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To date, close to 50 black hole binary mergers were observed by the LIGO and Virgo detectors. The
analyses have been done with an assumption that these objects are black holes by limiting the spin prior to
the Kerr bound. However, the above assumption is not valid for superspinars, which have the Kerr
geometry but rotate beyond the Kerr bound. In this study, we investigate whether and how the limited spin
prior range causes a bias in parameter estimation for superspinars if they are detected. To this end, we
estimate binary parameters of the simulated inspiral signals of the gravitational waves of compact binaries
by assuming that at least one component of them is a superspinar. We have found that when the primary is a
superspinar, both mass and spin parameters are biased in parameter estimation due to the limited spin prior
range. In this case, the extended prior range is strongly favored compared to the limited one. On the other
hand, when the primary is a black hole, we do not see much bias in parameter estimation due to the limited
spin prior range, even though the secondary is a superspinar. We also apply the analysis to black hole binary
merger events GW170608 and GW190814, which have a long and loud inspiral signal. We do not see any
preference of superspinars from the model selection for both events. We conclude that the extension of the
spin prior range is necessary for accurate parameter estimation if highly spinning primary objects are found,
while it is difficult to identify superspinars if they are only the secondary objects. Nevertheless, the bias in
parameter estimation of spin for the limited spin prior range can be a clue of the existence of superspinars.

DOI: 10.1103/PhysRevD.104.024059

I. INTRODUCTION

The Kerr black hole is a unique solution in an asymp-
totically flat stationary and axisymmetric vacuum spacetime
[1]. It is characterized by two physical parameters: mass m
and angular momentum J. The angular momentum is
bounded as cJ=ðGm2Þ ≤ 1 so that the spacetime singularity
and closed timelike curves are hidden by the event horizon.
Here, c and G are the speed of light and the gravitational
constant. However, the Kerr bound cJ=ðGm2Þ ¼ 1 is no
longer necessary in string theory and the Kerr geometry with
cJ=ðGm2Þ > 1 is named as a superspinar [2]. Superspinar
has been proposed as a source candidate of high energy
cosmic rays because of the large efficiency of the energy
extraction (see also [3]). It is assumed that the singularity and
closed timelike curves can be modified by the stringy effect.
So far, a study shows that M87� is consistent with a
superspinar from its radio image [4].
To assume superspinars as possible astrophysical compact

objects, their stability should be confirmed. From the
analysis of linear perturbations in the spacetime, some
studies show that superspinars are unstable [5,6], while
some show that they can be stable [7,8]. This is because we

do not know the physically appropriate boundary conditions
to solve equations of perturbations in the superspinning Kerr
spacetime. The above studies show that the stability depends
on the boundary conditions in the vicinity of the singularity.
Moreover, horizonless highly spinning objects are unstable
due to the ergoregion [9–11]. However, again we do not
know the exact physics near the singularity, the ergoregion
instability is unknown for superspinars. Here, we assume
that superspinars exist stably at least for the timescale of the
binary evolution in the detector sensitive band of current
ground-based gravitational wave detectors.
In parameter estimation for binary black holes, we

normally assume that the objects are black holes [12–18],
that is, we limit the spin prior range up to the Kerr bound.
Because of this limitation, we might misidentify super-
spinars as highly spinning or extremal black holes even if
they are detected. To date, some detected binary black hole
mergers show the possibility of large spins close to the Kerr
bound [18–20], and a different analysis method also shows
the possible existence of extreme black holes [21]. In
addition, different spin priors lead to different properties
of binaries as argued for GW190412 [22,23]. In this study,
we investigate whether and how the spin prior limited by the
Kerr bound affects parameter estimation assuming that
superspinars are detected as black holes. Since there is no
proper waveform model for binary mergers of superspinars
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particularly in the postinspiral phase, we focus on the inspiral
part of the binary and use the TalylorF2 waveform model.
The TaylorF2 waveform model is an inspiral waveform
model in the frequency domain, obtained by the post-
Newtonian (PN) expansion [24–27]. That is, there is no
restriction of the magnitude of the spin in this waveform
model. The detectability of the spin magnitude larger than
the Kerr bound using the TaylorF2 waveform model by
Fisher analysis is shown in Refs. [28,29]. The detection of
superspinars in extreme mass ratio inspirals by a space-based
gravitational wave detector is discussed in [30,31].
In this paper, we perform Bayesian analysis for gravi-

tational wave signals from superspinar binaries for the first
time. We analyze the TaylorF2 model waveform by
assuming that at least one component of the binary is a
superspinar, and we perform the Bayesian parameter
estimation with two spin priors; one is restricted to the
Kerr bound and the other is extended beyond the bound. We
also apply the analysis to black hole binary events
GW170608 [15] and GW190814 [32], which have a long
and loud inspiral signal [33].
This paper is organized as follows. In Sec. II, we

summarize the basic properties of superspinars including
circular orbits in the spacetime. In Sec. III, we explain the
method and settings for Bayesian parameter estimation. In
Sec. IV, we show the posteriors of parameter estimation of
injection study and also compare the evidences from two
priors. We also discuss the bias of estimated mass param-
eters observed in the limited spin prior case. We further
show the results for GW170608 and GW190814 using the
extended spin prior range. We summarize and conclude our
study in Sec. V.

