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We analyze and compute the semiclassical stress-energy flux components, the outflux hTuuiren and the
influx hTvviren (u and v being the standard null Eddington coordinates), at the inner horizon (IH) of a
Reissner-Nordström black hole (BH) of massM and chargeQ, in the near-extremal domain in whichQ=M
approaches 1. We consider a minimally-coupled massless quantum scalar field, in both Hartle-Hawking
and Unruh states, the latter corresponding to an evaporating BH. The near-extremal domain lends itself to
an analytical treatment which sheds light on the behavior of various quantities on approaching extremality.
We explore the behavior of the three near-IH flux quantities hT−

uuiUren, hT−
vviUren, and hT−

uuiHren ¼ hT−
vviHren, as a

function of the small parameter Δ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðQ=MÞ2

p
(where the superscript “U” or “H” respectively refers

to the Unruh or Hartle-Hawking state and “−” refers to the IH value). We find that in the near-extremal
domain hT−

uuiUren ≅ hT−
uuiHren ¼ hT−

vviHren behaves as ∝ Δ5. In contrast, hT−
vviUren behaves as ∝ Δ4, and we

calculate the prefactor analytically. It therefore follows that the semiclassical fluxes at the IH neighborhood
of an evaporating near-extremal spherical charged BH are dominated by the influx hTvviUren. In passing, we
also find an analytical expression for the transmission coefficient outside a Reissner-Nordström BH to
leading order in small frequencies (which turns out to be a crucial ingredient of our near-extremal analysis).
Furthermore, we explicitly obtain the near-extremal Hawking-evaporation rate (∝ Δ4), with an analytical
expression for the prefactor (obtained here for the first time to the best of our knowledge).

DOI: 10.1103/PhysRevD.104.024066

I. INTRODUCTION

This paper extends our previous one [1], in which we
computed and investigated the semiclassical stress-energy
fluxes at the inner horizon (IH) of a spherical charged black
hole (BH). Whereas in the previous paper we considered
BHs with a broad range ofQ=M values, here we restrict our
attention to the near-extremal limit whereQ=M approaches
unity, where Q and M respectively denote the BH’s charge
and mass.
The semiclassical formulation of general relativity treats

matter fields as quantum fields, propagating on a spacetime
background described by a classical metric gαβðxμÞ. The
classical Einstein field equation is then replaced by its
semiclassical counterpart

Gαβ ¼ 8πhTαβiren;

where Gαβ is the Einstein tensor associated with gαβ and
hTαβiren is the renormalized expectation value of the stress-
energy tensor (RSET) associated with the quantum field
in consideration. Evidently, the quantum field and the

geometry of spacetime undergo mutual influence. In par-
ticular, the curved geometry of spacetime induces a non-
trivial stress-energy tensor, even in vacuum states, which in
turn deforms the underlying background geometry—a
phenomenon known as backreaction.
As our spacetime background, we hereby consider a

spherical charged BH given in the standard Schwarzschild
coordinates by the Reissner-Nordström (RN) metric,

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

with the r-dependent function fðrÞ ¼ 1 − 2M
r þ Q2

r2 . We
consider a nonextremal RN BH, meaning 0<Q=M<1.1

This BH metric admits two horizons, corresponding to the

two real roots of fðrÞ, denoted by r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
;

the event horizon (EH) is located at r ¼ rþ, while the IH is
located at r ¼ r−. For later use, we also define the two
surface gravity parameters, κ� ¼ ðrþ − r−Þ=2r2�.
Upon this BH background we introduce an (uncharged)

minimally-coupled massless scalar field Φ, evolving
according to the Klein-Gordon equation
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1Since the metric doesn’t depend on the sign of Q, we take
without loss of generality Q > 0.
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□Φ ¼ 0;

with□ the covariant d’Alembertian associated with the RN
metric. This field may be decomposed into standard ωlm
modes, which, due to the RN metric symmetries, can be
factorized into a t-dependent term e−iωt, an angular term
Ylmðθ;ϕÞ, and a term that depends on r alone. We cast this
last term as ψωlðrÞ=r, where ψωlðrÞ is the so-called radial
function obeying the radial equation

d2ψωlðrÞ
dr2�

¼ ½VlðrÞ − ω2�ψ lmðrÞ; ð1:1Þ

where the r-dependent effective potential VlðrÞ is given by

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ df=dr

r

�
; ð1:2Þ

and r� is the tortoise coordinate defined through
dr=dr� ¼ fðrÞ.2
We shall consider our field in two vacuum quantum

states: the Hartle-Hawking (HH) state [2,3], corresponding
to a quantum field in thermal equilibrium with an infinite
bath of radiation, and the more physically feasible Unruh
state [4], describing the quantum state of a BH that
evaporates via Hawking radiation.
We introduce the future-directed null Eddington coor-

dinates, given inside the BH by u ¼ r� − t and v ¼ r� þ t.
The hTuuiren and hTvviren components of the RSET are
referred to as the flux components, as they may, for
example, describe correspondingly an ingoing and an
outgoing flux of radiation. In the HH state, time-inversion
symmetry implies hTuuðrÞiren ¼ hTvvðrÞiren. In both quan-
tum states, energy-momentum conservation yields the
constancy (namely r-independence) of the quantity

4πr2hTr
t iren ¼ 4πr2ðhTuuiren − hTvvirenÞ: ð1:3Þ

In the HH state this constant trivially vanishes. In the Unruh
state, it coincides with the Hawking outflux (as may be seen
by evaluating the above expression at r → ∞, noting that in
the Unruh state r2hTvviren vanishes in that limit).
As discussed in Ref. [1], the flux components are crucial

for backreaction in the vicinity of the IH, potentially having
an accumulating effect on the form of the metric there. We
thus concentrate on the IH value of the three flux quantities,
hT−

uuiHren, hT−
uuiUren, and hT−

vviUren, where the superscript “H”
(“U”) corresponds to the HH (Unruh) state, and an upper
“−” indicates the IH limit. (Hereafter, the term flux
quantities will refer to these three IH quantities.) In
Ref. [1], we computed the near-IH flux components in

both quantum states for a variety of nonextremal RN BHs,
and displayed the results as a function ofQ=M (for a related
work, see also Ref. [5]). All three flux quantities, hT−

uuiHren,
hT−

uuiUren, and hT−
vviUren, were found to change their sign at

some Q=M value (all around ≈0.967), being increasingly
positive at lower Q=M values and becoming negative
beyond that critical Q=M value. Furthermore, as Q=M
grows towards the extremal value of 1, all flux quantities
decay to zero (at different rates).
Here, we intend to take a closer look at the near-extremal

limit, characterized by 1 −Q=M ≪ 1. That is, we wish to
examine the near-IH fluxes as Q=M approaches 1. As we
shall see, the near-extremal domain lends itself to analytical
investigation, which sheds light on the behavior we see
numerically. In fact, we find it beneficial to focus on an
equivalent set of three quantities, being the elementary flux
quantity hT−

uuiHren and the differences hT−
uuiHren − hT−

uuiUren
and hT−

uuiUren − hT−
vviUren.3 The study of the differences,

rather than the flux quantities directly, allows a sharper
investigation of the near-extremal domain, as these
differences vanish faster than their constituents on
approaching extremality.
One obvious motivation to consider the near-extremal

limit is the very evaporation process considered here: Since
our scalar field Φ is uncharged, the BH charge remains
fixed at all times, while the mass steadily shrinks due to
the emission of Hawking radiation. In the long run, the BH
mass M will decay asymptotically to Q. As M approaches
Q, the Hawking temperature vanishes and the evaporation
rate decays to zero. Note that in such an evaporation
process the BH lasts forever, approaching extremality at the
late-time limit (for a detailed discussion of this evaporation
process, see Ref. [6]).4

To compute the quantum fluxes in the IH-vicinity, we
shall employ the θ-splitting variant [7,8] of the “pragmatic
mode-sum regularization” (PMR) method [9–11], as we did
in Ref. [1]. Here, however, owing to the notable simplicity
of the near-extremal limit, we shall carry this computation
mostly analytically, and then validate our analytical results
against numerical ones.
The rest of the paper is organized as follows. In Sec. II

we develop the required preliminaries for the near-extremal
analysis. Section III serves as the core of the paper, in
which we perform the analysis of the flux quantities and
their differences in the near-extremal limit. Numerical
results and their agreement with the expressions found
in the previous section are presented in Sec. IV. We end
with a summary of our results and a short discussion in

2Note that there is a freedom of an additive integration constant
in the definition of r�, but the analysis which follows is
independent of such a choice.

