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The construction of constraint-satisfying initial data is an essential element for the numerical exploration
of the dynamics of compact-object binaries. While several codes have been developed over the years to
compute generic quasiequilibrium configurations of binaries comprising either two black holes, or two
neutron stars, or a black hole and a neutron star, these codes are often not publicly available or they provide
only a limited capability in terms of mass ratios and spins of the components in the binary. We here present
a new open-source collection of spectral elliptic solvers that are capable of exploring the major parameter
space of binary black holes (BBHs), binary neutron stars (BNSs), and mixed binaries of black holes and
neutron stars (BHNSs). Particularly important is the ability of the spectral-solver library to handle neutron
stars that are either irrotational or with an intrinsic spin angular momentum that is parallel to the orbital one.
By supporting both analytic and tabulated equations of state at zero or finite temperature, the new
infrastructure is particularly geared toward allowing for the construction of BHNS and BNS binaries. For
the latter, we show that the new solvers are able to reach the most extreme corners in the physically
plausible space of parameters, including extreme mass ratios and spin asymmetries, thus representing the
most extreme BNS computed to date. Through a systematic series of examples, we demonstrate that the
solvers are able to construct quasiequilibrium and eccentricity-reduced initial data for BBHs, BNSs, and
BHNSs, achieving spectral convergence in all cases. Furthermore, using such initial data, we have carried
out evolutions of these systems from the inspiral to after the merger, obtaining evolutions with eccentricities
≲10−4 − 10−3, and accurate gravitational waveforms.

DOI: 10.1103/PhysRevD.104.024057

I. INTRODUCTION

In the era of multimessenger astronomy, precise initial
data (ID) for numerical-relativity simulations is a key
ingredient to studying binary compact object mergers in
order to model the observable phenomenon in the electro-
magnetic and gravitational-radiation channels. With the
detection of new gravitational-wave sources we have
started to obtain a deeper understanding of the parameter
space of compact binary mergers. From the first detection
of a binary neutron star (BNS) merger GW170817 [1] and
the exceptionally heavy BNS merger GW190425 [2], to the
highly asymmetric systems GW190412 [3] and possible
black hole neutron star (BHNS) binary GW190814 [4], as
well as the 150 M⊙ binary black hole (BBH) merger

GW190521 [5]; our understanding of binary compact-
object formation has been confirmed, enriched, and chal-
lenged at the same time. In addition, pulsar observations
have lead to a rich catalogue of observable neutron stars [6–
10]. This includes pulsars giving a strong lower limit on the
maximum mass of a neutron star [11,12], exhibiting
extreme rotational frequencies [13], as well as binary-
pulsar systems [14,15] with significant mass asymmetries
[16–18], and companions with appreciable spin frequen-
cies [19,20].
On the theoretical side, increasingly sophisticated para-

metric studies on population synthesis and analyses of
possible binary-formation channels show a broad range of
resulting binary configurations with respect to the total
mass and mass ratio (see, e.g., [10,21,22]). It is also known
that the viscosity of nuclear matter does not suffice to result
in tidal locking of inspiraling binary neutron stars (BNS)
[23,24]—although bulk-viscous effects could be important*papenfort@th.physik.uni-frankfurt.de
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after the merger of a BNS system [25]—and that the
eccentricity of a binary of compact objects is extremely low
at merger [26]. Furthermore, thanks to the detection of
GW170817, all of these results have been accompanied by
a number of constraints on the equation of state (EOS) of
nuclear matter [see, e.g., [27–42] ].
The observational evidence of rather extreme configu-

rations of compact objects1—together with the understand-
ing that unequal-mass systems provide better constraints on
the component masses [44,45]—and the constraints on
nuclear matter from the first gravitational-wave detections
of BNS mergers, underline the necessity of exploring the
edges of the parameter space. This is especially true for
BNS and BHNS binaries given the degeneracy between
tidal and spin effects of the neutron-star companion on the
inspiral waveform [46–49]. Investigating possible addi-
tional observational channels to discern the exact nature of
the given binary is of major importance in these cases that
require the construction of accurate ID across the whole
viable parameter space.
To date, considerable effort has been put toward the

underlying formulation of the equations [50,51] and their
numerical implementation needed to construct state-of-the-
art ID solvers such as TWOPUNCTURES [52,53], SGRID

[43,54–57] for BNS and BBH; using BAM [58–60] for
BNS, BBH, and boson-neutron-star binaries; COCAL [61–
65] for BNS and BBH; SPELLS [66–75] for BBH, BNS, and
BHNS; and the publicly available spectral solver LORENE

[76–82] for BBH, BNS, and BHNS. Additionally, signifi-
cant effort has been put into generating binary compact
object ID featuring low orbital eccentricities [83–88], or
generalizations to arbitrary eccentricities [59].
However, publicly available solvers are severely limited

in their capabilities and, even in the case of LORENE, some
subsequent developments are not shared publicly (see, e.g.,
[88]). Most notably, there is no open-source code including
the treatment of spinning neutron stars and eccentricity
reduction. In addition, there also exists a portion of the
BNS parameter space—namely, the one considering the
combination of extreme mass ratio and spins for BNS
systems—that has, to date, not been explored in the context
of constraint-satisfying ID.
This work aims to fill this gap by providing an open-

source collection of ID solvers that are capable of exploring
the major parameter space of BBH, BNS and BHNS IDs. In
this work we show the ability to construct quasiequilibrium
and eccentricity-reduced ID for BBH, BNS, and BHNS
utilizing the publicly available KADATH [89] spectral solver
library [90].
The KADATH library has been chosen since it is a highly

parallelized spectral solver written in C++ and designed for
numerical-relativity applications [90]. It is equipped with a

layer of abstraction that allows equations to be inserted in
LATEX-like format. In addition to including an array of
built-in operations, user-defined operations can also be
written incorporated into these equation strings. This
capability, together with other ones, allows for readable
and extendable source codes.
Overall, with the suite of ID solvers presented here,

compact-object binaries of various type (BBH, BNS and
BHNS) can be constructed with mass ratio q ≠ 1 and
dimensionless spin parameters χ1 ≠ χ2 ≠ 0. Furthermore,
when considering nonvacuum spacetimes, and hence for
BHNS and BNS, we are able to solve the relativistic
hydrodynamic equations utilizing tabulated EOSs and
obtain spins near their mass-shedding limit. This is quite
an important improvement as many of the present ID
solvers need to make use of piecewise polytropic fits of
tabulated EOSs when considering unequal-mass binaries.
The paper is organized as follows. In Sec. II, we will

cover the mathematical framework necessary to obtain
accurate ID in arbitrary, 3þ 1 split spacetimes, and that is
implemented in these solvers. In Sec. III we describe the
system of equations that are solved for each binary type in
addition to the iterative scheme implemented to obtain
these IDs. Finally, we present our results in Sec. IV for a
number of different binaries, followed by a discussion
in Sec. V.