II. SUPERSPINARS

In this section, we briefly explain the spacetime structure
of superspinars. We use geometrical units c ¼ G ¼ 1.

A. Metric

Kerr metric in the Boyer-Lindquist coordinate is

ds2 ¼ −dt2 þ Σ
�
dr2

Δ
þ dθ2

�

þ 2Mr
Σ

ða sin θdϕ − dtÞ2 þ ðr2 þ a2Þsin2θdϕ2;

ð2:1Þ

where Δ ¼ r2 − 2mrþ a2 and Σ ¼ r2 þ a2 cos2 θ.
Parameters m and a are black hole mass and its spin. For
a2 ≤ m2, the event horizon exist at rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
.

Superspinar represents a spacetime geometry described by
the Kerr metric Eq. (2.1) with χ > 1, where χ is a
dimensionless spin defined as χ ¼ a=m. We assume that
the spacetime singularity and closed timelike curves are

modified by the stringy effect [2] and the details of the
mechanism are beyond our scope.

B. Orbits

In this subsection, we summarize the radii of circular
orbits in the equatorial plane in the superspinning Kerr
spacetime. We can obtain them from the radial equation of
motion in the spacetime. These orbits and their derivations
for the Kerr case (χ ≤ 1) are summarized in [34]. For the
superspinning case, the orbits are also shown in [35,36].
Photon orbits are unstable orbits for massless objects,
whose radius is given as

rph
m

¼
�
2f1þ cos ½2

3
cos−1 ð∓ χÞ�g; ðχ ≤ 1Þ;

2þ 1
FðχÞ þ FðχÞ ðχ > 1Þ; ð2:2Þ

where

FðχÞ ¼ ð2χ2 þ 2χ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
− 1Þ1=3: ð2:3Þ

The minus (plus) sign corresponds to prograde (retrograde)
orbits against the black hole’s or superspinar’s rotation. For
χ > 1, there is no prograde photon orbit. The innermost
stable circular orbits (ISCOs) are orbits for massive objects,
beyond which orbiting objects will fall into the central
black hole or superspinar. Therefore, we usually assume the
gravitational wave frequency at the ISCO as the end of the
inspiral phase for binary mergers. The radius of the orbits
can be given as

rISCO
m

¼ 3þHðχÞ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 2χ2 −

χ4 − 10χ2 þ 9

GðχÞ −GðχÞ þ 16χ2

HðχÞ

s
;

ð2:4Þ

where

GðχÞ ¼ ð27 − 45χ2 þ 17χ4 þ χ6 þ 8χ3jχ2 − 1jÞ1=3;

HðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ χ2 þ χ4 − 10χ2 þ 9

GðχÞ þ GðχÞ
s

: ð2:5Þ

Again minus and plus signs correspond to prograde
and retrograde orbits against the black hole’s or
superspinar’s rotation. Rough estimates for the gravita-
tional wave frequency at the prograde ISCO fISCO are
ðrISCO; fISCOÞ ≈ ½0.9m; 75760ðM⊙=mÞ Hz�, ½0.8m; 90293
ðM⊙=mÞ Hz�. For the retrograde case, ðrISCO;
fISCOÞ ≈ ½9.01m; 2389ðM⊙=mÞ Hz�. Here, we only con-
sider the leading order term in the phase of the gravita-
tional waveform.
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The radii of orbits are shown in Fig. 1 as functions of a
dimensionless spin. The radius of retrograde orbits is a
increasing function of χ. On the other hand, the radius of
prograde photon orbits is a decreasing function of χ, and it
reaches M at χ ¼ 1. Beyond χ ¼ 1, there is no prograde
photon orbit. The radius of prograde ISCO decreases as χ
increases and it becomes smaller than M for χ > 1.
However, it slightly increases and becomes larger than
M for χ ≳ 1.667.

III. METHOD OF THE ANALYSIS

In this study, we estimate physical parameters of
compact binaries, in which at least one component is a
superspinar. We use Bayesian inference to estimate physi-
cal parameters. Bayes’s theorem shows that a posterior
probability density function pðθjdÞ of parameters θ from
observed data d are given as

pðθjdÞ ¼ LðdjθÞπðθÞ
Z

; ð3:1Þ

where LðdjθÞ, πðθÞ, and Z are the likelihood function, a
prior probability density function and evidence, respec-
tively. The likelihood for a single detector can be expressed
as

