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Four components of the axisymmetric Einstein equations in 2þ 1 dimensions with negative cosmological
constant can bewritten as∇aM ¼ … and∇aJ ¼ …, where the dots stand for stress-energy terms, andM andJ
are scalars. Invacuum, they reduce to the constantmass and angularmomentumparameters of theBTZ solution
of the same name. The integrability conditions for the Einstein equations give rise to two conserved stress-
energy currents∇ajaðMÞ ¼ 0 and∇ajaðJÞ ¼ 0. The angular momentum current is just the Noether current due to

axisymmetry, but themass current is unexpected in the presence of rotation. The conserved quantityM exists in
all dimensions in spherical symmetry, known as the Misner-Sharp, Hawking or Kodama mass, but in 2þ 1

dimensions M exists also in axisymmetry, even with rotation. We use M and J to give a fully constrained
formulation of the axisymmetric Einstein equations in 2þ 1 dimensions, where the Einstein equations
are solved by explicit integration from the center along time slices. We use the two conserved matter currents
in the construction of a high-resolution shock-capturing formulation of the Einstein-perfect fluid system,
in which M and J momentum are then exactly conserved by construction. We demonstrate convergence
of the code in the test cases of generic dispersion and collapse and stable and unstable rotating stars.

DOI: 10.1103/PhysRevD.104.024061

I. INTRODUCTION

We present a formulation of the Einstein equations with
matter and a negative cosmological constant in 2þ 1
dimensions, restricted to axisymmetry, that is fully con-
strained, in the sense that the Einstein equations can be
solved by explicit radial integration along time slices to find
the metric on that time slice.
We also present a numerical implementation of this

formulation where the matter is a perfect fluid with the
linear (ultrarelativistic) equation of state P ¼ κρ. We
demonstrate convergence of this scheme in a number of
test cases with κ ¼ 1=2: rotating collapse, rotating strong
field noncollapse, and the time evolution of both stable and
unstable rotating stars, perturbed slightly.
In a companion paper, we shall use this code to

investigate critical phenomena at the threshold of prompt
collapse in this system.
Our numerical implementation could be generalized

straightforwardly to any barotropic or hot perfect fluid
equation of state, and our numerical implementation of the
Einstein equations to any other matter.
As the starting point for our formulation, we carry out a

reduction of the covariant Einstein equations under the
axisymmetry, with barred quantities referring here and later
to the reduced 2-dimensional spacetime. In axisymmetry in
2þ 1 dimensions, there are six independent components
of the Einstein equations. Four of these can be written
as ∇̄aM ¼ ϵ̄abj̄bðMÞ and ∇̄aJ ¼ ϵ̄abj̄bðJÞ, where ϵ̄ab is the

2-dimensional volume form. The left-hand sides are
defined in terms of the Killing vector ξa of axisymmetry
and the “area radius” R defined by the length of the closed
symmetry orbits. The right-hand sides are the contraction
of the stress-energy tensor with two vectors also made
from ξa and R.
This tells us two things: j̄aðMÞ and j̄

a
ðJÞ are conserved matter

currents, and M and J are nontrivial quasilocal (local in the
reduced spacetime) metric invariants that are constant in
vacuum. (They reduce to the constant mass and angular
momentum parameters of the same name in the Bãnados-
Teitelboim-Zanelli (BTZ family of axistationary metrics [1].)
To stress how unexpected this rich geometrical structure

of axisymmetry in 2þ 1 dimensions is, we remind the
reader what parts of it are known in other situations. The
local mass M exists, and is linked to a conserved matter
current jaðMÞ, in spherical symmetry in any dimension, and

is then known as the Kodama [2] or generalized Misner-
Sharp [3] mass. The current arises as the contraction of the
stress-energy tensor with a certain vector field, but this is
not a Killing vector field. The conserved angular momen-
tum matter current jaðJÞ ¼ Tabξb exists in axisymmetry, also

in any dimension. However, the local angular momentum
J exists only in 2þ 1 dimensions. Moreover, in 2þ 1
dimensions only, M and its current exist in axisymmetry
even with rotation.
The structure of the paper is as follows. In Sec. II we

derive the quantities M and J and their underlying currents

PHYSICAL REVIEW D 104, 024061 (2021)

2470-0010=2021=104(2)=024061(23) 024061-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9585-5375
https://orcid.org/0000-0003-0015-0861
https://orcid.org/0000-0002-2271-4501
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.024061&domain=pdf&date_stamp=2021-07-26
https://doi.org/10.1103/PhysRevD.104.024061
https://doi.org/10.1103/PhysRevD.104.024061
https://doi.org/10.1103/PhysRevD.104.024061
https://doi.org/10.1103/PhysRevD.104.024061


in the reduction approach. We use these two conservation
laws, plus a balance law for radial momentum, to formulate
the fluid evolution equations. (To generalize from a
barotropic to a hot equation of state, we would only need
to add the rest mass conservation law.)
In Sec. III we then introduce specific coordinates on the

reduced spacetime, namely a radial coordinate r linked in a
fixed way to the area radius R, and a time coordinate t that
is normal to R (polar time slices). The full metric on a time
slice can then be obtained from suitable fluid variables on
that slice by integration over r (starting from a regular
center). In this form, the Einstein equations look quite
similar to those in polar-radial coordinates in spherical
symmetry (in any dimension).
Section IV describes our numerical implementation in

detail. In particular, we discretize the integration of the
currents to obtain M and J so that the latter are conserved
exactly. This is particularly important where M ≃ 0 but its
sign matters because black holes can form only for M > 0
(we use the BTZ convention where its value in vacuum
adS3 is −1). Similarly, for rapidly rotating collapse it will
matter if J is larger or smaller than M. For the fluid
evolution, we use an evolve-reconstruct-limit approach
with a simple approximate Riemann solver. In several
details, we follow methods of [4] for ultrarelativistic fluid
collapse in spherical symmetry in 3þ 1 dimensions.
Section V describes numerical tests. To allow black

holes to exist in 2þ 1 dimensions, we assume a negative
cosmological constant throughout. We show that, at least
for sufficiently short times and away from the numerical
outer boundary, all variables converge pointwise to
second order. In some situations, the rate of convergence
goes down to first order after numerical error from our
“copy” numerical outer boundary condition dominates
the error budget. We use five different tests: generic
rotating initial data that disperse and collapse respec-
tively, and slightly perturbed stable and unstable rotating
stars, the latter perturbed so that they either collapse or
begin highly nonlinear oscillations. All regular axista-
tionary solutions with finite M and J (“rotating stars”) in
2þ 1 dimensions with negative cosmological constants,
and for arbitrary barotropic equation of state, and P ¼ κρ
in particular, were classified in [5], building on earlier
work in [6]. Here we give numerical evidence for a
conjecture made there, that where there are two stars with
the same M and J, the more compact one is unstable and
the less compact one stable.
Section VI contains our conclusions.

II. GEOMETRIC DESCRIPTION OF THE MODEL

A. Axisymmetry in 2 + 1 spacetime dimensions

We consider axisymmetric solutions of the Einstein
equations in 2þ 1 dimensions with negative cosmological
constant Λ≕ − 1=l2,

Gab þ Λgab ¼ 8πTab: ð1Þ

We set c ¼ G ¼ 1 throughout. Let ξa be the Killing vector
defining the axisymmetry. Its length defines the area radius

ξaξa ≕R2 ð2Þ

as a scalar. We define a local angular momentum J
geometrically as the twist (a scalar in 2þ 1 dimensions)
of the Killing vector,

J ≔ ϵabcξa∇bξc; ð3Þ

where ϵabc is the volume form implied by the metric gab.
We define a local mass function M in terms of J and R as

M ≔
R2

l2
þ J2

4R2
− ð∇aRÞð∇aRÞ: ð4Þ

Following Geroch, we define the metric in the reduced
1þ 1-dimensional spacetime of orbits

ḡab ≔ gab − R−2ξaξb; ð5Þ

so that ḡabξb ¼ 0, the corresponding volume form

ϵ̄ab ≔ R−1ϵabcξ
c; ð6Þ

and the corresponding covariant derivative operator ∇̄a by

∇̄a ≔ ⊥∇a⊥ ð7Þ

where ⊥ stands for contraction with ḡab on all indices.
Four linear combinations of components of the Einstein

equations can then be written as

∇̄aJ ¼ −16πRϵ̄abjbðZÞ; ð8Þ

∇̄aM ¼ −16πRϵ̄abjbðΩÞ ð9Þ

Clearly the currents jaðZÞ and jaðΩÞ are conserved in the

sense that

∇̄aðRjaðZÞÞ ¼ 0; ð10Þ

∇̄aðRjaðΩÞÞ ¼ 0; ð11Þ

or equivalently

∇ajaðZÞ ¼ 0; ð12Þ

∇ajaðΩÞ ¼ 0: ð13Þ
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The angular momentum and mass currents introduced
above are given by

jbðZÞ ≔ VðZÞaTab; ð14Þ
jbðΩÞ ≔ VðΩÞaTab; ð15Þ

where

Va
ðZÞ ≔ ξa ð16Þ

and

Va
ðΩÞ ≔ Va

ðXÞ þ
J

2R2
Va
ðZÞ; ð17Þ

with

Va
ðXÞ ≔ ϵ̄ab∇bR; ð18Þ

or equivalently

Va
ðΩÞ ¼ R−2

�
ϵabcξd þ 1

2
ξaϵbcd

�
ξb∇cξd: ð19Þ

The conservation law (12) follows directly from the fact
that Va

ðZÞ ≔ ξa is a Killing vector, but (13) is less obvious.