II. MATHEMATICAL BACKGROUND

Starting with a Lorentzian manifold ðM; gÞ with the
standard 3þ 1 split into spatial and temporal parts of the
spacetime the metric takes the form [91–93]

gμνdxμdxν ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

introducing the spatial metric, γμν ¼ gμν þ nμnν, and, con-
sequently, the normal vector, nν, to the spacelike hyper-
surface, Σt, spanned by this construction [94] as well as the
coordinate conditions set by the lapse, α, and shift, βi. In
this way the manifold is topologically decomposed into a
product spaceM ¼ Σt ×R parametrized by a time param-
eter, t. Under very general conditions this leads to a well-
posed formulation of the Einstein field equations (EFE) as a
Cauchy problem [95–97]. In this way, the Einstein equa-
tions are cast in to a set of “evolution equations” (normally
written as first-order in time partial differential equations in
hyperbolic form) and a set of “constraint equations”
(normally written as purely spatial second-order partial
differential equations in elliptic form). A solution to this
latter set is needed to define the ID needed for the evolution
of the spacetime.
More specifically, the projection of the EFE along the

normal of Σt then leads to the so called Hamiltonian and
momentum constraint equations

1For an extended discussion on high spin and mass asymmetry
BNS systems see Appendix A of [43].
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Rþ K2 − KijKij ¼ 16πE; ð2Þ

DjK
j
i −DiK ¼ 8πji; ð3Þ

with Kij being the extrinsic curvature of Σt, E as ji
the temporal-like and spatial projections of the energy-
momentum tensor Tμν, and Di the spatial covariant deriva-
tive. In the following sections we will describe our
approach to solve these coupled elliptic partial differential
equations in further detail.

A. eXtended conformal thin sandwich method

The constraint equations (2) and (3) hide the physical
degrees of freedom that one naturally wants to fix in order
to solve for a specific compact-object binary configuration.
First attempts to disentangle such degrees of freedom were
made by Lichnerowicz [98] and later extended by York
[99]. Proceeding with the latter, York introduced a con-
formally decomposed thin-sandwich (CTS) approach
[100], which was then further adapted to the extended
conformal thin-sandwich method (XTCS) [101,102].
This method combines the conformal decomposition

from CTS of the spatial metric with respect to a background
metric γ̃ij

γij ¼ Ψ4γ̃ij; ð4Þ

and the traceless conformal decomposition of the extrinsic
curvature

Kij ¼ Ψ−2Âij þ
1

3
Kγij; ð5Þ

with a modified equation for α. The resulting system can be
solved for the conformal factor, Ψ, the shift, βi, and the
lapse, α, given the freely specifiable conformal metric, γ̃ij,
and its time derivative, the trace of the extrinsic curvature,
and its time derivative, as well as the matter sources from
the projected energy momentum tensor.
To further simplify the equations, we make some general

assumptions concerning the freely specifiable quantities.
First, we restrict the solutions to a conformally flat metric

γij ¼ Ψ4fij; ð6Þ

where fij ¼ δij for Cartesian coordinates, but is, in general,
more complex for other coordinates (e.g., spherical).
Second, we consider a maximal slicing K ¼ 0 of the
spacetime. Third, since we are interested in quasiequili-
brium initial conditions for compact-object binaries for
which circularization is extremely efficient [103], we
further assume the existence of a helical Killing vector
ξμ [104–106] given by

ξμ ¼ tμ ¼ αnμ þ βμ; ð7Þ

in a coordinate system corotating with the binary describing
thus a stationary system.
While not strictly necessary but very much natural,

following ansatz (7), we additionally assume that our ID
refer to a moment of time symmetry, thus with a vanishing
time derivative of γ̃ij and K. Subsequently, introducing the
spatial covariant derivative of the conformally related
spatial metric, D̃i, leads to a simplified XCTS system also
known as the Isenberg-Wilson-Mathews approximation
[107]

D̃2Ψ ¼ −
1

8
Ψ−7ÂijÂ

ij − 2πΨ5E; ð8Þ

D̃2ðαΨÞ ¼ 7

8
αΨ−7ÂijÂ

ij þ 2παΨ5ðEþ 2SÞ; ð9Þ

D̃2βi ¼ −
1

3
D̃iD̃jβ

j þ 2ÂijD̃jðαΨ−6Þ
þ 16παΨ4ji; ð10Þ

constituting a coupled system of elliptic partial differential
equations. It should be noted that this approximation
neglects the gravitational radiation radiated throughout
the prior inspiral.
Under these assumptions, the traceless part of the

extrinsic curvature is defined by

Âij ≔
Ψ6

2α

�
D̃iβj þ D̃jβi −

2

3
γ̃ijD̃kβ

k

�
: ð11Þ

¼ Ψ6

2α
ðL̃βÞij ð12Þ

where L̃ is the conformal longitudinal operator such that
when acting on a three-vector vi

ðL̃vÞij ≔ D̃ivj þ D̃jvi −
2

3
γ̃ijD̃kvk: ð13Þ

The source terms E, S, and ji are projections of the energy-
momentum tensor Tμν and thus depend on the exact nature
of the matter or vanish for vacuum spacetimes. These
projections will be discussed in detail in Sec. II E. Finally,
to ensure that the system (8)–(10) is well posed, additional
boundary conditions must be imposed that will be dis-
cussed in the next sections.