LðdjθÞ∝ exp

�
−
1

2
hd̃ðfÞ− h̃ðf;θÞjd̃ðfÞ− h̃ðf;θÞi

�
; ð3:2Þ

by assuming the detector noise is Gaussian, where d̃ðfÞ and
h̃ðfÞ are Fourier transforms of the detected data and
template waveform, respectively. Here,

hAjBi≡ 4Re
Z

fhigh

flow

AðfÞB�ðfÞ
SnðfÞ

df ð3:3Þ

is the inner product weighted by the noise power spectral
density (PSD) of the detector SnðfÞ. The superscript � shows
the complex conjugate of the corresponding function. The
higher and lower cutoff frequencies of the data, fhigh and
flow, respectively, depend on the analysis. Evidence is given
as Z ¼ R

dθLðdjθÞπðθÞ, which is used for model selection.
To obtain the posterior probability of parameters, we use
LALINFERENCE [37,38], which is part of the software suite of
the LIGOAlgorithm Library. Specifically, we use the nested
sampling algorithm for stochastic samplings [39,40].
Since we do not know any physics at and after the merger

of superspinar binaries, we focus on the inspiral part of the
binary evolution. We use the TaylorF2 waveform model as a
template waveform. We use the waveform model up to the
3.5 PN order for the phase and up to the 3 PN order for the
amplitude, where the point particle and the spin effects are
included [24–27]. Other waveform models that include
merger and ringdown parts are calibrated by numerical
waveforms, where black holes or neutron stars are assumed.
Therefore, although the TaylorF2 waveform model becomes
inappropriate in the late inspiral phase [27], this waveform is
the only choice to apply the spin larger than jχj > 1. Since
the detectability of the spin value above the Kerr bound
becomes worse for misaligned spin binaries compared to
aligned spin ones for the same spin magnitude [28],
restricting to aligned binaries may be a reasonable choice
as a first step. The improvement of waveform models valid
for jχj > 1 should be addressed as a future task.
We first perform injection studies, i.e., the data d̃ðfÞ in

Eq. (3.2) is replaced by a simulated signal. Since our aim is
to investigate the systematic bias due to the spin prior, we
do not add simulated detector noise to the injection
waveforms. We inject the TaylorF2 waveform model with
jχj > 1 for either or both component spins. Then, we
estimate the binary parameters with two spin prior cases,
jχ1;2j ≤ 1 and jχ1;2j ≤ 1.5, to see whether there is a bias in
parameter estimation due to the limited spin prior range.
Here, we call the former and latter priors as BH and SS
priors, respectively. Since the template waveform assumes
that the component spins are aligned with the orbital
angular momentum, we use the z-spin prior, which is
equivalent to the prior that is uniform in magnitude and
isotropic in orientation (see for details of the z-spin prior
in Ref. [41]).
For injection waveforms, we consider two cases for the

mass ratio, q≡m2=m1 ¼ 0.1 and 0.5, where m1 and m2

are component masses with m1 > m2. We fix the injection
mass parameters as ðm1; m2Þ ¼ ð30 M⊙; 3 M⊙Þ for q ¼
0.1 and ðm1; m2Þ ¼ ð10 M⊙; 5 M⊙Þ for q ¼ 0.5. For each
case, we consider several injection spin values
χ1;2 ¼ ðj0.1j; j0.5j; j0.8j; j1.1jÞ, where at least one compo-
nent of the binaries has χ ¼ j1.1j. The luminosity distance
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FIG. 1. Radii of photon orbits and the ISCOs as a
function of the dimensionless spin. There is no prograde photon
orbit for χ > 1.

PROSPECTS FOR ESTIMATING PARAMETERS FROM … PHYS. REV. D 104, 024059 (2021)

024059-3



dL and the inclination angle ι are set to 200 Mpc and 0 for
injection, respectively. The higher cutoff frequency fhigh is
effectively fISCO of the injection waveforms, which is
fISCO ¼ 133 Hz for q ¼ 0.1 and fISCO ¼ 293 Hz for
q ¼ 0.5. The lower cutoff frequency is flow ¼ 20 Hz.
We estimate all binary parameters: ðm1; m2; χ1;
χ2; dL; α; δ; ι;ψÞ, where α, δ, and ψ are the right ascension,
declination, and polarization angle, respectively. We
consider two Advanced LIGO detectors with their design
sensitivity [42,43] and one Advanced Virgo detector with
its design sensitivity [44].
We next analyze the black hole binary merger

events GW170608 and GW190814, which have a long
inspiral phase with large signal-to-noise ratio among
observed black hole binary events so far [33]. We use
the TaylorF2 waveform as a template with BH and SS
priors.
There are two caveats to use the TaylorF2 waveform

model. First, the TaylorF2 waveform terminates at fISCO of
the corresponding total mass of the Schwarzschild black
hole. As explained in the previous section, fISCO depends
on the spin, where the larger positive (negative) spin gives
larger (smaller) values of fISCO compared to the
Schwarzschild black hole case. Therefore, we restrict
ourselves to use the injection waveform for χ1 > 0, other-
wise the injected waveform extends beyond the true fISCO
value and the analysis may be inappropriate. Second, the
abrupt cutoff of the waveform may cause a systematic bias
in parameter estimation [45]. In our study, since we are
interested in the bias due to the different spin prior range
and the situation is the same for both spin priors, we do not
further discuss about the bias from the abrupt cutoff of the

waveform. Although, we show some results with different
fhigh in the Appendix.

