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In this contribution we study the birefringence and the quasinormal modes (QNM) in the eikonal
approximation of the Einstein-Euler-Heisenberg black hole (EEH-BH). The EEH-BH is an exact solution
of the Einstein equations coupled with the Euler-Heisenberg nonlinear electrodynamics. In the Euler-
Heisenberg theory the phenomenon of birefringence arises and then there exists two possible light
trajectories in the vicinity of the EEH-BH. On the other hand, using the correspondence between the
parameters of the unstable null geodesics and the QNM in the eikonal approximation we have determined
the QNM of gravitational and electromagnetic perturbations for both the electric and the magnetic EEH-BH
and we compared them with their linear counterpart, the Reissner-Nordström black hole. Regarding
electromagnetic perturbations we have to consider that there are two effective optical metrics and to each
one corresponds one null geodesic that renders two electromagnetic QNMs from the same compact object.
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I. INTRODUCTION

These days the existence of black holes (BH) has been
widely accepted, or at least the existence of very compact
astrophysical objects that resemble several characteristics
ascribable to a BH. In most of the observations BHs are
accompanied by magnetic fields of varied intensities that
go from 10−6 Gauss in the centers of galaxies to orders of
1012 Gauss for neutron stars [1]. These magnetic fields are
of unknown origin, so far; in neutron stars they may have an
internal origin. In the case of strong magnetic fields they
very likely produce vacuum polarization in their vicinity,
then processes like photon splitting, pair conversion or
vacuum polarization are expected to occur in the neighbor-
hood of neutron stars [2].
In the presence of intense electromagnetic fields quan-

tum electrodynamics predicts that a vacuum has properties
of a material medium as a consequence of the electromag-
netic self-interactions. These effects become significant
when electromagnetic fields approach the critical strengths,
Ec ≈ 1018 Volt=m or Bc ≈ 1013 Gauss; among them are
light-light interaction or electron-positron creation (vacuum
polarization). Therefore an electromagnetic (EM) wave

traveling through intense EM fields will change its velocity
and the direction of propagation depending on its polari-
zation. This later effect is the birefringence [3–5].
Experimental efforts are currently in progress to observe
these nonlinear electrodynamic (NLED) effects in a labo-
ratory; we mention just a few of them, like the detection of
vacuum birefringence with intense laser pulses [6–8], or
using waveguides [9].
By treating the vacuum as a medium, the Euler-

Heisenberg (EH) theory [10,11] predicts rates of nonlinear
light interaction processes since it takes into account
vacuum polarization to one loop, and is valid for electro-
magnetic fields that change slowly compared to the inverse
electron mass. The EH Lagrangian depends in a nonlinear
way on the two Lorentz and gauge invariants, F and G,

LEHðF;GÞ ¼ −
F
4
þ μ

4

�
F2 þ 7

4
G2

�
; ð1Þ

where F ¼ FμλFμλ ¼ 2ðB2 − E2Þ and G ¼ −�Fμλ

Fμλ ¼ 4B⃗ · E⃗, with Fμλ being the Faraday tensor, and
�Fμν ¼ 1

2
ffiffiffiffi−gp ϵμνρσFσρ being its dual, while μ is the param-

eter of the EH theory that in terms of the fine structure
constant, α, is
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μ ¼ 2α2

45m4
e
; ð2Þ

or in terms of the critical fields is of the order μ ∼ α=B2
c. The

linear electromagnetic Maxwell theory is recovered if
μ ¼ 0; then LMaxwellðFÞ ¼ −F=4. The Lagrangian in (1)
is actually the Euler-Kockel Lagrangian [10], that is the EH
Lagrangian expanded up to second-order in α. Coupling the
EH theory with gravitation, BH solutions can be obtained;
the static spherically symmetric solution represents a BH
with an electric (or magnetic) charge that generates such
intense EM fields in which NLED effects arise like the
birefringence of light rays. On the other hand, a BH may be
characterized by relating its independent parameters to the
quasinormal modes (QNM) that result from the response of
a test field perturbing the BH spacetime. QNMs have been
one of the most useful tools for BH characterization. In the
geometric-optics or eikonal approximation the QNM can
be determined from the unstable null geodesics that are the
orbits attached to the maximum of the effective potential
barrier felt by light rays on their interaction with the BH. In
1984 Ferrari and Mashhoon [12] suggested an analytical
technique of calculating the QNM in the eikonal limit and
later on Cardoso [13] showed the relationship among
unstable null geodesics, Lyapunov exponents and the
QNM for a stationary spherically symmetric spacetime.
The idea basically consists of interpreting the black hole-
free oscillations in terms of null particles trapped at the
unstable circular orbit and slowly leaking out. The real part
of the complex QNM frequencies is determined by the
angular velocity at the unstable null geodesic; the imagi-
nary part is related to the instability time scale of the orbit.
As compared with the WKB method, calculating the QNM
in the eikonal approximation turns out to be good for large
angular momentum perturbations in the lowest modes.
Unstable null geodesics derived from the BH metric are

followed, in the eikonal limit, by gravitational and massless
scalar perturbations. However, electromagnetic perturba-
tions behave differently, as a result of the nonlinear
interaction. Light rays do not follow the null geodesics
of the background metric, but do follow the null geodesics
of an effective optical metric that depends on the nonlinear
electromagnetic energy momentum tensor [14,15]. The
Einstein-Euler-Heisenberg black hole (EEH-BH) is char-
acterized by a strong field in its vicinity. An EM field of
such strength produces birefringence, i.e., two different
trajectories for light rays, that are the null geodesics of the
effective metrics derived from the study of the propagation
of the characteristic surfaces of the EM field [14,15].
In this contribution we determine the two effective

metrics whose null geodesics are the light trajectories as
well as the QNM in the eikonal approximation arising from
perturbing the static EEH-BH. Due to the birefringence
effect the QNM of two different frequencies will arise,
corresponding to the two different effective optical metrics