3Clearly, this set is equivalent (in the sense of the encoded
information) to the basic triplet of flux quantities, with hT−

uuiHren
being the anchoring quantity shared by the two sets.

4We should bear in mind, however, that this scenario is not
particularly realistic, due to the abundance of charged particles
(e.g., in the form of plasma) in the universe, efficiently acting to
neutralize charged BHs.
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Sec. V. In the Appendix we analyze the transmission
coefficient outside the BH to leading order in low frequen-
cies, a quantity required for our analysis.
In this paper, we work in general-relativistic units

c ¼ G ¼ 1 and signature ð−þþþÞ.

II. PRELIMINARIES

In this section we lay the foundations for the near-
extremal analysis. The first subsection presents the basic
expressions for the three flux quantities at the IH, as
developed in Ref. [1], from which we construct the three
quantities to be focused on in this paper. The second
subsection is devoted to analyzing the internal radial
function in the near-extremal limit, particularly in the
vicinity of the IH.

A. Basic expressions for the fluxes and their
differences at the IH

In the BH interior, we endow the radial equation (1.1)
with the initial condition of a free incoming wave at
the EH5,

ψωl ≅ e−iωr� ; r� → −∞: ð2:1Þ

At the other edge, in the IH vicinity, the effective potential
(1.2) vanishes like r − r−. Hence, the radial function
[satisfying Eq. (1.1)] attains the general free asymptotic
form

ψωl ≅ Aωleiωr� þ Bωle−iωr� ; r� → ∞ ð2:2Þ

with Aωl and Bωl some constant coefficients determined by
the scattering inside the BH. Notably, Aωl and Bωl satisfy
the relation

jBωlj2 − jAωlj2 ¼ 1; ð2:3Þ

arising from the invariance of the Wronskian of ψωl and its
complex conjugate.
The basic quantities we concentrate on hereafter involve

Aωl and Bωl, as well as the transmission and reflection
coefficients τupωl and ρ

up
ωl for the “up” modes scattered outside

the BH (see definition in Ref. [12]). We shall analyze the
near-extremal limit of Aωl and Bωl in Sec. II B 1, while an
analysis of τupωl and ρupωl is deferred to the Appendix.
As mentioned in the introduction, we shall be interested

in the flux components hTuuiren and hTvviren in both
quantum states, in the vicinity of the IH. In Ref. [1] we
obtained expressions for these three elementary flux

quantities, hT−
uuiHren, hT−

uuiUren, and hT−
vviUren as a regularized

mode sum, employing the θ-splitting variant of the PMR
method. We hereby quote the resulting expressions for
convenience [see Eqs. (9)–(13) therein].
The flux quantities at the IH are generally given by

hT−
yyiΞren ¼ ℏ

X∞
l¼0

2lþ 1

8π
ðFΞ

lðyyÞ − βÞ; ð2:4Þ

where the superscript “Ξ” denotes the state (either H or U),
the subscript “y” stands for either u or v,

FΞ
lðyyÞ ≡

Z
∞

0

dωÊΞ
ωlðyyÞ;

and β is a constant [the so-called “blind-spot”; to be given
explicitly in Eq. (2.8) below], which is the large-l limit
of FΞ

lðyyÞ. The integrand ÊωlðyyÞ for the HH state is

ÊH
ωlðyyÞ ¼

ω

πr2−
½coth ðπω=κþÞjAωlj2

þ cschðπω=κþÞℜðρupωlAωlBωlÞ� ð2:5Þ

(whereℜ denotes the real part and csch≡ 1= sinh), and the
corresponding integrands in the Unruh state are given by:

ÊU
ωlðuuÞ ¼ ÊH

ωlðyyÞ þ
ω

2πr2−
½1 − coth ðπω=κþÞ�jτupωlj2jAωlj2;

ð2:6Þ

ÊU
ωlðvvÞ ¼ ÊH

ωlðyyÞ þ
ω

2πr2−
½1 − coth ðπω=κþÞ�jτupωlj2jBωlj2

ð2:7Þ

Note that the difference between any of the two
Unruh integrands and the HH integrand goes like
∝jτupωlj2, which in turn decays with l for fixed ω [note that
the potential barrier outside the BH, given in Eq. (1.2),
goes like lðlþ 1Þ, thus blocking the transmission at
large l]. Hence, all three flux quantities share the same
large-l “blind-spot” β, which may be analytically derived
(see Sec. III in the Supplemental Material of Ref. [1]) to be
given by

β ¼ 1

24πr2−
ðκ2− − κ2þÞ: ð2:8Þ

The three flux quantities hT−
uuiHren, hT−

uuiUren, and hT−
vviUren

(to which we shall hereafter also refer collectively as the
elementary triplet) were the focus of our previous paper [1],
where they were computed for a wide variety of subex-
tremalQ=M values. However, in the near-extremal domain,
we find it worthwhile to organize these three flux quantities
in a different manner. That is, we shall focus on an

5In the BH interior r is timelike, and so is r�. r is monoton-
ically decreasing with time, whereas r� is monotonically increas-
ing. The EH (r ¼ rþ) is in fact the past boundary of the BH
interior, and it corresponds to r� → −∞.
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equivalent, slightly different, set of three quantities (to
which we shall occasionally refer as the derived triplet):
(i) the near-IH flux component in the HH state, hT−

uuiHren,
which also equals hT−

vviHren; (ii) the difference between
the HH and Unruh values of hT−

uuiren, which we shall
denote by hT−

uuiH−U
ren ≡ hT−

uuiHren − hT−
uuiUren; and (iii) the

difference between the two near-IH flux components
in the Unruh state, multiplied by 4πr2−, namely
Λ≡ 4πr2−ðhT−

uuiUren − hT−
vviUrenÞ. Other than its interesting

behavior in the near-extremal domain, considering Λ has
further motivation—one may recognize it as the conserved
quantity mentioned in Eq. (1.3), in the Unruh state,
evaluated at the IH.6 Obviously, since this quantity is
independent of r, its value may also be evaluated outside
the BH. In this sense, Λ is the simplest quantity of all three
members of the derived triplet, as it is fully determined by
the scattering problem outside the BH.
The first quantity, hT−

uuiHren, is given in Eqs. (2.4), (2.5),
and (2.8). The second quantity hT−

uuiH−U
ren is determined

from Eqs. (2.4) and (2.6), or explicitly:

hT−
uuiH−U

ren ¼ ℏ
X∞
l¼0

2lþ 1

4π

Z
∞

0

dω
ω

4πr2−
½coth ðπω=κþÞ − 1�

× jτupωlj2jAωlj2: ð2:9Þ

Finally, the third quantity Λ is obtained by subtracting
Eq. (2.6) from Eq. (2.7) and using the Wronskian
relation (2.3):

Λ ¼ ℏ
X∞
l¼0

2lþ 1

4π

Z
∞

0

dωω½coth ðπω=κþÞ − 1�jτupωlj2:

ð2:10Þ

As expected, this conserved quantity only requires the
transmission coefficient outside the BH. Indeed, this is the
known expression for the luminosity of an evaporating BH
[see, for example, Eq. (136) in Ref. [13] or Eq. (6.20) in
Ref. [14] for the Schwarzschild case. The only modification
needed is replacing the Schwarzschild κ parameter by the
corresponding RN parameter κþ].
In Sec. III we shall take the above expressions for the

derived triplet of quantities, which are valid for any Q=M,
and evaluate them in the near-extremal domain of Q=M
approaching 1.