IV. RESULTS

A. Parameter estimation on injected waveforms

In this subsection, we show the marginalized posteriors
of mass and spin parameters as well as the luminosity
distance for some injection cases. In all cases, the detector
frame mass parameters are shown.

1. The case of mass ratio q = 0.1

We first show the posterior probability distribution
functions (PDFs) of mass parameters (m1; m2; q;Mc),
spin parameters (χeff ; χ1; χ2) and the luminosity distance
dL for the mass ratio q ¼ 0.1 case in Figs. 2–5. Here, the
chirp massMc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 and the effec-
tive inspiral spin χeff ¼ ðm1χ1 þm2χ2Þ=ðm1 þm2Þ
are the most well-determined mass and spin parameters
in the inspiral waveform [46]. Figure 2 shows the
results when the waveform with ðm1; m2; χ1; χ2Þ ¼
ð30 M⊙; 3 M⊙; 1.1; 1.1Þ is injected, which gives the most
significant bias in parameter estimation due to the differ-
ent spin prior range. Naturally, the spin parameters are not
correctly estimated for jχ1;2j ≤ 1 prior, since the injected
value is outside the prior range. Posteriors of all spin
parameters concentrate on the positive prior bound for
this prior. Moreover, not only the spin parameters, the
mass parameters are also biased by the limited spin prior
range. When the spin prior is extended to jχ1;2j ≤ 1.5, the
mass parameters are well estimated. While the posterior

FIG. 2. Posterior distributions for mass parameters, spin parameters, and the luminosity distance. Injected values are
ðm1; m2; χ1; χ2Þ ¼ ð30 M⊙; 3 M⊙; 1.1; 1.1Þ. Blue and orange curves correspond to the cases when the spin prior is jχ1;2j ≤ 1 and
jχj ≤ 1.5, respectively. The vertical lines correspond to the injected values.
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distributions of χeff and χ1 are constrained around the
injected values, χ2 becomes undetermined. This is natural
because χeff is dominated by χ1 for the asymmetric mass
ratio. We see the similar tendency for different χ2 as
shown in Fig. 3, which shows the posteriors of ðχ1; χ2Þ ¼
ð1.1;−1.1Þ injection. The bias in mass parameters
becomes smaller as χ2 becomes smaller. Although χ2 ¼
−1.1 is injected, the posterior concentrates on the positive
bound for the prior jχ1;2j ≤ 1.
Figures 4 and 5 are the same as Fig. 2, but the injected

spins are ðχ1; χ2Þ ¼ ð0.1; 1.1Þ and ðχ1; χ2Þ ¼ ð0.1;−1.1Þ,
respectively. In these cases, we do not see much differences
in estimation of mass and spin parameters due to the
different spin prior range unlike the χ1 ¼ 1.1 injection
cases. For both spin prior cases, the posteriors of mass
parameters include the injected value, on the other hand,
this is not the case for spin parameters; the injected value is
included only for the jχ1;2j ≤ 1.5 prior case. From
Figs. 2–5, we can see that χeff tends to underestimate
(overestimate) the injected value for χ2 > 0 (χ2 < 0).
We do not see much differences in the matched filter

signal-to-noise ratio (SNR) between two spin priors. For
example, the SNR is ∼80 and ∼78 for jχ1;2j ≤ 1.5 prior and
jχ1;2j ≤ 1 prior, respectively, for ðχ1; χ2Þ ¼ ð1.1; 1.1Þ
injection.
The 90% symmetric credible regions of spin parameters

for the jχ1;2j ≤ 1.5 prior together with values that give the
maximum likelihood are summarized in Table I. We can see
that χeff and χ1 show good estimates for the both aligned
case (χ1;2 > 0), while the estimate of χ2 is poor and the
error is large for any injected value, as expected for
asymmetric mass ratio binaries.

2. The case of mass ratio q = 0.5

Next, we show the results for the mass ratio q ¼ 0.5
[ðm1; m2Þ ¼ ð10 M⊙; 5 M⊙Þ] in Figs. 6–9. Figure 6 shows
the posteriors when ðχ1; χ2Þ ¼ ð1.1; 1.1Þ are injected.
Similar to Fig. 2, we see biases in estimation of mass
and spin parameters due to the spin prior range. Posteriors
of all spin parameters concentrate on the positive prior
bound for jχ1;2j ≤ 1 prior. For q ¼ 0.1, χ2 is undetermined
for jχ1;2j ≤ 1.5 prior, while it is constrained to be positive
for q ¼ 0.5. From Fig. 7, which shows the posteriors when
ðχ1; χ2Þ ¼ ð1.1;−1.1Þ are injected, there is almost no
bias in estimation of mass and spin parameters. The
secondary spin χ2 is undetermined for both spin prior
cases. The posteriors obtained from ðχ1; χ2Þ ¼ ð0.1; 1.1Þ
and ðχ1; χ2Þ ¼ ð0.1;−1.1Þ injections are shown in Figs. 8
and 9, respectively. Again we do not see much biases in
estimation of mass and spin parameters due to the spin prior
range from these figures. The secondary spin is undeter-
mined for both priors for these cases. For χeff > 0 injection,
χeff and χ1 are estimated as positive values, which can be
seen in Figs. 6–8. On the other hand, for χeff < 0 injection,
the posterior of χ1 mainly distributed in negative values
even a positive value is injected as shown in Fig. 9. Similar
to the q ¼ 0.1 case, χeff tends to underestimate (overesti-
mate) the injected value for χ2 > 0 (χ2 < 0).
Like the q ¼ 0.1 case, we do not see much difference in