emerging due to the NLED interaction of light rays and the
strong field background. We determine the unstable circular
null orbits that are followed by light rays and then the QNM
in the eikonal approximation. We address both the electric
and magnetic EEH-BH.
The paper is organized as follows. In the next section a

short summary of the EH-NLED and the static spherically
symmetric solution of the EEH equations are presented. In
Sec. III, we derive the two effective optical metrics that
arise in the EH-NLED in both cases, the electric and
magnetically charged BH. In Sec. IV we give a brief
explanation for determining the QNM in the eikonal limit
using the unstable null geodesic and the Lyapunov expo-
nent, as well as give their expressions in terms of the
effective potential and the radius of the unstable circular
null orbits. In Sec. V we present the explicit expressions for
the QNM of the gravitational (or massless scalar) and
electromagnetic perturbations, in the eikonal limit and in
the spacetime of the EEH-BH; we compare them with the
corresponding linear (Maxwell) limit, the Reissner-
Nordström black hole (RN–BH). Conclusions are given
in Sec. VI.

II. THE EINSTEIN-EULER-HEISENBERG
BLACK HOLE

The four-dimensional action of general relativity coupled
to the EH-NLED with Lagrangian LEHðF;GÞ is

S ¼ 1

4π

Z
M4

d4x
ffiffiffiffiffiffi
−g

p �
R
4
− LEHðF;GÞ

�
; ð3Þ

where g is the determinant of the metric tensor, R is the
Ricci scalar andLEHðF;GÞ is the EH Lagrangian in Eq. (1).
Regarding NLEDs there are two possible frameworks

[14]. One of them is the usual F-framework in terms of the
electromagnetic field tensor Fμν. Alternatively, there is
the P-framework with the tensor Pμν as the main field,
defined by

Pμν ¼ −ðLFFμν þ �FμνLGÞ; ð4Þ

where the subscript X in L denotes the derivative,
LX ¼ dL=dX. In the Euler-Heisenberg theory, Pμν takes
the form

Pμν ¼ ð1 − μFÞFμν − �Fμν
7μ

4
G: ð5Þ

The tensor Pμν corresponds to the electric displacement D
and the magnetic field H while Fμν corresponds to the
magnetic intensity B and the electric field E, and Eq. (5) is
the constitutive relation between (D, H) and (E, B) in the
EH-NLED.
The two NLED frameworks, F and P, correspond to the

Lagrangian and Hamiltonian treatments, respectively. The
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two invariants associated with the P framework, s and t, are
defined as

s ¼ −
1

4
PμνPμν; t ¼ −

1

4
Pμν

�Pμν; ð6Þ

with �Pμν ¼ 1
2
ffiffiffiffi−gp ϵμνρσPσρ being the dual tensor to Pμν. The

Legendre transformation of L defines the Hamiltonian or
structural function H,

Hðs; tÞ ¼ −
1

2
PμνFμν − L: ð7Þ

Neglecting the second- and higher-order terms in μ, the
structural function for the EH theory takes the form [16]

Hðs; tÞ ¼ s − 4μ

�
s2 þ 7μ

4
t2
�
: ð8Þ

The EM and gravitational field equations are then

∇μPμν ¼ 0; Gμν þ Λgμν ¼ 8πTμν: ð9Þ

The energy momentum tensor Tμν for the EH theory in the
P framework is given by

Tμν ¼
1

4π

�
ð1 − μsÞPβ

μPνβ þ gμν

�
s −

μ

2

�
3s2 þ 7

4
t2
���

:

ð10Þ

In the next subsections we present the static spherically
symmetric solution of the EEH equations which are, in both
cases, electric and magnetically charged.

A. Electrically charged EEH–BH solution

The solution to Eq. (9) for a static spherically symmetric
(SSS) metric of the form

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ;
ð11Þ

with fðrÞ ¼ 1 − 2mðrÞ=r, was derived in [17] using the
NLED P-framework [14] (see also [16]). The metric
function for the electric case is given by

fðrÞ ¼ 1 −
2M
r

þQ2
e

r2
−
μQ4

e

20r6
; ð12Þ

whereM is the mass of the BH,Qe is its electric charge and
μ is the EH parameter. The Reissner-Nordström (RN)
solution is the SSS solution to the coupled Einstein-
Maxwell equations; which in this case is recovered from
(12) by making μ ¼ 0.
In [16] the interpretation of the EH-effect is emphasized as

a charge screening due to the vacuum polarization effect and
it is proved that, for a fixed charge, the EH-BH is more
gravitationally attractive than the RN-BH, because the
electrostatic energy is smaller than the RN. The screening
effect is clear by writing the metric function gtt in Eq. (12) as

fðrÞ ¼ 1 −
2M
r

þQ2
e

r2

�
1 −

μQ2
e

20r4

�
: ð13Þ

In general the behavior of fðrÞ is Schwarzschild-like if
compared with other NLED-BHs that have an RN behavior
but with a screened charge (for instance Born-Infeld BH
[18,19]). In Fig. 1 we show the metric functions of the
Schwarzschild, Reissner-Nordström and Einstein-Euler-
Heisenberg equations; the RN is the most compact object,
while the EEH-BH event horizon is located between the
former. For the EEH–BH the singularity remains at r ¼ 0
and is stronger and of the opposite sign than in the RN. The
equation that determines the horizons at rþ, fðrþÞ ¼ 0 is a
six degree polynomial equation,

r6þ − 2r5þ þQ2
er4þ −

μQ4
e

20
¼ 0; ð14Þ

the previous equation has been written in terms of r ↦ r=M
and the dimensionless parameters, Qe ↦ Qe=M and
μ ↦ μ=M2. The number of horizons may vary from three
toone.Byapplyingthemethoddescribedin[20],wedetermine
the range of values forQe and μ, so that the line element of the
Euler–Heisenberg in the electric case (12) represents a black
hole or an extreme black hole. For μ=M2 ≤ 50=81 and
Q2

e=M2 ≤ 25=24 Eq. (14) may have three real positive roots
(one outer horizon and two inner horizons); the extreme case
can be obtained from the conditions fðrÞ ¼ 0 and
dfðrÞ=dr ¼ 0, that amounts to the EH parameter μ being