B. The rescaled radial equation

To quantify near-extremality, we define the dimension-
less parameter Δ to be half the difference between rþ=M
and r−=M:

Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðQ=MÞ2

q
¼ rþ=M − 1 ¼ 1 − r−=M: ð2:11Þ

Note that Δ varies from 1 (Schwarzschild) to 0 (extremal
RN), whereas the near-extremal domain is characterized
by Δ ≪ 1. We shall examine the behavior of the various
quantities upon approaching extremality by constructing
their leading-order expansions in small Δ.
To analyze the scaling with Δ, it may be helpful to

rewrite the radial equation (1.1) in a Δ-normalized fashion,
as we shall now demonstrate.
In the BH interior, the radial variable r is confined to a

domain of width 2MΔ,

1 − Δ ≤ r=M ≤ 1þ Δ:

That is, r=M − 1 scales linearly with Δ. We thus define the
rescaled variable

s≡ r=M − 1

Δ
;

suitable for our near-extremal analysis. Note that s varies
from 1 at the EH to −1 at the IH. One finds that the function
fðrÞ is

f ¼ Δ2
s2 − 1

ð1þ ΔsÞ2 ;

and the effective potential Vl (1.2) written in terms of the
variable s is

Vl ¼
Δ2

M2

s2 − 1

ð1þ ΔsÞ4
�
lðlþ 1Þ þ 2Δ

sþ Δ
ð1þ ΔsÞ2

�
:

We now write this effective potential separately for l ¼ 0
and l > 0, expressed in each of these two cases at its
leading order in the small parameter Δ:

Vl¼0 ¼ 2
Δ3

M2
sðs2 − 1Þ þOðΔ4Þ ð2:12Þ

for l ¼ 0 and

Vl>0 ¼
Δ2

M2
lðlþ 1Þðs2 − 1Þ þOðΔ3Þ ð2:13Þ

for l > 0.
The variable s is related to r� via

ds
dr�

¼ f
MΔ

¼ Δ
M

ðs2 − 1Þ þOðΔ2Þ;

meaning that r� basically scales like M=Δ. We thus define
the rescaled dimensionless variable r̃� ≡ ðΔ=MÞr�. It
satisfies the ordinary differential equation

6Hence, we shall hereafter often refer to Λ as the “conserved
quantity”.
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ds
dr̃�

¼ ðs2 − 1Þ þOðΔÞ;

which may be solved to yield

sðr̃�Þ ¼ − tanhðr̃�Þ þOðΔÞ: ð2:14Þ

We also define the rescaled dimensionless frequency and
effective potential, ω̃≡ ðM=ΔÞω and Ṽl ≡ ðM2=Δ2ÞVl,
respectively. We may now rewrite the radial equation (1.1)
in a rescaled fashion, in the variable r̃�, as

ψωl;r̃� r̃� ¼ ðṼl − ω̃2Þψωl; ð2:15Þ

along with the boundary condition ψωl ≅ e−iω̃r̃� at
r̃� → −∞ [in correspondence with Eq. (2.1)].
Finally, we use Eq. (2.14) to rewrite the rescaled

potentials for l ¼ 0 (2.12) and l > 0 (2.13) explicitly in
terms of r̃�, to leading order in Δ:

Ṽl¼0 ¼ 2Δ tanhðr̃�Þsech2ðr̃�Þ þOðΔ2Þ ð2:16Þ

and

Ṽl>0 ¼ −lðlþ 1Þsech2ðr̃�Þ þOðΔÞ: ð2:17Þ

1. Near-extremal internal scattering

We are interested in the Δ ≪ 1 limit of the coefficients
Aωl and Bωl appearing in the near-IH free asymptotic form
of the radial function (2.2), as they are vital components in
the quantities we wish to analyze (as seen in Sec. II A). The
rescaled radial equation (2.15) developed above may be
analyzed to solve the scattering problem in the BH interior
to leading order in Δ, yielding Aωl and Bωl to that order.

The l ¼ 0 case.—For l ¼ 0, the rescaled potential (2.16)
vanishes like Δ. That is, in the near-extremal domain
Ṽl¼0 ≪ ω̃2 (for any given ω̃ > 0), hence the radial equation
for l ¼ 0 lends itself to a leading-order Born approxima-
tion. Accordingly, the asymptotic behavior of the radial
function at r̃� → ∞ is

ψω;l¼0 ≅ e−iω̃r̃�
�
1 −

1

2iω̃

Z
∞

−∞
Ṽl¼0ðxÞdx

�

þ eiω̃r̃�

2iω̃

Z
∞

−∞
e−2iω̃xṼl¼0ðxÞdx

¼ e−iω̃r̃� − 2πΔω̃cschðπω̃Þeiω̃r̃� þOðΔ2Þ: ð2:18Þ

Note that the term
R∞
−∞ Ṽl¼0ðxÞdx leaves OðΔ2Þ, owing to

the odd parity of the leading order of Ṽl¼0 [see Eq. (2.16)].

Comparing this with the asymptotic form (2.2) we get
the coefficients Aωl and Bωl at l ¼ 0, to leading order in Δ,
to be

Aω;l¼0 ¼ −2πΔω̃cschðπω̃Þ þOðΔ2Þ;
Bω;l¼0 ¼ 1þOðΔ2Þ: ð2:19Þ

The l > 0 case.—Note that unlike the l ¼ 0 case, for l > 0
Eq. (2.15) with the rescaled potential (2.17) is insensitive
toΔ. The scattering problem is given (to leading order inΔ)
by the corresponding equation,

ψωl;r̃� r̃� ¼ −½lðlþ 1Þsech2ðr̃�Þ þ ω̃2�ψωl;

and it is solved analytically to yield

ψω;l>0 ¼ c1Piω̃
l ðzÞ þ c2Qiω̃

l ðzÞ;

where Piω̃
l is the associated Legendre polynomial,

Qiω̃
l is the associated Legendre function of the second

kind, c1 and c2 are coefficients to be determined, and
we define the variable z≡ − tanh r̃�.

7 Note that z → 1
corresponds to the EH, whereas z → −1 corresponds to
the IH.
In order to find c1 and c2, we carry the above general

solution to the EH, noting that

Piω̃
l ðz → 1Þ ≅ 1

Γð1 − iω̃Þ
�
1 − z
2

�
−iω̃=2

;

where Γ hereafter denotes the gamma function, as well as

Qiω̃
l ðz → 1Þ ≅

�
1 − z
2

�
−iω̃=2 cosh ðπω̃ÞΓðiω̃Þ

2

−
�
1 − z
2

�
iω̃=2 Γð−lþ iω̃ÞΓð−iω̃Þ

2Γð−l − iω̃Þ :

In addition, note that at z → 1 we have 1 − z ≅ 2e2r̃� ,
and thus

�
1 − z
2

�
−iω̃=2

≅ e−iω̃r̃� ¼ e−iωr� :

Then, matching with the initial condition (2.1) of a free
incoming wave at the EH yields c1 ¼ Γð1 − iω̃Þ along with
c2 ¼ 0. That is, the radial function for l > 0 in the BH
interior is

7z actually coincides with s to leading order in Δ, see
Eq. (2.14).
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ψω;l>0 ¼ Γð1 − iω̃ÞPiω̃
l ðzÞ: ð2:20Þ

Now, in order to carry the above expression to the IH, we
note that,

Piω̃
l ðz → −1Þ ≅ i

�
1þ z
2

�
iω̃=2

×
πcschðπω̃Þ

Γð−l − iω̃ÞΓð1þ l − iω̃ÞΓð1þ iω̃Þ

and that at z → −1, following 1þ z ≅ 2e−2r̃� ,

�
1þ z
2

�
iω̃=2

≅ e−iω̃r̃� ¼ e−iωr� :

Then, comparing with the free asymptotic form in Eq. (2.2)
yields

Aω;l>0 ¼ OðΔÞ;

Bω;l>0 ¼ i
πcschðπω̃ÞΓð1 − iω̃Þ

Γð−l − iω̃ÞΓð1þ l − iω̃ÞΓð1þ iω̃Þ þOðΔÞ:

ð2:21Þ

One may verify explicitly that to leading order we have
jBω;l>0j ¼ 1, as indeed required by Eq. (2.3) given the
vanishing of Aω;l>0. That property, of Aωl vanishing withΔ,
is actually shared by the l > 0 and the l ¼ 0 cases alike.

III. THE NEAR-EXTREMAL FLUX QUANTITIES
AND THEIR DIFFERENCES

As mentioned previously, in Ref. [1] all three flux
quantities hT−

uuiHren, hT−
uuiUren, and hT−

vviUren were computed
numerically and shown to decay as Q=M grows towards 1
[see Fig. (1) therein]. In what follows, we shall focus on
the leading-order behavior in Δ of the three derived
quantities introduced in Sec. II A: hT−

uuiHren, hT−
uuiH−U

ren ≡
hT−

uuiHren − hT−
uuiUren, and Λ≡ 4πr2−ðhT−

uuiUren − hT−
vviUrenÞ.