SNR between two spin priors. Even for the most signifi-
cant bias case, ðχ1; χ2Þ ¼ ð1.1; 1.1Þ injection, SNR is ∼74
and ∼73 for jχ1;2j ≤ 1.5 prior and jχ1;2j ≤ 1 prior,
respectively.
The 90%symmetric credible regions of spin parameters for

the jχ1;2j ≤ 1.5 prior and values of those parameters that give

FIG. 3. Same as Fig. 2, but for the injection with ðm1; m2; χ1; χ2Þ ¼ ð30 M⊙; 3 M⊙; 1.1;−1.1Þ.
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the maximum likelihood are also summarized in Table I. We
can see that the 90% regions of all spin parameters include the
injected values for the both aligned case. A small bias in the
estimations for the ðχ1; χ2Þ ¼ ð1.1;−1.1Þ injection case
might be caused by the prior since the values at themaximum
likelihood are close to the injected values. A bias also seen in
the estimations for the ðχ1; χ2Þ ¼ ð0.1;−1.1Þ injection case
might be caused by the abrupt cutoff of the TaylorF2 wave-
form. The values at themaximum likelihood deviate from the
injected ones in this case.

In summary for this subsection, estimation of spin and
mass parameters are biased for jχ1;2j ≤ 1 prior when χ1 ¼
χ2 ¼ 1.1 are injected. In this case, posteriors of all spin
parameters concentrate on the positive prior bound for
jχ1;2j ≤ 1 prior. This suggests that such behavior of the spin
posteriors can be the first clue of the detection of super-
spinars. On the other hand, the bias due to jχ1;2j ≤ 1 prior
becomes smaller for small χeff injections. We will discuss
the bias in estimated mass and spin parameters in the next
subsection. We also observe that SNR does not show much

FIG. 4. Same as Fig. 2, but for the injection with ðm1; m2; χ1; χ2Þ ¼ ð30 M⊙; 3 M⊙; 0.1; 1.1Þ.

FIG. 5. Same as Fig. 2, but for the injection with ðm1; m2; χ1; χ2Þ ¼ ð30 M⊙; 3 M⊙; 0.1;−1.1Þ.
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difference with respect to the different spin prior range, that
is, SNR cannot be a good indicator to deicide which prior
range is appropriate. This topic will be addressed in
Sec. IV C.

B. Discussions of biases in mass and spin parameters

In this subsection, we discuss the biases in estimated mass
and spin parameters caused by the limited spin prior range.
First, we consider whether the bias in mass and spin
parameters for χ1 ¼ χ2 ¼ 1.1 injection, as shown in

Fig. 2, can be explained by a degeneracy between mass
and spin parameters. Several studies show that there is a
degeneracy between the mass ratio and the effective spin
for the inspiral dominant waveform [16,47–49]. In Fig. 10,
we compare two-dimensional posterior distributions of
ðq; χeff ;Mdet

c Þ for the injected values ðm1; m2; χ1; χ2Þ ¼
ð30 M⊙; 3 M⊙; 1.1; 1.1Þ. Although our study only use the
inspiral waveform, we do not see a degeneracy between q
and χeff in both prior cases. For the jχj ≤ 1.5 prior case, we
see a a positive correlation betweenMdet

c and χeff . However,

FIG. 6. Same as Fig. 2, but for ðm1; m2; χ1; χ2Þ ¼ ð10 M⊙; 5 M⊙; 1.1; 1.1Þ.

FIG. 7. Same as Fig. 2, but for ðm1; m2; χ1; χ2Þ ¼ ð10 M⊙; 5 M⊙; 1.1;−1.1Þ.

PROSPECTS FOR ESTIMATING PARAMETERS FROM … PHYS. REV. D 104, 024059 (2021)