RN

EEHg

Schw

0 1 2 3 4 5

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. The behavior of the metric functions fðrÞ of the
Schwarzschild equation, the electric EEH–BH and the RN BH
is shown. Note that the singularity is of opposite sign in the RN
and the EEH–BH. The EH parameter μ is fixed to μ ¼ 0.107,
M ¼ 1 and Qe ¼ 0.9.
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μext ¼
55ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 24Q2

e=25
p

Þ4ð6Q2
e − 5ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 24Q2
e=25

p
ÞÞ

183Q4
e

: ð15Þ

Note that while the charge of the RN-BH is constrained
to Q2 ≤ M2, and due to the screening charge effect this
bound is stretched to Q2 ≤ ð1.04ÞM2 in the EEH-BH.
In the P-framework the purely electric field is given by

the antisymmetric tensor Pμν that for an SSS metric has the
form

Pμν ¼
Qe

r2
ðδ1μδ0ν − δ0μδ

1
νÞ; ð16Þ

then the EM invariants, s and t from Eq. (6), are given by

s ¼ Q2
e

2r4
; t ¼ 0: ð17Þ

The tensor Pμν is related to the Faraday tensor Fμν by the
constitutive or material relations

Fμν ¼
�
1 − μs −

7μ

4
t

�
Pμν; ð18Þ

therefore in this case (electrical) the nonvanishing compo-
nent of the Faraday tensor is

F01 ¼
�
1 −

μP2
01

2

�
P01; ð19Þ

where P01 is given in Eq. (16). In [21] the electric case in
the NLED F-framework is treated; see also [22]. Recently,
a stationary EEH solution [23] has been derived from the
electric static EEH solution.

B. Magnetically charged EEH–BH solution

The SSS solution of the magnetically charged EEH-BH
has the same metric component gtt ¼ fðrÞ in Eq. (12) but
replaces the electric charge with a magnetic one,
Qe ↦ Qm. The magnetic case is more conveniently
obtained in the F-framework of NLEDs with the magnetic
field given by

Fμν ¼ Qm sin θðδ3μδ2ν − δ2μδ
3
νÞ; ð20Þ

while the invariants in this case are F ¼ 2Q2
m=r4 and

G ¼ 0. The magnetic EEH–BH horizons also have been
analyzed in [24] and [16].

III. EFFECTIVE OPTICAL METRICS
OF THE EEH–BH

The theory defined by the Lagrangian LEHðF;GÞ (1)
admits the phenomenon of birefringence. By this we mean
that light rays with different polarizations do follow distinct
trajectories. These trajectories are determined by the null
geodesics of an effective optical metric γμν (or pseudo-
metric) that depends on the matter tensor. The effective
metric can be calculated from the study of the characteristic
surfaces or the propagation of discontinuities of the
electromagnetic field [14], such that γμνκμκν ¼ 0 with κν
being a null vector normal to the wavefront of the
propagating electromagnetic discontinuities (see also
[25,26]). In this treatment, that is equivalent to the soft
photon approximation [27,28], a system of coupled equa-
tions for the effective optical metrics is derived in [15]; in
the EH case, in which LFG ¼ 0, the system can be
decoupled into two effective metrics, γðiÞμν and i ¼ 1, 2,
given by

γð1Þμν ¼ ðLF − 2LGGFÞgμν − 4LGGF
μ
:λF

λν;

γð2Þμν ¼ LFgμν − 4LFFF
μ
:λF

λν; ð21Þ

where gμν is the background metric, that in our case of
interest is the EEH–BH metric, Eq. (11) with Eq. (12).
Another NLED that exhibits birefringence was explored
in [29].

A. Effective optical metrics for the electric EEH–BH
Given an SSS metric gμν, of the form (11), and the

electromagnetic field in Eq. (19), the two effective metrics
of Eq. (21) explicitly become

γð1Þμν ¼
�
−
1

4
þ 5

2
μP2

01

�
gμν −

7

2
μFμ

:λF
λν; ð22Þ

γð2Þμν ¼
�
−
1

4
− μP2

01

�
gμν − 2μFμ

:λF
λν; ð23Þ

where we have substituted the EM invariant F given by

F ¼ −2F2
01 ¼ −2ð1 − aP2

01ÞP2
01; ð24Þ

where P01 is given by Eq. (16) and we have neglected terms
of Oðμ2Þ, to be consistent with the EH Lagrangian that is
valid up to μ–order. The effective metrics (22) and (23), up
to a conformal factor that leave null geodesics invariant,
can be comprised in the formula for the line element,

NORA BRETON and L. A. LÓPEZ PHYS. REV. D 104, 024064 (2021)

024064-4



γðiÞμνdxμdxν ¼ 1

Ge
i ðrÞ

�
−fðrÞdt2 þ dr2

fðrÞ
�
þ r2dΩ2;

i ¼ 1; 2;

ð25Þ

with

Ge
1ðrÞ ¼ 1 −

�
4LGGðF10Þ2
LF − 2LGGF

�
¼ 1þ μ

14ðF01Þ2
1þ 5μF

; ð26Þ

Ge
2ðrÞ ¼ 1 −

�
4LFFðF10Þ2

LF

�
¼ 1þ μ

8ðF01Þ2
1 − 2μF

: ð27Þ

The factorsGe
i become 1 in the linear case, where there is

no birefringence at all. Notice that the terms responsible for
birefringence depend on LGG or LFF, therefore, birefrin-
gence arises only from NLED Lagrangians depending on
the EM invariants in a nonlinear way. In other words, if
LGG ¼ 0 or LFF ¼ 0, there is not birefringence. In the
previous expressions we must keep terms up to first-order
in μ (second-order in α), obtaining then

Ge
1ðrÞ ¼ 1þ 14μ

Q2
e

r4
; Ge

2ðrÞ ¼ 1þ 8μ
Q2

e

r4
: ð28Þ

In Fig. 2 the metric functions gtt ¼ fðrÞ of the Reissner-
Nordström and Einstein-Euler-Heisenberg background
metric (EEHg) are compared, including as well the two
effective optical metrics of the electric EEH-BH (EEH1

and EEH2).