In spherical symmetry, jaðΩÞ and M are known generaliza-

tions of the Kodama conserved current and mass [2] from
3þ 1 to arbitrary dimensions [3].
While this paper was under review, a paper has appeared

[4] that independently identifies the same generalized
Kodama vector. It is given there in the form

Va
ðΩÞ ¼ −

1

2
ϵabc∇bξc: ð20Þ

We had not spotted this simpler form, which is equal to our
expression (19).

B. Rotating perfect fluid matter

The stress-energy tensor for a perfect fluid is

Tab ¼ ðρþ PÞuaub þ Pgab; ð21Þ

where ua is tangential to the fluid worldlines, with
uaua ¼ −1, and P and ρ are the pressure and total energy
density measured in the fluid frame. In the following, we
assume the 1-parameter family of ultrarelativistic fluid
equations of state P ¼ κρ, where 0 < κ < 1. In particular,
κ ¼ 1=2 represents a 2-dimensional gas of massless (or
ultrarelativistic) particles in thermal equilibrium, where the
stress-energy tensor is trace-free. The sound speed is
cs ¼

ffiffiffi
κ

p
. There is no conserved rest mass density.

Following the Valencia formulation [7,8], we parame-
trize the 3-velocity ua in terms of the 2-velocity va with
respect to a time slicing t as

ua ≔ Γðna þ vaÞ; ð22Þ

Γ ≔ −naua; ð23Þ

vana ≔ 0; ð24Þ

where na is the future-pointing unit normal on the time
slices. The normalization uaua ¼ −1 relates the Lorentz
factor Γ to the 2-velocity as

Γ−2 ¼ 1 − vava: ð25Þ

Following standard practice in fluid dynamics in curved
spacetime, we write the stress-energy conservation equa-
tion ∇aTab ¼ 0 as a set of three balance laws

∇aðVbðiÞTabÞ ¼ Tab∇ðaVbÞðiÞ; ð26Þ

or

∇ajaðiÞ ¼ sðiÞ; ð27Þ

specified by a choice of three vector fields Va
ðiÞ. We have

already defined the vector fields Va
ðZÞ and Va

ðΩÞ, which give

rise to conservation laws (balance laws with zero source
term), and so are natural choices.
For the radial momentum (force) balance law we choose

Va
ðYÞ ≔ ∇aðlnRÞ: ð28Þ

This is the only choice where the resulting balance law is
“well-balanced” for a fluid of constant density at rest in
Minkowski spacetime, in the sense that the flux term is
constant and the source term vanishes. By contrast, a
balance-law based on any other choice of Va

ðYÞ requires

an explicit cancellation of the flux and source terms, which
may lead to large and unnecessary numerical error. An
equivalent choice for the radial momentum balance law
was made in [9] for spherical polar coordinates in 3þ 1
dimensions (without restriction to spherical symmetry).

III. DESCRIPTION IN POLAR-RADIAL
COORDINATES

A. Metric and Einstein equations

We now introduce a specific coordinate system, namely
the generalized polar-radial coordinates ðt; r; θÞ, in terms of
which the axisymmetric metric takes the form

ds2 ¼ −α2ðt; rÞdt2 þ a2ðt; rÞR02ðrÞdr2
þ R2ðrÞ½dθ þ βðt; rÞdt�2: ð29Þ

Note that our choice grr ¼ a2R02 makes a invariant under a
redefinition r → r̃ðrÞ of the radial coordinate. The volume
forms are given by
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ϵtrθ ¼ αaR0R; ϵ̄tr ¼ αaR0; ð30Þ

where we have made a choice of overall sign.
We assume that the spacetime has a regular central

world line R ¼ 0, and there we impose the gauge con-
ditions, αðt; 0Þ ¼ 1, βðt; 0Þ ¼ 0, and the regularity con-
dition aðt; 0Þ ¼ 1. The gauge is fully specified only after
also specifying the strictly increasing function RðrÞ, but we
shall always assume that RðrÞ is an odd analytic function
with Rð0Þ ¼ 0, R0ð0Þ ¼ 1. The Killing vector is

ξa ¼
� ∂
∂θ
�

a
ð31Þ

and R is its length, as above. We define the auxiliary
quantity

γ ≔ β;r; ð32Þ

anticipating that β will not appear undifferentiated in the
Einstein or fluid equations, but only in the form of γ and its
derivatives, since the form (29) of the metric is invariant
under the change of angular variable θ → θ þ fðtÞ.
Polar-radial coordinates have been used successfully

in studying critical collapse in spherical symmetry in
3þ 1 spacetime dimensions, starting with [10]. Their
main advantage is that they allow a fully constrained
formulation of the Einstein equations, where at t ¼ 0 and
each subsequent timestep we solve differential equations
for a, α and β that contain only r-derivatives. Their main
disadvantage is that they are apparent-horizon avoiding:
in spacetime regions where an apparent horizon is about
to form, the lapse α collapses near the center compared
to its value far out so that the time slicing stops
advancing near the center and never reaches the apparent
horizon. This means that we cannot look very far into
black holes.
In our coordinates, J and M are given by

Jðt; rÞ ¼ R3γ

R0aα
; ð33Þ

Mðt; rÞ ¼ R2

l2
þ J2

4R2
−

1

a2
: ð34Þ

In an axistationary vacuum ansatz, M and J are constant
in space and timewith value equal to the BTZ parameters of
the same name. The BTZ 2-parameter family of metrics [1]
takes the form

α2 ¼ −M þ R2

l2
þ J2

4R2
; ð35Þ

a2 ¼ 1

α2
; ð36Þ

β ¼ −
J

2R2
; ð37Þ

in all BTZ solutions. The anti-de Sitter solution (from now,
adS3) in particular is given by M ¼ −1 and J ¼ 0. Note
that αa ¼ 1 in the BTZ solutions.
In contrast to higher dimensions, stationarity actually

follows from vacuum axisymmetry locally, intuitively
because there are no gravitational waves in 2þ 1 dimen-
sions. The situation in 2þ 1 axisymmetry is therefore
rather more similar to spherical symmetry in higher
dimensions, where the vacuum solutions are static and
characterized by only a mass parameter.
Each BTZ solution is in fact locally, although not globally,

isometric to the adS3 solution [11]. However, this additional
symmetry will not be apparent in what follows.
The matter and Einstein equations are simplest in the

standard polar-radial coordinates defined by RðrÞ ¼ r.
However, in these coordinates the coordinate speed of
ingoing and outgoing radial light rays is dr=dt ¼ �λc,
where λc ≔ α=ðaR0Þ. This increases rapidly with radius
in the BTZ solution, even in adS3. A necessary stability
condition for any numerical method for evolving ultra-
relativistic fluid matter is the Courant-Friedrichs-Levy
(from now on, CFL) condition that the numerical grid
be wider than the light cones, that is Δr=Δt ≥ λc, every-
where in spacetime. As we require Rmax ≫ l in situations
of physical interest, this makes for a wastefully small Δt.
This problem is easily fixed if we introduce compactified

polar-radial coordinates [12]

RðrÞ ¼ l tanðr=lÞ; ð38Þ
where the radial coordinate now has the range
0 ≤ r < lπ=2. In a vacuum region ρ ¼ 0, where the metric
is BTZ, the light speed then takes the form

λc ¼ 1 −
�
1þM −

J2

4R2

�
cos2 r=l: ð39Þ

In particular, the light speed is always bounded above and
below. In the adS solution, we have λc ¼ 1, and the CFL
condition is uniform. Similarly, the coordinate light speed
will remain bounded in asymptotically adS3 solutions.
In our numerical simulations we use the compactified
coordinates (38), with different values of the cosmological
scale l, but for clarity we will write R and R0 rather than the
explicit expressions.
Of the six algebraically independent components of the