024059-7



it seems to be difficult to explain the bias in the results for the
jχj ≤ 1 prior case from the correlation in Mdet

c and χeff
for jχj ≤ 1.5.
Next, we discuss the bias in estimated spin parameters

for ðm1; m2; χ1; χ2Þ ¼ ð30 M⊙; 3 M⊙; 1.1;−1.1Þ injection
as shown in Fig. 3. In this case, χ2 is estimated as χ2 ≈ 1 for
the jχj ≤ 1 prior, even though χ2 ¼ −1.1 is injected.
Figure 11 shows the two-dimensional posterior distribu-
tions of three spin parameters ðχeff ; χ1; χ2Þ for
ðm1; m2; χ1; χ2Þ ¼ ð30 M⊙; 3 M⊙; 1.1;−1.1Þ injection.
For the jχj ≤ 1.5 prior, a negative correlation can be seen

between χ1 and χ2. Due to this correlation, when χ1 is
restricted to χ1 ≤ 1, the allowed region for χ2 becomes χ2 ≈
1 even though the negative χ2 is injected.
Finally, we briefly discuss why the mass parameters are

not so biased in this case. Figure 12 shows the two-
dimensional posterior distributions of ðq; χeff ;Mdet

c Þ.
Although we see a slight correlation between χeff and
Mdet

c for the jχ1;2j ≤ 1.5 prior, χeff is mostly estimated
within jχeff j ≤ 1. As a result, even if the prior is limited to
jχ1;2j ≤ 1, the estimation of Mdet

c does not change
very much.

FIG. 8. Same as Fig. 2, but for the injection with ðm1; m2; χ1; χ2Þ ¼ ð10 M⊙; 5 M⊙; 0.1; 1.1Þ.

FIG. 9. Same as Fig. 2, but for the injection with ðm1; m2; χ1; χ2Þ ¼ ð10 M⊙; 5 M⊙; 0.1;−1.1Þ.
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C. Model selection for the injection studies

In this subsection, we evaluate which spin prior is
favored by model selection, in which the evidence from
each prior is compared. The ratio of the evidences is called
Bayes factor. Here, we compare the evidences for two prior
assumptions SS and BH, where the Bayes factor is
expressed as BFSSBH ¼ ZSS=ZBH. Logarithmic Bayes factor
of 2 is a threshold to claim the decisive evidence of the
hypothesis of the numerator [50]. We show log10 BFSSBH for
each injection in Fig. 13, where left and right panels show
the injections for q ¼ 0.1 and 0.5, respectively. From the
left panel of the figure, the SS assumption is strongly

favored for χ1 ¼ 1.1 injections, while no strong preference
of the SS assumption for χ1 ¼ 0.1 injections is shown
although χ2 is a superspinar. This means that we can claim
the existence of a superspinar if the primary is a super-
spinar, while it is difficult to claim so if just the secondary is
a superspinar. The minimum value of log10 BFSSBH is −0.323
when ðχ1; χ2Þ ¼ ð0.1;−1.1Þ are injected. From the right
panel of the figure, for q ¼ 0.5, the SS assumption is
strongly favored for χ1 ¼ 1.1 and χ2 > 0 injections. When
χ2 ¼ −1.1 is injected, there is no preference for the SS
assumption if χ1 < 1.0 is injected. The result implies that
for the moderate asymmetric mass ratio case, strong

TABLE I. The symmetric 90% credible regions of ðχeff ; χ1; χ2Þ for the spin prior jχ1;2j ≤ 1.5. Values of spin parameters that give the
maximum likelihood are also shown.

Injected parameters 90% symmetric credible regions Maximum likelihood

ðm1; m2Þ χeff ðχ1; χ2Þ χeff χ1 χ2 χeff χ1 χ2

ð30 M⊙; 3 M⊙Þ 1.1 (1.1,1.1) (1.01,1.09) (1.10,1.18) ð−0.72; 1.00Þ 1.09 1.11 0.85
0.9 ð1.1;−1.1Þ (0.91,0.99) (1.01,1.09) ð−0.86; 0.82Þ 0.95 1.06 −0.18
0.19 (0.1,1.1) (0.12,0.19) (0.11,0.21) ð−0.77; 0.95Þ 0.14 0.17 −0.15
−0.01 ð0.1;−1.1Þ (0.00, 0.07) ð−0.01; 0.08Þ ð−0.80; 0.87Þ 0.02 0.05 −0.25

ð10 M⊙; 5 M⊙Þ 1.1 (1.1,1.1) (1.02,1.12) (1.03,1.43) (0.2,1.28) 1.12 1.03 1.28
0.37 ð1.1;−1.1Þ (0.39,0.50) (0.35,0.97) ð−0.76; 0.79Þ 0.38 1.03 −0.91
0.43 (0.1,1.1) (0.33,0.44) (0.06,0.69) ð−0.39; 1.18Þ 0.42 0.16 0.94
−0.3 ð0.1;−1.1Þ ð−0.31;−0.21Þ ð−0.55; 0.08Þ ð−1.04; 0.43Þ −0.25 −0.29 −0.15

FIG. 10. Comparison of two-dimensional posterior distribu-
tions of ðq; χeff ;Mdet

c Þ for the injected values ðm1; m2; χ1; χ2Þ ¼
ð30 M⊙; 3 M⊙; 1.1; 1.1Þ. Blue and orange contours show 90%
credible regions of corresponding parameters for BH and SS
priors, respectively. Injected values are shown by black lines and
squares.