B. Effective optical metrics for the magnetic EEH–BH
For the magnetic case, the electromagnetic field is given

by Eq. (20), and there is birefringence as well. The effective
optical metrics from Eq. (21) are given by

γðiÞμνdxμdxν ¼ Gm
i ðrÞ

�
−fðrÞdt2 þ dr2

fðrÞ
�
þ r2dΩ2;

i ¼ 1; 2; ð29Þ

with

Gm
1 ðrÞ ¼ 1 − 12μ

Q2
m

r4
; Gm

2 ðrÞ ¼ 1 − 4μ
Q2

m

r4
; ð30Þ

where Qm is the magnetic charge and we have only kept
terms up to OðμÞ.

IV. THE QNMAND UNSTABLE NULL GEODESICS
IN SSS SPACES

The connection between the QNM and bound states of
the inverted black hole effective potential was pointed out
in [12]. In [13] it was shown that, in the eikonal limit, the
QNMs of black holes are determined by the parameters of
the unstable circular null geodesics. The real part (ωr) of
the complex QNM frequencies is determined by the angular
velocity Ωc at the unstable null geodesics, while the
imaginary part (ωim), that is related to the instability time
scale of the orbit (relaxation time), is related to the
Lyapunov principal exponent λ. The QNM ωQNM are given
in the eikonal limit, by

ωQNM ¼ ωr − {ωim ¼ Ωcl − {

�
nþ 1

2

�
jλj; ð31Þ

where n is the overtone number and l is the angular
momentum of the perturbation. The Lyapunov exponents
are a measurement of the average rate at which nearby
trajectories converge or diverge in the phase-space. A
positive Lyapunov exponent indicates a divergence
between nearby trajectories, i.e., a high sensitivity to initial
conditions.
In the case of stationary, spherically symmetric space-

times it turns out that λ can be expressed as the second
derivative of the effective potential evaluated at the radius
of the unstable circular null orbit. From the equations of
motion and using the definition _r2 þ VðrÞ ¼ 0, where VðrÞ
is the effective potential for radial motion, circular geo-
desics are determined from the conditions VðrcÞ ¼
V 0ðrcÞ ¼ 0 where rc is the radius of the circular orbit.
The Lyapunov exponent in terms of the second derivative
of the effective potential is given by

λ ¼
ffiffiffiffiffiffiffiffiffi
−V 00

2_t2

r
; ð32Þ

RN

EEHg

EEH1

EEH2

0 1 2 3 4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

1.432 1.438 1.442

0.001

0

0.001

FIG. 2. The behavior of the metric functions fðrÞ of the electric
EEH–BH (EEHg) and RN–BH are shown as well as those
corresponding to the two optical metrics, denoted in the
plot as EEH1 and EEH2 (note in the small box that the horizon
of the EEH metrics is one and the same, while the RN horizon is
the shortest). The EH parameter μ is fixed to μ ¼ 0.107, M ¼ 1
and Qe ¼ 0.9.
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where t is the time coordinate; a dot denotes the derivative
with respect to an affine parameter of the geodesic while
prime stands for the derivative with respect to r, while the
orbital angular velocity Ωc is given by

Ωc ¼
dφ
dt

¼ _φ
_t
: ð33Þ

For our purpose both expressions should be evaluated at
rc, the radius of the unstable circular null orbit, denoted by
the “c” subscript; that is the orbit with an impact parameter
b ¼ L=E and with V 00ðrcÞ < 0.
For an SSS metric of the form seen in Eq. (11), the

energy E and the angular momentum L of a test particle are
conserved quantities,

fðrÞ_t ¼ E ¼ const; r2 _φ ¼ L ¼ const: ð34Þ

For equatorial orbits, from the equation of radial motion,
_r2 þ VðrÞ ¼ 0, in the SSS spacetime, the effective potential
is given by

VðrÞ ¼ E2

�
fðrÞ
r2

L2

E2
− 1

�
; ð35Þ

that for the EEH-BH amounts to

VðrÞEH ¼ E2

�
L2

r2E2

�
1 −

2M
r

þQ2

r2

�
1 − μ

Q2

20r4

��
− 1

�
:

ð36Þ

Displayed in Fig. 3 are the effective potentials felt by
massless test particles in the electric EEH–BH (denoted by
EEHg) and the RN–BH. Shown as well are the effective
potentials for the photons with different polarizations,
denoted as EEH1 and EEH2.
The Lyapunov exponent from (32), related to the

imaginary part of the QNM by ωim ¼ ðnþ 1=2Þjλj, is
given by

λ2 ¼ f
2r2

½2f − r2f00�jrc ; ð37Þ

while the orbital angular velocity, that is proportional to the
QNM real part ωr ¼ Ωcl, is given by

Ωc ¼
�
L
E
f
r2

�				
rc

¼
ffiffiffiffiffi
f
r2

r 				
rc

; ð38Þ

in the previous expressions we have incorporated the
conditions for a circular orbit, VðrcÞ ¼ 0 and
V 0ðrcÞ ¼ 0. These conditions amount, respectively, to

E2

L2
¼ f

r2

				
rc

; ð2f − rf0Þjrc ¼ 0: ð39Þ

The expressions for the QNM in the case of an NLED
Lagrangian LðFÞ that depends only on the invariant F were
derived in [30]. At this point it is worth it to mention that in
[31] the validity of the correspondence between the QNM
in the eikonal approximation and the unstable null geo-
desics was analyzed, finding that this correspondence does
not hold for the Einstein-Lovelock theories concretely, in
the case of the Einstein-Gauss-Bonnet BH. On the other
hand the convergence of the QNM, calculated numerically,
to the eikonal approximation for an NLED deviation from
Maxwell theory was tested in [32].
In the following Sec. V the effective potentials and the

corresponding QNM expressions will be written for the
SSS solution of the Einstein equations coupled to the EH
Lagrangian LEHðF;GÞ [Eq. (1)].

