼ 0; ð19aÞ

Fφ þ _J ¼ 0: ð19bÞ

where _ESchott is the time-derivative of the Schott energy,
that represents the interaction of the source with the local
field and its orbital average goes to zero. The Schott
contribution to the angular momentum, _JSchott, can be
gauged away [58]. In the circular case, F r and _ESchott
vanish and we only have the angular component of the
radiation reaction, that is typically written as

F̂φ ¼ −
32

5
νr4ΩΩ5f̂; ð20Þ

where f̂ is Newton-normalized flux function, that incor-
porates all the resummed PN corrections, and

rΩ ¼ rð1þ âr−3=2Þ2=3: ð21Þ

The form of f̂ is reminded in Appendix A. We recall that
the analytic expression we use here relies on several
previous works [41,59,60] and, in particular, it uses
resummed multipoles up to l ¼ 8. In Ref. [14], it was
proposed to include noncircular effects in the angular
component of the radiation reaction by means of the
leading, quadrupolar, noncircular factor f̂Nnc

φ;22,

F̂φ ¼ −
32

5
νr4ΩΩ5f̂Nnc

φ;22f̂ ≡ F̂ old
φ ; ð22Þ

that reads

f̂Nnc
φ;22 ¼ 1þ 3_r4

4r4Ω4
þ 3_r3 _Ω
4r3Ω5

þ 3̈r2

4r2Ω4
þ 3̈r _r _Ω
8r2Ω5

−
rð3Þ _r
2r2Ω4

þ _r2Ω̈
8r2Ω5

þ 4_r2

r2Ω2
þ ̈r Ω̈
8rΩ5

−
2̈r
rΩ2

−
rð3Þ _Ω
8rΩ5

þ 3_r _Ω
rΩ3

þ 3 _Ω2

4Ω4
−

Ω̈
4Ω3

: ð23Þ

This factor is simply the next-to-quasicircular part of the
Newtonian contribution to the angular momentum flux

obtained from the Newtonian quadrupolar waveform hðN;0Þ
22 .

More precisely, one has

_JN22=ν≡−
1

8π

X
m¼�2

ℑð _hðN;0Þ
2m hðN;0Þ�

2m Þ¼32

5
νr4Ω5f̂Nnc

φ;22; ð24Þ

that, after replacing r with rΩ, changing sign, and consid-
ering f̂, finally yields Eq. (22). Although this choice was
used in previous works [14,15] it is slightly incorrect, since
all subdominant flux multipole are multiplied by the
quadrupolar noncircular factor. A more consistent approach
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was proposed in [16], where the noncircular correction
factor was applied only to the l ¼ m ¼ 2 multipole. The
angular radiation reaction in this case is written as

F̂NP
φ ¼ −

32

5
νr4ΩΩ5f̂nc22 ; ð25aÞ

f̂nc22 ≡ F̂22f̂
Nnc
φ;22 þ F̂21 þ

X
l≥3

Xl
m¼1

F̂lm; ð25bÞ

where F̂lm ¼ Flm=FN
22 are the Newton-normalized

energy fluxes defined in Eq. (A4). In practice, the global
factor f̂Nnc

φ;22 of Eq. (22) is now a factor of the l ¼ m ¼ 2

multipole and we are neglecting the noncircular corrections
of all the subdominant multipoles. A straightforward
generalization of Eq. (25) can be obtained considering
also the noncircular corrections from the subdominant
multipoles:

F̂ANP
φ ¼ −

X6
l¼2

Xl
m¼1

_J
ðNqcirc;ϵÞ
lm f̂Nnc

φ;lmjĥðϵÞlmj2

−
Xlmax

l¼7

Xl
m¼1

_J
ðNqcirc;ϵÞ
lm jĥðϵÞlmj2; ð26Þ

where J
ðNqcirc;ϵÞ
lm ∝ νr2ðlþϵÞ

Ω Ω2ðlþϵÞþ1 is the quasicircular
Newtonian contribution to the angular momentum flux,1

f̂Nnc
φ;lm is the Newtonian noncircular factor and ĥðϵÞlm is the full

PN (circular) correction introduced in Eq. (14). For
simplicity, we consider noncircular Newtonian prefactors
only up to l ¼ 6, since the others contributions are anyway
negligible. The noncircular Newtonian Prefactor f̂Nnc

φ;lm for
the most relevant subdominant modes can be found in
Appendix B.
For the radial component of the radiation reaction,

F̂ r, we used the 2PN results of Ref. [58] Padé resummed
as in [14]

F̂ r ¼
32

3
ν
pr�

r4
P0
2½f̂BDr �; ð27Þ

where P0
2 is the (0,2) Padé approximant. The explicit

expression for the 2PN terms reads

f̂BDr ¼ f̂Nr þ f̂1PNr þ f̂2PNr ; ð28Þ

where (see also Ref. [16])

f̂Nr ¼ −
8

15
þ 56

5

p2
φ

r
; ð29aÞ

f̂1PNr ¼ −
1228

105
p2
r� −

1984

105

1

r
−
124

105

p2
r�p

2
φ

r

þ 1252

105

p4
φ

r3
−
1696

35

p2
φ

r2
; ð29bÞ

f̂2PNr ¼ 323

315
p4
r� þ

59554

2835
r2 −

1774

21

p2
r�p

2
φ

r2

−
628

105

p2
r�p

4
φ

r3
−
29438

315

p2
φ

r3
−
461

315

p4
r�p

2
φ

r

þ 20666

315

p2
r�
r

−
3229

315

p6
φ

r5
−
35209

315

p4
φ

r4
: ð29cÞ

Finally, for the Schott energy we also follow Ref. [14]

ESchott ¼
16

5

pr�

r3
P0
2½Ec

Schott�P0
2½Enc

Schott�; ð30Þ

where the circular and noncircular parts, taken at 2PN
accuracy, are also Padé resummed. The two contributions
explicitly read

Ec
Schott ¼ 1 −

157

56

1

r
−
3421

756

1

r2
; ð31Þ

Enc
Schott ¼

p2
φ

r
−
3

2
p2
r� þ

2

21

1

r
−
1

2

p2
r�p

2
φ

r
þ 55

168

p4
φ

r3
−
575

168

p2
φ

r2

þ 5

8
p4
r� −

2143

5292

1

r2
−
61

48

p2
r�p

2
φ

r2
−

13

168

p2
r�p

4
φ

r3

þ 370189

84672

p2
φ

r3
þ 3

8

p4
r�p

2
φ

r
−
181

112

p2
r�
r

−
25

504

p6
φ

r5
−
130223

28224

p4
φ

r4
: ð32Þ

The functions ðFφ;F r; ESchottÞ are then computed along a
given eccentric (typically geodesic) dynamics and then,
using Eqs. (19), eventually yield expressions for the
analytical GW fluxes ð _E; _JÞ at infinity. Given the various
possible analytical prescriptions for Fφ that we have
discussed so far, we will consider three different possibil-
ities labeled as follows:

(i) _ENP, _JNP are computed using F̂NP
φ from Eq. (25).

These are the most relevant fluxes for our purposes
since they will eventually be our preferred choice to
drive the transition from the eccentric inspiral to
plunge, merger and ringdown. Note that this choice
is the same implemented for the EOB eccentric
model of Ref. [16].

(ii) _Eold, _Jold are computed using F̂ old
φ from Eq. (22),

i.e., these are fluxes used with the old prescription
used in the original EOB eccentric model of Ref. [14]1For the l ¼ m ¼ 2 mode this is _J

ðNqcirc;0Þ
22 ¼ 32=5νr4ΩΩ5.
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as well as in its extension for hyperbolic motion and
dynamical capture [15].

(iii) _EANP, _JANP are computed using F̂ANP
φ from Eq. (26).

We will compare the analytical fluxes with the
numerical ones in order to establish the strong-field
reliability of ðFφ;F rÞ. When looking at the instanta-
neous fluxes, that provide direct insights on the quality
of these functions, the comparison will also involve
_ESchott. By contrast, when considering orbital-
averaged fluxes,ESchott does not play any role because
its orbital average vanishes, h _ESchotti ¼ 0.

As a final possible analytical choice, one can also
compute the fluxes ð _Jhlm; _EhlmÞ by simply inserting Eq. (17)
into Eqs. (13). Although these expressions cannot be
conveniently employed to drive the Hamiltonian dynamics,
they can serve as additional consistency check of the
waveform. They will be explicitly discussed in Fig. 6 below.

C. Factorization and resummation
of the l= 7 and l= 8 circular amplitudes

The residual amplitude corrections ρlm introduced in
Eq. (14) are a crucial building block of any EOB waveform
model and need a careful analytical treatment. In fact,
although they are originally defined as PN series [41], they
may need additional resummation procedures to improve
their strong-field behavior. The various PN truncations of
the ρlm’s, either in the spinning or nonspinning case,
typically oscillate around the function computed numeri-
cally solving the Teukolsky equation. A straight Padé
approximant is not the most suitable choice, as pointed
out in [59,60]. By contrast, Refs. [59,60] suggested a
different resummation scheme that: (i) first factorizes out
the orbital, spin-independent, part and (ii) resums the
orbital and spinning factors using, respectively, a Padé
approximant and an inverse Taylor resummation scheme.
The choice of the Padé approximant is partly arbitrary and
is guided by the comparisons with the numerical results. In
Refs. [59,60] the resummation scheme was applied to all
multipoles up to l ¼ 6. For our flux comparisons, espe-
cially in the presence of zoom-whirl orbits, we found it
useful to apply the same scheme to the l ¼ 7 and l ¼ 8
modes. Let us recall the main elements of the procedure. As
a first step, the orbital part is factorized as follows

ρlmðxÞ ¼ ρorblmðxÞ þ ρSlmðxÞ ¼ ρorblmðxÞρ̂SlmðxÞ; ð33Þ

where ρ̂Slm ¼ Tn½1þ ρSlm=ρ
orb
lm� and Tn indicates the Taylor

expansion at the nth-PN order. Then a Padé approximant Pi
j

is used for the orbital part and an inverse Taylor scheme for
the spin-part:

ρ̄orblmðxÞ ¼ Pi
jðρorblmðxÞÞ;

¯̂ρSlmðxÞ ¼ ðTn½ðρ̂SlmðxÞÞ−1�Þ−1: ð34Þ

The final result is given by the product of the two
resummed factors

ρ̄lmðxÞ ¼ ρ̄orblmðxÞρ̄SlmðxÞ: ð35Þ

We extend this approach to l ¼ 7 and l ¼ 8 modes
using the PN series of the relativistic amplitude corrections
for a test-particle on circular orbits around a Kerr black hole
[61]. We use 6 PN accuracy for almost all the multipoles,
the only exceptions are the (7,3) and (7,2) modes where we
have used 8 PN information, and the (7,1) mode where we
have resummed the series truncated at 5 PN. This choice is
motivated by the significantly better agreement with
numerical data achieved for high spin. However, these
modes are highly subdominant and their contribution to the
fluxes is mostly negligible. In fact, the contribution to the
angular momentum flux of the modes with l ¼ 7, 8 and
m ≤ 3 all summed together in the case ðâ; e; pÞ ¼
ð0.9; 0; ps þ 0.01Þ is 2 × 10−7%, while in all the other
simulations it is even smaller. In practice, all the relevant
information in the resummed ρ̄lm is at 6 PN. We also
mention in passing that for extremal cases with â > 0.99,
the ρ̄81 has a pole in the spin factor, so that one is obliged to
use the plain PN series. Nonetheless, in this work we
consider spins only up to â ¼ 0.9, then we will always use
the resummed ρ̄lm. This problem is not present for any of
the other modes. The reliability of the resummation has
been tested using circular frequency-domain data obtained
by S. Hughes kindly made available to us [62]. The
comparisons between resummed analytical expressions
and numerical data are shown in Fig. 2, while the list of
Padé used is reported in Table III with the corresponding
relative differences at the last stable orbit (LSO). We
address the reader to Ref. [60] for complementary technical
details. The resummation is especially relevant for prograde
zoom-whirl orbits around fast spinning black holes, as
shown in Fig. 3 for the illustrative case ðe; âÞ ¼ ð0.3; 0.9Þ.
In fact, during the circular whirl the amplitude of the
nonresummed ρ77 at 6 PN becomes unphysically small (red
line). This behavior is mostly solved by the resummation
procedure exposed above, leading to a better agreement
with numerical data (green lines in Fig. 3). Note however
that the analytical waveform underestimates the exact
result, as typical of prograde orbits around fast spinning
black holes. We will discuss this issue in more details in
Sec. IV. Finally, note that in Fig. 3 we are not using any PN
correction for the residual phase of the tail factor, and this
leads to a great phase-difference between numerical and
analytical waveforms during the circular whirl. We will
address this issue in the next subsection.

D. Impact of residual waveform phases δlm
To improve the circular part of the waveform, we have

incorporated high-order PN information also in the residual
phases δlm of Eq. (14). In particular, we have exploited
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FIG. 2. Comparison between the factorized and resummed analytical ρ̄lm (colored lines) and the corresponding numerical (exact)
functions (black lines) for l ¼ 7, 8 and for values of the spin parameter â ¼ ð−0.99;−0.5; 0; 0.5; 0.8; 0.99Þ (red, orange, green, cyan,
blue and purple, respectively). On the x-axis we have x ¼ Ω2=3 and the filled circles mark the LSO location. These plots are obtained
using 6 PN information for all the modes except for ρ̄73 and ρ̄72, that employ 8PN information, and for ρ̄71 that uses 5PN orders. The
Padé approximants used for ρ̄orblm are listed in the second column of Table III.
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various PN truncations of the 11 PN series for a test-particle
on circular orbits around a Kerr black hole [61]. We have
also tested the resummation scheme introduced in [63],
where the resummed phases are obtained by factorizing the
leading order δLOlm contribution and then using a Padé
approximant Pi

j for the remaining correcting factor δ̂lm,
explicitly:

δlm ¼ δLOlm þ δNLOlm þ… ¼ δLOlmδ̂lm; ð36Þ

δ̄lm ¼ δLOlmP
i
j½δ̂lm�: ð37Þ

We report in Fig. 4 the phase differences between numeri-
cal and analytical circular waveforms, either with the

PN-expanded δlm (at various PN truncations) or with the
resummed δ̄lm. We consider some of the most relevant
modes and only consider radii close to the LSO
(r ¼ rLSO þ 0.01). For moderate spins (â≲ 0.5), we see
that the analytical/numerical phase agreement of the
dominant mode is improved by increasing the PN order
of δ22. Nonetheless, when the spin increases, the series
beyond 8 PN become unreliable. For the subdominant
modes, the PN series at high order are reliable also for
â≳ 0.5, even if for δ21 and δ33 some series at lower order
give similar (or better) agreements.
Applying the resummation scheme of Eq. (36) at 5.5 PN,

we see that the most suitable choice is the Padé P2
2. The

resummation provides a better numerical/analytical agree-
ment than the corresponding Taylor-expanded series at

FIG. 3. High spin and zoom-whirl behavior: left panel, trajectory for e ¼ 0.3, â ¼ 0.9 and p ¼ ps þ 0.01 ≃ 2.615. Middle and right
panels: waveform comparison for ðl; mÞ ¼ ð7; 7Þ and (7,6) multipoles. Black lines: numerical data. Red lines: analytical waveform with
the circular ρlm in PN-expanded form at 6 PN. Green lines: analytical waveform with the factorized and resummed ρ̄lm, always at 6 PN.
The resummation is essential to obtain a reasonably good agreement between the analytical and numerical waveforms.

TABLE III. Padé approximants used for the orbital part of the higher multipoles l ¼ 7, 8 and corresponding
relative differences ðρnumlm − ρ̄analytlm Þ=ρnumlm at LSO for different spin values. The largest differences occur for
â ¼ þ0.99.

ðl; mÞ Padé −0.99 −0.5 0 þ0.5 þ0.99

(7,7) P6
0 −6 × 10−6 2 × 10−5 1 × 10−4 9 × 10−4 6 × 10−2

(7,6) P4
2 2 × 10−3 1 × 10−3 2 × 10−4 −1 × 10−3 4 × 10−2

(7,5) P4
2 2 × 10−5 7 × 10−5 2 × 10−4 9 × 10−4 3 × 10−2

(7,4) P4
2 2 × 10−3 1 × 10−3 4 × 10−5 −3 × 10−3 −3 × 10−2

(7,3) P6
2 5 × 10−7 1 × 10−6 2 × 10−6 −6 × 10−5 −4 × 10−3

(7,2) P8
0 2 × 10−3 1 × 10−3 −4 × 10−7 −3 × 10−3 −1 × 10−1

(7,1) P2
3 2 × 10−6 4 × 10−5 1 × 10−6 −3 × 10−4 −5 × 10−2

(8,8) P6
0 −7 × 10−6 2 × 10−5 1 × 10−4 9 × 10−4 5 × 10−2

(8,7) P4
2 2 × 10−3 1 × 10−3 3 × 10−4 −9 × 10−4 5 × 10−2

(8,6) P4
2 2 × 10−5 7 × 10−5 3 × 10−4 1 × 10−3 4 × 10−2

(8,5) P4
2 2 × 10−3 1 × 10−3 7 × 10−5 −2 × 10−3 −2 × 10−2

(8,4) P4
2 9 × 10−6 3 × 10−5 9 × 10−5 2 × 10−4 −4 × 10−2

(8,3) P1
5 2 × 10−3 1 × 10−3 2 × 10−6 −2 × 10−3 −8 × 10−2

(8,2) P5
1 2 × 10−6 1 × 10−5 7 × 10−6 −1 × 10−4 −1 × 10−1

(8,1) P3
3 2 × 10−3 1 × 10−3 −1 × 10−6 −2 × 10−3 −7 × 10−2
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5.5 PN. Nonetheless, the Taylor expanded δ22 at 6 or 7.5
PN yields comparable, or even better, agreement with
numerical waveforms. For prograde orbits with â≳ 0.3,
the resummation of the l ¼ m subdominant modes pro-
vides a more faithful description than the Taylor expanded
series at 6.5 PN, as shown in Fig. 4. For even higher spins
(â ≳ 0.8), the resummed δ̄lm outperform also the series
beyond 7 PN. The hierarchy of the analytical/numerical
phase difference is different for the (2,1) mode, but in that
case all the phase differences are below 0.01 radians. A
similar argument holds at larger radii, even if for distant
simulation is less straightforward to evaluate the goodness
of the analytical choice, since the comparisons are affected
by the numerical errors.
Note in passing that, while spurious poles are absent in

l ¼ m and (2,1) modes of the resummed δlm with Padé P2
2,

they may occasionally appear in some other subdominant
modes. Finally, we have also successfully applied the
resummation scheme at 6.5 PN accuracy as shown in
Fig. 4. By contrast, when working at 7.5 PN, one finds
spurious poles even in the (2,2) mulitpole, either with Padé
P4
2 or P

3
3, so that the resummation is not robustly applicable

in this case.
Generally speaking, the resummed δ̄lm yield a better

phasing agreement with the numerical results. In particular
they are more robust than the high-order PN truncations for
prograde orbits around fast-spinning black hole. Nonetheless,
in order to choose a compromise between accuracy and
analytical simplicity, we have decided to consider the series
truncated at 7.5 PN as our preferred choice.

For noncircular simulations, the δlm are relevant during
the circular whirl of zoom-whirl orbits, but are less
significant for the other eccentric orbits. For higher spins,
the analytical choice is more relevant since the separations
reached are closer to the light ring and thus the PN series
are applied in stronger fields.

IV. FLUXES PHENOMENOLOGY AND
ANALYTICAL/NUMERICAL COMPARISONS

Now that we have clarified the various analytical
structures involved, let us turn to discussing the compar-
isons between analytical and numerical fluxes. The final
goal of this procedure is to identify the range of validation
of the analytical expressions so that they can consistently
used to drive an eccentric inspiral. We do these compar-
isons in two complementary ways. In Sec. IVAwe discuss
instantaneous fluxes, while in Sec. IV B we discuss orbital
averaged fluxes so to easily gain a global picture for all
values of ðe; âÞ.