The member of this triplet which is simplest to approach
is Λ, depending on τupωl only, as can be seen in Eq. (2.10).
The other two quantities, hT−

uuiHren and hT−
uuiH−U

ren , require
both exterior and interior scattering coefficients. We shall,
in fact, treat analytically only two of the three quantities,
Λ and hT−

uuiH−U
ren . The flux hT−

uuiHren will not be treated
analytically, but its leading order (based on numerics) will
nevertheless be presented, as a meaningful result. Using the
results for the derived triplet, we subsequently treat the
original three flux quantities hT−

yyiΞren.

A. The conserved quantity Λ in a near-extremal BH

We may evaluate the near-extremal limit of Λ through its
mode-sum expression given in Eq. (2.10).

First, note that the surface gravity of a near-extremal RN
BH scales like κþ ≅ Δ=M. Then, the coth ðπω=κþÞ − 1
factor in the integrand in Eq. (2.10) (which decays expo-
nentially in the coth argument) acts as a weight function on
theω axis, crucially leaving an effective sampling window of
width ∝Δ=M. We are thus interested in the behavior of the
various components of the integrand in low frequencies.
A detailed analysis of τupωl to leading order in ωM ≪ 1 is
presented in the Appendix, with the result given in Eq. (A31)
therein. Notably, to leading order in low frequencies we have
τupωl ∝ ωlþ1 (this holds regardless of Q=M, as long as
Q=M < 1). Furthermore, the prefactor of this leading-order
term scales as Δl. The contribution of each l to Λ [as may be
seen through Eq. (2.10)] therefore goes likeΔ4ðlþ1Þ. The sum
over l in the limit Δ ≪ 1 is thus dominated by the l ¼ 0
term. The transmission coefficient that enters this term is

τupω;l¼0 ¼ −2iωrþ þOðω2Þ
[see Eq. (A32) in the Appendix].
We may now proceed to compute Λ to leading order in

Δ, using Eq. (2.10) and taking only the l ¼ 0 contribution
as discussed:

Λ ≅ ℏ
r2þ
π

Z
∞

0

dωω3½coth ðπω=κþÞ − 1�: ð3:1Þ

Recalling that ω ¼ ðΔ=MÞω̃ ≅ κþω̃ (and also rþ ≅ M), we
find it convenient to rewrite this expression in terms of a
dimensionless and Δ-invariant integral:

Λ≅ℏ
Δ4

πM2

Z
∞

0

dω̃ω̃3½cothðπω̃Þ−1�¼ℏ
Δ4

120πM2
: ð3:2Þ

We have thus found the Hawking outflux to leading order
in Δ for a near-extremal RN BH. The dependence on Δ4 is
well known (see, e.g., Ref. [6]), but the prefactor, which we
derived analytically, is given here for the first time as far as
we are aware.

B. hT −
uuiH −U

ren in a near-extremal BH

The treatment of hT−
uuiH−U

ren closely follows the calcu-
lation of Λ carried out in the previous subsection. To this
end, it is instructive to compare the expressions in
Eqs. (2.9) and (2.10). Both integrands include the factor
coth ðπω=κþÞ − 1, implying an effective frequency window
of width ∝ Δ=M. In fact, the only difference between the
two integrands (apart from the trivial constant factor 4πr2−)
is the extra multiplicative quantity jAωlj2 appearing in the
expression for hT−

uuiH−U
ren . As found in Sec. II B 1 [see

Eqs. (2.19) and (2.21)], the coefficient Aωl to leading order
in Δ is ≅ −2πΔω̃cschðπω̃Þ for l ¼ 0, and vanishes at least
like Δ for l > 0. We already established in the previous
subsection that the expression (2.10) for Λ is dominated by
the l ¼ 0 contribution. Given the behavior of Aωl quoted
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above, the extra jAωlj2 factor in the expression for hT−
uuiH−U

ren
does not alter this situation. Thus, obtaining hT−

uuiH−U
ren to

leading order in Δ would merely require multiplying the
integrand in Eq. (3.2) by

jAω;l¼0j2 ≅ ½2πΔω̃ csch ðπω̃Þ�2

(as well as dividing by the constant 4πr2− ≅ 4πM2).
Combining these factors yields

hT−
uuiH−U

ren ≅
ℏ
M4

Δ6

Z
∞

0

dω̃ ω̃5½coth ðπω̃Þ − 1�csch2ðπω̃Þ

¼ ℏ
Δ6

12M4π6
½π4 − 90ζð5Þ�; ð3:3Þ

where ζ is the Riemann zeta function.

C. hT −
uuiHren in a near-extremal BH

Of the three members of the derived triplet, the expres-
sion for hT−

uuiHren is the most challenging one to analyze. It is
given by Eqs. (2.4), (2.5), and (2.8). It is fairly easy to see,
for example, that the second term in the integrand in
Eq. (2.5) yields a contribution ∝ Δ3. However, there is
another such contribution in β, and these two ∝ Δ3 terms
just cancel each other out. Then there are various potential
contributions at order ∝ Δ4, but these are more difficult to
analyze, as this analysis would require computing Aωl; Bωl

and ρupωl beyond their leading order in Δ.8 We therefore
resorted here to numerics. A numerical analysis of hT−

uuiHren
indicates that its small-Δ asymptotic behavior is

hT−
uuiHren ≅ αΔ5; ð3:4Þ

with the numerically extracted coefficient α ≅ −3.4375×
10−3ℏM−4. This behavior is demonstrated in Figs. 1 and 2
(by the green dots approaching the green dashed line).

D. The three elementary fluxes
in a near-extremal BH

In Secs. III A, III B, and III C we analyzed the derived
triplet in a near-extremal RN BH. Here, we shall utilize
these results to obtain the leading-order behavior of the
original elementary triplet of fluxes hT−

yyiΞren.
Notably, the difference between hT−

uuiHren and hT−
uuiUren

given in Eq. (3.3) decays faster than hT−
uuiHren [see Eq. (3.4)].

Consequently, hT−
uuiUren shares the same leading-order

behavior as its HH counterpart, namely

hT−
uuiHren ≅ hT−

uuiUren ≅ αΔ5 ð3:5Þ

with α as given in the previous subsection.
In addition, recall that Λ is proportional to the difference

between hT−
uuiUren and hT−

vviUren, and that it was found to
decay like Δ4 [see Eq. (3.2)]. We thus conclude that in a
near-extremal RN BH, the Unruh ingoing flux component
hT−

vviUren dominates over its outgoing counterpart hT−
uuiUren,

and approaches −Λ=4πr2− ≅ −Λ=4πM2 as Δ decreases.
Explicitly, the leading order of hT−

vviUren in small Δ is
given by

hT−
vviUren ≅ −ℏ

Δ4

480π2M4
: ð3:6Þ

IV. NUMERICAL RESULTS

Using the methods described in Ref. [1], we computed
the three flux quantities hT−

yyiΞren in a set of Q=M values
exponentially approaching the extremal value of 1. The
procedure includes numerically solving the radial equa-
tion (1.1) in the BH interior and exterior to extract the
internal scattering coefficients Aωl and Bωl (2.2) as well as
the transmission and reflection coefficients τupωl and ρupωl,
subsequently feeding them into the relevant mode sums as
outlined in Sec. II A. Performing the computation, we
found rapid exponential convergence in both ω and l,
which facilitates the numerical implementation of the
procedure.9 Subsequently, from the three flux quantities
hT−

yyiΞren we also derived the differences hT−
uuiH−U

ren and Λ.
Fig. 1 portrays the leading-order behavior of the derived

triplet Λ, hT−
uuiHren and hT−

uuiH−U
ren , in the near-extremal

domainΔ ≪ 1. Each flux quantity is divided by the leading
power of Δ in its near-extremal asymptotic behavior
(namely Δ4, Δ5 and Δ6, respectively). The approach to
extremality amounts to moving leftwards in the figure,
and the figure indicates that all displayed curves flatten at
that limit. The numerical results for Λ and hT−

uuiH−U
ren are in

full agreement with the analytically-derived leading-order
behavior given in Eqs. (3.2) and (3.3), represented respec-
tively by horizontal orange and purple dashed lines with the

8Notice that in the analysis of Λ and hT−
uuiH−U

ren , carried out in
the previous two subsections, the corresponding integrands were
both proportional to jτupωlj2 [see Eqs. (2.9) and (2.10)] along with a
weight factor of effective width ∝ Δ on the ω axis—hence
contributing an extra factor ∝ Δ2 (and even higher powers of Δ
for l > 0). In the present case, no such jτupωlj2 factor exists in the
integrand in Eq. (2.5); hence the various potential contributions
start already at lower powers of Δ compared to the other two
cases.