B. Asymptotically flat spacetimes

For isolated, binary systems of compact objects in
quasiequilibrium, we enforce that the spacetime will be
asymptotically flat at spatial infinity. Adopting a coordinate
system corotating with the binary, this translates to (see
e.g., [94])
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lim
r→∞

α ¼ 1; ð14Þ

lim
r→∞

Ψ ¼ 1; ð15Þ

lim
r→∞

βi ¼ βicor; ð16Þ

where at large distances the shift is essentially given by the
corotating shift

βicor ≔ ξi þ _ari ¼ Ω∂i
φðxcÞ þ _ari; ð17Þ

with ξi being the spatial part of the helical Killing vector
that describes the approximate stationary rotation in the φ-
direction of the binary at infinity. The coefficient _a will
appear in an expansion modelling a finite infall velocity
[83–85], with ∂i

φ being the standard flat space rotational
vector field around a given center xc. Fine tuning of both Ω
and _a provides an effective way to reduce the residual
orbital eccentricity and a detailed description of how this is
implemented in our code is described in Appendix A.
However, the corotating boundary condition for the shift

(16) is numerically infeasible when used as an exact
boundary condition at spatial infinity, where it diverges.
We resolve this by decomposing the shift as

βi ¼ βi0 þ βicor; ð18Þ

where β0 is the part of the shift not involved in the
corotation and sometimes referred to as the “inertial” shift.
From Eq. (18), together with the condition (16), the
boundary condition

lim
r→∞

βi0 ¼ 0; ð19Þ

follows trivially. Note that—in constrast to (16)—the
condition (19) is well-defined numerically. To see how
this condition affects Eq. (10) while already assuming a
moment of time symmetry, we can use Eq. (11) and a bit of
algebra to rewrite Eq. (10) as

2αΨ−6D̃jÂ
ij ¼ 16παΨ4ji: ð20Þ

By using Eq. (12) and the fact that ðL̃∂φÞij ¼ 0 for a
conformally flat metric [51,108], both terms in Eq. (17)
vanish on entering (20). Hence, we can write βi0 in (10)
instead of βi and obtain analytically equivalent solutions
related through the decomposition (18).

C. Asymptotic quantities

The total energy contained in a spacetime can be defined
through the integral of the ADM (Arnowitt-Deser-Misner)
[109] Hamiltonian of general relativity derived from the
Hilbert action, leading to an integral at spatial infinity [94].

This is the well-known ADM mass MADM. In the case of
the asymptotically flat spacetimes considered here, the
terms in the integral drop off quickly enough and the
integral yields a finite value. Further simplifying the
expression by taking advantage of conformal flatness we
ultimately arrive at

MADM ≔ −
1

2π

Z
S∞

DiΨdsi: ð21Þ

Since this is evaluated at spatial infinity with the spacetime
being asymptotically flat, the surface element dsi is the flat
surface element of the sphere S∞.
Conversely, an alternative way to measure the mass of a

stationary spacetime admitting a Killing vector field ξiðtÞ is
the Komar massMK, which, again, is a surface integral, but
can be evaluated anywhere outside the gravitational sources
[94]. Nonetheless, we compute this quantity again at spatial
infinity that, after simplifying the expression for conformal
flatness, gives

MK ≔
1

4π

Z
S∞

nj∇iξjðtÞdsi: ð22Þ

By substituting (7) as our Killing vector, we may rewrite
(22) as

MK ¼ 1

4π

Z
S∞

Diαdsi: ð23Þ

Once the ADM mass has been obtained, we quantify the
binding energy between two compact objects in a specific
binary configuration by comparing the total ADM mass of
both constituents in isolation M1;2 to the ADM mass of the
binary system [108]

Eb ¼ MADM −M1 −M2≕MADM −M∞: ð24Þ

Finally, the ADM angular and linear momentum can be
computed at spatial infinity using

JADM ≔
1

8π

Z
S∞

Âijξidsj; ð25Þ

Pi
ADM ≔

1

8π

Z
S∞

Âijdsj: ð26Þ

D. Quasilocal quantities

To fully constrain the system of equations, each compact
object must be constrained by its characteristic parameters
such as spin and mass. For a given compact object, the
rotational state is set by the conformal rotational vector
field, ∂i

φ, which is centered on the coordinate center of the
compact object, xc,
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ξiðNS;BHÞ ≔ ∂i
φðxcÞ: ð27Þ

For a black hole, we can measure these quantities
quasilocally on the given excision boundary, i.e., the
horizon [110–112] (see also [113,114] for the possible
measurement of radiative degrees of freedom). As a
simplifying assumption we use the black-hole centered
rotational vector field (27) as the Killing vector field on the
black-hole horizon. Together with the other assumptions
and splitting of the spacetime fields, the quasilocal spin
angular momentum is quantified by

S ≔
1

8π

Z
SBH

Âijξ
i
BHdS

j; ð28Þ

being a surface integral on the black-hole horizon.
Additionally, the irreducible mass of the black hole

(i.e., the mass of the black hole without any angular
momentum contribution) is measured by computing the
surface area of the horizon. In the case of conformal
flatness, this calculation is purely a function of the
conformal factor on SBH

M2
irr ≔

1

16π

Z
SBH

Ψ4dS: ð29Þ

With S and Mirr, the Christodoulou mass MCH can be
computed, which gives the total mass of the black hole
incorporating the contribution from the spin angular
momentum

M2
CH ≔ M2

irr þ
S2

4M2
irr

; ð30Þ

from which the dimensionless spin of the black hole can be
defined as

χ ≔
S

M2
CH

: ð31Þ

Hence, for a BBH system, the total mass at infinite
separation is

M∞;BBH ≔ MCH;1 þMCH;2;

which is measurable quasilocally even at finite separations
and where MCH;ð1;2Þ are the Christodoulou masses of the
two black holes.
For neutron stars we follow a very similar approach. It

has been shown in [70] that the quasilocal definition of the
spin angular momentum (28) is also applicable—at least in
an approximate sense—for a neutron star in a binary
system. In this case, instead of integrating over a horizon,
the integration sphere has to be placed far enough from the
neutron-star center so that it contains all of neutron-star

matter. This leads to an approximate but robust measure-
ment of the quasilocal spin SQL

SQL ≔
1

8π

Z
SNS

Âijξ
i
NSdS

j: ð32Þ

In contrast to the measurement of the Christodoulou
mass MCH;ð1;2Þ on the horizon of a black hole in a binary
system, it is not possible to accurately measure the ADM
mass of a single neutron star when in a binary. Rather, we
take as MADM;ð1;2Þ the ADM mass corresponding to the
isolated spinning neutron-star solution having the same
baryonic mass Mb and dimensionless spin. This then
provides the best approximation to the asymptotic ADM
mass of the binary neutron-star system as