A. Instantaneous fluxes

The phenomenology of the instantaneous GW fluxes of a
particle on an eccentric orbit around a Kerr black hole
depends on the eccentricity, e, semilatus rectum, p, and
black hole spin, â. To set the stage of our discussion, let us
take a sample of illustrative configurations that survey the
different phenomenologies. The selected parameters and
trajectories are shown in Fig. 5. We considered both mildly
eccentric and highly eccentric configurations, some of

FIG. 4. Phase difference between numerical and analytical waveform multipoles for different truncation of the δlm series (filled
markers) and Padé resummations obtained with Eq. (36) (empty markers) for the near circular simulations (r ¼ rLSO þ 0.01). Note the
different vertical scale for the (2,1) mode.
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these showing the so-called zoom-whirl behavior [56],
involving several revolutions around the central body near
periastron (see, e.g., bottom right panel of the Fig. 5). In
particular, an interesting feature arises from the fact that,
when a corotating test particle gets close to the light ring at
high velocity, the QNMs of the central black hole can be
excited, producing high-frequency oscillations (usually
addressed as wiggles) in the radiated GWs at infinity
[64]. This phenomenon has been recently analyzed in
details both using TD and FD codes [65,66]. Moreover,
the QNM excitation leads to strongly asymmetric fluxes
with respect to the periastron passage. The excitations
become more relevant when the velocity of the test-particle
increases and when the periastron of the orbits gets closer to
the light ring. Moreover, the damping time of the QNMs
increases significantly for high spins, therefore these

excitations are mostly of interest for extremal black holes
(â≳ 0.99). Nonetheless, QNMs excitations are present also
in less extreme cases, as pointed out in [66]. These effects
are particularly relevant for prograde zoom-whirl orbits
with high eccentricity around fast spinning black hole since
the periastron can get very close to the light ring. The
energy and angular momentum fluxes corresponding to the
trajectories of Fig. 5 are shown in Fig. 6. The main aim of
the figure is to compare the numerical fluxes (in black) with
the different flavors of the analytical fluxes (in color), but
we will comment this in detail below. Still, one can clearly
see how the QNMs excitations build up when p is changed
so to allow the system to pass close to the light ring. This
occurs either in the case of extreme eccentricity or in case
of zoom-whirl behavior.
The EOB analytical waveform model is not designed to

incorporate QNMs-related effects. Despite this, one can
achieve a reasonable qualitative and quantitative agreement
also when they are present. For each configuration, Fig. 6
contrast the exact, numerical, fluxes with four different
analytical approximations:

(i) F̂NP
φ from Eq. (25) that corresponds to the _FNP

fluxes. In this case the angular radiation reaction
has the noncircular (2,2) Newtonian prefactor f̂Nnc

φ;22

in the (2,2) multipole. This is now the standard
prescription in state-of-the-art EOB waveform
model [16].

(ii) F̂ old
φ from Eq. (22) from which we compute the _Fold

fluxes. In F̂ old
φ , the noncircular (2,2) Newtonian

prefactor f̂Nnc
φ;22 is a global factor.

(iii) F̂ANP
φ from Eq. (26), that provides the _FANP fluxes.

In this case we consider all the noncircular
Newtonian prefactors up to l ¼ 6.

(iv) _Fhlm , the fluxes obtained directly plugging the
analytical waveform hlm in Eq. (13) and summing
over all multipoles up to lmax ¼ 8. These quantities
are exhibited as blue lines in the plots.

The various analytical choices offer substantially compa-
rable approximations to the numerical fluxes. In order to
establish a preferred one, we need an efficient way to
perform analytical/numerical comparisons all over the
ðe; p; âÞ parameter space. We do so in the next section
studying the behavior of orbital averaged fluxes.

B. Averaged fluxes

In order to systematically and efficiently test the various
analytical expressions discussed above, we consider the
ν-normalized fluxes averaged over a radial period Tr

h _Fi ¼ 1

Tr

Z
Tr

0

_F
ν2

dt; ð38Þ

and we calculate the relative differences between numerical
and analytical fluxes. We have considered all the analytical

FIG. 5. Geodesic equatorial orbits for different (e, â, p)
configurations, including the so-called zoom-whirl behavior
(bottom-right panel). We have highlighted one radial orbit for
each configuration. The corresponding fluxes and waveforms are
shown in Fig. 6 and Fig. 10.
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prescriptions discussed in Sec. III B: _FNP, _Fold, _FANP

and _Fhlm . All the values for the relative differences between
numerical and analytical averaged fluxes can be found in
Appendix D.
Before analyzing the different analytical prescriptions,

we discuss some general features of the fluxes over the
parameter space. As a priori expected, the analytical/
numerical disagreement grows both with spin and eccen-
tricity, since the periastron of prograde orbits can get very
close to the light ring for high spin parameters and high
eccentricity. In strong fields, the PN series employed
in our model lose their reliability, even if strengthened by
a proper resummation. In particular, from the relative
differences between numerical and _FNP fluxes reported in
Fig. 7, it is possible to see that the spin is a relevant source

of disagreement regardless of eccentricity. On the other
hand, the eccentricity is also crucial for the reliability of
the fluxes, both for the lack of noncircular information in
the angular radiation reaction beyond the Newtonian order
and for the approaching of the periastron to stronger fields
for higher eccentricities. The last issue can be easily seen
in Fig. 8, where in the first panel we have plotted the same
numerical/analytical relative differences of the angular
momentum fluxes versus the distance between the light
ring and the periastron. In the other two panels of Fig. 8
we have shown the differences for the other radiation
reactions of Eq. (26) and Eq. (22). The analogous plots for
the other analytical fluxes can be found in Appendix D,
but the general features discussed so far are valid for any
of them.

FIG. 6. Angular momentum, _J, and energy, _E, fluxes at infinity corresponding to the equatorial orbital dynamics shown in Fig. 5. The
top panel of each plot focuses on a time interval around a periastron passage, that is indicated by a vertical dashed line. The numerical
fluxes (black) are contrasted with four different analytical fluxes (in color). _FNP (red), _FANP (dashed orange), _Fold (dotted orange), _Fhlm
(light blue). The bottom panel of each plot shows the absolute value of the corresponding relative difference.
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In order to decide which radiation reaction adopt to drive
the transition from inspiral to plunge (that we shall often
address as insplunge in the following), we focus on the
three analytical angular momentum fluxes that are strictly
linked to an analytical prescription of the radiation reaction:
_JNP, _Jold, and _JANP (see Sec. III B for more details). Note
that the analytical prescription of F̂ r is the same in all the
radiation reactions tested in this work, then to analyze them
it is sufficient to study the angular momentum fluxes. The
fluxes computed from the EOB waveform (i.e., _Jhlm) are
less informative since they are not related to the radiation
reaction and we will not discuss them in details.
As a first step, we focus on the two averaged analytical

fluxes with only the (2,2) noncircular Newtonian prefactor
f̂Nnc
φ;22, i.e., h_Joldi and h_JNPi. These fluxes are computed,

respectively, using the angular radiation reactions F̂ old
φ

from Eq. (22) and F̂NP
φ from Eq. (25). We start by noting

that F̂NP
φ is theoretically more consistent than F̂ old

φ since
the former includes the (2,2) noncircular Newtonian pre-
factor only in the (2,2) multipole, while in the older
prescription the noncircular correction is treated as a
global factor, and therefore affects even the subdominant
modes. Nonetheless, for retrograde orbits h_Joldi has a better
numerical/analytical agreement than h _JNPi. In fact, the
latter overestimates significantly the numerical fluxes,
especially at high eccentricity, as can be seen from
Fig. 8. This can be explained by noting that the dominant
contribution to the averaged fluxes occurs at periastron,
where we have f̂Nnc

φ;22 < 1. Then, the lack of noncircular

corrections in the subdominant multipoles of h_JNPi leads to

an overestimate of the numerical result. On the other hand,
in h_Joldi the noncircular correction f̂Nnc

φ;22 is a global factor
and thus artificially reduces the contribution of the sub-
dominant modes, fixing the overestimate. Nonetheless, this
is an artifact and the old radiation reaction is not solid:
adding noncircular information beyond the Newtonian
level in the angular radiation reaction would probably
improves h _JNPi, but not h_Joldi.
In the Schwarzschild case or for prograde orbits, the new

prescription is more accurate. In fact, for spins aligned with
the orbital angular momentum, the two analytical prescrip-
tions generally underestimate the numerical fluxes, and
therefore a global factor that is smaller than 1 at periastron
worsen the numerical/analytical agreement, making the
older prescription less accurate.
Let now consider the averaged fluxes h_JANPi, that are

computed using F̂ANP
φ from Eq. (26) and thus include

all the noncircular corrections up to l ¼ 6. Comparing
them with the h_JNPi fluxes, we can see that the ANP
prescription is more reliable for retrograde orbits, but
produces bigger relative differences with numerical data
in the nonspinning case and for prograde orbits. The reason
of this behavior is again related to the fact that at periastron
we have f̂Nnc

φ;lm < 1, as discussed above.

As anticipated, the fluxes h _JNPi are the most accurate
in the Schwzarschild case. As can be seen from Table IV,
in the nonspinning case this prescription is highly reli-
able for every configuration, yielding relative differe-
nces always below the 3%, even for orbits with high
eccentricity. Instead, for the other analytical prescriptions,
the relative difference can be even >7%, as shown in

FIG. 7. Relative differences between numerical and analytical averaged fluxes plotted against the spin (absolute value, logarithmic
scale). We consider _FNP, the fluxes with the (2,2) general Newtonian prefactor of Eq. (23) in the (2,2) multipole.
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Tables VIII and IX. Note that for p ≥ 9, the accuracy of our
analytical model is consistent with the averaged eccentric
fluxes at 10 PN computed in Refs. [67,68], but the EOB
model remains solid even for smaller semilatera recta
thanks to a robust resummation of the PN series.
In conclusion, considering that (i) the old prescription is

not theoretically accurate, (ii) the radiation reaction with all
the multipoles does not drastically improves the model for
moderate eccentricities and moderate spins despite being
much more complicated, (iii) the fluxes h _JNPi are the most
faithful in the nonspinning case, we decide to use in our
eccentric insplunge simulations the angular radiation reac-
tion F̂NP

φ from Eq. (25).
With this choice, the energy and angular momentum

fluxes have an agreement of few percents for moderate
eccentricities (e≲ 0.3), even if for prograde orbits the spin
reduces the maximum eccentricity up to which the model
has good agreement with the numerical results. In the worst
case, i.e., the one with â ¼ 0.9, e ¼ 0.9 and “distant”
semilatus rectum (p ≃ 5.557), we get relative differences of
the 33% and 31% for the energy and angular momentum
fluxes, respectively (see Table VII). Note that the worst
case is not a near simulation, since in that case the lack
of noncircular information is compensated by the zoom-
whirl behavior.

C. Subdominant multipoles

Let us finally discuss in some detail the separate
contribution of the various subdominant modes to the
angular momentum flux. Subdominant modes become
more and more relevant for high spins, high eccentricities
and for semilatera recta near the separatrix as shown in
Fig. 9, where we have plotted the l ¼ jmj ¼ 2 relative
contribution to the total averaged angular momentum flux.
In the distant circular case with â ¼ −0.9, it provides the

TABLE IV. Averaged analytical fluxes for test-particle on
eccentric orbits around a Schwarzschild black hole compared
with numerical results, ΔJNP=J ¼ ðh _Jteuki − h _JNPiÞ=h _Jteuki. For
p ≤ 13, the numerical fluxes in this table are obtained with
Teukode and are a subset of the ones shown in Appendix D. The
fluxes with greater semilatera recta are computed with RWZhyp.

e p h _Jnumi h _JNPi ΔJNP=J

0.1 6.21 10.5396 10.5076 3.0 × 10−3

0.1 9 0.85442 0.85401 4.9 × 10−4

0.1 13 0.30867 0.30857 3.2 × 10−4

0.1 21 0.10208 0.10207 7.9 × 10−5

0.1 31 0.04445 0.04446 −7.0 × 10−5

0.3 6.61 8.73092 8.67715 6.2 × 10−3

0.3 9 0.97246 0.96998 2.6 × 10−3

0.3 13 0.33935 0.33855 2.3 × 10−3

0.3 21 0.11055 0.11048 5.9 × 10−4

0.3 31 0.04786 0.04789 −6.6 × 10−4

0.5 7.01 9.22978 9.12458 1.1 × 10−2

0.5 9 1.23262 1.22659 4.9 × 10−3

0.5 13 0.40329 0.40085 6.0 × 10−3

0.5 21 0.12784 0.12760 1.9 × 10−3

0.5 31 0.05479 0.05488 −1.8 × 10−3

0.7 7.41 10.5483 10.3521 1.9 × 10−2

0.7 9 1.69513 1.68505 5.9 × 10−3

0.7 13 0.50634 0.50113 1.0 × 10−2

0.7 21 0.15477 0.15408 4.4 × 10−3

0.7 31 0.06542 0.06562 −3.1 × 10−3

0.9 7.81 12.5209 12.1752 2.8 × 10−2

0.9 9 2.49117 2.47585 6.1 × 10−3

0.9 13 0.65853 0.64984 1.3 × 10−2

0.9 21 0.19258 0.19098 8.3 × 10−3

0.9 31 0.08011 0.08041 −3.8 × 10−3

FIG. 8. Left panel: relative differencesΔJNP=J ≡ ðh_Jteuki − h _JNPiÞ=h _Jteuki for the fluxes with the (2,2) general Newtonian prefactor in
the (2,2) multipole plotted against the distance between the light ring and the periastron. The face color of the markers indicates the
eccentricity, while the edge color indicates the spin. The shape of the markers is related to the rule used for the semilatus rectum: the
reverse triangle indicates the near simulations, the diamond is for the intermediate simulations and the triangle pointing upward indicates
the distant simulations. Other two panels: same scheme, but for JANP and Jold. See Fig. 21 for analogous plots with _Jhlm and also with the
energy fluxes.
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92.9% of the total flux; by contrast, for the zoom-whirl
orbit with â ¼ 0.9 and e ¼ 0.9, its contribution is only of
the 42.6%. In the former case, the relative contribution
of the l ¼ 8 modes summed together is 3.9 × 10−5%,
while in the latter is 2.2%. For the complete list of the
relative l-contributions to the angular momentum flux,
see Appendix E.
The analytical subdominant modes tend to have greater

discrepancies with the corresponding numerical multipoles
than the dominant one. In the noncircular case, this result
is trivial for the fluxes with only the (2,2) noncircular
Newtonian prefactor, but holds even if we include the
noncircular corrections for each multipole.

V. MULTIPOLAR WAVEFORM

A. Geodesic, equatorial motion

Let us turn now to discussing the performance of the
analytical multipolar waveform. Reference [14] already
pointed out the fairly good analytical/numerical agreement
that can be obtained only with the prescription of replacing
the quasicircular Newtonian prefactor by the general one. A
systematic multipole by multipole analysis shows that the
relative discrepancies increase in the subdominant multi-
poles, i.e., the (2,2) is in general the most reliable, similarly
to what discussed for the subdominant contribution to the
fluxes. In particular, in the absence of QNMs excitations,
the relative differences between analytical and numerical
amplitudes is generally smaller than the analogous ones for
the fluxes. Figure 10 highlights the analytical/numerical
agreement for the l ¼ m ¼ 2 and l ¼ m ¼ 4 modes
obtained from the six illustrative configurations of
Fig. 5. For two configurations, we explicitly show in
Appendix C the comparison for almost all other multipoles,
see Figs. 16 and 17. For each configuration we compare, in

the top panel, the real part of the analytical and numerical
waveform burst emitted around the periastron. For the
zoom-whirl configuration this corresponds to the many
GW cycles corresponding to the quasicircular regime. In
the bottom panel we show the analytical/numerical phase
difference Δϕ ¼ ϕanalytical

lm − ϕnumerical
lm and relative ampli-

tude difference jAanalytical
lm − Anumerical

lm j=Anumerical
lm .

In Fig. 10 (as well as 16 and 17), the residual waveform
phases δlm are kept at 7.5 PN accuracy, that is our default
choice. Such high-PN accuracy is relevant for circular
or zoom-whirl orbits, but it is less important for other
eccentric configurations. In particular, for the intermediate
configurations considered here they are practically equiv-
alent, except for the high spin case â ≃ 0.9, since the
periastron occurs at small values of the radial separation.
The periastron is, obviously, where the knowledge of high
PN information matters most. To show this fact, we also
report in Fig. 10 the phase differences obtained with δlm at
6 PN accuracy (green dotted online). Finally, note that the
phase difference reaches its minimum near periastron. This
suggests that in the eccentric case this quantity is domi-
nated by the lack of high-order noncircular information in
the waveform beyond the (leading-order) Newtonian level.
This last sentence could also be justified noting that the
discrepancies in the circular case are much smaller, as
shown in Fig. 4.

B. Transition from eccentric inspiral,
plunge, merger, and ringdown

Until now we have separately explored the quality of the
analytical waveform and fluxes along eccentric geodesic
orbit. The final aim of this work is to incorporate these two
building blocks together in order to consistently drive an
eccentric inspiral. The aim of this section is to discuss the
complete resummed analytical waveform, that for simplic-
ity we will call EOB waveform, obtained from an eccentric
dynamics driven by the radiation reaction force discussed
above. In doing so, we do not limit ourselves to the inspiral,
but we proceed to plunge, merger, and ringdown, building a
suitable model for this latter. In this respect, the results we
present here, that should be considered preliminary, com-
plement and generalize previous work within the EOB
approach in the extreme-mass-ratio limit [22,23,69,70].
In particular, the analytical description of the ringdown

stems from the effective model introduced in Ref. [71], that
relies on a certain way of fitting NR waveform data. In
current EOB models informed by NR simulations, and in
particular TEOBResumS [72,73], the model is fully informed
by spin-aligned NR simulations up to mass ratio q ¼ 18,
but relied on a limited amount of information coming from
test-particle waveform data, i.e., only the values of ampli-
tude and frequency at merger time. The reason is that the
fitting template for the amplitude proposed in Ref. [71]
and used in TEOBResumS [72,73] is not reliable in the

FIG. 9. Relative contributions of the l ¼ jmj ¼ 2 modes to the
total averaged angular momentum flux over the parameter space.
In the 3D plot we show all the near (red), intermediate (green) and
distant (blue) simulations, while on the left we have separated the
three different classes.
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test-particle limit when the spin of central black hole is
large. This fact is illustrated in Fig. 11. The black curves
depict the amplitude (solid) and real part (dashed) of a
quasicircular, numerical waveform corresponding to
â ¼ 0.8 and ν ¼ 10−3. The yellow curves are the result
of fitting the data2 with the amplitude template of [71]. The
unphysical peak in the postmerger is a recurrent feature,
that, although practically negligible for small (or negative)
values of â becomes predominant as the black hole spin
grows. This problem can be fixed increasing the flexibility
of the amplitude template. Referring from now on to h̄ as
the QNM-rescaled ringdown waveform of Ref. [71] (see
Eq. (1) therein) we adopt here the following function to
model the amplitude

Ah̄ðτÞ ¼
�

cA1
1þ e−c

A
2
τþcA

3

þ cA4

� 1

cA
5 ; ð39Þ

while for the phase we just follow the prescription of [71]
and use

ϕh̄ðτÞ ¼ −cϕ1 ln
�
1þ cϕ3e

−cϕ
2
τ þ cϕ4e

−2cϕ
2
τ

1þ cϕ3 þ cϕ4

�
; ð40Þ

where τ≡ t − tmrg. The merger time tmrg is defined as the
amplitude peak of the quadrupolar waveform. The only
parameters to be fitted on numerical data are cA2 , c

A
3 , c

ϕ
3 , and

cϕ4 , while the others are determined requiring the correct
late-time behavior. Note however that now the amplitude is
fitted using two parameters, contrary to Ref. [71], that could
employ a single fitting parameter. The constraints given by
the late-time behavior of the ringdown are

cA1 ¼ cA5α1
cA2

ðAmrgÞcA5 e−cA3 ð1þ ec
A
3 Þ2; ð41Þ

cA4 ¼ ðAmrgÞcA5 − cA1
1þ ec

A
3

; ð42Þ

cA5 ¼ −
Ämrg

Amrgα
2
1

þ cA2
α1

ec
A
3 − 1

1þ ec
A
3

; ð43Þ

cϕ2 ¼ α2 − α1; ð44Þ

FIG. 10. Numerical (black) and EOB (red dashed) l ¼ m ¼ 2 and l ¼ m ¼ 4 multipoles corresponding to the dynamics shown in
Fig. 5. For each multipole, we report the relative amplitude difference (dashed orange) and the phase difference (light blue). We report
also the phase differences for the waveform with the residual tail factor at 6 PN (dotted green). The vertical lines mark the periastron and
the apastron.