9As may be seen analytically, for each of these three quantities
the integrand decays exponentially with ω (other than the trivial
decaying factors, this has to do with the analytically-known
exponential decay of Aωl and ρωl at large frequencies). The ω
range chosen for the computation suitably scales with Δ. The
series in l, constructed after performing the integration over ω,
exhibits too a very quick exponential decay. In fact, it turns out
that at this domain of Δ ≪ 1 it suffices to include the l ¼ 0
contribution alone. Nevertheless, to be on the safe side, we
included a few additional l values in our computation.
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corresponding coefficient values appearing on top. The
leading-order coefficient for hT−

uuiHren is extracted from the
numerics to be α ≃ −3.4375 × 10−3ℏM−4, and is repre-
sented by the horizontal green dashed line (in both figures).
Similarly, Fig. 2 portrays the leading-order behavior of

the three elementary flux quantities hT−
yyiΞren in the near-

extremal domain Δ ≪ 1. Each flux quantity is divided by
its leading power of Δ (namely Δ4 or Δ5). As seen in
Eq. (3.5), hT−

uuiHren and hT−
uuiUren share the same leading order

in their expansion in small Δ, hence their plots coincide
towards extremality. The amount by which they differ has
been analyzed and is given in Eq. (3.3) (and displayed

in Fig. 1). The leading-order coefficient for hT−
vviUren is

known analytically (3.6), and is represented by the blue
horizontal dashed line.

V. DISCUSSION

Our main goal in this paper was to investigate and
compute the semiclassical null fluxes hTuuiren and hTvviren
at the IH of a near-extremal RN BH, in the Unruh and
HH quantum states. Since in the HH state we have
hTvviren ¼ hTuuiren, there are three such independent flux
quantities: hT−

uuiUren, hT−
vviUren, and hT−

uuiHren. (Recall, the “−”
superscript denotes the asymptotic IH value, and the
superscripts “U” and “H” respectively refer to the
Unruh and HH quantum states.) We referred to these three
flux quantities as the elementary triplet of fluxes. We found
it useful, however, to introduce another (yet mathematically
equivalent) triplet of flux-related quantities: hT−

uuiHren, Λ,
and hT−

uuiH−U
ren , to which we referred as the derived triplet.

Here “H −U“denotes the flux difference between the
HH and Unruh states, and Λ≡4πr2−ðhT−

uuiUren−hT−
vviUrenÞ.

Although the elementary and derived triplets in principle
encode the same information, we found it beneficial to
focus our analysis on the latter triplet, as it allows a sharper
investigation of the near-extremal limit. Firstly, two out of
the three members of the derived triplet, Λ and hT−

uuiH−U
ren ,

are amenable to a full leading-order analytical treatment
near extremality. Furthermore, we find that the flux differ-
ence hT−

uuiH−U
ren decreases faster than both hT−

uuiHren and
hT−

uuiUren on approaching extremality. As an additional
motivation, Λ turns out to be directly associated with the
conserved quantity presented in Eq. (1.3), which in fact
coincides with the Hawking-evaporation outflux to infinity
(a point to be further discussed below).
We hereby summarize our findings for the asymptotic

behavior of the various flux quantities, to leading order in
the small parameter Δ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðQ=MÞ2
p

(which expresses
the deviation from extremality). Considering first the
derived triplet, we obtained analytical expressions for
two of its members: Λ ∝ Δ4 and hT−

uuiH−U
ren ∝ Δ6 [see

Eqs. (3.2) and (3.3) respectively]. For the third member
we got a numerical result: hT−

uuiHren ∝ Δ5 [see Eq. (3.4)].
Our analytical results (including both the leading-order
powers of Δ and the corresponding prefactors) agree with
the behavior seen in the numerically computed quantities,
as portrayed in Fig. 1.
From these results we could easily obtain the leading-

order behavior of the elementary triplet, namely the flux
quantities hT−

yyiΞren (see Sec. III D). We quote our final
results:

hT−
vviHren ¼ hT−

uuiHren ≅ hT−
uuiUren ≅ αΔ5

hT−
vviUren ≅ −ℏ

Δ4

480π2M4

FIG. 1. ΛΔ−4, hT−
uuiHrenΔ−5 and hT−

uuiH−U
ren Δ−6 in suitable units

vs log10 Δ. The horizontal colored dashed lines correspond to the
coefficients of the leading orders in Δ, known analytically for Λ
and hT−

uuiH−U
ren as prescribed in Eqs. (3.2) and (3.3).

FIG. 2. hT−
vviUrenΔ−4, hT−

uuiHrenΔ−5 and hT−
uuiUrenΔ−5 in suitable

units vs log10 Δ. The horizontal colored dashed lines correspond
to the coefficients of the leading orders in Δ, known to be
identical for hT−

uuiHren and hT−
uuiUren [see Eq. (3.5)], and known

analytically for hT−
vviUren as prescribed in Eq. (3.6).
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where α is a coefficient extracted from the numerics to be
α ≅ −3.4375 × 10−3ℏM−4 (as indicated from the level of
the horizontal dashed green line in, e.g., Fig. 1).
These results may be intuitively understood as follows:

At a nearly extremal RN BH, since the interior domain
shrinks as the two horizons “approach one another” (as
indicated by the similarity of their rþ and r− values, which
only differ by 2MΔ), the fluxes at the IH vicinity don’t
differ much from their corresponding EH values. That is,
since for an evaporating BH (in the Unruh state) we have
hTvviUren < 0 and hTuuiUren ¼ 0 at the EH, we expect to find
at the IH a negative hT−

vviUren (similar in magnitude to its
corresponding EH value), as well as hT−

uuiUren vanishing
more rapidly than hT−

vviUren, as extremality is approached.
In particular, this means the quantity Λ is expected to
be dominated by hT−

vviUren, and indeed we find the following
approximate relation to hold near extremality: Λ ≅
−4πr2−hT−

vviUren (see Sec. III D).
Although our main interest in this paper concerns

semiclassical physics deep inside the BH, in passing, we
also derived the leading-order small-ω expression for τupωl,
namely the transmission coefficient outside the BH (see
Appendix). This coefficient is a necessary ingredient in the
analysis of the near-IH flux differences hT−

uuiH−U
ren and Λ.

As was already mentioned, the quantity 4πr2ðhTuuiren−
hTvvirenÞ is independent of r in both HH and Unruh states.
In the latter, at the IH it reduces to Λ [given in Eq. (3.2)]
whereas in the limit r → ∞ it coincides with the Hawking-
evaporation outflux. Thus, on passing we have obtained
the explicit expression for the evaporation rate of a near-
extremal RN BH:

lim
r→∞

4πr2hTU
uuiren ≅ ℏ

Δ4

120πM2
: ð5:1Þ

While the scaling of this quantity as ∝ Δ4 has already been
pointed out in, e.g., Ref. [6], we are not aware of previous
derivations of the prefactor. The analytical computation of
this prefactor, carried out in Sec. III A, was made possible
due to our analysis of the transmission coefficient τupωl at low
frequencies (presented in the Appendix).
Returning to semiclassical fluxes inside the BH, our

results indicate that for a near-extremal RN BH in the
Unruh state, hTvviUren dominates over hTuuiUren in the IH
vicinity. This could suggest that the semiclassically back-
reacted geometry in this domain may be well approximated
by the ingoing charged Vaidya solution [15]. We hope to
further explore this issue in future research.
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APPENDIX: THE TRANSMISSION COEFFICIENT
AT LOW FREQUENCIES

In this Appendix we analyze the leading order of the
transmission coefficient τωl at low frequencies (namely,
corresponding to modes with ωM ≪ 1), in a RN BH. We
shall provide the full analysis for a subextremal BH (that is,
with Q=M < 1), which is of direct relevance for this paper,
and then quote the analogous result for an extremal RN BH
(with Q=M ¼ 1).
We shall consider the “in” mode normalized to have

amplitude 1 at the EH, denoted by ψ̂ωl, which is a solution
to the radial equation (1.1) in the BH exterior with the
following asymptotic behavior:

ψ̂ωlðr�Þ ≅
�
e−iωr� r� → −∞
T ωle−iωr� þRωleiωr� r� → ∞

: ðA1Þ

T ωl and Rωl may then be used to construct the usual
reflection and transmission coefficients τωl and ρωl of the
standard “in” and “up” Eddington-Finkelstein modes
(see Ref. [12]). In the “in” modes, τinωl and ρinωl are trivially
related to T ωl and Rωl via