M∞;BNS ≔ MADM;1 þMADM;2:

The baryonic mass Mb of the neutron stars at infinite
separation, on the other hand, is computed as

Mb ¼
Z
VNS

WρΨ6dV; ð33Þ

where dV is the flat-space volume element and W is with
the Lorentz factor [see Eq. (40) for a definition].
Note, however, that, in analogy with what is done for a

quasilocal measure of the spin, a quasilocal definition of the
stellar ADM mass can be made as [54]

MQL ≔ −
Z
VNS

DiDiΨdV; ð34Þ

which is a volume integral over a volume VNS enclosing
the neutron-star matter. It has been shown in [54] that
this approximate measurement deviates systematically and
is not accurate enough to constrain the dimensionless spin
of a star in a binary precisely. We use it here only to
compare to their results in Sec. IV C 1. Finally, using
Eq. (32) and a robust definition for MADM;ð1;2Þ we can
define the dimensionless spin parameter for each neutron
star to be

χð1;2Þ ≔
SQL; ð1;2Þ
M2

ADM; ð1;2Þ
: ð35Þ

E. Matter sources and hydrostatic equilibrium

The matter content of neutron-star constituents is mod-
eled by a perfect fluid [93]

Tμν ¼ ðeþ pÞuμuν þ pgμν; ð36Þ

where e ¼ ρð1þ ϵÞ is the total energy density, ρ is the rest-
mass density, ϵ the specific internal energy, p the pressure,
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and uμ the four-velocity of the fluid. The corresponding
source terms entering Eqs. (8)–(10) are

E ≔ ρhW2 − p; ð37Þ

Sjj ≔ 3pþ ðEþ pÞU2; ð38Þ

ji ≔ ρhW2Ui; ð39Þ

where Sij is the fully spatial projection of the energy-
momentum tensor Tμν [93], h ≔ 1þ ϵþ p=ρ is the rela-
tivistic specific enthalpy, and Ui the spatial projection of
the fluid four-velocity, so that the Lorentz factor W is
defined as

W2 ≔ ð1 −U2Þ−1: ð40Þ

A general problem with these source terms in combi-
nation with a spectral approach is the explicit appearance of
the rest-mass density ρ and more specifically its behavior at
the stellar surface. While the limit of ρ going to zero at the
surface can be well captured by adapted domains fitted to
the neutron-star surface (see Sec. III B), the very steep drop
in magnitude toward the surface—especially for very soft
EOSs—poses a challenge to the spectral expansion, which
exhibits oscillations whose amplitude grows with increas-
ing the number of collocation points. As a result, this
artefact—which is basically a manifestation of the Gibbs
phenomenon—affects the residuals of the constraint equa-
tions and, therefore, can prevent reaching a fully conver-
gent solution.
Instead of resorting to filtering of the higher-order terms

in the expansion of ρ, we transform Eqs. (8), (9), and (10)
by multiplying them by the ratio p=ρ. This quantity has a
well-behaved spectral representation and shows no oscil-
lating behavior toward the surface, where it goes to zero for
an EOS p ∼ ρα with α > 0. The resulting system of
equations no longer contains explicit occurrences of the
rest-mass density in the source terms and, thus, the
residuals of the equations are left unperturbed. The degen-
eracy introduced by p=ρ approaching zero toward the
surface is fixed by the matching to the source-free (vac-
uum) solution of the spacetime.
In addition to being the source terms of the gravitational

equations, the stars have to be in hydrostatic equilibrium.
The governing equations are the local conservation of the
energy-momentum tensor Tμν, as well as the conservation
of rest-mass

∇μTμν ¼ 0; ð41Þ

∇μðρuμÞ ¼ 0; ð42Þ

where Eq. (41) gives rise to the relativistic Euler equation,
which, in the limit of an isentropic fluid configuration,
reads

uμ∇μðhuνÞ þ∇νh ¼ 0: ð43Þ

We note that isentropy is a very reasonable assumption for
an inspiraling cold and unperturbed neutron star.
Introducing now the spatially projected enthalpy current,

ûi ≔ hγμi uμ, and using the existence of a helical Killing
vector, ξi, Eq. (43) can be rewritten into the purely spatial
equation [51,108]

Di

�
hα
W

þ ûjVj

�
þ VjðDjûi −DiûjÞ ¼ 0; ð44Þ

with the spatial “corotating fluid velocity”, Vi, defined as

Vi ≔ αUi − ξi: ð45Þ

The isentropic relativistic Euler equation has an exact
first integral in the two notable cases of a corotating or of an
irrotational neutron-star binary in a quasicircular orbit. In
the former case, the spatial velocity in the corotating frame
is Vi ¼ 0, while in the latter the second term in Eq. (44)
drops due to the fact that ûi is irrotational and hence its curl
is zero by definition. In practice, for an irrotational binary
we introduce a velocity potential ϕ such that ûi ¼ Diϕ
[115,116], and thus the last term in Eq. (44) vanishes
identically.
Following the same approach, Eq. (42) can also be cast

into a purely spatial equation

DiðρWViÞ ¼ 0; ð46Þ

which, through Vi, gives an elliptic equation for the
velocity potential ϕ. Solving the first integral of Eq. (44)
in the case of a corotating binary—or together with the
condition (46) in the case of an irrotational binary—leads to
solutions satisfying hydrostatic equilibrium.
Note that, as discussed above, the appearance of the rest-

mass density ρ poses a problem for the spectral expansion.
Instead of solving Eq. (46) directly, we recast it in the form

Ψ6WViD̃iH þ dH
d ln ρ

D̃iðΨ6WViÞ ¼ 0: ð47Þ

After using the conformal decomposition of the spatial
metric, introducing the new quantity H ≔ ln h, and assum-
ing that d ln ρ=dH is strictly monotonic, we obtain an
additional elliptic equation with the Laplacian term hidden
in the three-divergence D̃iVi. In practice, however, the
Laplacian involves only the derivatives of the velocity
potential, ϕ, which is therefore defined up to a constant to
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be fixed explicitly in order to obtain a unique and bounded
elliptic problem.
In Ref. [117], Tichy has generalized the irrotational

formulation to uniformly rotating neutron stars in what is
referred to as the constant rotational velocity (or CRV)
formalism as a way to incorporate neutron-star companions
with non-negligible spin angular momentum. In this case,
the specific enthalpy current includes a spin component