FIG. 11. Comparison of two-dimensional posterior distribu-
tions of ðχeff ; χ1; χ2Þ for the injected values ðm1; m2; χ1; χ2Þ ¼
ð30 M⊙; 3 M⊙; 1.1;−1.1Þ. Blue and orange contours show 90%
credible regions of corresponding parameters for BH and SS
priors, respectively. Injected values are shown by black lines and
squares.
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evidence of the SS assumption can be obtained when χ1 ¼
1.1 and χ2 > 0 are injected. For q ¼ 0.5, the minimum
value of log10 BFSSBH is −0.685 when ðχ1; χ2Þ ¼ ð0.8;−1.1Þ
are injected. We should note that the larger prior range or
volume tends to give smaller evidence because of an
Occam factor [23].

D. Parameter estimation on black hole binary events

We finally analyze two black hole binary events
GW170608 and GW190814 with the extended spin prior
using TaylorF2 waveform. The inspiral SNRs are ∼15 and
∼22 for GW170608 and GW190814, respectively [33].
The precession effect of GW190814 is well constrained to
be small [32]. We use the public data and PSDs for the
analysis [51,52].

As a comparison, we also analyze the events with the
IMRPhenomD waveform model, which is a frequency-
domain aligned spin model including merger and ringdown
parts as well [27,53].
For the TaylorF2 waveform, we cutoff the waveform at

fhigh ¼ 180 Hz and fhigh ¼ 140 Hz for GW170608 and
GW190814, respectively, which roughly correspond to the
boundary of the inspiral and the postinspiral parts for the
corresponding event in the IMRPhenomD waveform model
[33]. The lower cutoff frequency is flow ¼ 20 Hz for
GW170608. For GW190814, we set flow ¼ 20 Hz for
Handford and Virgo, and flow ¼ 30 Hz for Livingston,
following the analysis by LIGO and Virgo collaborations
(LVC) [32]. For the IMRPhenomD waveform model, we
choose fhigh ¼ 700 Hz and fhigh ¼ 500 Hz for GW170608
and GW190814, respectively, so that the postinspiral part is
also included. We apply SS and BH priors for the TaylorF2
model and the BH prior for the IMRPhenomD model.
The posterior distributions of mass parameters in the

detector frame, spin parameters and the luminosity dis-
tance are shown in Figs. 14 and 15 for GW170608 and
GW190814, respectively. From Fig. 14, the posterior
distributions of our results are consistent with the LVC
results. Since we do not see much differences by compar-
ing the results of IMRPhenomD and TaylorF2 (BH), we
can assume that the posteriors of this event is well
recovered by the inspiral only waveform. From the results
of TaylorF2 (BH) and TaylorF2 (SS), again we do not see
much differences in both posteriors, only the tails of the
posteriors of χ1 and χ2 extend to jχj > 1 for SS prior due to
the wider spin prior range. The posteriors of χ1 and χ2
almost represent the priors of those, although χeff is well
constrained to the positive and small value. Logarhithmic
signal-to-noise Bayes factors for IMRPhenomD, TaylorF2
(BH), and TaylorF2 (SS) are 87.58, 78.53, and 78.07,
respectively.
For GW190814 in Fig. 15, similar to GW170608, the

posterior distributions of our results are consistent with the
LVC results. The larger statistical error arises from the lack

FIG. 12. The same as Fig. 11 but for comparison of two-
dimensional posterior distributions of ðq; χeff ;Mdet

c Þ.

FIG. 13. log10 Bayes factor against χ1 and χ2. Color bar shows the value of log10ðBFSSBHÞ, where SS denotes the case of spin prior
(jχj ≤ 1.5) and BH denotes the spin prior (jχj ≤ 1). Left and right panels show the cases when ðm1; m2Þ ¼ ð30 M⊙; 3 M⊙Þ and
ðm1; m2Þ ¼ ð10 M⊙; 5 M⊙Þ, respectively.
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of precessing effects and the higher multipole modes in the
waveform model in our study [32]. Similar to GW170608
results, we do not see much difference in IMRPhenomD
and TaylorF2 (BH), which implies that the results can be
recovered by the inspiral part. By comparing TaylorF2

(BH) and TaylorF2 (SS), we do not see much difference in
posterior distributions. For χeff and χ1, the positive values
are restricted to be small while the posterior tails extend to
the negative value χ < −1. These tails might be caused by
the lack of higher order modes or precession effect, since

FIG. 14. The posterior distributions of mass parameters in the detector frame, spin parameters, and the luminosity distance dL for
GW170608. Blue, orange, and green curves correspond to IMRPhenomD (fhigh ¼ 700 Hz), TaylorF2 (BH), and TaylorF2 (SS). Black
curve is a posterior distribution from LVC public posterior samples, which is a combined one from the results of two waveform models
(SEOBNRv3 and IMRPhenomPv2).