2Over a temporal interval T ¼ 7τ1, where τ1 is the damping
time of the fundamental quasinormal mode of the black hole.
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cϕ1 ¼ 1þ cϕ3 þ cϕ4
cϕ2 ðcϕ3 þ 2cϕ4 Þ

Δωmrg; ð45Þ

where αi are the real parts of the QNM complex frequencies
σi ≡ αi þ iωi (i.e., the inverse of the damping time),
α21 ≡ α2 − α1, Amrg is the amplitude at merger, Ämrg its
second time-derivative, Δωmrg ≡ ω1 −Mωmrg is the differ-
ence between the frequency at merger ωmrg and the
imaginary part of the fundamental QNM frequency ω1.
The red curves in Fig. 11 illustrate the accuracy of the new
template amplitude. In principle, any EOB-based model for
coalescing black hole binaries, like TEOBResumS [73],
should correctly incorporate the test-mass limit. Due to
this problem in the original waveform amplitude template,
this is not the case of TEOBResumS, although large-mass-
ratio waveforms look qualitatively and quantitatively
essentially correct because of the inclusion of test-
particle-informed fits for ðAmrg;ωmrgÞ. Still, to guarantee
that the NR-informed description of the postmerger-ring-
down phase currently incorporated in TEOBResumS is
smoothly connected to the test-particle limit, the (multi-
polar) ringdown model of Ref. [72,73] will have to be
updated using the new amplitude template described here.
The amplitude and frequency at merger are extracted

from numerical data and fitted. For the subdominant
modes, the same procedure is followed, but all the
quantities have to be evaluated at tlmpeak ¼ tmrg þ Δtlm,
where Δtlm ≥ 0 is the delay of each peak respect to the
dominant mode. The Δtlm are also extracted from numeri-
cal data and are then fitted over the parameter space. To
construct a complete ringdown model we have employed
97 numerical insplunge simulations for different values of
eccentricity and spin. The global fits of the primary
parameters found with the phase and amplitude templates
are performed over ðâ; eÞ ¼ ½−0.6; 0.8� × ½0; 0.9�, even if

for high positive spins the global fits are reliable only at
moderate or low eccentricity. Details about this fit will be
presented in a forthcoming work.
In order to smoothly match the insplunge waveform to

the postmerger-ringdown description, the analytical wave-
form is improved using a Next-to-Quasi-Circular (NQC)
correction factor, following prescriptions that are standard
within the EOB model. The multipolar waveform reads

hlm ¼ hðN;ϵÞ
lm ĥðϵÞlmĥ

NQC
lm ; ð46Þ

where hðN;ϵÞ
lm indicates the (general) Newtonian prefactor,

ĥðϵÞlm is the resummed (circular) PN correction and ĥNQClm is
the additional correction. To exploit at best the action of
NQC corrections, we use here 3 effective parameters in the
amplitude and 3 parameters in the phase, so that we have

ĥNQClm ¼
�
1þ

X3
i¼1

almi ni

�
exp

�
i
X3
i¼1

blmi ni

�
; ð47Þ

where the functions ni are

n1 ¼
p2
r�

ðrΩÞ2 ; ð48aÞ

n2 ¼
̈r

rΩ2
; ð48bÞ

n3 ¼ n1p2
r� ; ð48cÞ

n4 ¼
pr�
rΩ

; ð48dÞ

n5 ¼ n4Ω2=3; ð48eÞ

n6 ¼ n5p2
r� : ð48fÞ

The only exception is the l ¼ m ¼ 2 mode, where we use
n5 ¼ n4r2Ω2. The almi coefficients are determined impos-
ing continuity conditions between the EOB insplunge
waveform hEOBlm and the ringdown solution hrnglm:

AEOB
lm ðtNQCÞ ¼ Arng

lmðtNQCÞ; ð49aÞ

_AEOB
lm ðtNQCÞ ¼ _Arng

lmðtNQCÞ; ð49bÞ

ÄEOB
lm ðtNQCÞ ¼ Ärng

lmðtNQCÞ; ð49cÞ

ωEOB
lm ðtNQCÞ ¼ ωrng

lmðtNQCÞ; ð49dÞ

_ωEOB
lm ðtNQCÞ ¼ _ωrng

lmðtNQCÞ; ð49eÞ

ω̈EOB
lm ðtNQCÞ ¼ ω̈rng

lmðtNQCÞ; ð49fÞ

FIG. 11. Ringdown modelization: transition from quasicircular
inspiral to plunge, merger and ringdown with ν ¼ 10−3 and
â ¼ 0.8. The time-scale is rescaled using τ1 ¼ 1=α1. The new
fitting template for the amplitude, Eq. (39) accurately reproduces
the numerical data, while the standard one, proposed in Ref. [71],
delivers an unphysical local maximum during ringdown.
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where tNQC ¼ tlmpeak þ 2. The merger time tmrg is determined
using the peak of the orbital frequency following the same
prescription adopted for the comparable mass case in the
TEOBResumS model [43], i.e., using

tmrg ¼ tpeakΩorb
− 3; ð50Þ

where Ωorb is obtained from the orbital frequency Ω, see
Eq. (2), removing the spin-orbit contribution. It was
pointed out long ago in Ref. [28] that, in the transition
from inspiral to plunge, the peak tpeakΩorb

, is very close to
the peak of the l ¼ m ¼ 2 waveform mode (for any
value of the BH spin) and as such it offers an excellent
reference point to attach the ringdown part when con-
structing EOB models. This observation is one of the
key features behind the robustness and simplicity of the
TEOBResumS waveform model [43]. All the details and
further improvements of the whole waveform model will
be discussed elsewhere. Here we just want to emphasize
that the waveform prescriptions analyzed in this paper
are reliable also during the plunge and that it is possible
to compute complete EOB waveform incorporating
merger and ringdown also in the case of eccentric
inspirals. As a showcase, we report three circular
configurations with â ¼ 0;�0.2 in Fig. 12 and an
eccentric case with â ¼ 0.4 and e0 ¼ 0.5 in Fig. 13.
In this second case we also show modes (2,1) and (3,3)
completed through merger and ringdown. However,
consider that the post-merger parameters for the (2,1)
mode are fitted only over circular data. For the eccentric
dynamics we use the angular radiation reaction
of Eq. (22).

C. Hyperbolic captures

Recently, TEOBResumS has been generalized so to faith-
fully model also hyperbolic encounters and dynamical
capture black hole binaries [15,16]. Nonetheless,the ring-
down model used in these cases is the same adopted for
quasicircular waveforms, and it might be attached to the
inspiral waveform without NQC corrections [74]. Despite
these simplifications, this model allowed for a robust
interpretation of GW190521 [6] as the outcome of the
dynamical capture of two black holes [74].
Since the test-particle limit provides a useful laboratory

to test the EOB prescriptions, we will now focus on
hyperbolic captures in the test-mass limit to discuss various
ringdown implementation and complement the information
given in Ref. [74]. The EOB dynamics and waveforms of
this section are obtained with the same EOBmodel exposed
above, using the angular radiation reaction of Eq. (22), that
is also the one used for the analysis of GW190521 in
Ref. [74]. Nonetheless, the definitions of eccentricity and
semilatus rectum provided in Eqs. (9) are no longer valid
since the two radial turning points are not defined for
unbound motion. Therefore, as in Ref. [15], in this case we
provide initial data to the dynamics directly providing the
energy Ê0 and the angular momentum p0

φ. Practically, we
choose p0

φ and then pick 1 < Ê0 < Êmax
0 , where Êmax

0 is the
square root of the peak of the Schwarzschild effective
potential

VSchw
eff ¼ AðrÞð1þ p2

φu2Þ: ð51Þ
We choose this region of the parameter space because it is
the one that yields the most interesting phenomenologies.

FIG. 12. Comparison between numerical (black) and analytical (red) waveforms for the transition from circular inspiral to plunge,
merger and ringdown. We report the comparisons for spins â ¼ 0;�0.2. The two vertical lines mark the LSO and the merger time. In the
last panel of each comparison, we report the relative difference of the amplitude (orange) and frequency (blue) together with the phase
difference (light blue) in radians.
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FIG. 13. Comparison between numerical (black) and analytical (red dashed) complete waveform generated by a non-geodesic
prograde orbit with initial eccentricity e0 ¼ 0.5 and semilatus rectum p0 ¼ 5.9 around a Kerr black hole with â ¼ 0.4. The vertical line
marks the merger time. In the last panel of each mode, we report the relative difference of the amplitude (orange) and frequency (blue)
together with the phase difference (light blue) in radians.

FIG. 14. Upper panels: trajectories for nonspinning dynamical captures, with ν ¼ 10−2, p0
φ ¼ 4.01, and Ê0 ¼ ð1.000711; 1.000712;

1.001240Þ. The trajectories start from r0 ¼ 120, but we show them from r ¼ 60 in order to highlight the last part. Middle panels:
corresponding quadrupolar waveforms. The black line is the numerical result from Teukode, while the red and grey lines are obtained with
the EOB model using different prescriptions for the modelization of the ringdown. See text for more details. Bottom panels: frequency
comparisons. The vertical lines mark the merger time (i.e., the peak of the l ¼ m ¼ 2 waveform amplitude), that in the hyperbolic case
is extracted directly from numerical data.
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In fact, for Ê0 > Êmax
0 there is always a direct plunge, while

in the other case it is possible to have many close passages
before merger. For example, choosing ν ¼ 10−2 and start-
ing the dynamics at r0 ¼ 120 with p0

φ ¼ 4.08 and Ê0 ¼
1.00002 leads to 11 close passages before merger.
It is not our aim here to carry out a systematic analysis of

the parameter space as done for bound orbits, so we will
only focus our discussion on a few, illustrative, cases.
Moreover, while in Sec. V B we have considered ν ¼ 10−3,
here we use ν ¼ 10−2. This makes the dynamics with
multiple encounters shorter and the corresponding numeri-
cal waveforms require less computational time. This is not
a big deal at the moment, since we want to specifically
focus on the ringdown part. We consider three ν ¼ 10−2

configurations, with r0 ¼ 120, p0
φ ¼ 4.01, and different

values of energy: Ê0 ¼ ð1.000711; 1.000712; 1.001240Þ
(Êmax

0 ≃ 1.00125). The first one is a double encounter,
while the others are single encounters. The trajectories, the
quadrupolar waveforms and the corresponding frequen-
cies are shown in Fig. 14. The black waveform is as usual
the numerical result, while on the analytical side we
consider two different EOB waveforms colored in grey
and red. The former is obtained attaching the circular
ringdown to the analytical waveform, similarly to what is
done for hyperbolic encounters in Refs. [15,16], but
without using NQC corrections as in Ref. [74]. The
primary templates for the phase and the amplitude used
in Fig. 14 are the ones described in Sec. V B. For the red
waveform we consider the same templates, but we extract
the fit parameters and the numerical quantities discussed
in Sec. V B directly from the numerical waveforms. A
similar use of the numerical data is also done to determine
the NQC coefficients ðai; biÞ of Eq. (47). Finally, also the
merger time tmrg is taken to be precisely the numerical

one, since the simple prescription tmrg ¼ tpeakΩorb
− 3 used for

bound orbits is found to be inaccurate in the hyperbolic
case. In future work we plan a systematic campaign of
simulations of hyperbolic encounters so to inform suitable
analytical representations of both tmrg and the ringdown
parameters valid for any configurations, analogously to
the case of bound orbits. In any case, as a proof of
principle, the improvement introduced in the red wave-
form by the use of more precise parameters is clearly
visible either before and after the merger. These compar-
isons show that including numerical information in the
model from hyperbolic simulations could greatly enhance
the analytical descriptions of waveforms emitted by the
dynamical capture of two black holes. In particular, a
systematic coverage of black hole binaries undergoing
dynamical encounters using numerical relativity [75]
will be instrumental to improve the waveform model
TEOBResumS for these configurations [15]. This is expected
to enhance the current analysis of GW190521 under the
dynamical capture hypothesis [74].

VI. CONCLUSIONS

In this paper we have analyzed in detail and improved the
proposal of [14] for incorporating eccentricity effects
within the EOB waveform and radiation reaction. We
focused our analysis on the large mass ratio limit. We
have tested the performance of the analytical prescription
for the fluxes over a significant portion of the parameter
space by comparing it with highly accurate waveforms and
fluxes obtained solving numerically the Teukolsky equa-
tion using Teukode. We have strengthened the PN corrections
to the waveform amplitude using a proper resummation of
the l ¼ 7 and l ¼ 8 modes. We have also improved the
residual phase of the tail factor introducing 7.5 PN
information in the δlm.
The advances introduced in this work provide an

analytical EOB prescription for the waveform and fluxes
that can be used in the description of EMRIs without the
need of solving numerically the computationally-expensive
Teukolsky equation. The analytical waveform is accurate
over a large portion of the parameter space, as shown in
Sec. V. Moreover, the systematic analysis of the fluxes of
Sec. IV has shown that the radiation reaction is reliable with
errors of the few percents for moderate eccentricities
(e≲ 0.3) and spin-parameters not too high. In Sec. V B,
we have also shown a preliminary work for the complete
EOB waveform, from inspiral to ringdown, that we will
discuss in more detail in future studies. In Sec. V C we have
also shown some hyperbolic encounters.
The work presented here should be seen as a first step

toward modeling eccentric EMRIs within the EOB for-
malism, improving on previous work that was limited to
quasicircular configurations [69]. Two immediate next
steps will be considered in future work. (i) The inclusion
of gravitational self-force (GSF) results concerning the
central EOB potentials, ðA;D;QÞ. Similar approaches have
been proposed in other works [76,77]. It could be similarly
implemented using the Hamiltonian of TEOBResumS, that is a
mass-ratio deformation of the one of a (spinning) test-
particle around a Kerr black hole, where the 5PN resummed
potentials are replaced by the corresponding one obtained
from GSF knowlege [39]. Together with the radiation
reaction discussed here, this analytical improvement would
pave the way to a fully GSF-informed EOB model for
eccentric EMRIs on equatorial orbits, analogously to NR-
informed EOB models for coalescing black hole binaries.
(ii) The fluxes and waveform will have to be improved
incorporating additional PN information [78] beyond the
Newtonian prefactors considered here. This will hopefully
allow one to reduce the analytical/numerical differences
that we found when eccentricities are large.
A GSF-faithful EOB model can be used to generate a

wide bank of EMRI waveforms. It is however unlikely that
the efficiency of the waveform generation will be sufficient
for direct use in parameter estimation (see in particular
discussion in Appendix C of Ref. [16]). Nonetheless, these
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EOB templates can be used to create a fast and accurate
surrogate using machine learning techniques, similarly to
what has been done in Ref. [79] for comparable mass
binaries (up to mass ratio q ¼ 20). Such surrogate can then
be employed for parameter estimation of EMRIs to be
detected by LISA, as a complementary tool to other
frameworks [80,81].
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APPENDIX A: CIRCULAR EOB

1. Multipolar waveform factorization

In Eq. (14) we have recalled the multipolar factorization
of the EOBwaveform. Here we briefly expose the factors in
more details, without assuming an high mass-ratio. The
Newtonian factor for circularized binaries is explicitly
given by

hðN;ϵÞ
lm ¼ Mν

DL
nðϵÞlmclþϵðνÞx

ðlþϵÞ
2 Yl−ϵ;−m

�
π

2
;φ

�
; ðA1Þ

where DL is the luminosity distance, x ¼ Ω2=3 and the
coefficients are given by

nð0Þlm ¼ ðimÞl 8π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

lðl − 1Þ

s
;

nð1Þlm ¼ −ðimÞl 16πi
ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðlþ 2Þðl2 −m2Þ
ð2l − 1Þðlþ 1Þlðl − 1Þ

s
;

clþϵ ¼
�
m2

M

�
lþϵ−1

þ ð−Þlþϵ

�
m1

M

�
lþϵ−1

¼
ν→0

� 1;

The factors of the PN correction ĥðϵÞlm are [41,43]:
(i) the source term ŜðϵÞeff , whose expression depends on

parity:

Ŝð0Þeff ¼ Ĥeq
Kerr; ðA2aÞ

Ŝð1Þeff ¼
pφ

rΩvφ
: ðA2bÞ

(ii) the leading contribution of the tail factor Tlm,
generated by the backscattering of the GWs with
the Kerr background

Tlm ¼ Γðlþ 1 − 2ikÞ
Γðlþ 1Þ eπke2ik ln ð2kr0Þ;

where k ¼ mΩ, r0 ¼ 2=
ffiffiffi
e

p
, and ΓðzÞ is the Euler

Gamma function.
(iii) the residual phase of the tail factor eiδlm, that takes

into account the fact that Tlm includes only the
leading contribution. We have analyzed these phases
in Sec. III D.

(iv) the residual relativistic amplitude corrections ρlm,
that are resummed following Refs. [59,60]. In
Sec. III C we have extended this resummation
scheme to l ¼ 7 and l ¼ 8.

In order to improve the agreement with numerical data
during the plunge, it is useful to replace x ¼ Ω2=3 with
x ¼ r2ΩΩ2 ≡ v2φ, where the spin-informed radius rΩ is given
by the third Kepler law generalized for circular orbits in
Kerr spacetime [82] [see Eq. (21)]. The new x-parameter is
more reliable for noncircular motion and it is used both

in the Newtonian prefactors hðN;ϵÞ
lm and in the amplitude

corrections ρlmðxÞ.

2. Angular radiation reaction

In the circular case, Eq. (19) reduces to

_J ¼ −Fφ;

_E ¼ Ω _J:

Decomposing the energy in multipoles, we have

_J ¼ 1

Ω

X∞
l¼2

Xl
m¼1

Flm ¼ 2

16πΩ

X∞
l¼2

Xl
m¼1

j _hlmj2

¼ 1

8π

X∞
l¼2

Xl
m¼1

m2Ωjhlmj2;

then factorizing the Newtonian (2,2) contribution, we can
write the angular radiation reaction as

F̂φ ¼ −
_J
ν
¼ −

32

5
νx7=2f̂; ðA3Þ

where

f̂ ¼
X∞
l¼2

Xl
m¼1

ðFN
22Þ−1Flm ¼

X∞
l¼2

Xl
m¼1

F̂lm; ðA4Þ

Flm ¼ 1

8π
m2Ω2jhlmj2; ðA5Þ

FN
22 ¼

32

5
x5: ðA6Þ

Finally, we can use the third Kepler law generalized to Kerr
spacetime (r3ΩΩ2 ¼ 1) to write Eq. (20).
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APPENDIX B: NEWTONIAN NONCIRCULAR EXPRESSIONS

In Sec. III we have discussed the Newtonian noncircular corrections to the waveform, ĥðN;ϵÞnc
lm , and the noncircular

Newtonian prefactors for the angular radiation reaction, f̂Nnc
φ;lm. Here we report them explicitly for the ðl; mÞ ¼

ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ multipoles:

ĥðN;0Þnc
22 ¼ 1 −

_r2

2r2Ω2
−

̈r
2rΩ2

þ i

�
2_r
rΩ

þ
_Ω

2Ω2

�
;

ĥðN;1Þnc
21 ¼ 1 −

6_r2

r2Ω2
−

3̈r
rΩ2

−
6_r _Ω
rΩ3

−
Ω̈
Ω3

þ i

�
6_r
rΩ

þ 3 _Ω
Ω2

�
;

ĥðN;0Þnc
33 ¼ 1 −

2_r2

r2Ω2
−

̈r
rΩ2

−
_r _Ω
rΩ3

−
Ω̈
9Ω3

þ i

�
−

2_r3

9r3Ω3
−

2̈r _r
3r2Ω3

−
rð3Þ

9rΩ3
þ 3_r
rΩ

þ
_Ω
Ω2

�
;

ĥðN;1Þnc
32 ¼ 1 −

9_r2

r2Ω2
−

3̈r
rΩ2

−
9_r _Ω
rΩ3

−
3 _Ω2

4Ω4
−

Ω̈
Ω3

þ i

�
−

3_r3

r3Ω3
−

9̈r _r
2r2Ω3

−
9_r2 _Ω
2r2Ω4

−
3̈r _Ω
2rΩ4

−
rð3Þ

2rΩ3
−

3_r Ω̈
2rΩ4

þ 6_r
rΩ

−
Ωð3Þ

8Ω4
þ 3 _Ω

Ω2

�
;