V. THE QNM OF THE EEH–BH IN THE EIKONAL
APPROXIMATION

In the eikonal regime, scalar and gravitational perturba-
tions behave similarly, following the null geodesics of the
background spacetime. In the case of the EEH-BH, the
effective potential felt by the massless particles (not
photons) is the one in Eq. (36). While EM perturbations
of NLED spacetimes do follow the null geodesics of the
effective optical metric, EEH-BH follows two different null
geodesics, given by Eq. (25) for the electric EEH-BH;

RN

EEHg

Schw

EEH1

EEH2

2 4 6 8 10
1

0

1

2

3

4

5

2.2 2.3 2.4

3.9

3.91

3.92

FIG. 3. The behavior of the effective potentials felt by massless
test particles in the electric EEH–BH and RN–BH is shown as
well as the effective potentials for the photons with different
polarizations, denoted as EEH1 and EEH2; these are higher than
the other potentials. The Schwarzschild potential is the lowest
one; the one felt by gravitons (massless test particles, denoted by
EEHg) is very close to the RN. In the small box the difference is
shown. These are the potentials used for the calculations of the
unstable null orbits from which we extract the QNM in the
eikonal approximation. In this plot L ¼ 10, E ¼ 1.2, M ¼ 1 and
the BH parameters are fixed to μ ¼ 0.6, Qe ¼ 0.9.
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while the two effective optical metrics given by Eq. (29)
correspond to the magnetic EEH-BH. The effective poten-
tials are shown in Fig. 3 for the electric EEH–BH (denoted
by EEHg) and the RN–BH, as well as the effective
potentials for the EM perturbations, denoted as EEH1

and EEH2.
In what follows we address the perturbations in the

eikonal limit. First of all in subsection A we describe the
perturbations to the SSS solution of the Einstein-Maxwell
equations, the RN-BH, whose null geodesics are deter-
mined from the metric given by Eqs. (11) and (12)
switching off the EH parameter, μ ¼ 0. It is well known
that the EM perturbations of the electrically and magneti-
cally charged RN-BH are isospectral, however this is not
the case for the NLED-BH; this issue has been investigated
for instance in [32] regarding parity splitting. The following
subsection B describes gravitational (or scalar) perturba-
tions of the EEH-BH, which are determined from the null
geodesics of the background metric given by Eqs. (11) and
(12) for the electric case; gravitational perturbations for the
magnetically charged EEH-BH obey the same equations,
but just change Qe ↦ Qm.
Subsection C is devoted to the electromagnetic pertur-

bations. In this case polarization of the perturbations define
which one of the two effective optical metrics governs the
light trajectory in the vicinity of the EEH-BH; the effective
optical metrics are given by Eq. (25) for the electric case
and by Eq. (29) for the magnetically charged EEH-BH.
With respect to the perturbations of the NLED-BH, we can
mention; in [33] solutions of the coupled Einstein equations
with an NLED with LðFÞ are studied; axial electromag-
netic perturbations were derived for the regular NLED-BH
with the correct weak field limit (Maxwell), while the
corresponding polar electromagnetic perturbations were
analyzed in [34].
In subsection D the relaxation times are discussed and in

subsection E the temporal evolution of the perturbations is
discussed.

A. The QNM of the Reissner-Nordström black hole

The RN is the SSS solution to the Einstein gravity
coupled to Maxwell electromagnetism with the Lagrangian
L ¼ −F=4, LF ¼ −1=4 and LFF ¼ 0. In the eikonal limit,
both gravitational and electromagnetic perturbations do
follow null geodesics of the RN metric. In the RN–BH
case, the metric function fðrÞ in the line element (11) is
given by Eq. (12) with μ ¼ 0. The circular null orbit radius
rc (also known as the radius of the light ring) is calculated
from (39), that in the RN case amounts to the quadratic
polynomial equation and solution given, respectively, by

r2c − 3rc þ 2Q2 ¼ 0; rc ¼
3

2



1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

q �
;

ð40Þ

where we have used a dimensionless coordinate r ↦ r=M
and the dimensionless parameter, Q ↦ Q=M. In the
eikonal approximation, the QNMs are given by (31) with
λ and Ωc calculated as in (37) and (38), respectively, as

M2λ2 ¼ 1

r6c
½r2 − 2Q2�½Q2 þ r2c − 2rc�;

M2Ω2
c ¼

1

r4c
½Q2 þ r2c − 2rc�; ð41Þ

that, by substituting rc from (40), gives

M2λ2 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
ð1þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ

33ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ4

;

M2Ω2
c ¼

2ð1þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ

27ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ3
: ð42Þ

These are the expressions for λ and Ωc for the RN-BH
that we will compare with the ones for the EEH–BH to find
the amount of departure of the EEH-BH expressions from
the linear (Maxwell) case. For the RN-BH, analytic
solutions can be found all the way through, however in
the EEH case no analytic rc solutions were determined.