FIG. 15. Same as Fig. 14 but for GW190814. Blue, orange, and green curves correspond to IMRPhenomD (fhigh ¼ 500 Hz), TaylorF2
(BH), and TaylorF2 (SS). Black curve is a posterior distribution from LVC public posterior samples, which is a combined one from the
results of two waveform models (SEOBNRv4PHM and IMRPhenomPv3HM).
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the tails do not exist in the LVC results. For the secondary
spin, the posterior represents the prior distribution, that is,
we are not able to get any meaningful information.
Logarhithmic signal-to-noise Bayes factors for

IMRPhenomD, TaylorF2 (BH), and TaylorF2 (SS) are
208.3, 207.1, and 207.0, respectively.
The 90% symmetric credible regions of mass and spin

parameters as well as the luminosity distance are summa-
rized in Table II for TaylorF2 with the spin prior
jχ1;2j ≤ 1.5. For GW170608, χeff and χ1 are constrained
to be smaller than jχj < 0.5 even for the spin prior
jχ1;2j ≤ 1.5. For GW190814, the positive bounds of these
parameters are restricted to be smaller than χ ¼ 0.12, while
the negative bounds are not tightly constrained. For both
events, χ2 has a large statistical error, which does not give a
meaningful constraint.

V. SUMMARY AND CONCLUSION

We have analyzed inspiral gravitational waveforms
from compact binaries, in which at least one component
of the binary has jχj > 1. We apply two spin priors,
jχ1;2j ≤ 1 and jχ1;2j ≤ 1.5, and investigate whether and
how parameter estimation is affected by the spin prior
jχ1;2j ≤ 1. We have found that when the primary is a
superspinar, both mass and spin parameters are biased in
parameter estimation due to the spin prior jχ1;2j ≤ 1. All
spin posteriors concentrate against the positive bound for
this case. We do not see a degeneracy between mass and
spin parameters that can explain the bias in mass param-
eters due to the prior jχ1;2j ≤ 1. The results from the prior
jχ1;2j ≤ 1.5 shows a strong evidence compared to those
from the prior jχ1;2j ≤ 1.
On the other hand, when the primary is a black hole, we

do not see much bias in parameter estimation due to the
limited spin prior range, even though the secondary is a
superspinar. We also obtain a weak support for jχ1;2j ≤ 1.5
prior for this case.
We conclude that the extension of the spin prior range is

necessary for accurate parameter estimation if binaries with
χeff ≈ 1 are found, while it is difficult to identify super-
spinars if they are only the secondary objects. Nevertheless,
we may assume the objects as superspinars even when the
spin prior is limited, if we see the spin posteriors are
concentrating on the positive bound of the prior range as
shown in Fig. 2.
We also apply the analysis to black hole binary merger

events GW170608 and GW190814, which have long and

loud inspiral signals. We do not see any preference of
superspinars from the model selection for both events.
Since the TaylorF2 model becomes inappropriate in the

late inspiral, improvements in the waveform model valid in
jχj > 1 are needed for more accurate parameter estimation
for superspinars.
In this study, we have assumed that we have detected

superspinar binaries as black hole binaries in advance.
However, the template bank used for binary black holes
search [20] should be different from that for highly
spinning binaries such as χeff > 1, it is important to
reconstruct a template bank to detect superspinars. As a
future work, we will search for superspinar binaries
with χeff > 1.
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APPENDIX: EFFECT OF THE ABRUPT CUTOFF
OF THE TAYLORF2 WAVEFORM MODEL

In this Appendix, we discuss whether the abrupt cutoff of
the TaylorF2 waveform model can affect the analysis given
in the main text. To investigate the effect, we compare the
results of parameter estimation for three different fhigh.
Figure 16 shows the posterior distributions for the injected
value of ðm1; m2; χ1; χ2Þ ¼ ð30 M⊙; 3 M⊙; 1.1; 1.1Þ with
the spin prior jχj ≤ 1.5 and 90% symmetric credible
regions are summarized in Table III. The injected waveform
terminates at ∼133 Hz. For the mass parameters, χeff and
χ1, statistical errors are large for fhigh < 133 Hz, while χ2
and dL do not show any difference due to different fhigh.
We can see that Mc and χeff for fhigh ¼ 400 Hz have the

TABLE II. The symmetric 90% credible regions of ðm1; m2;Mc; q; χeff ; χ1; χ2; dLÞ for TaylorF2 with the spin prior jχj ≤ 1.5.

Event m1=M⊙ m2=M⊙ Mdet
c =M⊙ q χeff χ1 χ2 dL =Mpc

GW170608 (10,18) (5.5,9.5) (8.42,8.57) (0.30,0.95) ð−0.01; 0.24Þ ð−0.25; 0.42Þ ð−0.56; 0.82Þ (131,402)
GW190814 (12,29) (2.5,4.6) (6.38,6.47) (0.09,0.38) ð−0.64; 0.11Þ ð−0.82; 0.12Þ ð−0.89; 0.79Þ (166,345)
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smallest statistical errors compared to other fhigh but peaks
slightly deviate from the injected values. These systematic
biases might be caused from the abrupt cutoff of the
waveform.
On the other hand, the posteriors of TaylorF2 show a

consistency with those of IMRPhenomD for the real event

analyses as shown in Sec. IV C. Furthermore, the consis-
tency of posteriors of the chirp mass between the TaylorF2
and a time domain inspiral-merger-ringdown waveform
models is shown in Ref. [55] for GW151226 and
GW170608.
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