τinωl ¼
1

T ωl
; ρinωl ¼

Rωl

T ωl
: ðA2Þ

The corresponding “up” mode coefficients, τupωl and ρupωl,
may be related to their “in” counterparts through the
conserved Wronskian, yielding

τupωl ¼ τinωl ¼
1

T ωl
; ρupωl ¼ −ρin�ωl

τinωl
τ�inωl

¼ −
R�

ωl

T ωl
: ðA3Þ

We denote τωl ≡ τinωl ¼ τupωl, and we take here the r�
convention used in Ref. [12]10,

r� ¼ rþ 1

2κþ
log

�
r − rþ
rþ − r−

�
−

1

2κ−
log

�
r − r−
rþ − r−

�
: ðA4Þ

10Note that the result for τωl is independent of the choice of
integration constant for r�. With a different choice, say r̃� ≡
r� þ δr� (δr� being a constant), the desired asymptotic behavior
at the EH will now naturally be e−iωr̃� , which amounts to
multiplying Eq. (A1) by the constant phase e−iωδr� . This yields

ψ̂ωlðr�Þ ≅
�
e−iωr̃� r� → −∞

T ωle−iωr̃� þ ðRωle−2iωδr� Þeiωr̃� r� → ∞
:

That is, T ωl hasn’t changed and hence, from Eq. (A3), τωl is left
unaffected. On the other hand,Rωl has gained a phase of e−2iωδr� ,
which translates to the same effect on ρωl. Nevertheless, it is not
difficult to show that the leading order of ρωl at small ω (given
below in Eq. (A29) remains unaffected.
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The variation of the effective potential Vl given in
Eq. (1.2) between the EH (r� → −∞) and infinity
(r� → ∞) suggests a natural division of the BH exterior
into three overlapping regions, in which suitable approx-
imations can be made: region I at the EH vicinity, where the
effect of the potential is negligible and we may approximate
the radial function by a free solution ψ ≅ e−iωr� (a more
detailed characterization of this region will follow);
region II where ω is negligible in the radial equation, that
is, the domain characterized by ω2 ≪ Vl; and region III, the
asymptotically flat region, where r=M ≫ 1. Note that
due to our assumption of small frequencies region II is
very vast and, as we shall see, indeed overlaps with both its
neighboring regions. This, in turn, allows the matching
procedure which follows, relating the asymptotic regions
r� → −∞ and r� → ∞. We shall start at the EH vicinity and
work our way outwards to infinity, where the reflection and
transmission coefficients are to be extracted.

1. Region I

We start our analysis at the asymptotic domain where
the effective potential is negligible, satisfying Vl ≪ ω2.
This yields a free solution to the radial equation (1.1),
which according to Eq. (A1) is

ψ free
ωl ¼ e−iωr� : ðA5Þ

However, the domain characterized by Vl ≪ ω2 has no
overlap with region II, where, as mentioned above, Vl ≫ ω2.
We thus wish to “enhance” the free solution ψ free

ωl , in order to
slightly extend its domain of validity. To build the enhanced
free solution, we consider the leading order near-EH form
of the potential, Vl ≅ vlM−2 exp ð2κþr�Þ, where vl is a
certain dimensionless constant.11 Correspondingly, we use
the ansatz

ψωl ≅ ψ free
ωl ½1þ cM2Vl� ≅ e−iωr� ½1þ cvl exp ð2κþr�Þ�;

where c is a dimensionless constant that will be determined
by the radial equation as follows: Applying the differential
operator d2=dr2� þ ðω2 − VlÞ to this ansatz for ψωl yields

½d2=dr2� þ ðω2 − VlÞ�ψωl

¼ e−iωr�Vl½4M2κþðκþ − iωÞc − 1� þOðV2
l Þ:

Equating the right-hand side to zero (ignoring the OðV2
l Þ

term) yields c ¼ ½4M2κþðκþ − iωÞ�−1. Thus, we find the
near-EH solution (to leading order in Vl) to be

ψωl ¼ e−iωr�
�
1þ 1

4κþðκþ − iωÞVl

�
: ðA6Þ

For later convenience, we also write its derivative with
respect to r� (hereafter denoted by a prime):

ψ 0
ωl ¼ −iωe−iωr�

�
1 −

2κþ − iω
4iωκþðκþ − iωÞVl

�
: ðA7Þ

The domain of validity of this approximation (which
ignores terms of higher orders in Vl) is basically charac-
terized by M2Vl ≪ 1. However, for our goal of sub-
sequently matching this solution to region II, it will be
convenient to further restrict region I such that both ψωl and
ψ 0
ωl are still not significantly affected by the potential Vl.

(We are concerned about the forms of ψωl as well as ψ 0
ωl,

because the matching of regions I and II will involve the
values of both ψωl and ψ 0

ωl in the overlap domain).
Recalling that κþ ∼ 1=M ≫ ω, one readily sees that the
more stringent restriction emerges from the expression
for ψ 0

ωl: The term in squared brackets in Eq. (A7) reads
≈1 − Vl=ð2iωκþÞ for small ω, hence the demand that
ψ 0
ωl remains well approximated by its free counterpart

ψ 0free
ωl ¼ −iωe−iωr� yields the requirement.12

VlðrÞ ≪ ω=M; r ≈ rþ ðregion IÞ: ðA8Þ

The last inequality guarantees that both ψ 0
ωl and ψωl do not

differ much from their free values ψ 0free
ωl and ψ free

ωl .
We thus take this inequality to characterize region I, and
we denote the approximate solution therein by ψ̂ I

ωl. From
the very construction of region I, we may simply take ψ̂ I

ωl to
be the free solution given in Eq. (A5).13

Having Vl ∝ r − rþ in that domain, we may rewrite the
condition in Eq. (A8) as

r − rþ
M

≪ ωM: ðregion IÞ ðA9Þ

11Note that Vl ∝ fðrÞ ∝ r − rþ in the EH vicinity, and then
evaluating Eq. (A4) at r ≅ rþ yields the relation to r�, namely
r − rþ ∝ exp ð2κþr�Þ.

12The restriction r ≈ rþ was added in this equation to indicate
that, obviously, it is only the small-Vl domain at the EH vicinity
(and not the one at r ≫ M) that defines region I. The same remark
also applies to Eq. (A12) below.

13The fact that ψ̂ I
ωl and its derivative attain values similar to

their free-solution counterparts throughout the domain (A8)
may seem surprising at first sight, because the potential VlðrÞ is
not negligible compared to ω2 everywhere throughout that
domain (in fact, we even have Vl ≫ ω2 in some portion of the
latter). The reason for this similarity is simple: The width of the
sub-domain where VlðrÞ fails to be ≪ ω2 is merely of order M;
and even in this sub-domain Vl is still ≪ ω=M. It therefore
follows that ψ̂ I

ωl and its derivative do not accumulate a
significant deviation from their corresponding free values along
that limited sub-domain.
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Note that since ωM ≪ 1, the last inequality also ensures
that region I is indeed at the EH vicinity, where the assumed
near-EH form of the potential is valid.

2. Region II

This region is characterized by

VlðrÞ ≫ ω2; ðregion IIÞ ðA10Þ

and we may thus neglect ω2 in the radial equation (1.1) as a
leading order approximation. This yields the so-called
static solution,

ψ̂ II
ωl ¼

r
M

�
C1Pl

�
r −M
rþ −M

�
þ C2Ql

�
r −M
rþ −M

��
; ðA11Þ

where Pl and Ql are respectively the Legendre polynomial
and Legendre function of the second kind,14 and C1, C2 are
coefficients to be determined. We shall treat ψ̂ II

ωl as the
approximate solution throughout region II.
Owing to the basic assumption of low frequencies

ωM ≪ 1, region II [characterized in Eq. (A10)] and region
I [characterized in Eq. (A8)] overlap in a domain satisfying

ðωMÞ2 ≪ VlM2 ≪ ωM; r≈ rþ ðregions I-II overlapÞ
ðA12Þ

or, from the near-EH form of Vl,

ðωMÞ2 ≪ r − rþ
M

≪ ωM: ðregions I-II overlapÞ ðA13Þ

In order to match the solutions ψ̂ I
ωl and ψ̂

II
ωl in the overlap

domain characterized above, we apply the right side of the
inequality (A13) in ψ̂ II