B. EEH-BH gravitational (or scalar) perturbations in
the eikonal approximation

Gravitational as well as massless scalar perturbations in
the eikonal limit obey the null geodesics of the background
EEH-BH metric given by Eqs. (11) and (12) for the electric
case. Those perturbations for the magnetically charged
EEH-BH obey the same equations, just changing
Qe ↦ Qm. The radii of the unstable circular null geodesics
are given by Eq. (39) with fðrÞ given by (12); these are the
positive roots that are larger than the horizon radius of

r6c − 3Mr5c þ 2Q2
er4c − μ

Q4
e

5
¼ 0: ð43Þ

The radii rc of the massless particle unstable null orbits
are shown in comparison with the RN one and also
corresponding to photons in the vicinity of the EEH–
BH in Fig. 4. The QNMs are given by (31) with λ and Ωc
calculated as in (37) and (38), respectively, using
fðrÞ ¼ 1 − 2M=rþQ2=r2 − μQ4=ð20r6Þ. The gravita-
tional QNMs (denoted as EEHg) are compared with the
electromagnetic EEH-BH and RN QNM in Figs. 5–7.
The difference between the gravitational perturbations
and the RN ones is very tiny, and is illustrated in the
small boxes.

C. Electromagnetic perturbations of the EEH–BH
QNM in the eikonal approximation

The effective potential for a test photon with impact
parameter b ¼ L=E in the neighborhood of the EEH–BH,
from _r2 þ VðrÞ ¼ 0, is given by
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ViðrÞ ¼ E2

�
Ge

i

Gm
i

�
2
�
b2

Gm
i fðrÞ
Ge

i r
2

− 1

�
; ð44Þ

where Ge
i and G

m
i [given by Eqs. (28) or (30), respectively]

are the electric and magnetic factors. In the purely electric
EEH–BH Gm

i ¼ 1 and in the purely magnetic case Ge
i ¼ 1;

in the RN case (μ ¼ 0) Ge
i ¼ Gm

i ¼ 1. The conditions
ViðrÞ ¼ 0 and V 0

iðrÞ ¼ 0 render the equations to determine
the radius of the unstable circular null orbits, ric ,

�
f0

f
−
2

r

�				
ric

¼
�
Ge

i

Gm
i

�0�Gm
i

Ge
i

�				
ric

: ð45Þ

The corresponding solution should be greater than the
horizon radius, ric > rþ. The additional condition that
defines the sphere of the unstable null photon geodesics
is V 00ðrcÞ < 0. This radius is also known as the radius of the
photosphere, that for a Schwarzschild BH is rc ¼ 3M.
The imaginary part of the QNM is ωi

im ¼ ðnþ 1=2Þ
jλj; i ¼ 1, 2, where the Lyapunov exponent λ in the
EEH–BH case is given by

λ2i ¼
−V 00

i

2_t2
¼ fr2

2

�
f
r2

�
Ge

i

Gm
i

�00�Gm
i

Ge
i

�
−
�
f
r2

�00�				
ric

;

i ¼ 1; 2: ð46Þ

The real part of the QNM is ωr ¼ lΩc, with the angular
velocity from Eq. (38) given by

ΩðiÞ
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm

i

Ge
i

fðrÞ
r2

s 				
ric

i ¼ 1; 2: ð47Þ

Equations (46) and (47), the EEH-BH versions of (37) and
(38), determine the quasinormal frequencies, the imaginary
and real parts, respectively, of the EM perturbations to the
EEH–BH in the eikonal approximation. As a reference, an
LðFÞ NLED-BH whose gravitational (scalar) perturbations
are always oscillating with bigger real frequencies than the
Schwarzschild one, ωrðQ ≠ 0Þ > ωSchw

r ðQ ¼ 0Þ, is studied
in [35]; the same qualitative behavior we obtain for the EEH-
BH oscillations. Moreover, for all of the EEH-BH perturba-
tions the angular velocity, Ωc, is smaller than the one of the

RN-BH, such thatωSchw
r < ωEEH1

r < ωEEH2
r < ω

EEHg
r < ωRN

r .
In what follows the EEH–BH QNMs are given explicitly

for the electric case and are compared with those corre-
sponding to perturbations coming from the linear electro-
magnetic RN-BH, given in subsection A; the comparison is
done with the EEH-BH gravitational perturbations given in
subsection B as well. Only the fundamental frequency
n ¼ 0 is considered; that is, the least damped mode. Since
we restrict to the electric case in this subsection we consider
Gm

i ¼ 1. For the analysis of the EEH-BH QNMs, we
consider the dimensionless parameters as in (14). The
circular null orbit radii ric are obtained from (45), that in the
electric EEH-BH case are the roots of

5r4ic ½2Q2
e þ ricðric − 3Þ� − μQ2

e½Q2
e þ 5airicðric − 1Þ� ¼ 0;

ð48Þ

wherea1 ¼ 7anda2 ¼ 4.Theanalysisof the rootsr1c andr2c
ofEq. (48) isperformednumerically in the rangesofQe andμ
where the EEH solution (12) represents a black hole. Shown
in Fig. 4 is the tendency of the roots of Eq. (48), in the case of
the EEH–BH, and Eq. (40), for the RN, as a function of
Qe=M. The null orbit radii ric for the EEH–BH approach the
corresponding RN for small Qe. Qe ¼ 0 corresponds to
the Schwarzschild photosphere, rSchwc ¼ 3M. Increasing the
charge makes rc decrease, such that the relative magnitudes

of the radii arerRNc < r
EEHg
c < rEEH2

c < rEEH1
c < rSchwc . In this

respect the NLED-BH does not have a generic behavior; see
for instance the Maxwellian case studied in [35] where the
effect in theunstablecircularnull orbits, for fixedcharge, is to
shorten the radius rc compared with the one of the RN-BH.
While for the EEH-BH the screening of the charge has the
opposite effect, enlarging the radii of the unstable circular
null orbits as compared with those corresponding to the
RN-BH, for the same charge.
The QNM imaginary part of the EM perturbations,