ûi ¼ Diϕþ si; ð48Þ

si ¼ ωξiNS; ð49Þ

where si is a rotational vector field centered on the stellar
center utilizing Eq. (27) for the definition of ξNS, and which
represents a uniform rotation contribution to the fluid
velocity parametrized by ω. Note that although the spin
velocity field in (48) is fully general, we choose ξiNS in (49)
such that spin and orbital angular momenta are aligned,
which will be the only restriction that we impose here on
our ID models that are otherwise arbitrary.
In this general form, the spatial fluid velocity Ui and

Lorentz factor W become

W2 ¼ ûiûi
h2

þ 1; ð50Þ

Ui ¼ ûi

hW
: ð51Þ

Furthermore, after neglecting a number of terms in Eq. (44)
on the assumption that they provide modest contributions
given this ansatz (see [51,62,117] for an in depth dis-
cussion) it is possible to obtain an approximate first integral
of the type

hα
W

þDiϕVi ¼ 0; ð52Þ

which will consequently be employed for both irrotational
and spinning neutron-star companions.
Finally, to close the aforementioned system for binaries

containing matter sources we need to specify an EOS that
relates the thermodynamic quantities of rest-mass density,
ρ, pressure, p, and internal energy, ϵ, or, respectively, the
relativistic specific enthalpy, h. The infrastructure
employed in our code supports both analytic EOSs, e.g.,
single polytropes and piece-wise polytropes, but also
tabulated EOSs at zero or finite temperature.

F. Black-hole excision boundary conditions

When considering black-hole spacetimes, we follow an
excision approach imposing inner boundary conditions on
coordinate spheres, namely, 2-spheres corresponding to
marginally outer trapped surface (MOTS), and such that the
vector field kμ of outgoing null rays on the surface vanishes

on them [118,119]. Translating this to the conformally flat
XTCS fields yields

βijSBH ¼ αΨ−2s̃i þ ωξiBH; ð53Þ

s̃iD̃iðαΨÞjSBH ¼ 0; ð54Þ

s̃iD̃iΨjSBH ¼ −
Ψ
4
D̃is̃i −

1

4
Ψ−3Âijs̃is̃j; ð55Þ

where s̃i is the conformally normal unit vector on the
surface of the excision sphere SBH, which simplifies to
the flat-space normal vector on a coordinate 2-sphere in the
case of conformal flatness considered here. The rotational
state of the black hole is set by the flat space rotational
vector field (27) centered on the coordinate center of the
black hole horizon and parametrized by the angular
frequency parameter ω. It has been shown in [118] that
the particular choice of the condition (54), albeit being
arbitrary, has the advantage that the lapse in the case of
nonspherically symmetric solutions is not fixed explicitly
and can thus adapt across the horizon.

G. Neutron-star boundary conditions

While no excised region needs to be introduced in the
presence of a neutron-star companion, and hence there is no
requirement for inner spacetime boundary conditions on
the spatial hypersurface, there are still two boundary
conditions that need to be imposed at the stellar surface.
The first one follows from the fact that the stellar mass
distribution in the binary is inevitably deformed due to the
tidal interaction between the compact objects; this is very
different from what happens in the case of a black hole,
where the excision surface is defined to be a coordinate
sphere of given radius. As will be described in more detail
in Sec. III, the deformation of the star is tracked by a
surface-adapting domain decomposition with the surface
defined in general by ρ → 0, which we translate to the
equivalent boundary condition

H ¼ 0: ð56Þ

Second, Eq. (47) is only valid inside the neutron star, since
it is only defined within the perfect-fluid matter distribu-
tion. Even more important, the second-order term DiVi

vanishes for ρ → 0, which is readily seen from (46).
Therefore, in analogy with the reformulation (47),
and exploiting that for finite derivatives dH=d ln ρ ¼
ρdH=dρ → 0 for ρ → 0, we can make use of the fact that,
by definition, W ≠ 0 and Ψ ≠ 0, so that the boundary
condition for the elliptic equation (47) can be written as

ViD̃iH ¼ 0; ð57Þ

on the stellar surface.
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III. NUMERICAL IMPLEMENTATION

The equations presented in the previous sections con-
stitute a system of coupled, nonlinear, elliptic partial
differential equations. The solvers employed in this work
are codes built around the KADATH [120] library [90]. This
spectral solver library is publicly available and uses spectral
methods to solve partial differential equations arising in the
context of general relativity and theoretical physics. A
detailed presentation of the library can be found in
Ref. [90]. Here, we just recall the basic features and the
additional functionalities that have been added to make this
work possible.
The physical space is divided into several numerical

domains. In each of them, there is a specific mapping from
a set of numerical coordinates (the ones used for the
spectral expansion) to the physical ones. The vicinity of
each object is described by three domains: a nucleus and
two spherical-like shells. In the case of a black hole, the
horizon lies at the boundary between the two shells. As in
[121], the radius of the boundary is an unknown of the
problem and is found numerically by demanding that the
individual mass of each black hole has a specific value.
Note that when considering a system with larger mass
ratios, i.e., q ≫ 1, additional spherical shells need to be
added to the secondary black hole in order to allow for
comparable resolution toward the horizon when compared
to the primary black hole. This is important since, even
though a solution can potentially be found for the system of
equations, the majority of the constraint violations can still
accumulate in the vicinity of the horizon of the smaller
black hole.
When considering a neutron star, on the other hand,

matter occupies the nucleus and the first shell, so that the
surface of the star lies at the boundary between the two
shells. In this case, the shape of the stellar surface is not
known a priori and must be determined numerically by
using the boundary condition (56). The fact that the
boundary of the domain is a variable has to be taken into
account properly when solving the equations. For instance,
the physical radius of the stellar domains is no longer
isotropic, but a varying field when expressed in terms of the
numerical coordinates.
The connection between the two components of the

binary is done via a set of five domains that implement a
bispherical coordinate system. The description is made
complete by an additional compactified domain that
extends up to spatial infinity by means of the use of a
compactified coordinate 1=r. As a result, the description of
a binary system involves a minimum set of twelve domains.
An example of this multidomain setting is shown in Fig. 1
where regions A highlight the excised regions of each BH;
regions B have a spherical outer radius with an adapted
inner radius shared with region A; regions C, D, and E
consist of the bispherical domains (see Ref. [90] for their
details); and region F is the compactified region.