ĥðN;0Þnc
44 ¼ 1þ 3_r4

32r4Ω4
þ 9̈r_r2

16r3Ω4
þ 9̈r2

64r2Ω4
þ 3rð3Þ _r
16r2Ω4

−
9_r2

2r2Ω2
−

3̈r
2rΩ2

þ rð4Þ

64rΩ4
−
3_r _Ω
rΩ3

−
3 _Ω2

16Ω4

−
Ω̈
4Ω3

þ i

�
−

3_r3

2r3Ω3
−

9̈r _r
4r2Ω3

−
9_r2 _Ω
8r2Ω4

−
3̈r _Ω
8rΩ4

−
rð3Þ

4rΩ3
−

_r Ω̈
4rΩ4

þ 4_r
rΩ

−
Ωð3Þ

64Ω4
þ 3 _Ω
2Ω2

�
;

f̂Nnc
φ;22 ¼ 1þ 3_r4

4r4Ω4
þ 3_r3 _Ω
4r3Ω5

þ 3̈r2

4r2Ω4
þ 3̈r _r _Ω
8r2Ω5

−
rð3Þ _r
2r2Ω4

þ _r2Ω̈
8r2Ω5

þ 4_r2

r2Ω2
þ ̈r Ω̈
8rΩ5

−
2̈r
rΩ2

−
rð3Þ _Ω
8rΩ5

þ 3_r _Ω
rΩ3

þ 3 _Ω2

4Ω4
−

Ω̈
4Ω3

;

f̂Nnc
φ;21 ¼ 1þ 72_r4

r4Ω4
þ 144_r3 _Ω

r3Ω5
þ 27̈r2

r2Ω4
þ 27̈r _r _Ω

r2Ω5
−
18rð3Þ _r
r2Ω4

þ 126_r2 _Ω2

r2Ω6
−
12_r2Ω̈
r2Ω5

þ 30_r2

r2Ω2
−
18̈r _Ω2

rΩ6

þ 21̈r Ω̈
rΩ5

−
12̈r
rΩ2

−
9rð3Þ _Ω
rΩ5

þ 18_r _Ω3

rΩ7
þ 24_r Ω̈ _Ω

rΩ6
−
6_rΩð3Þ

rΩ5
þ 30_r _Ω

rΩ3
þ 3Ω̈ _Ω2

Ω7
þ 4Ω̈2

Ω6
−
3Ωð3Þ _Ω
Ω6

þ 15 _Ω2

Ω4
−
5Ω̈
Ω3

;

f̂Nnc
φ;33 ¼ 1þ 16_r6

81r6Ω6
þ 8̈r_r4

27r5Ω6
þ 8_r5 _Ω
27r5Ω7

þ 8̈r2 _r2

9r4Ω6
þ 16̈r_r3 _Ω

27r4Ω7
−
32rð3Þ _r3

81r4Ω6
þ 8_r4Ω̈
81r4Ω7

þ 40_r4

9r4Ω4
−

2̈r3

9r3Ω6

þ 2̈r2 _r _Ω
9r3Ω7

þ 8̈rrð3Þ _r
27r3Ω6

þ 20̈r_r2Ω̈
81r3Ω7

−
20̈r_r2

9r3Ω4
−
4rð3Þ _r2 _Ω
27r3Ω7

−
2rð4Þ _r2

27r3Ω6
þ 2_r3Ωð3Þ

243r3Ω7
þ 20_r3 _Ω

3r3Ω5
−

2̈r2Ω̈
81r2Ω7

þ 20̈r2

9r2Ω4
þ 2̈rrð3Þ _Ω

27r2Ω7
−

̈rrð4Þ

27r2Ω6
þ 2̈r _rΩð3Þ

81r2Ω7
þ 4rð3Þ2

81r2Ω6
þ 4rð3Þ _r Ω̈
243r2Ω7

−
40rð3Þ _r
27r2Ω4

−
rð4Þ _r _Ω
27r2Ω7

þ 10_r2 _Ω2

3r2Ω6

þ 6_r2

r2Ω2
−

̈r _Ω2

3rΩ6
þ 2̈r Ω̈
3rΩ5

−
3̈r
rΩ2

þ rð3ÞΩð3Þ

243rΩ7
−
2rð3Þ _Ω
3rΩ5

−
rð4ÞΩ̈
243rΩ7

þ rð4Þ

27rΩ4
þ _r _Ω3

3rΩ7

þ 4_r Ω̈ _Ω
9rΩ6

−
_rΩð3Þ

9rΩ5
þ 5_r _Ω

rΩ3
þ Ω̈ _Ω2

27Ω7
þ 4Ω̈2

81Ω6
−
Ωð3Þ _Ω
27Ω6

þ 5 _Ω2

3Ω4
−

5Ω̈
9Ω3

;

f̂Nnc
φ;32 ¼ 1þ 45_r6

2r6Ω6
þ 135 _Ω_r5

2r5Ω7
þ 675 _Ω2 _r4

8r4Ω8
þ 135_r4

2r4Ω4
þ 45̈r_r4

2r5Ω6
þ 45 _Ω3 _r3

2r3Ω9
−
45Ωð3Þ _r3

8r3Ω7
þ 135Ω̈ _Ω _r3

4r3Ω8

þ 135 _Ω_r3

r3Ω5
þ 135̈r _Ω _r3

2r4Ω7
−
15rð3Þ _r3

r4Ω6
þ 15Ω̈2 _r2

2r2Ω8
þ 45Ω̈ _Ω2 _r2

4r2Ω9
þ 495 _Ω2 _r2

4r2Ω6
þ 81̈r _Ω2 _r2

4r3Ω8
−
15Ω̈_r2

r2Ω5

þ 27̈r Ω̈ _r2

r3Ω7
−
9Ωð4Þ _r2

16r2Ω7
−
45Ωð3Þ _Ω_r2

16r2Ω8
−
27rð3Þ _Ω_r2

2r3Ω7
þ 21_r2

r2Ω2
−
27̈r_r2

r3Ω4
þ 135̈r2 _r2

4r4Ω6
−
9rð4Þ _r2

4r3Ω6

þ 135 _Ω3 _r
4rΩ7

þ 9̈r _Ω3 _r
4r2Ω9

−
33rð3Þ _Ω2 _r
4r2Ω8

þ 4rð3ÞΩ̈ _r
r2Ω7

þ 15Ω̈Ωð3Þ _r
16rΩ8

−
15Ωð3Þ _r
4rΩ5

þ 33̈rΩð3Þ _r
16r2Ω7

þ 15Ω̈2 _Ω _r
8rΩ9
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þ 15Ω̈ _Ω _r
2rΩ6

þ 69̈r Ω̈ _Ω _r
8r2Ω8

−
9Ωð4Þ _Ω _r
16rΩ8

þ 21 _Ω _r
rΩ3

−
15̈r _Ω _r
2r2Ω5

þ 81̈r2 _Ω _r
4r3Ω7

−
9rð4Þ _Ω _r
4r2Ω7

−
13rð3Þ _r
r2Ω4

þ 9̈rrð3Þ _r
r3Ω6

þ 45 _Ω4

16Ω8
−
3rð3Þ _Ω3

4rΩ9
þ 5Ω̈2

2Ω6
−
3̈rΩ̈2

2rΩ8
þ 5Ωð3Þ2

64Ω8
þ 15Ω̈ _Ω2

8Ω7
þ 3̈r Ω̈ _Ω2

4rΩ9

−
3Ωð4Þ _Ω2

64Ω9
þ 21 _Ω2

2Ω4
−
75̈r _Ω2

4rΩ6
þ 189̈r2 _Ω2

16r2Ω8
−
3rð4Þ _Ω2

16rΩ8
−

7Ω̈
2Ω3

þ 15̈r Ω̈
rΩ5

−
27̈r2Ω̈
4r2Ω7

−
rð4ÞΩ̈
4rΩ7

þ 9rð3ÞΩð3Þ

16rΩ7
−
Ω̈Ωð4Þ

16Ω8
þ Ωð4Þ

16Ω5
−
3̈rΩð4Þ

16rΩ7
−
3rð3ÞΩ̈ _Ω
8rΩ8

þ 5Ω̈Ωð3Þ _Ω
32Ω9

−
5Ωð3Þ _Ω
2Ω6

þ 33̈rΩð3Þ _Ω
16rΩ8

−
15rð3Þ _Ω
2rΩ5

þ 9̈rrð3Þ _Ω
2r2Ω7

−
9̈r
rΩ2

þ 81̈r2

4r2Ω4
þ rð4Þ

4rΩ4
−

27̈r3

4r3Ω6
þ rð3Þ2

r2Ω6
−
3̈rrð4Þ

4r2Ω6
;

f̂Nnc
φ;44 ¼ 1þ 45_r8

1024r8Ω8
þ 45 _Ω_r7

512r7Ω9
þ 45Ω̈_r6

1024r6Ω9
þ 45_r6

16r6Ω6
þ 45̈r_r6

256r7Ω8
þ 15Ωð3Þ _r5

2048r5Ω9
þ 405 _Ω_r5

64r5Ω7

þ 405̈r _Ω _r5

1024r6Ω9
−

45rð3Þ _r5

256r6Ω8
þ 1215 _Ω2 _r4

256r4Ω8
þ 135Ω̈_r4

256r4Ω7
þ 225̈r Ω̈ _r4

1024r5Ω9
þ 3Ωð4Þ _r4

8192r4Ω9
−
75rð3Þ _Ω_r4

1024r5Ω9

þ 189_r4

16r4Ω4
þ 675̈r2 _r4

1024r6Ω8
−

75rð4Þ _r4

1024r5Ω8
þ 225 _Ω3 _r3

256r3Ω9
þ 15rð3ÞΩ̈_r3

512r4Ω9
−
45Ωð3Þ _r3

256r3Ω7
þ 165̈rΩð3Þ _r3

4096r4Ω9

þ 45Ω̈ _Ω _r3

32r3Ω8
þ 315 _Ω_r3

16r3Ω5
þ 405̈r _Ω _r3

128r4Ω7
þ 225̈r2 _Ω_r3

512r5Ω9
−
105rð4Þ _Ω_r3

2048r4Ω9
−
45rð3Þ _r3

16r4Ω6
þ 75̈rrð3Þ _r3

256r5Ω8

−
3rð5Þ _r3

512r4Ω8
þ 25Ω̈2 _r2

128r2Ω8
þ 165Ω̈ _Ω2 _r2

512r2Ω9
þ 105 _Ω2 _r2

8r2Ω6
þ 135̈r _Ω2 _r2

128r3Ω8
−

35Ω̈_r2

32r2Ω5
þ 225̈r Ω̈ _r2

128r3Ω7

þ 135̈r2Ω̈_r2

2048r4Ω9
−
15rð4ÞΩ̈_r2

2048r3Ω9
þ 45rð3ÞΩð3Þ _r2

4096r3Ω9
−

9Ωð4Þ _r2

512r2Ω7
þ 9̈rΩð4Þ _r2

4096r3Ω9
−
15Ωð3Þ _Ω_r2

256r2Ω8
−
315rð3Þ _Ω_r2

128r3Ω7

þ 135̈rrð3Þ _Ω_r2

1024r4Ω9
−

9rð5Þ _Ω_r2

2048r3Ω9
þ 8_r2

r2Ω2
−
63̈r_r2

8r3Ω4
þ 135̈r2 _r2

32r4Ω6
−
15rð4Þ _r2

64r3Ω6
þ 15rð3Þ2 _r2

128r4Ω8

−
45̈rrð4Þ _r2

1024r4Ω8
þ 45 _Ω3 _r
16rΩ7

þ 45̈r _Ω3 _r
512r2Ω9

−
75rð3Þ _Ω2 _r
128r2Ω8

þ 15rð3ÞΩ̈ _r
128r2Ω7

−
rð5ÞΩ̈ _r

1024r2Ω9
þ 5Ω̈Ωð3Þ _r

256rΩ8

−
5Ωð3Þ _r
16rΩ5

þ 75̈rΩð3Þ _r
512r2Ω7

þ 45̈r2Ωð3Þ _r
8192r3Ω9

þ 5rð4ÞΩð3Þ _r
16384r2Ω9

þ 3rð3ÞΩð4Þ _r
4096r2Ω9

þ 5Ω̈2 _Ω _r
128rΩ9

þ 5Ω̈ _Ω _r
8rΩ6

þ 15̈r Ω̈ _Ω _r
32r2Ω8

−
3Ωð4Þ _Ω _r
256rΩ8

þ 7 _Ω _r
rΩ3

−
105̈r _Ω _r
32r2Ω5

þ 405̈r2 _Ω _r
256r3Ω7

−
135rð4Þ _Ω _r
512r2Ω7

þ 135̈r3 _Ω _r
2048r4Ω9

þ 15rð3Þ2 _Ω _r
512r3Ω9

−
21rð3Þ _r
8r2Ω4

þ 45̈rrð3Þ _r
32r3Ω6

þ rð5Þ _r
64r2Ω6

−
45̈r2rð3Þ _r
512r4Ω8

þ 15rð3Þrð4Þ _r
1024r3Ω8

−
9̈rrð5Þ _r

1024r3Ω8

þ 45 _Ω4

256Ω8
−
15rð3Þ _Ω3

512rΩ9
þ 5Ω̈2

32Ω6
−

5̈rΩ̈2

128rΩ8
þ 5Ωð3Þ2

4096Ω8
þ 15Ω̈ _Ω2

128Ω7
þ 15̈r Ω̈ _Ω2

512rΩ9

−
3Ωð4Þ _Ω2

4096Ω9
þ 21 _Ω2

8Ω4
−
15̈r _Ω2

8rΩ6
þ 225̈r2 _Ω2

512r2Ω8
−
15rð4Þ _Ω2

512rΩ8
−

7Ω̈
8Ω3

þ 55̈r Ω̈
32rΩ5

−
255̈r2Ω̈
512r2Ω7

−
15rð4ÞΩ̈
512rΩ7

þ 45̈r3Ω̈
2048r3Ω9

þ 5̈rrð4ÞΩ̈
2048r2Ω9

þ 15rð3ÞΩð3Þ

512rΩ7
−
15̈rrð3ÞΩð3Þ

8192r2Ω9
−

rð5ÞΩð3Þ

16384rΩ9

−
Ω̈Ωð4Þ

1024Ω8
þ Ωð4Þ

256Ω5
−

3̈rΩð4Þ

512rΩ7
þ 9̈r2Ωð4Þ

16384r2Ω9
þ rð4ÞΩð4Þ

16384rΩ9
þ 5Ω̈Ωð3Þ _Ω

2048Ω9
−
5Ωð3Þ _Ω
32Ω6

þ 15̈rΩð3Þ _Ω
256rΩ8

−
45rð3Þ _Ω
32rΩ5

þ 165̈rrð3Þ _Ω
256r2Ω7

þ 3rð5Þ _Ω
512rΩ7

−
45̈r2rð3Þ _Ω
2048r3Ω9

þ 5rð3Þrð4Þ _Ω
2048r2Ω9

−
3̈rrð5Þ _Ω
2048r2Ω9

−
4̈r
rΩ2

þ 147̈r2

32r2Ω4
þ 3rð4Þ

32rΩ4
−

45̈r3

32r3Ω6
þ 5rð3Þ2

32r2Ω6
−

5̈rrð4Þ

32r2Ω6
þ 405̈r4

4096r4Ω8

−
15̈rrð3Þ2

512r3Ω8
þ 5rð4Þ2

4096r2Ω8
þ 45̈r2rð4Þ

2048r3Ω8
−

rð3Þrð5Þ

1024r2Ω8
:
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APPENDIX C: WAVEFORM MULTIPOLES

Since in the main discussion we have analyzed in detail
only the quadrupolar waveform and in Fig. 10 we have
shown only the l ¼ m ¼ 2 and l ¼ m ¼ 4 modes, in this
appendix we report almost all the modes up to l ¼ 8 for
two eccentric cases. The two geodesic dynamics considered
are shown in Fig. 15, while the waveform multipoles are
reported in Figs. 16 and 17.

APPENDIX D: ANALYTICAL/NUMERICAL
FLUXES DISAGREEMENT

In this Appendix we list all the numerical simulations
analyzed in this work and we compare the corresponding
averaged fluxes. In Table V–VII we report all the numerical
energy and angular momentum averaged fluxes and the

corresponding analytical fluxes h _FNPi computed using the
standard radiation reaction F̂NP

φ of Eq. (25). The numerical
energy fluxes are computed without considering the modes
with m ¼ 0 in order to be coherent with the analytical
results. We also recall that these relative differences are
plotted against the spin â in Fig. 7 and against r− − rLR
in Fig. 8.
We also report the analytical/disagreement for the other

analytical prescriptions: h _Foldi, h _FANPi, and h _Fhlmi (see
Sec. III B for more details). We plot them against the spin â
in Figs. 18–20 and against r− − rLR in Figs. 21 and 22. The
numerical values of the relative differences between
numerical and analytical averaged fluxes obtained adopting
the different analytical prescriptions can be found in
Tables VIII and IX.

APPENDIX E: CONTRIBUTION OF THE HIGHER
MODES TO THE FLUXES

In this appendix we report the contribution of the
l-modes for all the simulations that we have performed.
As already discussed, increasing the eccentricity and/or
the spin, i.e., going in stronger fields, leads to an greater
relative contribution of the subdominant modes. We report
explicitly the relative l-contributions to the numerical
angular momentum flux

δh_Jil ¼
Xl
m¼1

h _Jteuklm i=h _Jteuki ðE1Þ

in Tables X–XII. The contributions to the energy fluxes are
analogous.

FIG. 15. Geodesic equatorial orbits for two different (e, â, p)
configurations. We have highlighted one radial orbit for each
configuration. The corresponding waveforms are shown in Fig. 16
and Fig. 17.
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FIG. 16. Numerical (black) and EOB (dashed-red) waveform multipoles for the intermediate simulation with e ¼ 0.3 and â ¼ 0.2,
whose orbits are shown in Fig. 15. For each multipole, we report the relative amplitude difference (dashed orange) and the phase
difference (light blue). The vertical lines mark the periastron and the apastron.
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FIG. 17. Numerical (black) and EOB (dashed-red) waveform multipoles for the intermediate simulation with e ¼ 0.5 and â ¼ −0.2,
whose orbits are shown in Fig. 15. For each multipole, we report the relative amplitude difference (dashed orange) and the phase
difference (light blue). The vertical lines mark the periastron and the apastron.
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TABLE V. List of simulations used in our tests with corresponding numerical/analytical averaged fluxes and relative differences. For
each eccentricity, there are three blocks of simulations, one for each class of semilatera recta: near, intermediate, and distant. The
semilatus recta are truncated to the third decimal, see Sec. II E.

e â p ps h _Eteuki h _ENPi ΔENP=E h _Jteuki h _JNPi ΔJNP=J

0.0 −0.9 8.727 8.717 1.732 × 10−4 1.731 × 10−4 4.9 × 10−4 4.309 × 10−3 4.307 × 10−3 4.9 × 10−4

0.0 −0.8 8.442 8.432 2.017 × 10−4 2.016 × 10−4 5.7 × 10−4 4.786 × 10−3 4.783 × 10−3 5.7 × 10−4

0.0 −0.7 8.153 8.143 2.365 × 10−4 2.364 × 10−4 6.7 × 10−4 5.341 × 10−3 5.337 × 10−3 6.7 × 10−4

0.0 −0.6 7.861 7.851 2.794 × 10−4 2.792 × 10−4 7.9 × 10−4 5.991 × 10−3 5.986 × 10−3 7.9 × 10−4

0.0 −0.5 7.565 7.555 3.326 × 10−4 3.323 × 10−4 9.4 × 10−4 6.754 × 10−3 6.748 × 10−3 9.4 × 10−4

0.0 −0.4 7.264 7.254 3.995 × 10−4 3.990 × 10−4 1.1 × 10−3 7.661 × 10−3 7.653 × 10−3 1.1 × 10−3

0.0 −0.3 6.959 6.949 4.843 × 10−4 4.836 × 10−4 1.4 × 10−3 8.745 × 10−3 8.734 × 10−3 1.4 × 10−3

0.0 −0.2 6.649 6.639 5.938 × 10−4 5.928 × 10−4 1.7 × 10−3 1.006 × 10−2 1.004 × 10−2 1.7 × 10−3

0.0 −0.1 6.333 6.323 7.374 × 10−4 7.359 × 10−4 2.0 × 10−3 1.168 × 10−2 1.165 × 10−2 2.0 × 10−3

0.0 0.0 6.010 6.000 9.287 × 10−4 9.264 × 10−4 2.5 × 10−3 1.368 × 10−2 1.365 × 10−2 2.5 × 10−3

0.0 0.1 5.679 5.669 1.189 × 10−3 1.185 × 10−3 3.2 × 10−3 1.621 × 10−2 1.616 × 10−2 3.2 × 10−3

0.0 0.2 5.339 5.329 1.553 × 10−3 1.547 × 10−3 4.0 × 10−3 1.947 × 10−2 1.939 × 10−2 4.0 × 10−3

0.0 0.3 4.989 4.979 2.075 × 10−3 2.064 × 10−3 5.2 × 10−3 2.375 × 10−2 2.362 × 10−2 5.2 × 10−3

0.0 0.4 4.624 4.614 2.857 × 10−3 2.837 × 10−3 6.9 × 10−3 2.955 × 10−2 2.935 × 10−2 6.9 × 10−3

0.0 0.5 4.243 4.233 4.072 × 10−3 4.034 × 10−3 9.4 × 10−3 3.763 × 10−2 3.728 × 10−2 9.4 × 10−3

0.0 0.6 3.839 3.829 6.089 × 10−3 6.008 × 10−3 1.3 × 10−2 4.945 × 10−2 4.880 × 10−2 1.3 × 10−2

0.0 0.7 3.403 3.393 9.715 × 10−3 9.520 × 10−3 2.0 × 10−2 6.779 × 10−2 6.643 × 10−2 2.0 × 10−2

0.0 0.8 2.917 2.907 1.709 × 10−2 1.652 × 10−2 3.3 × 10−2 9.882 × 10−2 9.551 × 10−2 3.3 × 10−2

0.0 0.9 2.331 2.321 3.552 × 10−2 3.312 × 10−2 6.7 × 10−2 1.583 × 10−1 1.477 × 10−1 6.7 × 10−2

0.0 −0.9 13.076 8.717 1.837 × 10−5 1.837 × 10−5 9.1 × 10−5 8.520 × 10−4 8.519 × 10−4 9.2 × 10−5

0.0 −0.6 11.776 7.851 3.015 × 10−5 3.015 × 10−5 8.8 × 10−5 1.200 × 10−3 1.200 × 10−3 8.9 × 10−5

0.0 −0.2 9.959 6.639 6.618 × 10−5 6.617 × 10−5 1.3 × 10−4 2.066 × 10−3 2.066 × 10−3 1.3 × 10−4

0.0 0.0 9.000 6.000 1.059 × 10−4 1.059 × 10−4 1.8 × 10−4 2.859 × 10−3 2.859 × 10−3 1.8 × 10−4

0.0 0.2 7.994 5.329 1.827 × 10−4 1.827 × 10−4 2.8 × 10−4 4.167 × 10−3 4.166 × 10−3 2.8 × 10−4

0.0 0.6 5.744 3.829 8.083 × 10−4 8.074 × 10−4 1.1 × 10−3 1.161 × 10−2 1.160 × 10−2 1.1 × 10−3

0.0 0.9 3.481 2.321 6.623 × 10−3 6.552 × 10−3 1.1 × 10−2 4.898 × 10−2 4.846 × 10−2 1.1 × 10−2

0.0 −0.9 18.888 8.717 2.702 × 10−6 2.702 × 10−6 1.3 × 10−4 2.194 × 10−4 2.194 × 10−4 1.4 × 10−4

0.0 −0.6 17.010 7.851 4.477 × 10−6 4.476 × 10−6 9.9 × 10−5 3.114 × 10−4 3.114 × 10−4 1.1 × 10−4

0.0 −0.2 14.385 6.639 1.000 × 10−5 1.000 × 10−5 7.6 × 10−5 5.438 × 10−4 5.438 × 10−4 7.6 × 10−5

0.0 0.0 13.000 6.000 1.621 × 10−5 1.621 × 10−5 6.5 × 10−5 7.598 × 10−4 7.597 × 10−4 6.2 × 10−5