Einstein equations in generalized polar-radial coordinates,
five can be solved for γ;r, γ;t, a;r, a;t and α;r. The
undifferentiated shift β does not appear in the Einstein
equations or in our formulation of the matter equations.
The sixth Einstein equation is a combination of first
derivatives of the other ones, and so is redundant modulo
stress-energy conservation.
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To write the first four Einstein equations (8), (9) in
coordinates, we define the current components

Z ≔
ffiffiffiffiffiffi
−g

p
jtðZÞ; ð40Þ

fðZÞ ≔
ffiffiffiffiffiffi
−g

p
jrðZÞ; ð41Þ

Ω ≔
ffiffiffiffiffiffi
−g

p
jtðΩÞ; ð42Þ

fðΩÞ ≔
ffiffiffiffiffiffi
−g

p
jrðΩÞ; ð43Þ

and obtain

J;r ¼ 16πZ; ð44Þ
J;t ¼ −16πfðZÞ; ð45Þ

M;r ¼ 16πΩ; ð46Þ

M;t ¼ −16πfðΩÞ: ð47Þ

The resulting conservation laws (12), (13) take the form

Z;t þ fðZÞ;r ¼ 0; ð48Þ

Ω;t þ fðΩÞ;r ¼ 0: ð49Þ

A useful choice for the fifth independent Einstein
equation, which must contain α;r in order to be independent
of (44)–(47), is

ðln αaÞ;r ¼ 8πa2RR0ð1þ v2Þσ; ð50Þ
as the right-hand side vanishes in vacuum. The matter
quantities v and σ in the right-hand side of this equation
will be defined below.
The Einstein equations (44)–(47) and (50) are all linear

combinations of components of the Einstein equations, and
so contain the fluid density, pressure and velocity undiffer-
entiated. We have not used the contracted Bianchi identities
(stress energy conservation), two of which are separately
given as (48)–(49).
While this paper was under review, a paper has appeared

[13] that independently identifies the same generalised
Kodama vector. It is given there in the form

Va
ðΩÞ ¼ −

1

2
εabc∇bξc. ð51Þ

We had not spotted this simpler form, which is equal to our
expression (19).

B. Balance laws

Rather than working directly with the coordinate com-
ponents vr and vθ of the 2-velocity, we use its frame
components in the radial and tangential directions,

v ≔ aR0vr; w ≔ Rvθ: ð52Þ

We define the 2-velocity to be analytic if in the Cartesian
coordinates x ≔ R cos θ and y ≔ R sin θ, its Cartesian
components vx and vy are analytic functions of x and y.
This is the case in axisymmetry if and only if v and w are
analytic odd functions of R, and hence of r (as we choose
RðrÞ to be analytic and odd).
In terms of v and w, and with nμ ¼ ð−α; 0; 0Þ, the

3-velocity (22) of the fluid is

uμ ¼ fut; ur; uθg ¼ Γ
�
1

α
;
v
aR0 ;

w
R
−
β

α

�
; ð53Þ

or equivalently

uμ ¼ Γf−αþ Rwβ; aR0v; Rwg; ð54Þ
where the Lorentz factor (25) is

Γ−2 ¼ 1 − gijvivj ¼ 1 − ðv2 þ w2Þ: ð55Þ
In coordinates, the balance laws take the form

ð ffiffiffiffiffiffi
−g

p
VμðiÞTtμÞ;t þ ð ffiffiffiffiffiffi

−g
p

VμðiÞTrμÞ;r ¼
ffiffiffiffiffiffi
−g

p
sðiÞ: ð56Þ

We abbreviate this as

q;t þ f;r ¼ S: ð57Þ
Note that the factor

ffiffiffiffiffiffi−gp ¼ αaR0R is included in our
definitions of the conserved quantities q, fluxes f and
sources S, and hence they depend on the choice of
coordinates, while the currents jaðiÞ and sources sðiÞ in (27)

are defined covariantly by (26).
The coordinate components of the three vector fields are

Vμ
ðZÞ ¼ f0; 0; 1g; ð58Þ

VðXÞμ ¼
�
α

a
; 0; 0

�
; ð59Þ

VðYÞμ ¼
�
0;
R0

R
; 0

�
: ð60Þ

Note these do not all have the index in the same position—
we have chosen the simplest form. The corresponding three
balance laws have the conserved quantities

q ≔ fΩ; Y; Zg ð61Þ

given by

X ¼ R0Rτ; ð62Þ

Y ¼ R0vσ; ð63Þ
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Z ¼ aR2R0wσ; ð64Þ

Ω ¼ X þ JZ
2R2

; ð65Þ

with the corresponding fluxes f given by

fðXÞ ¼
α

a
Rvσ; ð66Þ

fðYÞ ¼
α

a
ðPþ v2σÞ; ð67Þ

fðZÞ ¼ αR2vwσ; ð68Þ

fðΩÞ ¼ fðXÞ þ
JfðZÞ
2R2

; ð69Þ

and the corresponding sources S by

SðXÞ ¼
1

a
½−Rvσαðln aαÞ;r þ R2vwσγ − RR0ð1þ v2Þσa;t�

ð70Þ

¼ 1

a
R2vwσγ ¼ R0

R3
JfðZÞ; ð71Þ

SðYÞ ¼
1

a

�
ðw2 − v2ÞσαR

0

R
− τα;r − ðPþ v2σÞαðln aÞ;r

þ Rwσγ − 2vσR0a;t

�
; ð72Þ

SðZÞ ¼ 0; ð73Þ

SðΩÞ ¼ 0; ð74Þ

where we have defined the shorthands

σ ≔ Γ2ð1þ κÞρ; ð75Þ

P ≔ κρ; ð76Þ

τ ≔ σ − P: ð77Þ

Note that in flat spacetime SðXÞ vanishes and only the first
term in SðYÞ is present.
The specific metric derivatives appearing in SðXÞ and SðYÞ

are given by the Einstein equations as

ðln αÞ;r ¼ a2RR0
�
8πðPþ v2σÞ − J2

4R4
þ 1

l2

�
; ð78Þ

ðln aÞ;r ¼ a2RR0
�
8πτ þ J2

4R4
−

1

l2

�
; ð79Þ

a;t ¼ −8παa2Rvσ: ð80Þ

In (71), we have used (50) [which itself follows from
(78) and (79)] and (80) to simplify SðXÞ to something that is
proportional to J and so vanishes in spherical symmetry.
In (74), we have used the Einstein equations (44), (45) as
well as the conservation laws for X and Z. By contrast,
there is no particular simplification when the Einstein
equations are used to express the metric derivatives in
SðYÞ in terms of the stress-energy.

C. Characteristic velocities

The coordinate characteristic velocities λ ¼ dr=dt of the
matter are the eigenvalues of the 3 × 3 matrix ∂f=∂q. It is
useful to write the latter as ð∂q=∂uÞ−1ð∂f=∂uÞ, where as
our primitive variables we choose

u ≔ fρ; v; wg: ð81Þ

We find the coordinate characteristic velocities

λ0;�¼ α

aR0

(
v;

vð1−κÞΓ2

ð1−κÞΓ2þκ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κð1−κÞð1−v2ÞΓ2þκ2

p
ð1−κÞΓ2þκ

)
:

ð82Þ

These represent the radial fluid velocity and the velocity
of outgoing and ingoing sound waves (in axisymmetry in
2þ 1 dimensions, there are only radial sound waves). In
the (unphysical) limit κ ¼ 1, the two sound velocities λ�
reduce to �λc, the coordinate speed of radial light rays.
However, the fluid motion will in general become relativ-
istic even for cs ¼

ffiffiffi
κ

p
≪ 1, and so v will approach �1

arbitrarily closely, which then means that one of λþ
approaches λc or λ− approaches −λc.

IV. NUMERICAL METHOD

A. Fluid evolution

We use standard finite-volume methods for the time
evolution of the fluid variables. We initially discretize only
in r. Time will be discretized at the end, an approach
sometimes called the method of lines. We use standard
notation where ri denotes cell centers and riþ1=2 denotes
cell faces. In principle, each cell is allowed to have a
different width, but we always have

ri ≔
1

2
ðri−1=2 þ riþ1=2Þ: ð83Þ

We define the shorthand

ΔiðrÞ ≔ riþ1
2
− ri−1

2
; ð84Þ

and similarly for other grid functions.
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The numerical values of the conserved variables re-
present cell averages (denoted by an overbar), that is

q̄iðtÞ ≔
1

ΔiðrÞ
Z

riþ1
2

ri−1
2

qðt; rÞdr ð85Þ

in terms of notional continuum functions qðt; rÞ. They are
updated by notional fluxes through cell faces plus notional
cell averages of the source terms, that is

dq̄i

dt
¼ 1

ΔiðrÞ
ðfi−1

2
− fiþ1

2
Þ þ s̄i: ð86Þ

This update is conservative by construction when the
source terms vanish, simply because the fluxes from
adjacent cells cancel in the time derivative of

R
qdr.