ωl and the left side of this inequality in
ψ̂ I
ωl. In fact, it turns out to be sufficient (and equivalent) to

take r − rþ ≪ M in ψ̂ II
ωl and jωr�j ≪ 1 in ψ̂ I

ωl.
15

Taking the solution ψ̂ I
ωl given in Eq. (A5) in the

asymptotic domain of region I where jωr�j ≪ 1 yields

ψ̂ I
ωlðjωr�j≪ 1Þ ≅ 1− iωr�

≅ 1− iω

�
rþ þ r2þ

rþ − r−
log

�
r− rþ
rþ − r−

��

d
dr

ψ̂ I
ωlðjωr�j≪ 1Þ ≅ −iω

r2þ
ðr− rþÞðrþ − r−Þ

: ðA14Þ

Carrying the solution ψ̂ II
ωl as given in Eq. (A11) to the

asymptotic domain of region II where r − rþ ≪ M, and
using the leading-order asymptotic behavior of our basis
functions Plðx → 1þÞ ¼ 1 and Qlðx → 1þÞ ≅ 1

2
lnð 2

x−1Þ,16
we get

ψ̂ II
ωlðr − rþ ≪ MÞ ≅ rþ

M

�
C1 þ

1

2
C2 log

�
rþ − r−
r − rþ

��

d
dr

ψ̂ II
ωlðr − rþ ≪ MÞ ≅ −

1

2M
rþ

r − rþ
C2 ðA15Þ

regardless of l. Then, matching to Eq. (A14) requires
setting the coefficients C1, C2 to their leading order in ω
(which suffices for the present analysis) as follows:

C1 ¼
M
rþ

; C2 ¼ 2iωM
rþ

rþ − r−
:

Feeding this into Eq. (A11), the approximate solution in
region II is found to be

ψ̂ II
ωl ¼

r
rþ

Pl

�
r −M
rþ −M

�
þ 2iωrþr
rþ − r−

Ql

�
r −M
rþ −M

�
: ðA16Þ

Finally, we explore the domain of validity of the
region-II approximation in the range r ≫ M. The basic
criterion that needs to be satisfied in this region is given in
Eq. (A10), namely VlðrÞ ≫ ω2. At r ≫ M, the effective
potential Vl given in Eq. (1.2) decays like ∝ 1=r2 for l > 0

and like ∝ M=r3 for l ¼ 0. This implies that the corre-
sponding domain of validity is r=M ≪ ðωMÞ−1 for l > 0

and r=M ≪ ðωMÞ−2=3 for l ¼ 0. In the analysis that
follows it will be convenient to treat the l ¼ 0 and l > 0
cases on a common footing. We therefore choose the
domain in which we apply the region-II approximation,
in the range r ≫ M, to be the stringent of these two
domains (that is, the one emerging from the l ¼ 0 case):

r=M ≪ ðωMÞ−2=3: ðregion II; large-r sideÞ ðA17Þ
14QlðxÞ is defined here as the real branch in the domain x > 1

(corresponding here to r > rþ, namely, the BH exterior). This
function is classified in Wolfram Mathematica as the “Legendre
function of type 3”.

15Note that in the EH-vicinity, setting r ≅ rþ in Eq. (A4) yields
r� ≅ rþ þ 1

2κþ
logð r−rþ

rþ−r−
Þ ∼M logðr−rþM Þ. Then, choosing a typical

point in the overlap domain (A13), e.g., r−rþ
M ∼ ðωMÞγ for some

fixed positive γ (noting that this overlap domain actually
corresponds to 1 < γ < 2), we have jωr�j ∼ γωMj log ðωMÞj,
which is ≪ 1 due to the basic assumption of low frequencies.
That is, the condition jωr�j ≪ 1 is guaranteed to hold throughout
the overlap domain (A13).

16In fact, Qlðx → 1þÞ ≈ 1
2
lnð 2

x−1Þ − hðlÞ, but we may neglect
the constant hðlÞ compared to the logarithmically diverging term.
[We should also note that this “parasitic” constant does not
interfere with the extraction of C1 from the first equation
in (A15), because C2 turns out to be ∝ ω, hence C1 is determined
right away from the ω-independent part of Eq. (A14).]
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3. Region III

In the asymptotically flat region characterized by

r=M ≫ 1 ðregion IIIÞ ðA18Þ

(which implies fðrÞ ≅ 1, df=dr ≅ 0), the approximate
solution is well known and is given in terms of spherical
Bessel functions:

ψ̂ III
ωl ¼ ωr�½D1jlðωr�Þ þD2ylðωr�Þ�; ðA19Þ

where jl and yl are respectively the spherical Bessel
functions of the first and second kind, and D1, D2 are
coefficients to be determined from the matching procedure.17

We wish to match ψ̂ III
ωl with the solution ψ̂

II
ωl of region II.

The overlap domain of regions II and III is obtained by
combining the conditions (A17) and (A18), namely:

1 ≪
r
M

≪ ðωMÞ−2=3: ðregions II-III overlapÞ ðA20Þ

This overlap domain indeed exists, owing to our basic
assumption ωM ≪ 1.18 Furthermore, a direct consequence
of Eq. (A20) is r=M ≪ ðωMÞ−1 and therefore

ωr ≪ 1: ðA21Þ

We find it convenient to describe the matching in the overlap
domain to be between ψ̂ III

ωl in the asymptotic domain of
region III where ωr� ≪ 1, and ψ̂ II

ωl in the asymptotic domain
of region II where r=M ≫ 1. The large-r limit of ψ̂ II

ωl [given
in Eq. (A16)] is obtained from the asymptotic behavior of

PlðxÞ and QlðxÞ at a large argument, namely Plðx → ∞Þ ≅
ð2xÞl Γðlþ1

2
Þ

l!
ffiffi
π

p and Qlðx → ∞Þ ≅ ð2xÞ−l−1 l!
ffiffi
π

p
Γðlþ3

2
Þ. Inserting that

into Eq. (A16) yields

ψ̂ II
ωlðr=M ≫ 1Þ ≅ rlþ1

1

rþ

�
2

rþ −M

�
l Γðlþ 1

2
Þffiffiffi

π
p

l!

þ r−l
2iωrþ
rþ − r−

ffiffiffi
π

p
l!

Γðlþ 3
2
Þ
�

2

rþ −M

�
−l−1

:

ðA22Þ

Plugging the asymptotic behavior of the spherical Bessel
functions of the first and second kinds at a small argument
in Eq. (A19), we obtain

ψ̂ III
ωl ðωr� ≪ 1Þ ≅ ωr�

�
D1ðωr�Þl

ffiffiffi
π

p
Γð3

2
þ lÞ2

−l−1

−D2ðωr�Þ−l−1
1ffiffiffi
π

p 2lΓ
�
lþ 1

2

��
: ðA23Þ

Note that the dependence on r in the last two equations is
only through simple powers of r or r�. We can then re-
express these two equations in the more compact form

ψ̂ III
ωl ðωr� ≪ 1Þ ≅ D̃1rlþ1� þ D̃2r−l�

ψ̂ II
ωlðr=M ≫ 1Þ ≅ C̃1rlþ1 þ C̃2r−l;

[where the new coefficients C̃i; D̃i are trivially related to Ci,
Di by comparing the above to Eqs. (A22) and (A23)].
Obviously, the large-r assumption allows replacing rlþ1�
with rlþ1 and r−l� with r−l, as the relative error decays like
∝ M

r logð rMÞ ≪ 1. The matching then simply yields D̃1 ¼ C̃1

and D̃2 ¼ C̃2. Applying this straightforward matching
scheme to Eqs. (A22) and (A23) determines the desired
coefficients D1, D2 (to their leading order in ω),

D1 ¼ λlðωMÞ−l−1; D2 ¼ −iλ−1l ðωMÞlþ1 ðA24Þ

where

λl ¼
M
rþ

�
8M

rþ − r−

�
l 2Γðlþ 1

2
ÞΓðlþ 3

2
Þ

πl!
: ðA25Þ

Feeding Eq. (A24) into Eq. (A19), we obtain the
approximate solution throughout region III,

ψ̂ III
ωl ¼ ωr�½λlðωMÞ−l−1jlðωr�Þ − iλ−1l ðωMÞlþ1ylðωr�Þ�:

ðA26Þ

4. Asymptotic behavior at r → ∞
Finally, in order to extract T ωl and Rωl, we need to

match ψ̂ III
ωl to the boundary condition (A1) at r� → ∞. That

is, we are interested in the asymptotic behavior of ψ̂ III
ωl

where ωr� ≫ 1. Using jlðx → ∞Þ ≅ − 1
x sin ðlπ2 − xÞ and

ylðx → ∞Þ ≅ − 1
x cos ðlπ2 − xÞ in Eq. (A19), we obtain

17In principle one could also write down another approximate
solution ψ̃ III

ωl in this r=M ≫ 1 region, which takes the same
form as ψ̂ III

ωl but with r� replaced by r. A direct inspection
indicates, however, that the error involved in ψ̃ III

ωl is much larger
than that involved in ψ̂ III

ωl . To see this, one can substitute these
approximate solutions in the radial equation (1.1). The (relative)
error is then found to scale as ∝M=r for ψ̃ III

ωl , and only
∝lðlþ 1ÞðM=rÞ3 lnðr=MÞ [or ∝ðM=rÞ3 in the l ¼ 0 case] for
ψ̂ III
ωl . In fact, this larger error in ψ̃ III

ωl is manifested, at the large-r
limit, in the phase that erroneously progresses in this solution like
ωr instead of ωr�. (Also recall that the difference r� − r actually
diverges logarithmically at large r. Therefore ψ̃ III

ωl fails to be a
valid approximate solution in a global sense, even at arbitrarily
large r.)