0.0 0.2 11.547 5.329 2.843 × 10−5 2.843 × 10−5 5.8 × 10−5 1.121 × 10−3 1.121 × 10−3 5.8 × 10−5

0.0 0.6 8.296 3.829 1.336 × 10−4 1.335 × 10−4 1.1 × 10−4 3.272 × 10−3 3.271 × 10−3 1.1 × 10−4

0.0 0.9 5.029 2.321 1.280 × 10−3 1.278 × 10−3 1.4 × 10−3 1.558 × 10−2 1.556 × 10−2 1.4 × 10−3

0.1 −0.9 9.014 9.004 1.870 × 10−4 1.869 × 10−4 3.8 × 10−4 4.505 × 10−3 4.503 × 10−3 4.3 × 10−4

0.1 −0.6 8.119 8.109 3.002 × 10−4 3.000 × 10−4 7.8 × 10−4 6.241 × 10−3 6.236 × 10−3 8.2 × 10−4

0.1 −0.2 6.869 6.859 6.329 × 10−4 6.317 × 10−4 1.9 × 10−3 1.042 × 10−2 1.040 × 10−2 1.9 × 10−3

0.1 0.0 6.210 6.200 9.845 × 10−4 9.814 × 10−4 3.1 × 10−3 1.412 × 10−2 1.408 × 10−2 3.0 × 10−3

0.1 0.2 5.518 5.508 1.636 × 10−3 1.628 × 10−3 5.0 × 10−3 2.001 × 10−2 1.991 × 10−2 4.9 × 10−3

0.1 0.6 3.970 3.960 6.300 × 10−3 6.200 × 10−3 1.6 × 10−2 5.022 × 10−2 4.945 × 10−2 1.6 × 10−2

0.1 0.9 2.415 2.405 3.566 × 10−2 3.308 × 10−2 7.2 × 10−2 1.578 × 10−1 1.466 × 10−1 7.1 × 10−2

0.1 −0.9 13.070 9.004 1.897 × 10−5 1.901 × 10−5 −2.1 × 10−3 8.583 × 10−4 8.593 × 10−4 −1.2 × 10−3

0.1 −0.6 11.772 8.109 3.112 × 10−5 3.117 × 10−5 −1.7 × 10−3 1.209 × 10−3 1.210 × 10−3 −8.1 × 10−4

0.1 −0.2 9.957 6.859 6.825 × 10−5 6.830 × 10−5 −8.3 × 10−4 2.081 × 10−3 2.081 × 10−3 −6.0 × 10−5

0.1 0.0 9.000 6.200 1.091 × 10−4 1.092 × 10−4 −1.8 × 10−4 2.878 × 10−3 2.877 × 10−3 4.9 × 10−4

0.1 0.2 7.996 5.508 1.882 × 10−4 1.880 × 10−4 7.2 × 10−4 4.194 × 10−3 4.188 × 10−3 1.2 × 10−3

0.1 0.6 5.749 3.960 8.299 × 10−4 8.262 × 10−4 4.5 × 10−3 1.167 × 10−2 1.162 × 10−2 4.4 × 10−3

0.1 0.9 3.491 2.405 6.735 × 10−3 6.596 × 10−3 2.1 × 10−2 4.903 × 10−2 4.811 × 10−2 1.9 × 10−2

(Table continued)
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TABLE VI. Same scheme as Table V.

e â p ps h _Eteuki h _ENPi ΔENP=E h _Jteuki h _JNPi ΔJNP=J

0.3 −0.9 9.564 9.554 2.546 × 10−4 2.550 × 10−4 −1.4 × 10−3 5.324 × 10−3 5.330 × 10−3 −1.1 × 10−3

0.3 −0.6 8.622 8.612 4.055 × 10−4 4.056 × 10−4 −2.0 × 10−4 7.339 × 10−3 7.337 × 10−3 1.9 × 10−4

0.3 −0.2 7.305 7.295 8.426 × 10−4 8.400 × 10−4 3.0 × 10−3 1.215 × 10−2 1.211 × 10−2 3.3 × 10−3

0.3 0.0 6.610 6.600 1.298 × 10−3 1.291 × 10−3 5.9 × 10−3 1.637 × 10−2 1.627 × 10−2 6.2 × 10−3

0.3 0.1 6.250 6.240 1.648 × 10−3 1.635 × 10−3 7.9 × 10−3 1.929 × 10−2 1.913 × 10−2 8.1 × 10−3

0.3 0.2 5.881 5.871 2.131 × 10−3 2.109 × 10−3 1.1 × 10−2 2.302 × 10−2 2.278 × 10−2 1.1 × 10−2

0.3 0.3 5.500 5.490 2.817 × 10−3 2.777 × 10−3 1.4 × 10−2 2.789 × 10−2 2.750 × 10−2 1.4 × 10−2

0.3 0.4 5.104 5.094 3.824 × 10−3 3.754 × 10−3 1.8 × 10−2 3.440 × 10−2 3.378 × 10−2 1.8 × 10−2

0.3 0.5 4.689 4.679 5.366 × 10−3 5.235 × 10−3 2.4 × 10−2 4.339 × 10−2 4.236 × 10−2 2.4 × 10−2

0.3 0.6 4.250 4.240 7.862 × 10−3 7.602 × 10−3 3.3 × 10−2 5.630 × 10−2 5.451 × 10−2 3.2 × 10−2

0.3 0.7 3.777 3.767 1.221 × 10−2 1.165 × 10−2 4.6 × 10−2 7.590 × 10−2 7.256 × 10−2 4.4 × 10−2

0.3 0.8 3.249 3.239 2.065 × 10−2 1.926 × 10−2 6.7 × 10−2 1.078 × 10−1 1.009 × 10−1 6.4 × 10−2

0.3 0.9 2.615 2.605 4.030 × 10−2 3.602 × 10−2 1.1 × 10−1 1.662 × 10−1 1.495 × 10−1 1.0 × 10−1

0.3 −0.9 13.028 9.554 2.350 × 10−5 2.392 × 10−5 −1.8 × 10−2 8.995 × 10−4 9.095 × 10−4 −1.1 × 10−2

0.3 −0.6 11.743 8.612 3.843 × 10−5 3.898 × 10−5 −1.4 × 10−2 1.265 × 10−3 1.275 × 10−3 −7.9 × 10−3

0.3 −0.2 9.947 7.295 8.381 × 10−5 8.443 × 10−5 −7.4 × 10−3 2.174 × 10−3 2.178 × 10−3 −1.7 × 10−3

0.3 0.0 9.000 6.600 1.335 × 10−4 1.338 × 10−4 −2.5 × 10−3 3.004 × 10−3 2.996 × 10−3 2.6 × 10−3

0.3 0.2 8.006 5.871 2.289 × 10−4 2.280 × 10−4 4.1 × 10−3 4.369 × 10−3 4.333 × 10−3 8.2 × 10−3

0.3 0.6 5.782 4.240 9.889 × 10−4 9.612 × 10−4 2.8 × 10−2 1.207 × 10−2 1.173 × 10−2 2.8 × 10−2

0.3 0.9 3.553 2.605 7.574 × 10−3 6.922 × 10−3 8.6 × 10−2 4.941 × 10−2 4.575 × 10−2 7.4 × 10−2

0.3 −0.9 18.818 9.554 3.231 × 10−6 3.284 × 10−6 −1.6 × 10−2 2.191 × 10−4 2.211 × 10−4 −9.0 × 10−3

0.3 −0.6 16.962 8.612 5.333 × 10−6 5.405 × 10−6 −1.3 × 10−2 3.105 × 10−4 3.124 × 10−4 −6.3 × 10−3

0.3 −0.2 14.368 7.295 1.184 × 10−5 1.193 × 10−5 −7.8 × 10−3 5.407 × 10−4 5.413 × 10−4 −1.2 × 10−3

0.3 0.0 13.000 6.600 1.910 × 10−5 1.918 × 10−5 −3.9 × 10−3 7.540 × 10−4 7.522 × 10−4 2.3 × 10−3

0.3 0.2 11.564 5.871 3.331 × 10−5 3.327 × 10−5 1.4 × 10−3 1.110 × 10−3 1.102 × 10−3 7.0 × 10−3

0.3 0.6 8.352 4.240 1.533 × 10−4 1.503 × 10−4 2.0 × 10−2 3.211 × 10−3 3.137 × 10−3 2.3 × 10−2

0.3 0.9 5.132 2.605 1.389 × 10−3 1.305 × 10−3 6.1 × 10−2 1.489 × 10−2 1.407 × 10−2 5.5 × 10−2

0.5 −0.9 10.089 10.079 3.287 × 10−4 3.302 × 10−4 −4.6 × 10−3 5.933 × 10−3 5.958 × 10−3 −4.2 × 10−3

0.5 −0.6 9.107 9.097 5.198 × 10−4 5.208 × 10−4 −2.0 × 10−3 8.149 × 10−3 8.160 × 10−3 −1.4 × 10−3

0.5 −0.2 7.734 7.724 1.067 × 10−3 1.062 × 10−3 4.7 × 10−3 1.341 × 10−2 1.334 × 10−2 5.5 × 10−3

0.5 0.0 7.010 7.000 1.630 × 10−3 1.613 × 10−3 1.1 × 10−2 1.799 × 10−2 1.779 × 10−2 1.1 × 10−2

0.5 0.2 6.250 6.240 2.647 × 10−3 2.595 × 10−3 2.0 × 10−2 2.517 × 10−2 2.466 × 10−2 2.0 × 10−2

0.5 0.6 4.548 4.538 9.403 × 10−3 8.859 × 10−3 5.8 × 10−2 6.039 × 10−2 5.693 × 10−2 5.7 × 10−2

0.5 0.9 2.843 2.833 4.424 × 10−2 3.792 × 10−2 1.4 × 10−1 1.696 × 10−1 1.463 × 10−1 1.4 × 10−1

0.5 −0.9 12.959 10.079 3.078 × 10−5 3.211 × 10−5 −4.3 × 10−2 9.314 × 10−4 9.592 × 10−4 −3.0 × 10−2

0.5 −0.6 11.697 9.097 5.009 × 10−5 5.182 × 10−5 −3.5 × 10−2 1.309 × 10−3 1.337 × 10−3 −2.1 × 10−2

0.5 −0.2 9.931 7.724 1.082 × 10−4 1.102 × 10−4 −1.8 × 10−2 2.243 × 10−3 2.256 × 10−3 −5.9 × 10−3

0.5 0.0 9.000 7.000 1.713 × 10−4 1.723 × 10−4 −5.8 × 10−3 3.093 × 10−3 3.078 × 10−3 4.9 × 10−3

(Table continued)

TABLE V. (Continued)

e â p ps h _Eteuki h _ENPi ΔENP=E h _Jteuki h _JNPi ΔJNP=J

0.1 −0.9 18.879 9.004 2.768 × 10−6 2.773 × 10−6 −1.8 × 10−3 2.196 × 10−4 2.198 × 10−4 −8.6 × 10−4

0.1 −0.6 17.004 8.109 4.584 × 10−6 4.590 × 10−6 −1.5 × 10−3 3.117 × 10−4 3.118 × 10−4 −6.0 × 10−4

0.1 −0.2 14.382 6.859 1.023 × 10−5 1.024 × 10−5 −9.1 × 10−4 5.440 × 10−4 5.441 × 10−4 −6.7 × 10−5

0.1 0.0 13.000 6.200 1.657 × 10−5 1.658 × 10−5 −4.7 × 10−4 7.598 × 10−4 7.596 × 10−4 3.2 × 10−4

0.1 0.2 11.549 5.508 2.904 × 10−5 2.904 × 10−5 1.2 × 10−4 1.121 × 10−3 1.120 × 10−3 8.4 × 10−4

0.1 0.6 8.304 3.960 1.360 × 10−4 1.357 × 10−4 2.4 × 10−3 3.266 × 10−3 3.257 × 10−3 2.7 × 10−3

0.1 0.9 5.043 2.405 1.293 × 10−3 1.281 × 10−3 8.8 × 10−3 1.549 × 10−2 1.537 × 10−2 7.9 × 10−3
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TABLE VII. Same scheme as Table V.

e â p ps h _Eteuki h _ENPi ΔENP=E h _Jteuki h _JNPi ΔJNP=J

0.7 −0.9 10.595 10.585 3.364 × 10−4 3.394 × 10−4 −8.9 × 10−3 5.335 × 10−3 5.381 × 10−3 −8.8 × 10−3

0.7 −0.6 9.580 9.570 5.294 × 10−4 5.316 × 10−4 −4.2 × 10−3 7.320 × 10−3 7.346 × 10−3 −3.6 × 10−3

0.7 −0.2 8.160 8.150 1.077 × 10−3 1.070 × 10−3 7.4 × 10−3 1.203 × 10−2 1.193 × 10−2 8.6 × 10−3

0.7 0.0 7.410 7.400 1.637 × 10−3 1.609 × 10−3 1.7 × 10−2 1.613 × 10−2 1.583 × 10−2 1.9 × 10−2

0.7 0.2 6.622 6.612 2.641 × 10−3 2.558 × 10−3 3.2 × 10−2 2.255 × 10−2 2.181 × 10−2 3.3 × 10−2

0.7 0.6 4.858 4.848 9.173 × 10−3 8.375 × 10−3 8.7 × 10−2 5.390 × 10−2 4.916 × 10−2 8.8 × 10−2

0.7 0.9 3.088 3.078 4.151 × 10−2 3.437 × 10−2 1.7 × 10−1 1.504 × 10−1 1.249 × 10−1 1.7 × 10−1

0.7 −0.9 12.873 10.585 3.427 × 10−5 3.680 × 10−5 −7.4 × 10−2 8.231 × 10−4 8.685 × 10−4 −5.5 × 10−2

0.7 −0.6 11.639 9.570 5.545 × 10−5 5.871 × 10−5 −5.9 × 10−2 1.155 × 10−3 1.201 × 10−3 −4.1 × 10−2

0.7 −0.2 9.912 8.150 1.186 × 10−4 1.222 × 10−4 −3.0 × 10−2 1.974 × 10−3 2.000 × 10−3 −1.3 × 10−2

0.7 0.0 9.000 7.400 1.865 × 10−4 1.882 × 10−4 −9.2 × 10−3 2.719 × 10−3 2.702 × 10−3 5.9 × 10−3

0.7 0.2 8.042 6.612 3.144 × 10−4 3.089 × 10−4 1.8 × 10−2 3.937 × 10−3 3.817 × 10−3 3.0 × 10−2

0.7 0.6 5.896 4.848 1.278 × 10−3 1.143 × 10−3 1.1 × 10−1 1.068 × 10−2 9.517 × 10−3 1.1 × 10−1

0.7 0.9 3.744 3.078 8.476 × 10−3 6.396 × 10−3 2.5 × 10−1 4.133 × 10−2 3.186 × 10−2 2.3 × 10−1

0.7 −0.9 18.595 10.585 3.648 × 10−6 3.952 × 10−6 −8.3 × 10−2 1.578 × 10−4 1.660 × 10−4 −5.2 × 10−2

0.7 −0.6 16.812 9.570 5.957 × 10−6 6.349 × 10−6 −6.6 × 10−2 2.225 × 10−4 2.307 × 10−4 −3.7 × 10−2

0.7 −0.2 14.317 8.150 1.298 × 10−5 1.341 × 10−5 −3.4 × 10−2 3.846 × 10−4 3.879 × 10−4 −8.5 × 10−3

0.7 0.0 13.000 7.400 2.067 × 10−5 2.093 × 10−5 −1.2 × 10−2 5.338 × 10−4 5.283 × 10−4 1.0 × 10−2

0.7 0.2 11.616 6.612 3.548 × 10−5 3.497 × 10−5 1.5 × 10−2 7.815 × 10−4 7.550 × 10−4 3.4 × 10−2

0.7 0.6 8.517 4.848 1.550 × 10−4 1.397 × 10−4 9.9 × 10−2 2.219 × 10−3 1.982 × 10−3 1.1 × 10−1

0.7 0.9 5.408 3.078 1.257 × 10−3 9.635 × 10−4 2.3 × 10−1 9.906 × 10−3 7.716 × 10−3 2.2 × 10−1

0.9 −0.9 11.084 11.074 1.439 × 10−4 1.460 × 10−4 −1.5 × 10−2 2.040 × 10−3 2.071 × 10−3 −1.5 × 10−2

0.9 −0.6 10.042 10.032 2.261 × 10−4 2.277 × 10−4 −7.2 × 10−3 2.807 × 10−3 2.826 × 10−3 −6.7 × 10−3

0.9 −0.2 8.582 8.572 4.594 × 10−4 4.544 × 10−4 1.1 × 10−2 4.643 × 10−3 4.585 × 10−3 1.2 × 10−2

0.9 0.0 7.810 7.800 6.979 × 10−4 6.799 × 10−4 2.6 × 10−2 6.253 × 10−3 6.080 × 10−3 2.8 × 10−2

0.9 0.2 6.999 6.989 1.126 × 10−3 1.073 × 10−3 4.7 × 10−2 8.798 × 10−3 8.368 × 10−3 4.9 × 10−2

0.9 0.6 5.177 5.167 3.935 × 10−3 3.467 × 10−3 1.2 × 10−1 2.155 × 10−2 1.894 × 10−2 1.2 × 10−1

0.9 0.9 3.344 3.334 1.877 × 10−2 1.516 × 10−2 1.9 × 10−1 6.525 × 10−2 5.270 × 10−2 1.9 × 10−1

0.9 −0.9 12.778 11.074 1.704 × 10−5 1.883 × 10−5 −1.0 × 10−1 3.320 × 10−4 3.598 × 10−4 −8.4 × 10−2

0.9 −0.6 11.576 10.032 2.741 × 10−5 2.969 × 10−5 −8.3 × 10−2 4.654 × 10−4 4.944 × 10−4 −6.2 × 10−2

0.9 −0.2 9.891 8.572 5.806 × 10−5 6.043 × 10−5 −4.1 × 10−2 7.946 × 10−4 8.120 × 10−4 −2.2 × 10−2

0.9 0.0 9.000 7.800 9.068 × 10−5 9.169 × 10−5 −1.1 × 10−2 1.093 × 10−3 1.087 × 10−3 6.1 × 10−3

0.9 0.2 8.064 6.989 1.516 × 10−4 1.475 × 10−4 2.7 × 10−2 1.582 × 10−3 1.515 × 10−3 4.2 × 10−2

(Table continued)

TABLE VI. (Continued)

e â p ps h _Eteuki h _ENPi ΔENP=E h _Jteuki h _JNPi ΔJNP=J

0.5 0.2 8.022 6.240 2.914 × 10−4 2.885 × 10−4 1.0 × 10−2 4.488 × 10−3 4.403 × 10−3 1.9 × 10−2

0.5 0.6 5.834 4.538 1.222 × 10−3 1.143 × 10−3 6.4 × 10−2 1.228 × 10−2 1.147 × 10−2 6.6 × 10−2

0.5 0.9 3.643 2.833 8.674 × 10−3 7.191 × 10−3 1.7 × 10−1 4.867 × 10−2 4.117 × 10−2 1.5 × 10−1

0.5 −0.9 18.718 10.079 3.808 × 10−6 3.973 × 10−6 −4.3 × 10−2 2.062 × 10−4 2.115 × 10−4 −2.6 × 10−2

0.5 −0.6 16.895 9.097 6.255 × 10−6 6.473 × 10−6 −3.5 × 10−2 2.915 × 10−4 2.968 × 10−4 −1.8 × 10−2

0.5 −0.2 14.345 7.724 1.377 × 10−5 1.403 × 10−5 −1.9 × 10−2 5.058 × 10−4 5.077 × 10−4 −3.7 × 10−3

0.5 0.0 13.000 7.000 2.208 × 10−5 2.226 × 10−5 −8.1 × 10−3 7.038 × 10−4 6.995 × 10−4 6.0 × 10−3

0.5 0.2 11.588 6.240 3.822 × 10−5 3.799 × 10−5 6.1 × 10−3 1.033 × 10−3 1.014 × 10−3 1.9 × 10−2

0.5 0.6 8.427 4.538 1.715 × 10−4 1.624 × 10−4 5.3 × 10−2 2.960 × 10−3 2.785 × 10−3 5.9 × 10−2

0.5 0.9 5.262 2.833 1.467 × 10−3 1.259 × 10−3 1.4 × 10−1 1.343 × 10−2 1.165 × 10−2 1.3 × 10−1
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TABLE VII. (Continued)

e â p ps h _Eteuki h _ENPi ΔENP=E h _Jteuki h _JNPi ΔJNP=J

0.9 0.6 5.962 5.167 5.996 × 10−4 5.120 × 10−4 1.5 × 10−1 4.278 × 10−3 3.633 × 10−3 1.5 × 10−1

0.9 0.9 3.847 3.334 3.818 × 10−3 2.678 × 10−3 3.0 × 10−1 1.656 × 10−2 1.184 × 10−2 2.8 × 10−1

0.9 −0.9 18.457 11.074 1.474 × 10−6 1.679 × 10−6 −1.4 × 10−1 5.209 × 10−5 5.684 × 10−5 −9.1 × 10−2

0.9 −0.6 16.720 10.032 2.391 × 10−6 2.651 × 10−6 −1.1 × 10−1 7.330 × 10−5 7.803 × 10−5 −6.5 × 10−2

0.9 −0.2 14.287 8.572 5.151 × 10−6 5.430 × 10−6 −5.4 × 10−2 1.262 × 10−4 1.284 × 10−4 −1.7 × 10−2

0.9 0.0 13.000 7.800 8.148 × 10−6 8.299 × 10−6 −1.8 × 10−2 1.747 × 10−4 1.724 × 10−4 1.3 × 10−2

0.9 0.2 11.648 6.989 1.387 × 10−5 1.352 × 10−5 2.5 × 10−2 2.550 × 10−4 2.421 × 10−4 5.1 × 10−2

0.9 0.6 8.612 5.167 5.904 × 10−5 5.003 × 10−5 1.5 × 10−1 7.194 × 10−4 6.041 × 10−4 1.6 × 10−1

0.9 0.9 5.557 3.334 4.602 × 10−4 3.105 × 10−4 3.3 × 10−1 3.196 × 10−3 2.211 × 10−3 3.1 × 10−1

FIG. 18. Relative differences between numerical and analytical averaged fluxes plotted against the spin (absolute value, logarithmic
scale). Here we consider _Fold, the fluxes computed with the angular radiation reaction of Eq. (22). The analogous plots for _FNP are
shown in Fig. 7.