In the numerical code, where array indices must be
integers, we label cell i by array index i (obviously) and
cell-face riþ1=2 by i, so each cell face is labeled by the cell
to its left. The physical cells are labeled i ¼ 1;…N and
their boundaries i ¼ 0;…N, with r1=2 ≔ 0 labelled as cell
face 0.
To find the numerical fluxes, we first reconstruct

the fluid variables in each cell in order to find left and
right values at the cell faces. In the reconstruction we use
a slope limiter such as centered, minmod or van Leer’s
MC limiter [14]. This takes as its input the cell aver-
age of the conserved quantity, as well as some slope
information.
For these and other standard reconstruction methods to

work well, the functions w we reconstruct should be
“generic” in the sense that if we only have the cell average
our best guess for the reconstructed function should be
constant over the cell (with value equal to the cell average).
However, none of our conserved quantities and not all of
our primitive variables are generic in this sense, as they are
expected to vary as some power of R near the symmetry
boundary R ¼ 0. In particular, v and w are odd functions
of R (or r). By contrast, the functions we reconstruct are
chosen to be even functions of R (or of r) that generically
do not vanish at R ¼ 0 (or r ¼ 0), namely

w ≔ ðω; η; ζÞ ≔
�

Ω
R0R

;
Y
R0R

;
Z

R0R3

�
ð87Þ

¼
�
τ þ J

2

awσ
R

;
vσ
R

;
awσ
R

�
: ð88Þ

We now approximate ω, η and ζ as constant in each cell to
find their notional cell center values wi from the cell
averages of the q. For such functions, wðrÞ ≃ wi ≃ w̄i is the
best approximation to make inside the ith cell, whereas for
a function that behaves like a power of R at the center it
would not be. For example, from (87) we have

ωd

�
R2

2

�
¼ Ωdr: ð89Þ

Approximating ωðrÞ ¼ ωi and integrating over the ith cell,
and similarly for η and ζ, we obtain

ωi ¼
2ΔiðrÞ
ΔiðR2Þ Ω̄i; ð90Þ

ηi ¼
2ΔiðrÞ
ΔiðR2Þ Ȳi; ð91Þ

ζi ¼
4ΔiðrÞ
ΔiðR4Þ Z̄i: ð92Þ

We use these cell-center values wi together with notional
slopes to reconstruct wðrÞ to the cell faces and, independ-
ently, the wi (only) to compute the source terms at the cell
centers.
To find the numerical fluxes fiþ1=2, we approximate the

reconstruction as constant on each side of a cell face
and then solve the resulting Riemann problem. Note that
to find the flux through the cell face we do not need
the complete solution of the Riemann problem but only the
value qðriþ1=2Þ at the cell face. As the solution of the
Riemann problem is self-similar,

qðt; rÞ ¼ q̃

�
r − riþ1=2

t − tn

�
; ð93Þ

qðt; riþ1=2Þ is time-independent, and so therefore
is fiþ1=2 ≔ f½q̃ð0Þ�.
In practice, we do not solve the Riemann problem

exactly but use an approximate Riemann solver. We use
the very simplest one, the HLL approximate Riemann
solver ([15]). This approximates the solution as a two-
shock solution with shock speeds given a priori as �λHLL.
Conservation then forces the middle state to be the average
of the left and right state, and the resulting HLL flux is
given by

fi−1
2
¼ fðqR

i−1Þ þ fðqL
i Þ þ λHLLðqR

i−1 − qL
i Þ

2
; ð94Þ

where qR
i−1 and qL

i are the right and left reconstructions
in the (i − 1)th and ith cells. λHLL is an estimate of the
absolute value of the largest coordinate characteristic speed.
We use the coordinate speed λc of radial light rays, which is
a (sharp) upper limit for the matter characteristic speeds.
We impose regularity boundary conditions at the center

by using ghost points and the fact that all our grid functions
are either even or odd in r. We fill the outer ghost cells by
extrapolating the u; q̄ or w as constant functions (copy
boundary conditions).
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We found some obstacles in extending the numerical outer
boundary to infinity. The HLL flux limiter is not positivity
preserving, which can lead to unphysical values for the
density during the evolution. This is offset by imposing a
numerical floor (typically ∼10−14). When extending the
numerical grid to infinity, the outer boundary is typically a
region of near vacuum, where the density is then set to this
floor value. During the RK steps, the numerical flux
continuously attempts to reduce the density below the floor
value. The density is then replenished back to the floor value,
thus continually adding mass to the system. It is possible to
circumvent this problem by not imposing a floor on the
density. In parallel, one can modify the numerical flux to be
positivity preserving by “interpolating” between the HLL
flux with some other positivity-preserving flux (such as
Lax-Friedrichs) [16]. Doing so however generates shocks
near the boundary that quickly grow and travel inwards. We
have not attempted to further investigate this issue.

B. Recovery of primitive variables

To recover the primitive variables u from the conserved
variables q at one point, we first convert the q to the w.
We then compute

τ ¼ ω −
Jζ
2
: ð95Þ

Inverting (75)–(77), (87), we compute

ρ ¼ τ

½Γ2ð1þ κÞ − κ� ; ð96Þ

v ¼ Rη
Γ2ð1þ κÞρ ; ð97Þ

w ¼ Rζ
aΓ2ð1þ κÞρ : ð98Þ

The Lorentz factor Γ can be written in terms of w, by
plugging (97), (98) into (55) and solving for Γ. We find

Γ2 ¼ 1 − 2κð1þ κÞU þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4κU

p

2ð1 − ð1þ κÞ2UÞ ; ð99Þ

where we defined

U ≔
R2ðη2 þ ζ2

a2Þ
ð1þ κÞ2τ2 ð100Þ

¼ Γ2ðΓ2 − 1Þ
½Γ2ð1þ κÞ − κ�2 : ð101Þ

Note that the w must obey the constraint

R2

�
η2 þ ζ2

a2

�
< τ2 ð102Þ

for the fluid velocity to be physical (timelike). Numerical
error may lead to this condition being violated, in which
case (99) fails.

C. Einstein equations, fluxes and sources

We need to already have the metric coefficients J and a
(as well as the given functions R and R0) to recover the
primitive variables from the conserved variables, and in
addition we need α to compute the fluxes and sources.
Moreover, variables can be represented numerically as cell-
center values, cell-face values, or cell averages. Taking all
this into account, in our fully constrained evolution scheme
we interleave the solution of the Einstein equations at
constant t with the recovery of the primitive variables in the
following order, see also Table I for a summary.

0) We start with the cell averages q̄i ≔ ðΩ̄i; Ȳi; Z̄iÞ at
some moment of time.

1) We find the cell-center values wi ≔ ðωi; ηi; ζiÞ using
(90)–(92).

2) We now come to the first of two blocks of metric
calculations. We find J and M at the cell faces by
integrating out from J ¼ 0 and M ¼ −1 at the cell
face r ¼ 0, using

ΔiðJÞ ¼ 16πZ̄iΔri; ð103Þ

ΔiðMÞ ¼ 16πΩ̄iΔri: ð104Þ

These integrals are exact as Ω̄i and Z̄i represent cell
averages. As Ω and Z are conserved exactly by our
numerical scheme this discretization also gives us

TABLE I. Overview of how dq=dt is calculated. Steps 2 and 4
are not required if the metric is fixed. “þ floor” means that we
impose a floor on small quantities at this point.