In each domain, the fields are described by their spectral
expansion with respect to the numerical coordinates.
Chebyshev polynomials are used for variables with no
periodicity, such as the radial coordinate, while trigono-
metrical functions are employed for variables that are
periodic, such as the spherical angles of the bispherical
coordinates. The choice of the spectral basis, essentially the
parity of the functions, can be used to enforce additional
conditions, such as regularity on an axis of rotation, or
symmetries, like the one with respect to the orbital plane.
Through the spectral representation the residual of the

various bulk, boundary, and matching equations is com-
puted. Depending on the operations involved, it is more
advantageous to represent the fields either by the coef-
ficients of the spectral expansion or by their values at the
collocation points. Once the residuals are known, they are
used to find a discrete system by means of a weighted
residual method. In the case of the KADATH library, one uses
a so-called “tau-method,” which aims at minimizing the
coefficients of the residuals by expanding the residuals R
onto a set of test functions ξ (i.e., the domain basis
functions) such that the scalar product hRjξi ¼ 0. In the
tau method, the equations corresponding to the higher order
terms can be replaced in order to enforce boundary and
domain matching conditions [122,123]. The novel parts of
the spectral-solver library introduced in this work refer in
particular to the fluid equations needed when solving for
neutron stars, as those equations have nonstandard proper-
ties, such as degeneracies at the surface. Additionally,
modifications of the BBH and BNS spaces along with the
introduction of a BHNS space and major performance
optimization were essential for this work.
The resulting discretized system is solved by means

of a Newton-Raphson iteration. The computation of the

FIG. 1. The typical bispherical domain decomposition used in
this work. Depicted with different shadings are the various
coordinate domains where: regions A are the excised regions
of each BH; regions B have a spherical outer radius with an
adapted inner radius shared A; regions C, D, and E are the
bispherical domains, and region F is the compactified region.
Note that this decomposition is rotationally symmetric with
respect to the x-axis.
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Jacobian of the system is done numerically and in parallel
thanks to the ability of the code to keep track not only of the
value of the fields, but also of their derivative. This is
implemented by the use of automatic differentiation (see
Sec. 5 of [90]) and a MPI-parallelized iterative solver.
The equations are, as long as not stated differently,

implemented as they are formulated throughout this paper.
By using the capabilities of the spectral-solver library, the
equations are written in LATEX-like format, making
changes and generalizations to the system of equations
simple and straightforward. Since the solution is known as
a spectral expansion of the underlying fields, we generally
start generating the solution at very low resolution with
largely reduced computational resources needed for the
first, coarse solution. Interpolating this solution to a space
of higher resolution gives a very good initial guess, so that
the Newton-Raphson method generally converges in only a
few steps (down to a single one), depending on the previous
resolution.
The solvers for the different physical binary systems

are coded as stand-alone routines that are linked to the
spectral-solver library and used in conjunction with con-
figuration files in order to steer the physical parameters, as
well as the different solving stages explained in the next
sections III A–III C. Additionally, our solvers leverage
Kadath’s parallel capabilities, which allows our code to
easily scale on high performance computing systems for an
efficient calculation of the ID. As a reference, low-reso-
lution ID could be obtained within a couple of hours with
≳128 CPU cores, whereas higher resolution would require
≳1000 and a larger timescale. Noteworthy the solvers scale
almost perfectly with increasing number of cores up to
≳32000 cores.

A. Binary black-hole (BBH) solver

To obtain BBH ID, we employ an iterative scheme that
constructs a BBH system starting from flat-spacetime (i.e.,
α ¼ Ψ ¼ 1 and βi0 ¼ 0). The system slowly adds con-
straints over the course of six stages so as to not introduce
too many degrees of freedom initially, which could result in
the solution diverging prematurely. As noted above, this
can be done at very low resolution with only the final step
repeated to obtain the desired final resolution.
In the following we describe the different stages and

subsets of equations that need to be solved numerically to
reach a fully constrained BBH solution.

1. Preconditioning

In the so-called “preconditioning stage,” we solve only
for Eqs. (8) and (9), while enforcing an initial guess for the
fixed radius of the excised region (RBH ¼ const.), for a
fixed lapse on the horizon (αjSBH ¼ const., where
0 < α < 1), and a vanishing shift (βi0 ¼ 0). This amounts
to solving the Laplace equations for α and αΨ, and is used

to initialize the scalar fields smoothly over the entire
domain decomposition given the inner and outer boundary
conditions before introducing terms involving βi.

2. Fixed mass and orbital velocity

After the preconditioning stage, we solve for the simplest
system involving the shift vector field, which is that of an
equal mass, corotating BBH system with a fixed orbital
frequency, namely that given by a Keplerian estimate
obtained using the fixed black-hole masses. Upon inspec-
tion of Eq. (53), it is possible to note that in the corotating
frame the tangential term will vanish when a black hole is
corotating with the binary. Therefore, Eq. (53) reduces to

βijSBH ¼ αΨ−2s̃i:

In this stage, we solve Eqs. (9)–(10) while still utilizing a
fixed value for the lapse at the boundary of both black holes
(αjSBH ¼ const.). However, the mass of the black hole is no
longer fixed by a constant radius and, instead, the variable
radius is solved for by imposing a constant irreducible mass
utilizing (29).

3. Corotating binaries

Next, the same system of equations is solved again, but
for a fixed equal-mass, corotating system, where the orbital
angular frequency Ω is now fixed by imposing the
quasiequilibrium constraint, i.e., the general-relativistic
virial theorem [124]

MADM −MK ¼ 0: ð58Þ

This results in the first fully self-consistent BBH configu-
ration representing a corotating black-hole binary in qua-
sicircular orbit.