FIG. 19. Analogous of Fig. 18 for the _FANP, the fluxes obtained with the angular radiation reaction of Eq. (26).
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FIG. 20. Analogous of Fig. 18 for the fluxes computed using the EOB waveform and Eq. (13).

FIG. 21. Absolute values of the relative difference between numerical and analytical fluxes averaged along a radial orbits for all the
analytical prescriptions studied in this work (see Sec. III B for more details). The face color of the markers indicates the eccentricity,
while the edge color indicates the spin. The shape of the markers is related to the rule used for the semilatus rectum: the reverse triangle
indicates the near simulations (p ¼ ps þ 0.01), the diamond is for the intermediate simulations (p ¼ 9psðe; âÞ=psðe; 0Þ) and the
triangle pointing upward indicates the distant simulations (p ¼ 13psðe; âÞ=psðe; 0Þ).
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FIG. 22. Same relative differences ΔFanalyt=F ¼ ðh _Fteuki − h _FanalytiÞ=h _Fteuki of Fig. 21, but without absolute value and logscale.

TABLE VIII. Analytical/numerical relative differences for the energy and angular momentum fluxes: ΔFanalytic=F ¼
ðh _Fteuki − h _FanalyticiÞ=h _Fteuki. We report both the fluxes computed from the radiation reactions and from the EOB waveform for
all the eccentric simulations.

e â p ps ΔENP=E ΔEold=E ΔEANP=E ΔEhlm=E ΔJNP=J ΔJold=J ΔJANP=J ΔJhlm=J

0.1 −0.9 9.014 9.004 3.8 × 10−4 4.9 × 10−4 5.5 × 10−4 6.5 × 10−4 4.3 × 10−4 5.2 × 10−4 5.6 × 10−4 5.9 × 10−4

0.1 −0.6 8.119 8.109 7.8 × 10−4 9.0 × 10−4 9.7 × 10−4 1.1 × 10−3 8.2 × 10−4 9.1 × 10−4 9.6 × 10−4 1.0 × 10−3

0.1 −0.2 6.869 6.859 1.9 × 10−3 2.1 × 10−3 2.1 × 10−3 2.2 × 10−3 1.9 × 10−3 2.0 × 10−3 2.1 × 10−3 2.1 × 10−3

0.1 0.0 6.210 6.200 3.1 × 10−3 3.2 × 10−3 3.3 × 10−3 3.4 × 10−3 3.0 × 10−3 3.1 × 10−3 3.2 × 10−3 3.2 × 10−3

0.1 0.2 5.518 5.508 5.0 × 10−3 5.1 × 10−3 5.2 × 10−3 5.3 × 10−3 4.9 × 10−3 5.0 × 10−3 5.0 × 10−3 5.1 × 10−3

0.1 0.6 3.970 3.960 1.6 × 10−2 1.6 × 10−2 1.6 × 10−2 1.6 × 10−2 1.6 × 10−2 1.6 × 10−2 1.6 × 10−2 1.6 × 10−2

0.1 0.9 2.415 2.405 7.2 × 10−2 7.2 × 10−2 7.2 × 10−2 7.3 × 10−2 7.1 × 10−2 7.1 × 10−2 7.1 × 10−2 7.1 × 10−2

0.1 −0.9 13.070 9.004 −2.1 × 10−3 −4.5 × 10−4 1.9 × 10−4 4.4 × 10−4 −1.2 × 10−3 −2.9 × 10−5 4.1 × 10−4 4.1 × 10−4

0.1 −0.6 11.772 8.109 −1.7 × 10−3 4.5 × 10−5 7.1 × 10−4 1.0 × 10−3 −8.1 × 10−4 3.9 × 10−4 8.5 × 10−4 8.5 × 10−4

0.1 −0.2 9.957 6.859 −8.3 × 10−4 1.0 × 10−3 1.7 × 10−3 2.1 × 10−3 −6.0 × 10−5 1.2 × 10−3 1.7 × 10−3 1.7 × 10−3

0.1 0.0 9.000 6.200 −1.8 × 10−4 1.7 × 10−3 2.5 × 10−3 2.9 × 10−3 4.9 × 10−4 1.8 × 10−3 2.3 × 10−3 2.3 × 10−3

0.1 0.2 7.996 5.508 7.2 × 10−4 2.6 × 10−3 3.4 × 10−3 3.9 × 10−3 1.2 × 10−3 2.6 × 10−3 3.1 × 10−3 3.1 × 10−3

0.1 0.6 5.749 3.960 4.5 × 10−3 6.4 × 10−3 7.3 × 10−3 7.9 × 10−3 4.4 × 10−3 5.7 × 10−3 6.2 × 10−3 6.3 × 10−3

0.1 0.9 3.491 2.405 2.1 × 10−2 2.2 × 10−2 2.3 × 10−2 2.4 × 10−2 1.9 × 10−2 2.0 × 10−2 2.0 × 10−2 2.0 × 10−2

0.1 −0.9 18.879 9.004 −1.8 × 10−3 1.3 × 10−4 7.4 × 10−4 9.0 × 10−4 −8.6 × 10−4 4.6 × 10−4 8.7 × 10−4 8.7 × 10−4

0.1 −0.6 17.004 8.109 −1.5 × 10−3 5.2 × 10−4 1.2 × 10−3 1.4 × 10−3 −6.0 × 10−4 7.9 × 10−4 1.2 × 10−3 1.2 × 10−3

0.1 −0.2 14.382 6.859 −9.1 × 10−4 1.3 × 10−3 2.0 × 10−3 2.3 × 10−3 −6.7 × 10−5 1.4 × 10−3 1.9 × 10−3 1.9 × 10−3

0.1 0.0 13.000 6.200 −4.7 × 10−4 1.8 × 10−3 2.6 × 10−3 2.9 × 10−3 3.2 × 10−4 1.9 × 10−3 2.4 × 10−3 2.4 × 10−3

0.1 0.2 11.549 5.508 1.2 × 10−4 2.5 × 10−3 3.3 × 10−3 3.7 × 10−3 8.4 × 10−4 2.5 × 10−3 3.0 × 10−3 3.0 × 10−3

0.1 0.6 8.304 3.960 2.4 × 10−3 5.0 × 10−3 5.9 × 10−3 6.6 × 10−3 2.7 × 10−3 4.5 × 10−3 5.1 × 10−3 5.1 × 10−3

0.1 0.9 5.043 2.405 8.8 × 10−3 1.1 × 10−2 1.2 × 10−2 1.3 × 10−2 7.9 × 10−3 9.5 × 10−3 1.0 × 10−2 1.0 × 10−2

0.3 −0.9 9.564 9.554 −1.4 × 10−3 −5.0 × 10−5 6.2 × 10−4 1.0 × 10−3 −1.1 × 10−3 2.1 × 10−4 8.4 × 10−4 8.8 × 10−4

0.3 −0.6 8.622 8.612 −2.0 × 10−4 1.3 × 10−3 2.0 × 10−3 2.5 × 10−3 1.9 × 10−4 1.5 × 10−3 2.2 × 10−3 2.2 × 10−3

0.3 −0.2 7.305 7.295 3.0 × 10−3 4.6 × 10−3 5.3 × 10−3 5.9 × 10−3 3.3 × 10−3 4.8 × 10−3 5.5 × 10−3 5.5 × 10−3

0.3 0.0 6.610 6.600 5.9 × 10−3 7.5 × 10−3 8.3 × 10−3 9.0 × 10−3 6.2 × 10−3 7.6 × 10−3 8.4 × 10−3 8.5 × 10−3

0.3 0.1 6.250 6.240 7.9 × 10−3 9.6 × 10−3 1.0 × 10−2 1.1 × 10−2 8.1 × 10−3 9.6 × 10−3 1.0 × 10−2 1.0 × 10−2

(Table continued)
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TABLE VIII. (Continued)

e â p ps ΔENP=E ΔEold=E ΔEANP=E ΔEhlm=E ΔJNP=J ΔJold=J ΔJANP=J ΔJhlm=J

0.3 0.2 5.881 5.871 1.1 × 10−2 1.2 × 10−2 1.3 × 10−2 1.4 × 10−2 1.1 × 10−2 1.2 × 10−2 1.3 × 10−2 1.3 × 10−2

0.3 0.3 5.500 5.490 1.4 × 10−2 1.6 × 10−2 1.6 × 10−2 1.7 × 10−2 1.4 × 10−2 1.5 × 10−2 1.6 × 10−2 1.6 × 10−2

0.3 0.4 5.104 5.094 1.8 × 10−2 2.0 × 10−2 2.1 × 10−2 2.2 × 10−2 1.8 × 10−2 1.9 × 10−2 2.0 × 10−2 2.0 × 10−2

0.3 0.5 4.689 4.679 2.4 × 10−2 2.6 × 10−2 2.7 × 10−2 2.8 × 10−2 2.4 × 10−2 2.5 × 10−2 2.6 × 10−2 2.6 × 10−2

0.3 0.6 4.250 4.240 3.3 × 10−2 3.5 × 10−2 3.6 × 10−2 3.7 × 10−2 3.2 × 10−2 3.3 × 10−2 3.4 × 10−2 3.4 × 10−2

0.3 0.7 3.777 3.767 4.6 × 10−2 4.8 × 10−2 4.9 × 10−2 5.0 × 10−2 4.4 × 10−2 4.5 × 10−2 4.6 × 10−2 4.7 × 10−2

0.3 0.8 3.249 3.239 6.7 × 10−2 6.9 × 10−2 7.0 × 10−2 7.1 × 10−2 6.4 × 10−2 6.5 × 10−2 6.6 × 10−2 6.7 × 10−2

0.3 0.9 2.615 2.605 1.1 × 10−1 1.1 × 10−1 1.1 × 10−1 1.1 × 10−1 1.0 × 10−1 1.0 × 10−1 1.0 × 10−1 1.0 × 10−1

0.3 −0.9 13.028 9.554 −1.8 × 10−2 −5.2 × 10−3 −3.6 × 10−4 1.7 × 10−3 −1.1 × 10−2 −1.7 × 10−3 2.0 × 10−3 2.0 × 10−3

0.3 −0.6 11.743 8.612 −1.4 × 10−2 −1.3 × 10−3 3.8 × 10−3 6.1 × 10−3 −7.9 × 10−3 1.9 × 10−3 5.7 × 10−3 5.7 × 10−3

0.3 −0.2 9.947 7.295 −7.4 × 10−3 6.1 × 10−3 1.1 × 10−2 1.4 × 10−2 −1.7 × 10−3 8.4 × 10−3 1.2 × 10−2 1.3 × 10−2

0.3 0.0 9.000 6.600 −2.5 × 10−3 1.1 × 10−2 1.7 × 10−2 2.0 × 10−2 2.6 × 10−3 1.3 × 10−2 1.7 × 10−2 1.7 × 10−2

0.3 0.2 8.006 5.871 4.1 × 10−3 1.8 × 10−2 2.4 × 10−2 2.7 × 10−2 8.2 × 10−3 1.9 × 10−2 2.3 × 10−2 2.3 × 10−2

0.3 0.6 5.782 4.240 2.8 × 10−2 4.2 × 10−2 4.8 × 10−2 5.2 × 10−2 2.8 × 10−2 3.8 × 10−2 4.3 × 10−2 4.3 × 10−2

0.3 0.9 3.553 2.605 8.6 × 10−2 9.7 × 10−2 1.0 × 10−1 1.0 × 10−1 7.4 × 10−2 8.1 × 10−2 8.5 × 10−2 8.6 × 10−2

0.3 −0.9 18.818 9.554 −1.6 × 10−2 −7.7 × 10−4 4.2 × 10−3 5.5 × 10−3 −9.0 × 10−3 2.4 × 10−3 5.9 × 10−3 6.0 × 10−3

0.3 −0.6 16.962 8.612 −1.3 × 10−2 2.9 × 10−3 8.2 × 10−3 9.6 × 10−3 −6.3 × 10−3 5.6 × 10−3 9.4 × 10−3 9.4 × 10−3

0.3 −0.2 14.368 7.295 −7.8 × 10−3 9.5 × 10−3 1.5 × 10−2 1.7 × 10−2 −1.2 × 10−3 1.1 × 10−2 1.6 × 10−2 1.6 × 10−2

0.3 0.0 13.000 6.600 −3.9 × 10−3 1.4 × 10−2 2.0 × 10−2 2.2 × 10−2 2.3 × 10−3 1.5 × 10−2 2.0 × 10−2 2.0 × 10−2

0.3 0.2 11.564 5.871 1.4 × 10−3 2.0 × 10−2 2.6 × 10−2 2.9 × 10−2 7.0 × 10−3 2.0 × 10−2 2.5 × 10−2 2.5 × 10−2

0.3 0.6 8.352 4.240 2.0 × 10−2 3.9 × 10−2 4.7 × 10−2 5.1 × 10−2 2.3 × 10−2 3.7 × 10−2 4.2 × 10−2 4.2 × 10−2

0.3 0.9 5.132 2.605 6.1 × 10−2 7.8 × 10−2 8.6 × 10−2 9.2 × 10−2 5.5 × 10−2 6.8 × 10−2 7.3 × 10−2 7.4 × 10−2

0.5 −0.9 10.089 10.079 −4.6 × 10−3 −1.2 × 10−3 4.4 × 10−4 1.5 × 10−3 −4.2 × 10−3 −6.2 × 10−4 1.1 × 10−3 1.2 × 10−3

0.5 −0.6 9.107 9.097 −2.0 × 10−3 1.6 × 10−3 3.3 × 10−3 4.5 × 10−3 −1.4 × 10−3 2.4 × 10−3 4.2 × 10−3 4.4 × 10−3

0.5 −0.2 7.734 7.724 4.7 × 10−3 8.5 × 10−3 1.0 × 10−2 1.2 × 10−2 5.5 × 10−3 9.5 × 10−3 1.1 × 10−2 1.2 × 10−2

0.5 0.0 7.010 7.000 1.1 × 10−2 1.4 × 10−2 1.6 × 10−2 1.8 × 10−2 1.1 × 10−2 1.5 × 10−2 1.7 × 10−2 1.8 × 10−2

0.5 0.2 6.250 6.240 2.0 × 10−2 2.3 × 10−2 2.5 × 10−2 2.7 × 10−2 2.0 × 10−2 2.4 × 10−2 2.6 × 10−2 2.7 × 10−2

0.5 0.6 4.548 4.538 5.8 × 10−2 6.2 × 10−2 6.4 × 10−2 6.6 × 10−2 5.7 × 10−2 6.2 × 10−2 6.4 × 10−2 6.4 × 10−2

0.5 0.9 2.843 2.833 1.4 × 10−1 1.5 × 10−1 1.5 × 10−1 1.5 × 10−1 1.4 × 10−1 1.4 × 10−1 1.4 × 10−1 1.5 × 10−1

0.5 −0.9 12.959 10.079 −4.3 × 10−2 −1.6 × 10−2 −5.4 × 10−3 −1.8 × 10−4 −3.0 × 10−2 −7.5 × 10−3 1.5 × 10−3 1.6 × 10−3

0.5 −0.6 11.697 9.097 −3.5 × 10−2 −7.1 × 10−3 4.2 × 10−3 9.5 × 10−3 −2.1 × 10−2 1.2 × 10−3 1.0 × 10−2 1.1 × 10−2

0.5 −0.2 9.931 7.724 −1.8 × 10−2 1.0 × 10−2 2.2 × 10−2 2.8 × 10−2 −5.9 × 10−3 1.7 × 10−2 2.7 × 10−2 2.7 × 10−2

0.5 0.0 9.000 7.000 −5.8 × 10−3 2.2 × 10−2 3.4 × 10−2 4.0 × 10−2 4.9 × 10−3 2.8 × 10−2 3.8 × 10−2 3.8 × 10−2

0.5 0.2 8.022 6.240 1.0 × 10−2 3.8 × 10−2 5.0 × 10−2 5.6 × 10−2 1.9 × 10−2 4.2 × 10−2 5.2 × 10−2 5.3 × 10−2

0.5 0.6 5.834 4.538 6.4 × 10−2 9.0 × 10−2 1.0 × 10−1 1.1 × 10−1 6.6 × 10−2 8.8 × 10−2 9.8 × 10−2 9.9 × 10−2

0.5 0.9 3.643 2.833 1.7 × 10−1 1.9 × 10−1 2.0 × 10−1 2.0 × 10−1 1.5 × 10−1 1.7 × 10−1 1.8 × 10−1 1.8 × 10−1
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TABLE IX. Same scheme as Table VIII.

e â p ps ΔENP=E ΔEold=E ΔEANP=E ΔEhlm=E ΔJNP=J ΔJold=J ΔJANP=J ΔJhlm=J

0.5 −0.9 18.718 10.079 −4.3 × 10−2 −5.6 × 10−3 6.6 × 10−3 9.9 × 10−3 −2.6 × 10−2 3.4 × 10−3 1.3 × 10−2 1.3 × 10−2

0.5 −0.6 16.895 9.097 −3.5 × 10−2 4.0 × 10−3 1.7 × 10−2 2.0 × 10−2 −1.8 × 10−2 1.2 × 10−2 2.2 × 10−2 2.2 × 10−2

0.5 −0.2 14.345 7.724 −1.9 × 10−2 2.1 × 10−2 3.5 × 10−2 3.9 × 10−2 −3.7 × 10−3 2.7 × 10−2 3.8 × 10−2 3.8 × 10−2

0.5 0.0 13.000 7.000 −8.1 × 10−3 3.3 × 10−2 4.7 × 10−2 5.1 × 10−2 6.0 × 10−3 3.8 × 10−2 4.9 × 10−2 4.9 × 10−2

0.5 0.2 11.588 6.240 6.1 × 10−3 4.7 × 10−2 6.2 × 10−2 6.7 × 10−2 1.9 × 10−2 5.1 × 10−2 6.2 × 10−2 6.2 × 10−2

0.5 0.6 8.427 4.538 5.3 × 10−2 9.4 × 10−2 1.1 × 10−1 1.2 × 10−1 5.9 × 10−2 9.1 × 10−2 1.0 × 10−1 1.0 × 10−1

0.5 0.9 5.262 2.833 1.4 × 10−1 1.8 × 10−1 1.9 × 10−1 2.0 × 10−1 1.3 × 10−1 1.6 × 10−1 1.7 × 10−1 1.7 × 10−1

0.7 −0.9 10.595 10.585 −8.9 × 10−3 −3.1 × 10−3 −2.2 × 10−4 2.0 × 10−3 −8.8 × 10−3 −2.2 × 10−3 9.9 × 10−4 1.3 × 10−3

0.7 −0.6 9.580 9.570 −4.2 × 10−3 1.8 × 10−3 4.8 × 10−3 7.1 × 10−3 −3.6 × 10−3 3.1 × 10−3 6.4 × 10−3 6.8 × 10−3

0.7 −0.2 8.160 8.150 7.4 × 10−3 1.4 × 10−2 1.7 × 10−2 1.9 × 10−2 8.6 × 10−3 1.6 × 10−2 1.9 × 10−2 2.0 × 10−2

0.7 0.0 7.410 7.400 1.7 × 10−2 2.3 × 10−2 2.7 × 10−2 2.9 × 10−2 1.9 × 10−2 2.6 × 10−2 2.9 × 10−2 3.0 × 10−2

0.7 0.2 6.622 6.612 3.2 × 10−2 3.8 × 10−2 4.1 × 10−2 4.4 × 10−2 3.3 × 10−2 4.0 × 10−2 4.4 × 10−2 4.5 × 10−2

0.7 0.6 4.858 4.848 8.7 × 10−2 9.3 × 10−2 9.6 × 10−2 1.0 × 10−1 8.8 × 10−2 9.5 × 10−2 9.8 × 10−2 1.0 × 10−1

0.7 0.9 3.088 3.078 1.7 × 10−1 1.8 × 10−1 1.8 × 10−1 1.9 × 10−1 1.7 × 10−1 1.7 × 10−1 1.8 × 10−1 1.8 × 10−1

0.7 −0.9 12.873 10.585 −7.4 × 10−2 −3.4 × 10−2 −1.7 × 10−2 −7.4 × 10−3 −5.5 × 10−2 −2.0 × 10−2 −4.6 × 10−3 −4.3 × 10−3

0.7 −0.6 11.639 9.570 −5.9 × 10−2 −1.9 × 10−2 −1.3 × 10−3 7.9 × 10−3 −4.1 × 10−2 −4.9 × 10−3 1.0 × 10−2 1.1 × 10−2