0) q̄i ≔ ðΩ̄i; Ȳi; Z̄iÞ þ floor (62)–(65)

1) wi ≔ ðωi; ηi; ζiÞ þ floor (87)

2) Jiþ1=2, Miþ1=2, aiþ1=2 (44), (46), (34)
ai Average

Ji, τi (108), (95)

3) ui ≔ ðρi; vi; wiÞ þ floor (100), (99), (96)–(98)

4) αiþ1=2 (110)
αi Average

γi, γiþ1=2 (33)
βiþ1=2 (32)
βi Average

5) S̄ðYÞi via SðYÞi (72), (111)

6) fi−1=2 via wL
i , w

R
i−1, u

L
i uR

i−1 (66)–(69), (94)

7) dq̄i=dt (86)
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exact conservation of J andM. From J,M and R at the
cell faces we find a at the cell faces using (34).

a is a generic even function, so using the average of the
values at the two cell faces is a reasonable approximation to
its value at the cell center,

ai ¼
1

2
ðai−1=2 þ aiþ1=2Þ: ð105Þ

At the same time, we determine τ at the cell centers.
This is more subtle, as it involves Z and J, which scale as
Z ∼ R3 and hence J ∼ R4 near the center and so are not
generic even functions. We first approximate Z in cell i by
assuming that ζ, which is a generic even function, is
constant in the cell (at the cell-center value ζi, which
we found from the cell average Z̄i). This gives the
approximation

Zi ≃
4ΔiðrÞZ̄i

ΔiðR4Þ R3
i R

0
i: ð106Þ

We also have the exact relation

JðriÞ ¼ Ji−1=2 þ 16π

Z
ri

ri−1=2

Zðr̃Þdr̃ ð107Þ

and an equivalent expression integrating from riþ1=2.
Inserting the approximation (106), carrying out the inte-
gration, and averaging the two resulting expressions for
JðriÞ, we find the approximation

Ji ≃
ΣiðJÞ
2

þ 8πΔiðrÞZ̄i
2R4

i − ΣiðR4Þ
ΔiðR4Þ ; ð108Þ

where

ΣiðJÞ ≔ Ji−1=2 þ Jiþ1=2 ð109Þ

and similarly for other grid functions.
We evaluate the approximation (108) at the cell centers

to obtain Ji, and hence τi.
3) We now have τi, ηi and ζi and the metric coefficient ai
at the cell centers, and recover the primitive variables
ui ≔ ðρi; vi; wiÞ at the cell centers as described in
Sec. IV B.

4) We now come to a second block of metric calcu-
lations. We integrate the remaining Einstein equa-
tion (50) in the approximation

ΔiðlnðαaÞÞ ≃ 4πa2i ð1þ v2i ÞσiΔiðR2Þ ð110Þ

to obtain aα and hence α at the cell faces, starting from
the gauge condition αðt; 0Þ ¼ 1.

We interpolate α to the cell centers, as we did for a.
From J, a and α we compute γ at the cell faces and cell

centers using (33). As a diagnostic only, we find β at the
cell faces by integration using the trapezoid rule, and then
interpolate β to the cell centers. We start the integration of β
from the gauge condition βðt; 0Þ ¼ 0.

5) We evaluate (78)–(80), and hence (72) at the cell
centers to find the source term SðYÞi at the cell centers.
As SðYÞ ∼ RR0f, where f is a generic even function
near the center, we integrate the approximation
fi ¼ f̄i over the i-cell to find

S̄ðYÞi ¼
SðYÞi
RiR0

i

ΔiðR2Þ
2ΔiðrÞ

: ð111Þ

6) We use a standard slope-limited method to reconstruct
the w to the cell faces, denoting the value immediately
to the left of the cell face at ri−1=2 by wR

i−1 and the
value immediately to the right by wL

i . We already have
values of J and a at the cell faces (continuous across
the cell face). We find τ at both sides of each cell face
using (95), U from (100), then Γ and finally the u.
Finally, we use an approximate Riemann solver to find
the numerical fluxes f through the cell faces from the
u on each side.

7) We then have dq̄i=dt from (86).

D. Imposition of a floor on small quantities

Recall that the generic variables need to satisfy the
constraint (102) everywhere at all times. Failure for this
condition to be satisfied results in an unphysical value
of (100) and thus of Γ2. A primary concern is to ensure that
this inequality is satisfied in near-vacuum regions, since in
those regions all three of the variables τ, η, ζ are small. We
choose to impose a floor on the generic variables at each
physical cell,

τi − Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2i þ

ζ2i
a2i

s
≥ δf : ð112Þ

If the above condition is not satisfied at any cell i, we
proceed as follows: First, τi is set to be at least the
floor value,

τi;new ¼ max ðδf ; τiÞ: ð113Þ

Then we split the density and momentum variables into
an ingoing and an outgoing combination (defined in the
spirit of characteristic variables), and impose a floor on
each separately,

c� ≔ max

 
τi � Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2i þ

ζ2i
a2i

s
; δf

!
: ð114Þ

Note that necessarily c− ¼ δf. The variables τ, η are then
updated as,
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τi;new ≔
cþ þ c−

2
; ð115Þ

η2i;new ≔
ðcþ − c−Þ2

4R2
i

−
ζ2i
a2i

: ð116Þ

The sign of ηi;new is chosen so that it has the same sign as ηi.
It is possible due to numerical errors that the rhs of (116) is
negative. In this case, we set

ηi;new ¼ 0 ð117Þ

and solve (116) for ζi → ζi;new. The updated value ζi;new
can be written explicitly as

ζi;new ¼ 0 ð118Þ

if cþ ¼ c− and

jζji;new ¼ a

					 2ðτi − δfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτi − δfÞ2 þ 3R2

i η
2
i

p
3Ri

					; ð119Þ

if cþ > c−. We select the root that minimizes jjζji − jζji;newj
and again we choose the sign of ζi;new to coincide with the
sign of ζi.
By construction, the updated values then satisfy (112).

The floor δf itself is computed as the maximum between a
relative and absolute floor,

δf ≔ max

 
δabs; δrel

 
τi þ Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2i þ

ζ2i
a2i

s !!
: ð120Þ

The addition of this second relative floor is due to the
fact that it is possible to encounter a situation for which
c− < δf ; cþ > δf and also cþ ≫ c−. In this case, within
numerical precision, the update of the generic variables do
not register. The second term in (120) ensures that the floor
is never “too small” compared to the data and that the
update is therefore always properly applied. Typical values
we choose are δabs ¼ δrel ¼ 10−12. The floor is applied to
the generic variables each time they are computed from the
conserved variables. Furthermore, within each Runge-
Kutta step, the floor is imposed on the newly computed
conserved variables. This is done by first converting q̄i into
wi using (90)–(92), imposing the floor on them as dis-
cussed above and then converting back to q̄i by inverting
(90)–(92). We note that each time the floor is applied, the
value of τ increases, resulting in the associated conserved
variables Ω̄i to also increase. Thus, due to the floor, Ω̄i is
not exactly conserved during the evolution.

E. Overall time step and initial data

Starting from the conserved quantities q̄i at one moment
in time we have now recovered the metric and primitive

variables, and the time derivative dq̄i=dt. We implement
(86) in a fourth order Runge-Kutta scheme in t. Note that
for high-resolution limiters such as MC or minmod limit-
ers, this scheme will also be total-variation-diminishing
[17]. Each time we evaluate dq̄i=dt in the substeps of that
scheme we also recalculate the metric.
We impose symmetry boundary conditions at r ¼ 0,

based on the fact that all variables are either even or odd
in r. As we start each time step, and each Runge-Kutta
timestep, assuming that only the q̄i are known, we impose
the symmetry boundary conditions on them after each
Runge-Kutta substep.
Any initial data in general relativity consist of a part that

is freely specified and a part that is obtained by solving the
constraints (and perhaps gauge conditions). As we have a
fully constrained scheme for solving the Einstein equations,
it is natural to prescribe the “matter” and use the Einstein
equations to find the metric coefficients, but the meaning
of matter is necessarily ambivalent. We specify the generic
variables wi at the cell centers as our free initial data, from
which we can immediately compute the averaged con-
served quantities q̄i from (90)–(92). From q̄i, we can then
follow the numerical scheme outlined in Table I to compute
all the other quantities at the initial time step in a consistent
way. Note that specifying the w, or equivalently the q,
means that we know M and J a priori. This would not be
the case if we specified the primitive variables u.