4. Full system: Fixed-lapse boundary conditions

Next, the converged corotating solution is further gen-
eralized to arbitrary masses M1;2 and dimensionless spins
χ1;2 while still utilizing a fixed value of the lapse on the
horizon. When obtaining such solutions there are a few
remarks that are worth making.
First, when changing from an equal-mass binary to an

unequal-mass binary, it is important that the totalM∞;BBH is
kept constant; failing to do so, e.g., allowing for differences
inM∞;BBH as small as∼2%, implies that the solution for the
shift from the previous stage will deviate too strongly from
the final result, thereby causing the overall solution to
diverge. Conversely, imposingM∞;BBH ¼ const: allows for
changes in the mass q up to a factor of ∼4. Second, using a
fixed lapse is essential when solving for a binary for the
first time, or when making significant changes to the
parameters of a previous solution; failing to do so intro-
duces problems in the subsequent stage of the solver, when
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von-Neumann boundary conditions are introduced. Finally,
large changes in the mass ratio requires incremental
solutions and, in some cases, higher resolution to obtain
a solution to properly resolve the regions close to the
excision boundary.
Note that since, at this stage, the masses are no longer

limited to an equal-mass configuration, the “center of
mass” of the system is unconstrained and needs to be
determined via the condition that the asymptotic net linear
momentum of the system is zero, i.e.,

Pi
ADM ¼ 0: ð59Þ

In practice, since our coordinate system is always centered
at the origin, the corrections coming from enforcing
condition (59)—namely that the helical Killing vector
describes a stationary system that is corotating and centered
on the center of mass—are added to our helical Killing
vector field, which now takes the form

ξi ¼ Ω∂i
ϕðxcomÞ; ð60Þ

where xcom represents now the location of the orbital
rotation axis, whose origin we define to be the “center
of mass” of the system in this context throughout this paper.

5. Full system: von-Neumann boundary conditions

Finally, the von-Neumann boundary condition is
imposed on the excision boundary to relax the necessity
to set an arbitrary constant lapse across the horizon [118]

DnðαΨÞ ¼ 0; ð61Þ

with n being the normal vector field on the excision
sphere. However, because this boundary condition intro-
duces a considerable sensitivity to changes in the solution,
it is employed only as the final step of the convergence
sequence.

6. Eccentricity reduction

Strictly speaking the reduction of the eccentricity is not
part of the procedure for finding self-consistent initial data
of binary systems, which completes with the step in Sec. III
A 5. Such initial data, however, although being an accurate
solution of the constraint equations, normally leads to
orbital motion that is characterized by a nonzero degree of
eccentricity. The amount of eccentricity depends sensitively
on the properties of the system (mass ratio and spin) and is
most often due to the various assumptions that are tied with
the calculation of the initial data, e.g., quasicircularity,
conformal flatness, etc.
Independently of its origin, such eccentricity represents a

nuisance that needs to be removed as binaries of stellar-
mass compact objects are expected to be quasicircular in
the last stages of the inspiral. In essence, eccentricity is

reduced by utilizing input values of Ω and _a as constants
when solving for the new ID. Since Ω is fixed, Eq. (58) is
neglected in the system of equations to be solved. Estimates
for Ω and _a can either be those derived from approximate
treatments, such as post-Newtonian theory [see, e.g., (B2)
and (B1) in Appendix B] or from an iterative eccentricity
reduction procedure. In this second approach, corrections
toΩ and _a are calculated by using the ID in short evolutions
and by fitting the orbit using Eqs. (A1)–(A5) to obtain the
corrections δ _a and δΩ to the previous estimates [83,84].
The subtleties of this trial-and-error approach are discussed
in detail in Appendix A and the included references.

B. Binary neutron-star solver

When compared to a BBH system, the BNS solver is
much less sensitive to the initial conditions and, therefore,
there is no need for additional sub-stages in the solution
process. This is partly due to the fact that the iterative
scheme is started already with a reasonable initial guess by
importing and combining the solutions for static and
isolated stars, (i.e., the Tolmann-Oppenheimer-Volkov or
TOV equations), but also because the inner boundary
conditions on the excision spheres are susceptible to small
changes in the case of a BBH. In addition, the gravitational
fields and their derivatives are overall smaller and thus the
nonlinearities in the equations less severe.
The scalar fields for the lapse αNS and conformal factor

ΨNS from the TOV solutions are interpolated onto the BNS
domains using a simple product of the two independent
solutions at a given Cartesian coordinate x

αBNSðxÞ ¼ αNS1ðx − xc1ÞαNS2ðx − xc2Þ; ð62Þ

ΨBNSðxÞ ¼ ΨNS1ðx − xc1ÞΨNS2ðx − xc2Þ; ð63Þ

where x − xc represents the coordinate system with origin
in the center of the given compact object. Additionally, the
matter is imported into the stellar interior domains and set
to zero in all domains outside of the neutron stars. Given the
surface of the stars are described by adapted spherical
domains, the mapping of the adapted domains must also be
updated based on the mappings from the isolated TOV
solutions. Finally, the shift is discarded as the solver is more
reliable when starting from zero shift.
As described in Sec. II E, also in the case of a BNS

system we are solving Eqs. (8)–(10) scaled by the ratio
p=ρ, together with Eqs. (52) and (47), with the additional
constraints of ϕjxc ¼ 0 and a fixedMb defined by Eq. (33).

1. Full system

To close the system of equations, there is still the need of
a condition to constrain the orbital frequency, Ω, and, in
general, the “center of mass”, xcom. Additionally, the
neutron stars—contrary to a black hole—have an
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anisotropic radius distribution along their adapted surface
such that the matter distributions is not constrained to
remain at a fixed distance with respect to the origin of the
innermost domains. To break this degeneracy, we add two
conditions for the two unknowns in terms of the derivative
of the enthalpy

DxHjxc1;2 ¼ 0; ð64Þ

where x is the coordinate direction along which the two
stellar centers are placed and xc1;2 are the positions of the
fixed centers of the stars along the x-axis. Equations (64)
are the so-called “force-balance equations” [78] and
complete the system needed to obtain the ID in quasi-
equilibrium.