0.7 −0.2 9.912 8.150 −3.0 × 10−2 9.9 × 10−3 2.7 × 10−2 3.6 × 10−2 −1.3 × 10−2 2.2 × 10−2 3.8 × 10−2 3.8 × 10−2

0.7 0.0 9.000 7.400 −9.2 × 10−3 3.0 × 10−2 4.7 × 10−2 5.6 × 10−2 5.9 × 10−3 4.1 × 10−2 5.6 × 10−2 5.7 × 10−2

0.7 0.2 8.042 6.612 1.8 × 10−2 5.5 × 10−2 7.2 × 10−2 8.2 × 10−2 3.0 × 10−2 6.5 × 10−2 8.0 × 10−2 8.1 × 10−2

0.7 0.6 5.896 4.848 1.1 × 10−1 1.4 × 10−1 1.5 × 10−1 1.6 × 10−1 1.1 × 10−1 1.4 × 10−1 1.5 × 10−1 1.6 × 10−1

0.7 0.9 3.744 3.078 2.5 × 10−1 2.7 × 10−1 2.8 × 10−1 2.8 × 10−1 2.3 × 10−1 2.5 × 10−1 2.6 × 10−1 2.7 × 10−1

0.7 −0.9 18.595 10.585 −8.3 × 10−2 −1.8 × 10−2 3.3 × 10−3 9.7 × 10−3 −5.2 × 10−2 −4.1 × 10−4 1.6 × 10−2 1.7 × 10−2

0.7 −0.6 16.812 9.570 −6.6 × 10−2 1.2 × 10−4 2.2 × 10−2 2.8 × 10−2 −3.7 × 10−2 1.6 × 10−2 3.3 × 10−2 3.3 × 10−2

0.7 −0.2 14.317 8.150 −3.4 × 10−2 3.2 × 10−2 5.4 × 10−2 6.0 × 10−2 −8.5 × 10−3 4.4 × 10−2 6.2 × 10−2 6.3 × 10−2

0.7 0.0 13.000 7.400 −1.2 × 10−2 5.3 × 10−2 7.5 × 10−2 8.1 × 10−2 1.0 × 10−2 6.3 × 10−2 8.1 × 10−2 8.2 × 10−2

0.7 0.2 11.616 6.612 1.5 × 10−2 7.9 × 10−2 1.0 × 10−1 1.1 × 10−1 3.4 × 10−2 8.6 × 10−2 1.0 × 10−1 1.1 × 10−1

0.7 0.6 8.517 4.848 9.9 × 10−2 1.6 × 10−1 1.8 × 10−1 1.9 × 10−1 1.1 × 10−1 1.6 × 10−1 1.7 × 10−1 1.7 × 10−1

0.7 0.9 5.408 3.078 2.3 × 10−1 2.8 × 10−1 3.0 × 10−1 3.0 × 10−1 2.2 × 10−1 2.6 × 10−1 2.8 × 10−1 2.8 × 10−1

0.9 −0.9 11.084 11.074 −1.5 × 10−2 −6.1 × 10−3 −1.7 × 10−3 3.2 × 10−3 −1.5 × 10−2 −5.0 × 10−3 −3.4 × 10−5 1.1 × 10−3

0.9 −0.6 10.042 10.032 −7.2 × 10−3 1.5 × 10−3 6.0 × 10−3 1.1 × 10−2 −6.7 × 10−3 3.4 × 10−3 8.4 × 10−3 9.9 × 10−3

0.9 −0.2 8.582 8.572 1.1 × 10−2 2.0 × 10−2 2.4 × 10−2 3.1 × 10−2 1.2 × 10−2 2.2 × 10−2 2.8 × 10−2 3.0 × 10−2

0.9 0.0 7.810 7.800 2.6 × 10−2 3.4 × 10−2 3.9 × 10−2 4.6 × 10−2 2.8 × 10−2 3.8 × 10−2 4.3 × 10−2 4.5 × 10−2

0.9 0.2 6.999 6.989 4.7 × 10−2 5.5 × 10−2 6.0 × 10−2 6.8 × 10−2 4.9 × 10−2 5.9 × 10−2 6.4 × 10−2 6.7 × 10−2

0.9 0.6 5.177 5.167 1.2 × 10−1 1.3 × 10−1 1.3 × 10−1 1.4 × 10−1 1.2 × 10−1 1.3 × 10−1 1.3 × 10−1 1.4 × 10−1

0.9 0.9 3.344 3.334 1.9 × 10−1 2.0 × 10−1 2.0 × 10−1 2.2 × 10−1 1.9 × 10−1 2.0 × 10−1 2.0 × 10−1 2.2 × 10−1

0.9 −0.9 12.778 11.074 −1.0 × 10−1 −5.5 × 10−2 −3.3 × 10−2 −1.8 × 10−2 −8.4 × 10−2 −3.8 × 10−2 −1.7 × 10−2 −1.6 × 10−2

0.9 −0.6 11.576 10.032 −8.3 × 10−2 −3.4 × 10−2 −1.2 × 10−2 2.2 × 10−3 −6.2 × 10−2 −1.7 × 10−2 4.0 × 10−3 5.3 × 10−3

0.9 −0.2 9.891 8.572 −4.1 × 10−2 5.9 × 10−3 2.8 × 10−2 4.1 × 10−2 −2.2 × 10−2 2.2 × 10−2 4.3 × 10−2 4.4 × 10−2

0.9 0.0 9.000 7.800 −1.1 × 10−2 3.4 × 10−2 5.5 × 10−2 6.8 × 10−2 6.1 × 10−3 4.9 × 10−2 6.9 × 10−2 7.1 × 10−2

0.9 0.2 8.064 6.989 2.7 × 10−2 7.0 × 10−2 9.0 × 10−2 1.0 × 10−1 4.2 × 10−2 8.3 × 10−2 1.0 × 10−1 1.0 × 10−1

0.9 0.6 5.962 5.167 1.5 × 10−1 1.8 × 10−1 2.0 × 10−1 2.1 × 10−1 1.5 × 10−1 1.9 × 10−1 2.0 × 10−1 2.1 × 10−1

0.9 0.9 3.847 3.334 3.0 × 10−1 3.2 × 10−1 3.3 × 10−1 3.3 × 10−1 2.8 × 10−1 3.1 × 10−1 3.2 × 10−1 3.3 × 10−1

0.9 −0.9 18.457 11.074 −1.4 × 10−1 −4.2 × 10−2 −9.8 × 10−3 1.8 × 10−3 −9.1 × 10−2 −1.3 × 10−2 1.3 × 10−2 1.3 × 10−2

0.9 −0.6 16.720 10.032 −1.1 × 10−1 −1.3 × 10−2 1.9 × 10−2 2.9 × 10−2 −6.5 × 10−2 1.3 × 10−2 3.9 × 10−2 3.9 × 10−2

0.9 −0.2 14.287 8.572 −5.4 × 10−2 3.8 × 10−2 6.9 × 10−2 7.8 × 10−2 −1.7 × 10−2 5.8 × 10−2 8.4 × 10−2 8.5 × 10−2

0.9 0.0 13.000 7.800 −1.8 × 10−2 7.0 × 10−2 1.0 × 10−1 1.1 × 10−1 1.3 × 10−2 8.7 × 10−2 1.1 × 10−1 1.1 × 10−1

0.9 0.2 11.648 6.989 2.5 × 10−2 1.1 × 10−1 1.4 × 10−1 1.5 × 10−1 5.1 × 10−2 1.2 × 10−1 1.5 × 10−1 1.5 × 10−1

0.9 0.6 8.612 5.167 1.5 × 10−1 2.2 × 10−1 2.5 × 10−1 2.5 × 10−1 1.6 × 10−1 2.2 × 10−1 2.5 × 10−1 2.5 × 10−1

0.9 0.9 5.557 3.334 3.3 × 10−1 3.7 × 10−1 3.9 × 10−1 3.9 × 10−1 3.1 × 10−1 3.5 × 10−1 3.7 × 10−1 3.7 × 10−1
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TABLE X. Relative contributions of the l-modes for the angular momentum computed from the Teukode’s results. With δh _Jil we
indicate the relative contribution to the total angular momentum flux of the l-modes summed together, see Eq. (E1). Continue in
Tables XI and XII.

e â p ps h _Ji δh _Ji2 δh _Ji3 δh _Ji4 δh _Ji5 δh _Ji6 δh _Ji7 δh _Ji8
0.0 −0.9 8.727 8.717 4.309 × 10−3 8.44 × 10−1 1.27 × 10−1 2.37 × 10−2 4.80 × 10−3 1.01 × 10−3 2.14 × 10−4 4.63 × 10−5

0.0 −0.8 8.442 8.432 4.786 × 10−3 8.39 × 10−1 1.29 × 10−1 2.49 × 10−2 5.16 × 10−3 1.11 × 10−3 2.43 × 10−4 5.37 × 10−5

0.0 −0.7 8.153 8.143 5.341 × 10−3 8.35 × 10−1 1.32 × 10−1 2.61 × 10−2 5.56 × 10−3 1.23 × 10−3 2.76 × 10−4 6.28 × 10−5

0.0 −0.6 7.861 7.851 5.991 × 10−3 8.30 × 10−1 1.35 × 10−1 2.74 × 10−2 6.00 × 10−3 1.36 × 10−3 3.15 × 10−4 7.38 × 10−5

0.0 −0.5 7.565 7.555 6.754 × 10−3 8.25 × 10−1 1.38 × 10−1 2.89 × 10−2 6.51 × 10−3 1.52 × 10−3 3.63 × 10−4 8.74 × 10−5

0.0 −0.4 7.264 7.254 7.661 × 10−3 8.19 × 10−1 1.41 × 10−1 3.04 × 10−2 7.08 × 10−3 1.71 × 10−3 4.19 × 10−4 1.04 × 10−4

0.0 −0.3 6.959 6.949 8.745 × 10−3 8.13 × 10−1 1.45 × 10−1 3.22 × 10−2 7.73 × 10−3 1.92 × 10−3 4.89 × 10−4 1.26 × 10−4

0.0 −0.2 6.649 6.639 1.006 × 10−2 8.06 × 10−1 1.49 × 10−1 3.42 × 10−2 8.48 × 10−3 2.18 × 10−3 5.74 × 10−4 1.53 × 10−4

0.0 −0.1 6.333 6.323 1.168 × 10−2 7.98 × 10−1 1.53 × 10−1 3.64 × 10−2 9.35 × 10−3 2.50 × 10−3 6.80 × 10−4 1.87 × 10−4

0.0 0.0 6.010 6.000 1.368 × 10−2 7.90 × 10−1 1.57 × 10−1 3.88 × 10−2 1.04 × 10−2 2.88 × 10−3 8.13 × 10−4 2.33 × 10−4

0.0 0.1 5.679 5.669 1.621 × 10−2 7.80 × 10−1 1.62 × 10−1 4.16 × 10−2 1.16 × 10−2 3.34 × 10−3 9.85 × 10−4 2.94 × 10−4

0.0 0.2 5.339 5.329 1.947 × 10−2 7.70 × 10−1 1.67 × 10−1 4.48 × 10−2 1.30 × 10−2 3.93 × 10−3 1.21 × 10−3 3.77 × 10−4

0.0 0.3 4.989 4.979 2.375 × 10−2 7.57 × 10−1 1.73 × 10−1 4.86 × 10−2 1.48 × 10−2 4.67 × 10−3 1.51 × 10−3 4.94 × 10−4

0.0 0.4 4.624 4.614 2.955 × 10−2 7.43 × 10−1 1.79 × 10−1 5.30 × 10−2 1.70 × 10−2 5.65 × 10−3 1.92 × 10−3 6.63 × 10−4

0.0 0.5 4.243 4.233 3.763 × 10−2 7.26 × 10−1 1.86 × 10−1 5.83 × 10−2 1.98 × 10−2 6.97 × 10−3 2.51 × 10−3 9.18 × 10−4

0.0 0.6 3.839 3.829 4.945 × 10−2 7.04 × 10−1 1.94 × 10−1 6.49 × 10−2 2.35 × 10−2 8.83 × 10−3 3.40 × 10−3 1.32 × 10−3

0.0 0.7 3.403 3.393 6.779 × 10−2 6.76 × 10−1 2.04 × 10−1 7.35 × 10−2 2.87 × 10−2 1.16 × 10−2 4.82 × 10−3 2.03 × 10−3

0.0 0.8 2.917 2.907 9.882 × 10−2 6.35 × 10−1 2.15 × 10−1 8.56 × 10−2 3.66 × 10−2 1.62 × 10−2 7.39 × 10−3 3.41 × 10−3

0.0 0.9 2.331 2.321 1.583 × 10−1 5.66 × 10−1 2.32 × 10−1 1.05 × 10−1 5.11 × 10−2 2.57 × 10−2 1.32 × 10−2 6.92 × 10−3

0.0 −0.9 13.076 8.717 8.520 × 10−4 9.00 × 10−1 8.78 × 10−2 1.06 × 10−2 1.38 × 10−3 1.85 × 10−4 2.53 × 10−5 3.49 × 10−6

0.0 −0.6 11.776 7.851 1.200 × 10−3 8.91 × 10−1 9.49 × 10−2 1.25 × 10−2 1.78 × 10−3 2.61 × 10−4 3.90 × 10−5 5.87 × 10−6

0.0 −0.2 9.959 6.639 2.066 × 10−3 8.74 × 10−1 1.07 × 10−1 1.62 × 10−2 2.65 × 10−3 4.47 × 10−4 7.67 × 10−5 1.33 × 10−5

0.0 0.0 9.000 6.000 2.859 × 10−3 8.62 × 10−1 1.15 × 10−1 1.89 × 10−2 3.35 × 10−3 6.13 × 10−4 1.14 × 10−4 2.16 × 10−5

0.0 0.2 7.994 5.329 4.167 × 10−3 8.48 × 10−1 1.24 × 10−1 2.24 × 10−2 4.37 × 10−3 8.82 × 10−4 1.81 × 10−4 3.76 × 10−5

0.0 0.6 5.744 3.829 1.161 × 10−2 8.01 × 10−1 1.52 × 10−1 3.54 × 10−2 8.89 × 10−3 2.31 × 10−3 6.15 × 10−4 1.65 × 10−4

0.0 0.9 3.481 2.321 4.898 × 10−2 7.03 × 10−1 1.95 × 10−1 6.49 × 10−2 2.32 × 10−2 8.62 × 10−3 3.27 × 10−3 1.26 × 10−3

0.0 −0.9 18.888 8.717 2.194 × 10−4 9.31 × 10−1 6.29 × 10−2 5.25 × 10−3 4.70 × 10−4 4.34 × 10−5 4.07 × 10−6 3.85 × 10−7

0.0 −0.6 17.010 7.851 3.114 × 10−4 9.24 × 10−1 6.85 × 10−2 6.28 × 10−3 6.17 × 10−4 6.26 × 10−5 6.45 × 10−6 6.70 × 10−7

0.0 −0.2 14.385 6.639 5.438 × 10−4 9.12 × 10−1 7.83 × 10−2 8.31 × 10−3 9.47 × 10−4 1.11 × 10−4 1.33 × 10−5 1.60 × 10−6

0.0 0.0 13.000 6.000 7.598 × 10−4 9.04 × 10−1 8.47 × 10−2 9.81 × 10−3 1.22 × 10−3 1.57 × 10−4 2.05 × 10−5 2.70 × 10−6

0.0 0.2 11.547 5.329 1.121 × 10−3 8.94 × 10−1 9.27 × 10−2 1.19 × 10−2 1.64 × 10−3 2.33 × 10−4 3.36 × 10−5 4.91 × 10−6

0.0 0.6 8.296 3.829 3.272 × 10−3 8.59 × 10−1 1.17 × 10−1 1.98 × 10−2 3.59 × 10−3 6.73 × 10−4 1.28 × 10−4 2.48 × 10−5

0.0 0.9 5.029 2.321 1.558 × 10−2 7.85 × 10−1 1.60 × 10−1 3.98 × 10−2 1.07 × 10−2 2.97 × 10−3 8.43 × 10−4 2.42 × 10−4

0.1 −0.9 9.014 9.004 4.505 × 10−3 8.40 × 10−1 1.29 × 10−1 2.48 × 10−2 5.19 × 10−3 1.13 × 10−3 2.50 × 10−4 5.64 × 10−5

0.1 −0.6 8.119 8.109 6.241 × 10−3 8.26 × 10−1 1.37 × 10−1 2.86 × 10−2 6.46 × 10−3 1.52 × 10−3 3.65 × 10−4 8.90 × 10−5

0.1 −0.2 6.869 6.859 1.042 × 10−2 8.02 × 10−1 1.51 × 10−1 3.55 × 10−2 9.05 × 10−3 2.41 × 10−3 6.54 × 10−4 1.81 × 10−4

0.1 0.0 6.210 6.200 1.412 × 10−2 7.85 × 10−1 1.59 × 10−1 4.02 × 10−2 1.10 × 10−2 3.14 × 10−3 9.20 × 10−4 2.73 × 10−4

0.1 0.2 5.518 5.508 2.001 × 10−2 7.65 × 10−1 1.69 × 10−1 4.62 × 10−2 1.37 × 10−2 4.26 × 10−3 1.35 × 10−3 4.36 × 10−4

0.1 0.6 3.970 3.960 5.022 × 10−2 7.00 × 10−1 1.95 × 10−1 6.63 × 10−2 2.44 × 10−2 9.37 × 10−3 3.69 × 10−3 1.48 × 10−3

0.1 0.9 2.415 2.405 1.578 × 10−1 5.63 × 10−1 2.32 × 10−1 1.06 × 10−1 5.19 × 10−2 2.64 × 10−2 1.38 × 10−2 7.32 × 10−3

0.1 −0.9 13.070 9.004 8.583 × 10−4 8.98 × 10−1 8.92 × 10−2 1.11 × 10−2 1.49 × 10−3 2.09 × 10−4 2.99 × 10−5 4.35 × 10−6

0.1 −0.6 11.772 8.109 1.209 × 10−3 8.88 × 10−1 9.63 × 10−2 1.31 × 10−2 1.92 × 10−3 2.93 × 10−4 4.58 × 10−5 7.29 × 10−6

0.1 −0.2 9.957 6.859 2.081 × 10−3 8.71 × 10−1 1.08 × 10−1 1.69 × 10−2 2.84 × 10−3 4.98 × 10−4 8.95 × 10−5 1.63 × 10−5

0.1 0.0 9.000 6.200 2.878 × 10−3 8.60 × 10−1 1.16 × 10−1 1.96 × 10−2 3.58 × 10−3 6.81 × 10−4 1.33 × 10−4 2.63 × 10−5

0.1 0.2 7.996 5.508 4.194 × 10−3 8.45 × 10−1 1.26 × 10−1 2.32 × 10−2 4.66 × 10−3 9.75 × 10−4 2.09 × 10−4 4.54 × 10−5

0.1 0.6 5.749 3.960 1.167 × 10−2 7.98 × 10−1 1.53 × 10−1 3.64 × 10−2 9.38 × 10−3 2.52 × 10−3 6.95 × 10−4 1.95 × 10−4

0.1 0.9 3.491 2.405 4.903 × 10−2 6.99 × 10−1 1.96 × 10−1 6.61 × 10−2 2.41 × 10−2 9.15 × 10−3 3.57 × 10−3 1.41 × 10−3

(Table continued)
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TABLE X. (Continued)

e â p ps h _Ji δh _Ji2 δh _Ji3 δh _Ji4 δh _Ji5 δh _Ji6 δh _Ji7 δh _Ji8
0.1 −0.9 18.879 9.004 2.196 × 10−4 9.30 × 10−1 6.40 × 10−2 5.49 × 10−3 5.10 × 10−4 4.92 × 10−5 4.87 × 10−6 4.89 × 10−7

0.1 −0.6 17.004 8.109 3.117 × 10−4 9.23 × 10−1 6.97 × 10−2 6.56 × 10−3 6.68 × 10−4 7.08 × 10−5 7.67 × 10−6 8.46 × 10−7

0.1 −0.2 14.382 6.859 5.440 × 10−4 9.11 × 10−1 7.95 × 10−2 8.66 × 10−3 1.02 × 10−3 1.25 × 10−4 1.57 × 10−5 2.01 × 10−6

0.1 0.0 13.000 6.200 7.598 × 10−4 9.02 × 10−1 8.60 × 10−2 1.02 × 10−2 1.31 × 10−3 1.76 × 10−4 2.41 × 10−5 3.35 × 10−6

0.1 0.2 11.549 5.508 1.121 × 10−3 8.92 × 10−1 9.39 × 10−2 1.23 × 10−2 1.75 × 10−3 2.60 × 10−4 3.93 × 10−5 6.06 × 10−6

0.1 0.6 8.304 3.960 3.266 × 10−3 8.56 × 10−1 1.19 × 10−1 2.04 × 10−2 3.81 × 10−3 7.41 × 10−4 1.48 × 10−4 2.99 × 10−5

0.1 0.9 5.043 2.405 1.549 × 10−2 7.83 × 10−1 1.61 × 10−1 4.08 × 10−2 1.12 × 10−2 3.20 × 10−3 9.38 × 10−4 2.80 × 10−4

TABLE XI. Same scheme as Table X.