F. Formation of apparent horizon and computation
of critical quantities

Since we are not using a horizon penetrating foliation,
one cannot observe the formation of an apparent horizon.
We instead make use of two simple criteria to determine if a
given initial data will collapse or disperse. For our intended
application to critical collapse, it is important that this
decision can be reliably automated.
First, if during the evolution, the timestep Δt is smaller

than some minimum timestep Δtmin, then formation of
apparent horizon is deemed to be imminent and unavoid-
able and the corresponding initial data will be judged as
being supercritical. The rationale behind this is that the
time steps are computed so that the CFL condition is also
satisfied,

Δt ¼ cCFLmin
i
ðΔriÞmin

i;i−1
2

�
aR0

α

�
; ð121Þ

where the last minimum is computed from both the cell
centers and faces and 0 < cCFL < 1. It is well known that in
spherical symmetry, the formation of an apparent horizon is
easily identified with the vanishing of ð∇RÞ2 ¼ 1=a2 ¼ 0
at some radius R ¼ RAH. From the above and (78)–(79), it
follows that the time step Δt → 0 outside the horizon.
A typical value is Δtmin ¼ 10−11.
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There are also two other criteria that effectively act
as fail-safes: if the maximum density ρmax is larger than
some threshold density at any point in time, then this will
also be deemed as supercritical data. A typical value is
ρthreshold ¼ 1030. This criteria is usually never triggered
since the time step dt becomes sufficiently small before this
happens.
The second criterium is the value of ð∇RÞ2 itself. Since

on the onset of apparent horizon formation, ð∇RÞ2 → 0,
numerical error can conspire to produce unphysical values
of ð∇RÞ2, namely, ð∇RÞ2 ≲ 0. This will also be a sign that
collapse is unavoidable. If a given time evolution does not
satisfy any of these criteria and the evolution has run for a
sufficiently long time, the initial data will be deemed to be
subcritical.
There is a subtlety in the notion of “sufficiently long,” in

that the negative cosmological constant effectively confines
the matter. For perfect fluid matter, this is due to an inward
cosmological acceleration. One may conjecture that, given
enough time, any initial data with total mass M > 0 will
form a black hole, and this is well established numerically
for scalar field matter [12]. As we impose an unphysical
numerical boundary condition at finite R, we are unable to
investigate this, and so our criteria are, in some sense, for
prompt collapse.
To investigate scaling at the threshold of (prompt)

collapse, we need to record the maximum of the density
ρmax and the mass and spin of the apparent horizon MAH,
JAH respectively. The latter are computed using the
formulas (33) and (34) evaluated at the apparent horizon
RAH. This is found from the minimum value of ð∇RÞ2,
ð∇RÞ2min ≔ mini;nð∇RÞ2i ðtnÞ from which we then consider
the two neighboring points of ð∇RÞ2min and make a
polynomial interpolation. The variables needed in the
computation of MAH, JAH are then evaluated by linear
interpolation from RAH.

V. NUMERICAL TESTS

A. Convergence testing

In this section, we investigate the pointwise convergence
as well as convergence with respect to a norm of our
numerical code for different scenarios. Specifically, we
examine six cases. First, we consider initial data “far” from
the black hole threshold which disperses and collapses.
For each of these two cases, we will consider a “slowly”
and “rapidly” rotating case. Finally, we also consider initial
data corresponding to rotating stars that are presumed
stable and unstable.
Let f refer to any quantity of interest. In the following,

we will mostly be interested in the conserved variables q̄, as
they are used to evolve the data at the next timestep. It
should still be emphasized that the primitive and generic
variables still indirectly play a role in the evolution, notably
during the floor imposition and when computing the fluxes

at the cell faces, see Table I. In our numerical code, we
consider an approximation to the exact function fðt; rÞ.
This approximation depends on the grid resolution ΔiðrÞ
and since we always choose a uniform grid spacing in the
simulations we may simplify the notation by defining
h ≔ ΔiðrÞ. The approximation of the exact solution
fðt; rÞ will then be denoted by Fhðt; rÞ. The function
Fhðt; rÞ converges pointwise to the exact solution fðt; rÞ
if at all points we have

Fhðt; rÞ ¼ fðt; rÞ þ Cðt; rÞhk þOðhkþ1Þ; ð122Þ

where Cðt; rÞ is a smooth function which depends on the
continuum solution fðt; rÞ and k is the order of conver-
gence. Typically, the exact solution f is unknown, but this
problem can be circumvented by considering instead the
difference between two resolutions,

δFhðt; rÞ ≔ Fhðt; rÞ − Fh
2
ðt; rÞ: ð123Þ

It follows that our scheme converges to order k if

δFhðt; rÞ ¼ 2kδFh
2
ðt; rÞð1þOðhÞÞ: ð124Þ

Besides investigating pointwise convergence, we will
also be interested in the convergence in a norm. Consider
the l2 norm, defined at any fixed time t by

jjFjj22ðt; h; pÞ ¼
h
2

XN−p

i¼1

ðFhðt; ri−1=2Þ2 þ Fhðt; riþ1=2Þ2Þ:

ð125Þ

Note that we use the cell faces instead of the cell centers,
because the former align exactly when we double the
resolution. If F corresponds to fluid variables, such as u; q̄
or w, the cell faces values are computed from the cell
centers by linear interpolation.
Recall that the center is located at r1=2 ¼ 0, while the

outer boundary corresponds to rNþ1=2 ≕ rmax. Note that in
the definition of the norm, we also allow the truncation
of the last p grid points for reasons that will be explained
shortly.
Applying this norm to (124), we then find that

N Fðt; h; pÞ ≔ log2
ðjjδFjj2ðt; h; pÞ
jjδFjj2ðt; h2 ; pÞÞ

¼ kþOðhÞ: ð126Þ

By construction, one expects second-order convergence
everywhere, except at and near the outer boundary due to
the copy boundary conditions. On the other hand, the
boundary conditions at the center are expected to not spoil
the second-order convergence since they preserve the
even/oddness of the functions they are applied to.
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In the following, we investigate the following points:
First, the correct implementation of the code, which should
imply second-order convergence at least at short times
everywhere, except possibly near the outer boundary.
Second, we wish to investigate how the error that originates
from the boundary affects the inside of the numerical grid.
This is particularly important for the stationary configura-
tions, since the conserved quantities do not vanish at
infinity and so one would a priori expect the numerical
outer boundary conditions to play a crucial role. Pointwise
convergence is useful as it can highlight small numerical
instabilities that would otherwise be hidden when looking
at the convergence in a norm. On the other hand, con-
vergence in a norm will be used to formalize the idea that
the code converges to order k “almost everywhere.”
Specifically, it is possible that we find that some variables
do not converge at all at the boundary, but that these
instabilities do not travel inside the numerical grid, or if
they do, they do it very slowly. In this case, we then would
expect N Fðh; 0Þ ≪ k, while for some small p, we would
recover N Fðh; pÞ ≃ k.
In what follows, we always consider the radiation fluid

equation of state κ ¼ 1=2. The numerical grid is equally
spaced in the compactified coordinate r, as defined in (38)
and the Courant factor of (121) is set to cCFL ¼ 0.5. The
cosmological constant is set to Λ ¼ −π2=4, which sets the
boundary of adS in compactified coordinates to r∞ ¼ 1.

B. Dispersion and collapse

For both dispersion and collapse, we consider the
evolution of five different grid resolutions, with 100 × 2n

points for n from 1 to 5, so that for the lowest resolution,
h ≃ 0.0035. The numerical outer boundary is set at
rmax ¼ 0.7, corresponding to Rmax¼l tanðrmax=lÞ≃1.25,
and the copy boundary conditions will be imposed on the
conserved variables.
For slowly rotating dispersion and collapse, we will

choose the monotonized central-difference limiter (MC
limiter) introduced by van Leer [14], while for the rapidly
rotating cases, we instead switch to a centered limiter, as the
latter is empirically found to be slightly more robust against
numerical instabilities. Independently, for rapidly rotating
collapse the convergence drops significantly at the onset
of collapse. We found that this can be partly offset by
imposing no mass to enter the numerical domain from the
outer boundary by setting the HLL flux of Ω to be zero if it
is negative.
For dispersion, the simulation is stopped when most of

the energy has left the numerical domain, while for the case
of collapse, we stop at the onset of black hole formation,
see Sec. IV F. We choose to initialize the generic fluid
variables w as double Gaussians in the area radius R,

ωð0; RÞ ¼ pω

2



e−ð

R−Rω
σω

Þ2 þ e−ð
RþRω
σω

Þ2
�
; ð127Þ

ηð0; RÞ ¼ pη

2



e−ð

R−Rη
ση

Þ2 þ e−ð
RþRη
ση

Þ2�; ð128Þ

ζð0; RÞ ¼ pζ

2



e
−ðR−Rζσζ

Þ2 þ e
−ðRþRζ

σζ
Þ2�

; ð129Þ

where pω, pη, pζ are the magnitudes, Rω, Rη, Rζ the
displacements from the center and σω, ση, σζ the widths
of the Gaussians. For all four cases, we set the widths to
σω ¼ 0.2, σζ ¼ ση ¼ 0.15, and the displacements to
Rω ¼ Rη ¼ Rζ ¼ 0.4. The slowly rotating initial data have
pζ ¼ 0.01, with pω ¼ 0.2 for dispersion and pω ¼ 0.5
for collapse. The rapidly rotating data have pω ¼ 0.3,
pζ ¼ 0.5, and pω ¼ 0.5 and pζ ¼ 0.7 for dispersion and
collapse respectively. In the “slowly” and “rapidly” rotating
data that collapse, the black hole mass and spin parameter
satisfy JAH=ðMAHlÞ ≃ 0.012 and 0.9 respectively. For all
four test cases presented above, the initial data satisfy the
inequality (102) everywhere.
In Fig. 1, we plot 4nδq̄ h