ωi
im ¼ ðnþ 1=2Þjλj, i ¼ 1, 2, is calculated with the

Lyapunov exponents λi, from Eq. (46), and is given by

RN

EEHg

EEH1

EEH2

0.0 0.2 0.4 0.6 0.8 1.0
1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

0.6445 0.6455 0.647
2.6885

2.6905

2.692

FIG. 4. The behavior of the null circular orbit radii as a
function of Q=M is shown for the electric EEH–BH and RN–
BH; the distinction between the RN and EEHg is shown in the
small box and the relative magnitudes of the radii are
rRNc < r

EEHg
c < rEEH2

c < rEEH1
c < rSchwc ¼ 3M. The EH param-

eter μ is fixed to μ=M2 ¼ 0.5. μ ¼ 0 is for the RN. The
departure point of the curves in the vertical axis corresponds
to rSchwc ¼ 3M that is the largest photosphere.
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M2λ2i ¼
1

r6
½r2 − 2Q2

e�½Q2
e þ rðr − 2Þ�

−
μQ2

20r10
½Q2

eð19r2 − 40rþ 22Q2
eÞ

þ 40ai½Q2
e þ rðr − 2Þ�2�

			
ric
; ð49Þ

where a1 ¼ 7 and a2 ¼ 4. In the previous expressions we
only kept terms up to OðμÞ to be consistent with the EH
theory.
The imaginary part of the QNM, ωEEH

im , increases as Qe
augments; for the gravitational RN-BH it increases as well
and decreases after a maximum at Q=M ¼ 0.9. Shown in
Fig. 5 is the behavior of the Lyapunov exponent λ from
which the imaginary QNM frequencies are calculated,
ωim ¼ jλj=2 for n ¼ 0. The two different EM frequencies
are compared with those corresponding to the RN–BH. For
the RN-BH to have horizons the charge is constrained to
Q2 < M2, while the EEH–BH does not have this constraint
as a consequence of the screening of the charge. Instead the
constraint is Q2=M2 ≤ 25=24. The relative magnitudes, for
a fixed charge are ωEEH1

im > ωEEH2

im > ω
EEHg

im > ωRN
im .

The real part of the QNM is ωr ¼ lΩc, with the orbital
angular velocities ΩðiÞ

c (47) given by

M2ðΩðiÞ
c Þ2 ¼

�
1

r4
½Q2

e þ rðr − 2Þ�

×

�
1 − 2μ

aiQ2
e

r4

�
− μ

Q2
e

20r8

�				
ric

; ð50Þ

where a1 ¼ 7 and a2 ¼ 4 and we kept the terms up toOðμÞ
as well. For the analysis of the real part of the QNM, we

consider ωr=l → ωr. In Fig. 6 the behavior of the angular
velocity or the real QNM frequencies ωr=l of the EEH–BH
for values of Qe in the range 0 ≤ Q2

e=M2 ≤ 25=24 is shown
and compared with the RN–BH. ωEEH

r approaches those
corresponding to RN as Qe decreases. Increasing the charge
Qe makes ωr increase; the relative magnitudes of the real
frequencies are ωSchw

r < ωEEH1
r < ωEEH2

r < ω
EEHg
r < ωRN

r .
Then the gravitational perturbations present slower oscil-
lations than the electromagnetic ones, and the latter are
slower than the RN ones, while the slowest are
Schwarzschild’s (Qe ¼ 0).
From the expressions for Ge

1 and Ge
2 in Eq. (25) we see

they depend linearly on the EH parameter μ; the effect of
increasing the EH parameter μ is increasing the charge
screening. In its turn the effect of increasing μ on the QNM is
enhancing the imaginary part while suppressing the real one.
From the two possible trajectories for light rays in the

vicinity of the EEH-BH arise two QNMs, as we have
described above, and, in principle, if light were polarized
there would be an observable difference in their QNMs. In
the case of unpolarized light impinging on the EEH-BH, the
EM light trajectory would be obtained by taking an average
over the two polarization modes [3,27]. At the present state
of the observational facilities, most likely the difference
between the two trajectories would be still unnoticeable.
Shown in Fig. 7 are the real and imaginary parts of the QNM,
varying the charge in a range of 0.01 < Q2

e=M2 < 25=24
and μ=M2 ¼ 0.5.

D. Relaxation times of the EEH-BH perturbations

Another important aspect of the QNMs is their relation
with the relaxation times τ, that are defined as the inverse of
the imaginary part of the QNM,

RN

EEHg

EEH1

EEH2

0.0 0.2 0.4 0.6 0.8 1.0
0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.88 0.94 1

0.185

0.195

FIG. 5. The behavior of the Lyapunov exponent λ from which
the imaginary part of the QNM is obtained, shown as a function
of Q=M for the electric EEH–BH and RN–BH. ωEEH

im ¼ jλj=2
increases as Qe augments; the same tendency follows RN–BH
QNM but these decrease after a maximum at Q=M ¼ 0.9. The
relation ωEEH

im > ωRN
im implies a shorter time for the damping of

the perturbations in the EEH-BH as compared with the RN–BH.
Also shown is the fundamental mode n ¼ 0, and μ=M2 ¼ 0.5.

RN

EEHg

EEH1

EEH2

0.0 0.2 0.4 0.6 0.8 1.0
0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.8005 0.8015 0.803

0.21995

0.2201

0.22025

FIG. 6. The behavior of the real part of the QNM, normalized to
l, ωr=l ¼ Ωc as functions of Qe for the EEH–BH and RN-BH
perturbations shown. The RN angular velocity is almost indis-
tinguishable from the angular velocity for the EEH gravitational
perturbations (EEHg). In the small box we see that the EEH-BH
gravitational perturbations have a smaller velocity than the RN,
while the electromagnetic angular velocities are smaller than the
gravitational ones. The EH parameter μ is fixed to μ=M2 ¼ 0.5.
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τn ¼
1

ðnþ 1=2Þjλj : ð51Þ

In Fig. 8 we compare the relaxation times for the n ¼ 0
mode of the gravitational and electromagnetic perturbations
of the EEH-BH and the ones of the RN-BH. It is clear that
the effect of the EH-NLED is to diminish the relaxation
times as compared with the RN-BH, implying then that the
EEH system recovers the stationary state faster than the
RN-BH for any of the perturbations, gravitational or

electromagnetic. Comparing the relaxation times for the
gravitational (or massless scalar) perturbations with the
RNs, τEH0g and τRN0 go hand in hand. We find that τEH0g < τRN0
and τRN0 < τSch0 for charges Q < 0.9; however, when Q
approaches its upper bound (Qe=M should be less than 1
for the RN–BH to have horizon) the relaxation time grows,
giving then a longer life to perturbations. In contrast, the
electromagnetic EEH-BH perturbations are always
decreasing as Q augments.