18Note that we may replace r in Eq. (A20) by r�, leaving the
inequality unaffected. This follows from the simple fact that
r�=r ≅ 1 throughout the domain r ≫ M.
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ψ̂ III
ωl ðωr�≫1Þ≅−D1 sin

�
lπ
2
−ωr�

�
−D2cos

�
lπ
2
−ωr�

�
:

ðA27Þ

At the ωM ≪ 1 limit, the coefficient D2 ∝ ðωMÞlþ1 is
negligible compared to D1 ∝ ðωMÞ−l−1 [see Eq. (A24)],
and we are left with

ψ̂ III
ωl ðωr� ≫ 1Þ ≅ −λlðωMÞ−l−1 sin

�
lπ
2
− ωr�

�

¼ λl
2
ðωMÞ−l−1ilþ1½e−iωr� þ ð−1Þlþ1eiωr� �:

ðA28Þ

With the above asymptotic form, we can easily read the
coefficients T ωl and Rωl as appearing in Eq. (A1),

T ωl ¼
λl
2
ðωMÞ−l−1ilþ1; Rωl ¼

λl
2
ðωMÞ−l−1ð−1Þlþ1ilþ1:

Then, via the relations in Eqs. (A2) and (A3), one can
readily extract the reflection and transmission coefficients
to leading order in low frequencies:

ρinωl ≅ ð−1Þlþ1; ρupωl ≅ −1 ðA29Þ

and

τωl ≅
πrþ
M

�
rþ − r−
8M

�
l l!
Γðlþ 1

2
ÞΓðlþ 3

2
Þ−i

lþ1ðωMÞlþ1;

ðA30Þ

or, using Γð1
2
þ lÞ ¼ ð2lÞ!

4ll!

ffiffiffi
π

p
,

τωl ≅
rþ
M

�
rþ − r−

M

�
l 2lþ2ðl!Þ2ðlþ 1Þ!
ð2lÞ!ð2lþ 2Þ! ð−iÞlþ1ðωMÞlþ1:

ðA31Þ

One immediate consequence is that the leading order of
τωl in small frequencies is real when l is odd and imaginary
when l is even. In particular, for the sake of this paper, note
that for l ¼ 0 we have to leading order

τω;l¼0 ≅ −2iωrþ: ðA32Þ

The results presented here were verified numerically—
both for l ¼ 0 as given in Eq. (A32) and for several other l
values as given more generally in Eq. (A31)—in a variety
of subextremal Q=M values.
In the Schwarzschild limit (r− → 0, rþ → 2M),

Eq. (A31) adequately reduces to the corresponding result
given in Eq. (5.5) of Ref. [16].
Note that the results presented in Eqs. (A29) and (A31)

were derived in the subextremal RN case only, and they are
not valid for an extremal BH. We shall briefly refer to the
extremal case in the subsection that follows.

5. The transmission coefficient in low frequencies
in an extremal RN BH

An analysis analogous to the one presented in detail
above can be done in the extremal case. Since the two
horizons now coincide at r ¼ M, this changes the behavior
of fðrÞ, and hence also r�, VlðrÞ, and the corresponding
solutions in the various domains. Nevertheless, despite
these differences, the basic strategy presented above is
applicable in the extremal case as well: We can again define
the three domains with three corresponding approximate
solutions (the enhanced free solution in the EH vicinity, the
static solution where Vl ≫ ω2, and the large-r solution),
with appropriate overlapping domains in which any two of
the neighboring approximate solutions may be matched.
Then, matching through and taking the r� → ∞ limit, we
finally obtain the asymptotic behavior [analogous to
Eq. (A28) in the subextremal case],

ψ̂ III
ωl ðωr� ≫ 1Þ ≅ −

i
M

�
2

M

�
2l
Γ
�
lþ 1

2

�
Γ
�
lþ 3

2

�
1

π
ω−2l−1

× ½ð−1Þlþ1e−iωr� þ eiωr� �: ðA33Þ

We may now use Eqs. (A2) and (A3) to extract the
transmission and reflection coefficients to leading order
in small frequencies for an extremal RN BH:

ρinωl ≅ ρupωl ≅ ð−1Þlþ1 ðA34Þ

τωl ≅ ið−1Þlþ1
π

22l
1

Γðlþ 1
2
ÞΓðlþ 3

2
Þ ðωMÞ2lþ1: ðA35Þ

Note that the leading order of τωl in low frequencies
is ∝ðωMÞ2lþ1 in the extremal case [unlike ðωMÞlþ1 in
the subextremal case, see Eq. (A31)], and that it is always
imaginary.

QUANTUM FLUXES AT THE INNER HORIZON OF A NEAR- … PHYS. REV. D 104, 024066 (2021)

024066-13



[1] N. Zilberman, A. Levi, and A. Ori, Quantum Fluxes at the
Inner Horizon of a Spherical Charged Black Hole, Phys.
Rev. Lett. 124, 171302 (2020).

[2] J. B. Hartle and S. W. Hawking, Path-integral derivation of
black-hole radiance, Phys. Rev. D 13, 2188 (1976).

[3] W. Israel, Thermo-field dynamics of black holes, Phys. Lett.
57A, 107 (1976).

[4] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D
14, 870 (1976).

[5] S. Hollands, R. M. Wald, and J. Zahn, Quantum instability
of the Cauchy horizon in Reissner-Nordström-deSitter
spacetime, Classical Quantum Gravity 37, 115009 (2020).

[6] T. Jacobson, Semiclassical decay of near-extremal black
holes, Phys. Rev. D 57, 4890 (1998).

[7] A. Levi and A. Ori, Mode-sum regularization of hϕ2i in
the angular-splitting method, Phys. Rev. D 94, 044054
(2016).

[8] A. Levi, Stress-energy tensor mode-sum regularization in
spherically symmetric backgrounds (to be published).

[9] A. Levi and A. Ori, Pragmatic mode-sum regularization
method for semiclassical black-hole spacetimes, Phys.
Rev. D 91, 104028 (2015).

[10] A. Levi and A. Ori, Versatile Method for Renormalized
Stress-Energy Computation in Black-Hole Spacetimes,
Phys. Rev. Lett. 117, 231101 (2016).

[11] A. Levi, Renormalized stress-energy tensor for stationary
black holes, Phys. Rev. D 95, 025007 (2017).

[12] A. Lanir, A. Levi, A. Ori, and O. Sela, Two-point function of
a quantum scalar field in the interior region of a Reissner-
Nordstrom black hole, Phys. Rev. D 97, 024033 (2018).

[13] B. S. DeWitt, Quantum field theory in curved spacetime,
Phys. Rep. C 19, 295 (1975).

[14] S. M. Christensen and S. A. Fulling, Trace anomalies and
the Hawking effect, Phys. Rev. D 15, 2088 (1977).

[15] W. B. Bonnor and P. C. Vaidya, Spherically symmetric
radiation of charge in Einstein-Maxwell theory, Gen.
Relativ. Gravit. 1, 127 (1970).

[16] M.Casals andA. C.Ottewill,High-order tail inSchwarzschild
spacetime, Phys. Rev. D 92, 124055 (2015).

Correction: A minus sign was missing in Eq. (A30) and has been
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