2n
(left, middle and right columns

for Ω, Y and Z, respectively) at four different resolutions
n ¼ 1, 2, 3, 4 for initial data that disperses with small
angular momentum. The profiles are plotted at three
different times (top, middle and bottom rows) t ¼ 0.04,
0.36 and 0.9. These snapshots represent respectively, the
evolution of the error near the initial time, when the energy
density reaches a maximum (near the center), and when the
matter finally disperses and most of the density is about to
leave the numerical domain. During the evolution, the
conserved variables remain smooth.
According to (124), the approximate alignment of these

plots shows that the code converges to second order. One
can, however, spot some instabilities at isolated points
inside the numerical grid. Their frequency increases with
resolution, but their amplitudes do not grow with time and
in fact converge away rather quickly with increased
resolution. These instabilities are a consequence of our
choice of limiter as we observed that these instabilities
vanish with a centered limiter.
On the other hand, the convergence is mostly unaffected

by the choice of imposing copy boundary conditions on the
conserved variables instead of the primitive or generic
variables. Finally, as anticipated, we lose second-order
convergence at and near the outer boundary. The error
propagates very slowly inside the numerical domain and so
does not spoil the second-order convergence for most of the
numerical grid for the period of time the simulation is run.
To illustrate this, in Fig. 2 we plot N q̄ðt; h

2n
; 0Þ and

N q̄ðt; h
2n
; 8Þ, for n ¼ 1, 2, 3. For the former, untruncated

case, we find that the order of convergence is typically less
than second order. On the other hand, we recover the
expected second-order accuracy once the last 8 grid points
are ignored in the calculation of the norm. The drop in
convergence that can be seen at around t ≃ 1.0 corresponds
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FIG. 1. Dispersion with slow rotation: Plots of 4nδq̄ h
2n
against r, at four resolutions n ¼ 1, 2, 3, 4. From the left, the columns represent

Ω, Y and Z, respectively, while the rows represent the times t ¼ 0.04, 0.47 and 0.90, from the top. In each plot, the curves representing
different resolutions approximately align, demonstrating pointwise second-order convergence. The unsmooth but convergent features of
the error are artifacts of the MC limiter, and do not correspond to any visible unsmoothness of the solution itself. They are absent with
the centered limiter.

FIG. 2. Dispersion with slow rotation: Plots of the convergence rates in the l2-norm,N q̄ðt; h
2n
; 0Þ (upper row, all grid points used) and

N q̄ðt; hn ; 8Þ (bottom row, last 8 grid points omitted in the norm), for n ¼ 1, 2, 3. As in the previous figure the three columns represent
Ω, Y and Z, respectively. The dashed horizontal line corresponds to second-order convergence,N ¼ 2. When the full grid is taken into
account in the computation of the norm, we typically observe less than second-order convergence. On the other hand, second-order
convergence is recovered once the last 8 grid points are neglected in the computation of the norm.
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to the energy leaving the numerical grid, see the last row
of Fig. 1.
In Figs. 3 and 4, we demonstrate second-order con-

vergence pointwise and with respect to the l2 norm for the
highly rotating dispersing initial data. As for the slowly
rotating case, the conserved variables remain smooth
during the evolution.
Turning our attention now to the collapse case, in Fig. 5

we show 4nδq̄ h
2n
at four different resolutions n ¼ 1, 2, 3, 4

at times t ¼ 0.01, 0.051 and 0.096. We find the same
qualitative behavior as for the dispersion case, except that
the outer boundary behaves much better.
As a consequence, in Fig. 6, we only plotN q̄ðt; h

2n
; 0Þ as

we have good second-order convergence without the need
to truncate the grid. As for dispersion, the choice of limiter
and which variables the outer boundary conditions are
applied to do not produce any qualitative differences,
except for the centered limiter which removes the insta-
bilities already noted in the dispersion case, see Fig. 5.
Finally, in Figs. 7 and 8, we demonstrate second-order

convergence for the case of rapidly rotating collapsing data.
As one would expect, the presence of angular momentum
delays the time of collapse. Near the onset of collapse the
convergence drops to first-order near the region where the
horizon forms.

C. Stable and unstable stars

In [5], we analysed in detail the family of stationary
solutions parametrized by two dimensionless constants,

ðΩ0; μÞ or equivalently ðJ̃;MÞ, where we defined the
dimensionless spin

J̃ ≔
J
l
: ð130Þ

In the parameter space ðΩ0; μÞ, it was shown that the set
of parameters which result in a solution that is regular
everywhere and asymptotes to a BTZ solution with J̃ ≤ M
is doubly covered for each admissible pair of values ðJ̃;MÞ.
Both regions are separated by a curve on which solutions
have a zero mode, i.e., a static linear perturbation that
corresponds to an infinitesimal change in ðΩ0; μÞ that
leaves ðJ̃;MÞ invariant to linear order.
Such a double cover is familiar in 3þ 1 dimensions,

where the less dense star is stable and the more dense star
unstable. Analogously, it was conjectured that the solution
with the smaller μ associated to a given ðJ̃;MÞ is unstable,
while the one with the larger μ is stable. We use this
opportunity to provide some numerical evidence for this
claim. Specifically, consider the pair of solutions with total
mass and angular momentum given by J̃¼0.24;M¼0.38,
corresponding to ðΩ0;μÞ≃ð0.154;0.242Þ and (0.153,0.392).
These correspond to the black and orange dots in Fig. 1 in [5]
and therefore to the unstable and stable solutions associated
to the above conserved quantities J̃;M.
For both the stable and unstable configuration, we add a

small Gaussian perturbation, with plus or minus sign.
The Gaussian perturbation is of the form (127)–(129),

FIG. 3. Dispersion with rapid rotation: Note that the instabilities in Fig. 2 at time t ¼ 0.04 are not present here due to choosing a
centered limiter instead of the MC limiter. Otherwise as in Fig. 1.
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with jpωj ¼ 0.001; pη ¼ pζ ¼ 0, Rω ¼ 0.4, σω ¼ 0.2. We
set rmax ¼ 0.9 and consider again five different resolutions,
with the lowest resolution now 800 grid points, or
h ≃ 0.00015. We choose a larger value of rmax because
that the stationary initial data under consideration do not
have a surface at some finite area radius. Consequently, one

needs to choose a larger value of rmax to fit “most” of the
energy density inside the numerical grid. We find that a MC
or minmod limiter produces large instabilities in the
evolution and that these are mostly tamed with a centered
limiter. Furthermore, it is essential to use the primitive
variables for the copy boundary conditions. Using the

FIG. 5. Collapse with slow rotation: Times are now t ¼ 0.010, 0.051 and 0.096 (rows, from top to bottom), otherwise as in Fig. 1.

FIG. 4. Dispersion with rapid rotation: Otherwise as in Fig. 2.

FULLY CONSTRAINED, HIGH-RESOLUTION SHOCK- … PHYS. REV. D 104, 024061 (2021)

024061-15



conserved variable instead causes the star to disperse
almost immediately due to a perturbation originating from
the outer boundary, while using the generic variables
produces noticeably larger errors during the evolution.

We will therefore restrict to this choice in what follows.
Lastly, due to the nonvanishing of the conserved variables
at the boundary, it is necessary to impose, as for the highly
rotating collapse case, that the flux of Ω be non-negative at

FIG. 6. Collapse with slow rotation: Plots ofN q̄ðt; h
2n
; 0Þ, for n ¼ 1, 2, 3. As always, the columns correspond toΩ, Y and Z from left to

right. Due to the prompt collapse, second-order convergence is maintained throughout the evolution.

FIG. 7. Collapse with rapid rotation: Times are now t ¼ 0.010, 0.130 and 0.264, otherwise as in Fig. 5. Note that we lose second-order
convergence at the onset of collapse and near the region of black hole formation.
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the numerical outer boundary. For the stable stationary
initial data, we also impose the flux of Z to be positive at
the numerical outer boundary. (Note that by construction, Z
is non-negative everywhere initially).

Let us first consider the stable stationary solution. In
Fig. 9, we plot 2nδq̄ h

2n
at four different resolutions n ¼ 1, 2,

3, 4. These are again plotted at three different times (rows),
t ≃ 0.04, 1.2, 4.2. We only show the case pω ¼ −0.001 as

FIG. 8. Collapse with rapid rotation: Otherwise as in Fig. 6. Second-order convergence is lost near the onset of collapse, as seen also in
the last row (time) of Fig. 7.