E. Temporal evolution of the EEH-BH perturbations

Regarding the temporal evolution of the perturbations to
the EEH-BH our educated guess is based on the interpre-
tation of the EH field effect as the screening of the charge.
In [36] it was shown that for an RN-BH scalar, perturba-
tions are a prototype for all others—electromagnetic,
gravitational and higher spin—and it was proved that
scalar perturbations radiate completely away, but they
die more slowly the larger the BH electric charge.
Taking into account the screening charge effect, this leads
us to infer that, for a fixed electric charge, the EEH-BH
perturbations have a shorter life compared to the linear
counterpart RN-BH; this applies to both gravitational and
EM perturbations and to every angular momentum l.

VI. CONCLUSIONS

In Euler–Heisenberg nonlinear electrodynamics the
birefringence effect occurs in such a way that there are
two effective optical metrics whose null geodesics are the
light trajectories, and following one or the other depends on
light polarization. Effective optical metrics are obtained
from the background metric and the NLED energy-momen-
tum tensor. In this case the background metric is the EEH–
BH metric and the energy momentum tensor is the Euler-
Heisenberg. We have determined the two effective metrics
followed by photons for both the electric and the mag-
netically charged EEH-BH.
As an application of birefringence we have calculated the

QNM frequencies, in the eikonal limit, of the electromag-
netic perturbations of the EEH-BH. These QNM frequen-
cies were calculated from the two possible null unstable
geodesics of the effective optical metrics. From the
expressions of the real and imaginary parts of the QNM
frequencies, ωQNM ¼ ωr − {ωim ¼ Ωcl − {ðnþ 1

2
Þjλj, and

Eqs. (46) and (47), it is clear that the NLEM effects will
modify the QNM frequencies by enhancing the imaginary
part ωim and suppressing the real one ωr; this effect comes
from modifying the metric factors, electric Ge

i or magnetic
Gm

i , i ¼ 1, 2, in the effective metrics [Eqs. (25) and (29)].
The comparison is then done with the QNM frequencies

of the Maxwell linear counterpart, the RN–BH. As can be
observed in Fig. 5 for the Lyapunov exponent and in Fig. 6
for the angular velocity, the NLEM effect of increasing the
electric charge Qe is of enhancing the imaginary part

RN

EEHg

EEH1

EEH2

0.0 0.2 0.4 0.6 0.8 1.0

9.5

10.0

10.5

11.0

11.5

12.0

0.75 0.85

10.2

10.24

10.28

FIG. 8. The relaxation times for the gravitational (EEHg) and
electromagnetic perturbations (EEH1;EEH2) of the EEH-BH are
compared with those corresponding to the RN-BH. For small

charges, τ
EEHg

0 and τRN0 go hand in hand (see small box); we find

that τ
EEHg

0 < τRN0 < τSchw0 for chargesQe < 0.9. However whenQ
approaches its upper bound (Qe=M should be less than 1 for the
RN–BH to have horizon) the relaxation time grows, giving then a
longer life to the gravitational and RN perturbations. In contrast,
the electromagnetic EEH-BH perturbations are always decreasing
as Q augments. In this plot μ=M2 ¼ 0.5 and n ¼ 0.

FIG. 7. The behavior of the real and imaginary parts of the
EEH-BH perturbations in the eikonal limit is compared with the
RN behavior, varying the charge in the range 0.01 < Q2

e=M2 <
25=24 and fixing μ=M2 ¼ 0.5. They correspond to the funda-
mental mode n ¼ 0 and the real frequency is normalized with the
angular momentum ωr=l.
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while suppressing the real one, i.e., relaxation occurs
faster and oscillation periods are shorter. The magnetic
case, the corresponding QNM that we do not explore in
detail, follows the same tendencies as the electric case.
This can be asserted from the expressions for the
Lyapunov exponent and the angular velocity, Eqs. (46)
and (47), since the magnetic factor Gm

i appears inversely
to the electric Ge

i one, but G
e
i > 1 while Gm

i < 1, i ¼ 1, 2.
We addressed as well the gravitational perturbations of the
EEH-BH, calculated from the null geodesics of the
background metric; these perturbations go hand in hand
with those corresponding to the RN-BH, with the differ-
ence being so slight as shown in the small boxes of the
corresponding graphics. On the other hand, the effect of
the EH parameter μ is of screening the electric charge that
renders a more Schwarzschild-like behavior in general,
while the effect on the QNM is such that when μ increases
the imaginary part of the QNM continues increasing,
pointing to a shorter time for restoring the unperturbed

state of the EEH–BH as compared to the linear case of the
RN–BH. The opposite tendency occurs with the real part
of the QNM frequencies, ωr, that is suppressed as μ
increases. Additionally, we comment on the relaxation
times that are shorter than the ones of the linear case; as
for the temporary evolution of the perturbations, they die
faster for a given charge than the ones of the RN-BH.
Finally we can mention that a thorough analysis is needed
to know how the modifications introduced by NLEM
effects influence the BH stability. Steps in this direction
were taken, for instance, in [32] for an NLED
Lagrangian LðFÞ.
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