e â p ps h _Ji δh _Ji2 δh _Ji3 δh _Ji4 δh _Ji5 δh _Ji6 δh _Ji7 δh _Ji8
0.3 −0.9 9.564 9.554 5.324 × 10−3 8.20 × 10−1 1.40 × 10−1 3.04 × 10−2 7.22 × 10−3 1.79 × 10−3 4.58 × 10−4 1.19 × 10−4

0.3 −0.6 8.622 8.612 7.339 × 10−3 8.05 × 10−1 1.48 × 10−1 3.46 × 10−2 8.86 × 10−3 2.37 × 10−3 6.53 × 10−4 1.83 × 10−4

0.3 −0.2 7.305 7.295 1.215 × 10−2 7.79 × 10−1 1.61 × 10−1 4.22 × 10−2 1.21 × 10−2 3.65 × 10−3 1.13 × 10−3 3.55 × 10−4

0.3 0.0 6.610 6.600 1.637 × 10−2 7.62 × 10−1 1.69 × 10−1 4.74 × 10−2 1.45 × 10−2 4.68 × 10−3 1.55 × 10−3 5.21 × 10−4

0.3 0.1 6.250 6.240 1.929 × 10−2 7.52 × 10−1 1.73 × 10−1 5.04 × 10−2 1.60 × 10−2 5.36 × 10−3 1.84 × 10−3 6.43 × 10−4

0.3 0.2 5.881 5.871 2.302 × 10−2 7.41 × 10−1 1.78 × 10−1 5.38 × 10−2 1.78 × 10−2 6.19 × 10−3 2.21 × 10−3 8.06 × 10−4

0.3 0.3 5.500 5.490 2.789 × 10−2 7.28 × 10−1 1.83 × 10−1 5.78 × 10−2 2.00 × 10−2 7.24 × 10−3 2.70 × 10−3 1.03 × 10−3

0.3 0.4 5.104 5.094 3.440 × 10−2 7.13 × 10−1 1.89 × 10−1 6.24 × 10−2 2.26 × 10−2 8.57 × 10−3 3.35 × 10−3 1.33 × 10−3

0.3 0.5 4.689 4.679 4.339 × 10−2 6.94 × 10−1 1.95 × 10−1 6.79 × 10−2 2.59 × 10−2 1.03 × 10−2 4.25 × 10−3 1.78 × 10−3

0.3 0.6 4.250 4.240 5.630 × 10−2 6.72 × 10−1 2.03 × 10−1 7.47 × 10−2 3.01 × 10−2 1.27 × 10−2 5.55 × 10−3 2.47 × 10−3

0.3 0.7 3.777 3.767 7.590 × 10−2 6.42 × 10−1 2.11 × 10−1 8.33 × 10−2 3.59 × 10−2 1.62 × 10−2 7.55 × 10−3 3.59 × 10−3

0.3 0.8 3.249 3.239 1.078 × 10−1 6.01 × 10−1 2.21 × 10−1 9.52 × 10−2 4.44 × 10−2 2.17 × 10−2 1.10 × 10−2 5.64 × 10−3

0.3 0.9 2.615 2.605 1.662 × 10−1 5.31 × 10−1 2.34 × 10−1 1.14 × 10−1 5.94 × 10−2 3.23 × 10−2 1.81 × 10−2 1.04 × 10−2

0.3 −0.9 13.028 9.554 8.995 × 10−4 8.83 × 10−1 9.95 × 10−2 1.46 × 10−2 2.37 × 10−3 4.08 × 10−4 7.27 × 10−5 1.32 × 10−5

0.3 −0.6 11.743 8.612 1.265 × 10−3 8.72 × 10−1 1.07 × 10−1 1.70 × 10−2 3.01 × 10−3 5.63 × 10−4 1.09 × 10−4 2.16 × 10−5

0.3 −0.2 9.947 7.295 2.174 × 10−3 8.53 × 10−1 1.19 × 10−1 2.16 × 10−2 4.35 × 10−3 9.26 × 10−4 2.04 × 10−4 4.60 × 10−5

0.3 0.0 9.000 6.600 3.004 × 10−3 8.41 × 10−1 1.27 × 10−1 2.49 × 10−2 5.40 × 10−3 1.24 × 10−3 2.95 × 10−4 7.18 × 10−5

0.3 0.2 8.006 5.871 4.369 × 10−3 8.25 × 10−1 1.37 × 10−1 2.91 × 10−2 6.90 × 10−3 1.73 × 10−3 4.49 × 10−4 1.19 × 10−4

0.3 0.6 5.782 4.240 1.207 × 10−2 7.73 × 10−1 1.64 × 10−1 4.40 × 10−2 1.31 × 10−2 4.13 × 10−3 1.35 × 10−3 4.53 × 10−4

0.3 0.9 3.553 2.605 4.941 × 10−2 6.69 × 10−1 2.03 × 10−1 7.51 × 10−2 3.05 × 10−2 1.31 × 10−2 5.81 × 10−3 2.65 × 10−3

0.3 −0.9 18.818 9.554 2.191 × 10−4 9.20 × 10−1 7.19 × 10−2 7.33 × 10−3 8.32 × 10−4 1.00 × 10−4 1.25 × 10−5 1.59 × 10−6

0.3 −0.6 16.962 8.612 3.105 × 10−4 9.12 × 10−1 7.80 × 10−2 8.68 × 10−3 1.08 × 10−3 1.42 × 10−4 1.93 × 10−5 2.68 × 10−6

0.3 −0.2 14.368 7.295 5.407 × 10−4 8.98 × 10−1 8.84 × 10−2 1.13 × 10−2 1.61 × 10−3 2.44 × 10−4 3.82 × 10−5 6.11 × 10−6

0.3 0.0 13.000 6.600 7.540 × 10−4 8.89 × 10−1 9.52 × 10−2 1.32 × 10−2 2.05 × 10−3 3.36 × 10−4 5.71 × 10−5 9.94 × 10−6

0.3 0.2 11.564 5.871 1.110 × 10−3 8.77 × 10−1 1.03 × 10−1 1.58 × 10−2 2.69 × 10−3 4.86 × 10−4 9.08 × 10−5 1.74 × 10−5

0.3 0.6 8.352 4.240 3.211 × 10−3 8.39 × 10−1 1.28 × 10−1 2.54 × 10−2 5.57 × 10−3 1.30 × 10−3 3.12 × 10−4 7.72 × 10−5

0.3 0.9 5.132 2.605 1.489 × 10−2 7.61 × 10−1 1.69 × 10−1 4.77 × 10−2 1.49 × 10−2 4.91 × 10−3 1.69 × 10−3 5.92 × 10−4

0.5 −0.9 10.089 10.079 5.933 × 10−3 7.96 × 10−1 1.52 × 10−1 3.74 × 10−2 1.01 × 10−2 2.84 × 10−3 8.19 × 10−4 2.40 × 10−4

0.5 −0.6 9.107 9.097 8.149 × 10−3 7.80 × 10−1 1.60 × 10−1 4.22 × 10−2 1.22 × 10−2 3.68 × 10−3 1.14 × 10−3 3.60 × 10−4

0.5 −0.2 7.734 7.724 1.341 × 10−2 7.52 × 10−1 1.73 × 10−1 5.06 × 10−2 1.63 × 10−2 5.48 × 10−3 1.90 × 10−3 6.68 × 10−4

0.5 0.0 7.010 7.000 1.799 × 10−2 7.34 × 10−1 1.80 × 10−1 5.61 × 10−2 1.92 × 10−2 6.89 × 10−3 2.54 × 10−3 9.54 × 10−4

0.5 0.2 6.250 6.240 2.517 × 10−2 7.12 × 10−1 1.88 × 10−1 6.30 × 10−2 2.31 × 10−2 8.90 × 10−3 3.53 × 10−3 1.42 × 10−3

0.5 0.6 4.548 4.538 6.039 × 10−2 6.39 × 10−1 2.10 × 10−1 8.45 × 10−2 3.71 × 10−2 1.71 × 10−2 8.13 × 10−3 3.94 × 10−3

0.5 0.9 2.843 2.833 1.696 × 10−1 4.94 × 10−1 2.37 × 10−1 1.23 × 10−1 6.82 × 10−2 3.94 × 10−2 2.34 × 10−2 1.42 × 10−2

0.5 −0.9 12.959 10.079 9.314 × 10−4 8.58 × 10−1 1.16 × 10−1 2.08 × 10−2 4.15 × 10−3 8.74 × 10−4 1.90 × 10−4 4.23 × 10−5

0.5 −0.6 11.697 9.097 1.309 × 10−3 8.45 × 10−1 1.24 × 10−1 2.40 × 10−2 5.17 × 10−3 1.18 × 10−3 2.77 × 10−4 6.67 × 10−5

(Table continued)
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TABLE XI. (Continued)

e â p ps h _Ji δh _Ji2 δh _Ji3 δh _Ji4 δh _Ji5 δh _Ji6 δh _Ji7 δh _Ji8
0.5 −0.2 9.931 7.724 2.243 × 10−3 8.24 × 10−1 1.37 × 10−1 2.98 × 10−2 7.25 × 10−3 1.86 × 10−3 4.95 × 10−4 1.35 × 10−4

0.5 0.0 9.000 7.000 3.093 × 10−3 8.10 × 10−1 1.45 × 10−1 3.38 × 10−2 8.82 × 10−3 2.43 × 10−3 6.94 × 10−4 2.03 × 10−4

0.5 0.2 8.022 6.240 4.488 × 10−3 7.92 × 10−1 1.54 × 10−1 3.90 × 10−2 1.10 × 10−2 3.29 × 10−3 1.02 × 10−3 3.22 × 10−4

0.5 0.6 5.834 4.538 1.228 × 10−2 7.34 × 10−1 1.79 × 10−1 5.60 × 10−2 1.95 × 10−2 7.18 × 10−3 2.74 × 10−3 1.07 × 10−3

0.5 0.9 3.643 2.833 4.867 × 10−2 6.22 × 10−1 2.14 × 10−1 8.89 × 10−2 4.06 × 10−2 1.96 × 10−2 9.78 × 10−3 5.01 × 10−3

0.5 −0.9 18.718 10.079 2.062 × 10−4 9.02 × 10−1 8.51 × 10−2 1.07 × 10−2 1.51 × 10−3 2.24 × 10−4 3.45 × 10−5 5.42 × 10−6

0.5 −0.6 16.895 9.097 2.915 × 10−4 8.93 × 10−1 9.18 × 10−2 1.26 × 10−2 1.92 × 10−3 3.11 × 10−4 5.21 × 10−5 8.91 × 10−6

0.5 −0.2 14.345 7.724 5.058 × 10−4 8.77 × 10−1 1.03 × 10−1 1.61 × 10−2 2.81 × 10−3 5.19 × 10−4 9.91 × 10−5 1.94 × 10−5

0.5 0.0 13.000 7.000 7.038 × 10−4 8.67 × 10−1 1.10 × 10−1 1.86 × 10−2 3.50 × 10−3 7.00 × 10−4 1.45 × 10−4 3.06 × 10−5

0.5 0.2 11.588 6.240 1.033 × 10−3 8.54 × 10−1 1.19 × 10−1 2.19 × 10−2 4.51 × 10−3 9.86 × 10−4 2.23 × 10−4 5.15 × 10−5

0.5 0.6 8.427 4.538 2.960 × 10−3 8.10 × 10−1 1.44 × 10−1 3.36 × 10−2 8.77 × 10−3 2.43 × 10−3 6.95 × 10−4 2.04 × 10−4

0.5 0.9 5.262 2.833 1.343 × 10−2 7.25 × 10−1 1.82 × 10−1 5.87 × 10−2 2.10 × 10−2 7.98 × 10−3 3.14 × 10−3 1.27 × 10−3

TABLE XII. Same scheme as Table X.

e â p ps h _Ji δh _Ji2 δh _Ji3 δh _Ji4 δh _Ji5 δh _Ji6 δh _Ji7 δh _Ji8
0.7 −0.9 10.595 10.585 5.335 × 10−3 7.71 × 10−1 1.64 × 10−1 4.50 × 10−2 1.35 × 10−2 4.26 × 10−3 1.38 × 10−3 4.52 × 10−4

0.7 −0.6 9.580 9.570 7.320 × 10−3 7.54 × 10−1 1.72 × 10−1 5.02 × 10−2 1.61 × 10−2 5.42 × 10−3 1.87 × 10−3 6.57 × 10−4

0.7 −0.2 8.160 8.150 1.203 × 10−2 7.25 × 10−1 1.83 × 10−1 5.92 × 10−2 2.10 × 10−2 7.80 × 10−3 2.98 × 10−3 1.16 × 10−3

0.7 0.0 7.410 7.400 1.613 × 10−2 7.06 × 10−1 1.90 × 10−1 6.49 × 10−2 2.44 × 10−2 9.60 × 10−3 3.89 × 10−3 1.61 × 10−3

0.7 0.2 6.622 6.612 2.255 × 10−2 6.82 × 10−1 1.97 × 10−1 7.20 × 10−2 2.88 × 10−2 1.21 × 10−2 5.24 × 10−3 2.31 × 10−3

0.7 0.6 4.858 4.848 5.390 × 10−2 6.07 × 10−1 2.17 × 10−1 9.34 × 10−2 4.40 × 10−2 2.18 × 10−2 1.11 × 10−2 5.79 × 10−3

0.7 0.9 3.088 3.078 1.504 × 10−1 4.60 × 10−1 2.40 × 10−1 1.31 × 10−1 7.63 × 10−2 4.61 × 10−2 2.87 × 10−2 1.82 × 10−2

0.7 −0.9 12.873 10.585 8.231 × 10−4 8.27 × 10−1 1.35 × 10−1 2.89 × 10−2 6.89 × 10−3 1.73 × 10−3 4.49 × 10−4 1.19 × 10−4

0.7 −0.6 11.639 9.570 1.155 × 10−3 8.13 × 10−1 1.42 × 10−1 3.29 × 10−2 8.41 × 10−3 2.27 × 10−3 6.34 × 10−4 1.81 × 10−4

0.7 −0.2 9.912 8.150 1.974 × 10−3 7.89 × 10−1 1.55 × 10−1 3.99 × 10−2 1.14 × 10−2 3.45 × 10−3 1.08 × 10−3 3.43 × 10−4

0.7 0.0 9.000 7.400 2.719 × 10−3 7.73 × 10−1 1.63 × 10−1 4.47 × 10−2 1.36 × 10−2 4.39 × 10−3 1.46 × 10−3 4.98 × 10−4

0.7 0.2 8.042 6.612 3.937 × 10−3 7.53 × 10−1 1.71 × 10−1 5.06 × 10−2 1.66 × 10−2 5.76 × 10−3 2.06 × 10−3 7.56 × 10−4

0.7 0.6 5.896 4.848 1.068 × 10−2 6.90 × 10−1 1.94 × 10−1 6.94 × 10−2 2.75 × 10−2 1.15 × 10−2 4.97 × 10−3 2.20 × 10−3

0.7 0.9 3.744 3.078 4.133 × 10−2 5.70 × 10−1 2.24 × 10−1 1.03 × 10−1 5.18 × 10−2 2.74 × 10−2 1.50 × 10−2 8.40 × 10−3

0.7 −0.9 18.595 10.585 1.578 × 10−4 8.81 × 10−1 1.00 × 10−1 1.53 × 10−2 2.59 × 10−3 4.63 × 10−4 8.55 × 10−5 1.61 × 10−5

0.7 −0.6 16.812 9.570 2.225 × 10−4 8.71 × 10−1 1.08 × 10−1 1.77 × 10−2 3.25 × 10−3 6.29 × 10−4 1.26 × 10−4 2.58 × 10−5

0.7 −0.2 14.317 8.150 3.846 × 10−4 8.52 × 10−1 1.20 × 10−1 2.23 × 10−2 4.62 × 10−3 1.01 × 10−3 2.30 × 10−4 5.32 × 10−5

0.7 0.0 13.000 7.400 5.338 × 10−4 8.40 × 10−1 1.27 × 10−1 2.54 × 10−2 5.67 × 10−3 1.34 × 10−3 3.26 × 10−4 8.14 × 10−5

0.7 0.2 11.616 6.612 7.815 × 10−4 8.25 × 10−1 1.36 × 10−1 2.95 × 10−2 7.15 × 10−3 1.83 × 10−3 4.86 × 10−4 1.32 × 10−4

0.7 0.6 8.517 4.848 2.219 × 10−3 7.77 × 10−1 1.61 × 10−1 4.34 × 10−2 1.31 × 10−2 4.16 × 10−3 1.37 × 10−3 4.63 × 10−4

0.7 0.9 5.408 3.078 9.906 × 10−3 6.86 × 10−1 1.96 × 10−1 7.07 × 10−2 2.83 × 10−2 1.20 × 10−2 5.26 × 10−3 2.36 × 10−3

0.9 −0.9 11.084 11.074 2.040 × 10−3 7.45 × 10−1 1.75 × 10−1 5.30 × 10−2 1.76 × 10−2 6.14 × 10−3 2.20 × 10−3 8.00 × 10−4

0.9 −0.6 10.042 10.032 2.807 × 10−3 7.28 × 10−1 1.82 × 10−1 5.84 × 10−2 2.06 × 10−2 7.64 × 10−3 2.91 × 10−3 1.13 × 10−3

0.9 −0.2 8.582 8.572 4.643 × 10−3 6.97 × 10−1 1.92 × 10−1 6.75 × 10−2 2.61 × 10−2 1.06 × 10−2 4.44 × 10−3 1.89 × 10−3

0.9 0.0 7.810 7.800 6.253 × 10−3 6.78 × 10−1 1.98 × 10−1 7.33 × 10−2 2.99 × 10−2 1.28 × 10−2 5.65 × 10−3 2.54 × 10−3

0.9 0.2 6.999 6.989 8.798 × 10−3 6.54 × 10−1 2.04 × 10−1 8.03 × 10−2 3.47 × 10−2 1.58 × 10−2 7.38 × 10−3 3.52 × 10−3

0.9 0.6 5.177 5.167 2.155 × 10−2 5.77 × 10−1 2.21 × 10−1 1.01 × 10−1 5.07 × 10−2 2.67 × 10−2 1.45 × 10−2 8.02 × 10−3

0.9 0.9 3.344 3.334 6.525 × 10−2 4.27 × 10−1 2.42 × 10−1 1.39 × 10−1 8.36 × 10−2 5.25 × 10−2 3.40 × 10−2 2.24 × 10−2

0.9 −0.9 12.778 11.074 3.320 × 10−4 7.94 × 10−1 1.52 × 10−1 3.84 × 10−2 1.07 × 10−2 3.17 × 10−3 9.62 × 10−4 2.99 × 10−4

0.9 −0.6 11.576 10.032 4.654 × 10−4 7.78 × 10−1 1.60 × 10−1 4.31 × 10−2 1.29 × 10−2 4.05 × 10−3 1.32 × 10−3 4.37 × 10−4

0.9 −0.2 9.891 8.572 7.946 × 10−4 7.51 × 10−1 1.72 × 10−1 5.11 × 10−2 1.69 × 10−2 5.88 × 10−3 2.12 × 10−3 7.79 × 10−4

(Table continued)
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TABLE XII. (Continued)

e â p ps h _Ji δh _Ji2 δh _Ji3 δh _Ji4 δh _Ji5 δh _Ji6 δh _Ji7 δh _Ji8
0.9 0.0 9.000 7.800 1.093 × 10−3 7.34 × 10−1 1.79 × 10−1 5.64 × 10−2 1.97 × 10−2 7.28 × 10−3 2.78 × 10−3 1.08 × 10−3

0.9 0.2 8.064 6.989 1.582 × 10−3 7.13 × 10−1 1.86 × 10−1 6.28 × 10−2 2.35 × 10−2 9.25 × 10−3 3.77 × 10−3 1.57 × 10−3

0.9 0.6 5.962 5.167 4.278 × 10−3 6.46 × 10−1 2.07 × 10−1 8.24 × 10−2 3.63 × 10−2 1.69 × 10−2 8.15 × 10−3 4.01 × 10−3

0.9 0.9 3.847 3.334 1.656 × 10−2 5.19 × 10−1 2.31 × 10−1 1.16 × 10−1 6.31 × 10−2 3.60 × 10−2 2.12 × 10−2 1.28 × 10−2

0.9 −0.9 18.457 11.074 5.209 × 10−5 8.58 × 10−1 1.16 × 10−1 2.08 × 10−2 4.15 × 10−3 8.75 × 10−4 1.91 × 10−4 4.24 × 10−5

0.9 −0.6 16.720 10.032 7.330 × 10−5 8.46 × 10−1 1.23 × 10−1 2.38 × 10−2 5.13 × 10−3 1.17 × 10−3 2.74 × 10−4 6.56 × 10−5

0.9 −0.2 14.287 8.572 1.262 × 10−4 8.26 × 10−1 1.36 × 10−1 2.94 × 10−2 7.09 × 10−3 1.81 × 10−3 4.77 × 10−4 1.29 × 10−4

0.9 0.0 13.000 7.800 1.747 × 10−4 8.12 × 10−1 1.43 × 10−1 3.31 × 10−2 8.56 × 10−3 2.34 × 10−3 6.59 × 10−4 1.90 × 10−4

0.9 0.2 11.648 6.989 2.550 × 10−4 7.96 × 10−1 1.52 × 10−1 3.79 × 10−2 1.06 × 10−2 3.12 × 10−3 9.50 × 10−4 2.96 × 10−4
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