FIG. 9. Stable stationary star: Times are now t ¼ 0.04, 1.2 and 4 (rows, from top to bottom). We find 1 < N < 2 inside the numerical
grid. The numerical error is dominated by the outer boundary. This error does not converge, but travels inward very slowly and its width
shrinks with increased resolution.
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the case where pω ¼ 0.001 is qualitatively similar. Note the
different power of h from the dispersion/collapse case, due
to the fact that we typically get less than second-order
convergence. The cause of this is an instability originating
from the outer boundary propagating inwards. At the time
t ≃ 4.2, this instability has moved to and from the boundary
twice. Equivalently, the time for the error originating
from the numerical outer boundary to reach the center is
Δt ≃ 1.0. As a consequence, the simulation losses its
second-order accuracy everywhere. There is also an insta-
bility at and near the outer boundary that does not converge
at all, but rather is roughly equal at different resolutions.
Nevertheless, as in the case of dispersion, this instability

propagates into the numerical grid very slowly and its size
shrinks with increased resolution.
In Fig. 10, we plot the convergence in the norm. Due to

the combination of the error originating from the outer
boundary and the error near the boundary not converging at
all, we findN q̄ðt; h

2n
; 0Þ ≃ 1. Once the region near the outer

boundary is neglected by removing the last 100 grid
points, we recover approximate second-order convergence
N q̄ðt; h

2n
; 100Þ ≃ 2.

In Fig. 11, we plot the oscillations in the central density,
δρ0ðtÞ ≔ ρ0ðtÞ − ρ0ð0Þ for both signs of the perturbation,
pω ¼ �0.001. The simulation is run with 3200 grid points,
for sufficiently long time so that the central density displays

FIG. 10. Stable stationary star: Plots of N q̄ðt; h
2n
; 0Þ (upper row) and N q̄ðt; h

2n
; 100Þ (bottom row), for n ¼ 1, 2, 3. The dashed

horizontal line corresponds to first-order convergence N ¼ 1. When the full grid is taken into account in the computation of the norm,
we typically observe first-order convergence. On the other hand, by neglecting the last 100 grid points in the computation of the norm,
we observe convergence of about N ≃ 1.5 for Ω and Y and N ≃ 2 for Z.

FIG. 11. Stable stationary star: Central density perturbation against time for approximately 30 oscillation periods. Red curve
corresponds to the stationary initial data with pω ¼ 0.001 and blue curve with pω ¼ −0.001.
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approximately 30 cycles. These oscillations maintain con-
stant small amplitude, proportional to the initial perturba-
tions, and we conjecture that they are essentially linear
oscillations with constant frequency, as one would expect in

a stable star. The central density oscillates about an average
that is offset from the unperturbed star, because our
perturbation of the initial data changes the total mass of
the star. Our unphysical copy outer boundary condition

FIG. 12. Unstable stationary star with negative density perturbation: A first-order error originating from the outer boundary travels
inward, causing the evolution to converge only to first-order. Otherwise as in Fig. 9.

FIG. 13. Unstable stationary star with negative density perturbation: Plots ofN q̄ðt; h
2n
; 0Þ (upper row) andN q̄ð h2n ; 100Þ (bottom row),

for n ¼ 1, 2, 3. The dashed horizontal line corresponds to first-order convergence,N ¼ 1. We find first-order convergence once the last
100 grid points are neglected.
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does not seem to destroy this continuum property. Note that
when checking convergence, we only evolve the initial data
up to at most t ¼ 4. The reason is that for convergence
testing, we consider much higher resolution than we do in
Fig. 11. Compare for example the highest resolution run
(n ¼ 5, equivalent to 25600 gridpoints) when testing
convergence, with the much lower resolution used to
produce Fig. 11 (n ¼ 2, equivalent to 3200 gridpoints).
Let us now turn to the unstable stationary solution. The

convergence tests for both cases are summarized in Figs. 12
and 13 (pω ¼ −0.001) and Figs. 15 and 16 (pω ¼ 0.001).
Recall that for the unstable configuration, we have not

imposed the positivity of the HLL flux for Z at the outer
boundary, as we heuristically find that otherwise a small
shock forms during the evolution, which prevents the
simulation to converge to the desired order in the norm.

On the other hand, lifting this constraint on the flux of Z
causes a first-order error originating from the outer boun-
dary to propagate inwards. The time for this error to reach
the center (for both signs of pω) is Δt ≃ 0.9. The simulation
is only about first-order accurate.
As for the stable configuration, there is also an instability

at and near the outer boundary which does not converge at
all, but rather is roughly equal at different resolutions.
Nevertheless, this instability propagates into the numerical
grid very slowly and its size shrinks with increased
resolution. Such a behavior can also be noted for the stable
configuration discussed above if the constraint on the
positivity of the HLL flux of Z is removed there. In
particular, a more careful treatment of the boundary
conditions at the numerical outer boundary will be needed
to accurately evolve the stationary solutions.

FIG. 14. Unstable stationary star with negative density perturbation: Central density perturbation against time. The star breathes
nonlinearly without collapsing. Compare with blue curve in Fig. 11.

FIG. 15. Unstable stationary star with positive density perturbation: We observe qualitatively similar behavior as for Fig. 12.
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FIG. 16. Unstable stationary star with positive density perturbation: Plots ofN q̄ðt; h
2n
; 0Þ (upper row) andN q̄ðt; h

2n
; 100Þ (bottom row),

for n ¼ 1, 2, 3. The dashed horizontal line corresponds to first-order convergence. We find here fairly constant convergence of
N q̄ðt; h

2n
; 100Þ ≃ 1.2 up until the onset of collapse.

FIG. 17. Unstable stationary star with positive density perturbation: We plot the metric coefficient aðti; rÞ (left) at different
times ti, ranging from the initial time to the onset of collapse, as well as the central density against time (right). For this
(positive) sign of the initial density perturbation, the star promptly collapses. Black-hole formation is triggered due to the
timestep becoming small (Δt ∼ 10−10).
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For a positive sign of the initial density perturbation, the
star promptly collapses into a black hole, see Fig. 17. On
the other hand, for a negative sign, the star does not
collapse. Instead, it breathes, i.e., the central density
oscillates periodically with very large amplitude, down
to about half of the stationary value. This can be seen in
Fig. 14, where we plot the central density perturbation
δρ0ðtÞ at sufficiently long times for 30 cycles. The
simulation is run with 3200 grid points as well. The local
maxima stay approximately constant throughout the sim-
ulation, and the central density is approximately periodic.
It should be again emphasized that due to the fluctuating

numerical convergence for the stable and oscillating unsta-
ble cases (see again Figs. 10 and 13), it is uncertain how
much of Fig. 11 and Fig. 14 is physical or a numerical
effect. Nonetheless, we can already observe qualitative
differences in the evolution between the stable and unstable
stationary initial data even at short times.

VI. CONCLUSIONS

In this paper, we have presented a new code to simulate
the Einstein-fluid equations in axisymmetry in 2þ 1
dimensions. We have focused on the ultrarelativistic
equation of state p ¼ κρ. However it should be straightfor-
ward to adapt the code to an arbitrary barotropic or hot
equation of state.
In the case of generic initial data that disperse or collapse

both with small and large angular momenta, we have
demonstrated that the code converges to second order in
resolution both pointwise and in the l2 norm, except at and
near the numerical outer boundary, and near the onset of
black hole collapse for highly rotating configurations.
We have also evolved stable and unstable rotating

stationary stars. For these, the code converges only to first
order. Nevertheless, we can clearly distinguish stable and
unstable stars, even at short times. The former remain
approximately stationary, with only small oscillations,

while the latter show two distinct evolutions depending
on the sign of the perturbation that we apply it to, either
collapse or very large (but still periodic) oscillations.
This provides some evidence in favor of our claim in
[5], where it was suggested that the family of stationary
stars with jJj ≤ Ml is divided into two families of stable
and unstable solutions.
A fundamental strength of our approach is that we make

full use of the existence of two conserved matter currents
(unexpectedly, for energy as well as, expectedly, for
angular momentum) and related local expressions for the
mass M and angular momentum J. As a consequence the
metric evolution is fully constrained, and M and J are
exactly conserved.
Awell-known disadvantage of polar-radial coordinates is

that our code stops as an apparent horizon is approached.
However, one could in principle make equal use of the
two conserved currents and conserved quantities in other
coordinates.
The main weakness of our code as presented here is that

we have not found a way of extending the outer boundary
all the way to the timelike infinity of any asymptotically
BTZ spacetime, in a way that is stable and accurate [16].
This means that we have to impose an unphysical “copy”
boundary condition at finite radius R. Fortunately, it turns
out that, with some fine-tuning, this does not prevent us
from carrying out long-term (many sound-crossing times)
evolutions of stars. Moreover, it also does not seem to be an
obstacle in the investigation of critical phenomena at the
threshold of (prompt) collapse, which we will report on in a
companion paper.
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