2. Reduced system: Fixed linear momentum

In case of high mass ratios, the full system as imple-
mented in stage III B 1, together with Eq. (64), yields
binary systems with a non-negligible amount of total linear
momentum Pi

ADM at infinity. In turn, this leads to an
undesirable spurious drift of the center of mass of the
system during its evolution. In the same context, we
observed that solving Eq. (64) separately for each star
produces inconsistent orbital frequencies when considering
two stars that differ significantly in spin and in mass. Since
adding an extra constraint to fix the total linear momentum
renders the system overdetermined, and a simple averaging
of the two separate solutions for Ω [43,54] is incompatible
for the more challenging configurations involving a high
mass ratio combined with extreme rotation states, we
follow a different route.
In particular, we take the matter distribution and the

orbital frequency Ω computed from the previous stage and
define both to be constant, making Eq. (64) redundant. At
this point, we can use the condition

Pi
ADM ¼ 0; ð65Þ

to determine a correction to the location of the axis of
rotation of the spatial part of the Killing vector ξi, just as for
a BBH configuration.
Doing so necessarily leads to slight differences in the

velocity field of the neutron stars due to changes in
the velocity potential, which incorporates and adapts to
the different velocity contributions. Most importantly,
doing so introduces small deviations in Mb through the
Lorentz factor W present in the integral (33).2 Since the
rest-mass is a fundamental property of the binary from and
is conserved throughout the evolution by (42), it is

important to enforce that the desired value is specified
with precision. We accomplish this by a simple rescaling of
the form

H → H ¼ Hconst:ð1þ ΔHÞ; ð66Þ

where Hconst: is the fixed matter distribution from the
previous stage and ΔH is the (small) correction needed to
enforce that the baryon mass is the one expressed
by Eq. (33).
Ultimately, the first integral Eq. (52) is the only equation

that is violated by the rescaling discussed above, although
only to a limited extent. While this violation certainly has
an impact on the equilibrium of the two stars, this impact is
overall negligible. Indeed, numerical-evolution tests span-
ning throughout the allowed parameter space in terms of
mass ratio and spin has shown that the perturbations of the
stars are increased insignificantly when compared to the
fully self-consistent solutions resulting from stage III B 1.
Furthermore, these perturbations are a priori indistinguish-
able from those introduced in the binary simply because of
the approximate nature of the condition Eq. (52) in the case
of high spins. More importantly, numerical evolution of
high spin and mass ratio systems without explicitly fixing
(65) by using only III B 1 exhibit the same orbital evolution
as the fixed systems, apart from a strong center of mass
drift. Thus, the prescription above allows us to have a
precise control of the drift of the center of mass and of the
baryon mass of the binary.

3. Eccentricity reduction

As in the BBH case, in order to reach a solution with
reduced orbital eccentricity, the quantities Ω and _a need to
be fixed via an iterative procedure fitting the trajectories in
terms of Eqs. (A4) and (A5) so as to obtain the intended
corrections. Since in this case Ω has to be fixed, we follow
the same approach as in stage III B 2 and rescale the matter
of the original solution from the stage III B 1. In this way,
employing Eq. (65), the ID features both a reduced orbital
eccentricity and a very small center-of-mass drift.

C. Black-hole neutron-star solver

Finally, to show the flexibility in applying the extended
KADATH spectral-solver library, we can use much of the
infrastructure presented above for BBHs (Sec. III A) and
BNSs (Sec. III B) to construct binaries composed of a black
hole and a neutron star.
For the initial guess, we currently start with an irrota-

tional, equal-mass system utilizing a previously solved
BNS ID and an isolated black-hole solution. This provides
a very good estimate for α and Ψ, as well as for the matter-
related quantities ϕ and H. The shift vector, however, is
discarded as this can have a negative impact on the initial
convergence. We note that, in principle, it is also possible to
start directly from a static TOVand single black-hole initial

2We note this is true for any solution with a preassigned Ω,
e.g., when implementing the iterative eccentricity reduction
discussed in Sec. A.
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guess for the spacetime. During the import, spherical shell
domains are added outside of the black hole to obtain the
same resolution near the excision boundary as that which is
near the surface of the neutron star. These additional shells
can be removed or added as necessary to obtain the desired
resolution.

1. Initial system: Fixed-lapse boundary condition

By combining the two converged datasets, we start our
two-stage solver starting with an initial equal-mass and
irrotational BHNS system. More specifically, in the first
stage we solve the neutron-star part using the same system
of equations for the matter component described in
Sec. III B 1. On the other hand, when considering the
black-hole component, we utilize the system of equations
described Sec. in III A 4, which fixes the lapse function on
the horizon based on the imported isolated black-hole
solution. This stage proved necessary as the von-Neumann
boundary condition was excessively sensitive and would
otherwise result in a diverging solution.
The orbital frequency Ω of the binary is set solely by

Eq. (64), but, unlike for a BNS system where Eq. (64)
consists of two distinct equations, we still fix the center of
mass by imposing Pi

ADM ¼ 0 without overdetermining the
system of equations.

2. Full system: von-Neumann boundary condition

In this second stage, we repeat the steps just described
above, but exchange the constant lapse constraint on the
horizon with the von-Neumann boundary condition as
described in Sec. III A 5. Once a first configuration has
converged in this stage, all further modifications, such as
iterative changes to the spins and the mass ratio, can be
made while subsequently resorting only to this final stage.

3. Eccentricity reduction

As in the BBH and BNS scenarios,Ω and _a are corrected
to remove the spurious eccentricity by using the same
iterative procedures already mentioned in Secs. III A 6
and III B 3. Additionally, the matter is rescaled as discussed
in Secs. III B 3 and III B 2 since Ω is again a fixed quantity
at this stage. Finally, we explicitly enforce Eq. (65) to
minimize the residual drifts of the center of mass.

IV. RESULTS

In the following, we present a collection of ID configu-
rations generated using the procedures described in Sec. III.
Such ID is then employed to carry out evolutions of the
various binary systems making use of the general-relativ-
istic magnetohydrodynamics code FIL [125,126], which is
derived from the ILLINOISGRMHD code [127], but imple-
ments high-order (fourth) conservative finite-difference
methods [128] and can handle temperature and electron-
fraction dependent equations of state (EOSs). Neutrino

cooling and weak interactions are included in the form of a
neutrino leakage scheme [129–131].

FIL makes use of the EINSTEIN TOOLKIT infra-
structure [132]. This includes the use of the fixed-mesh
box-in-box refinement driver CARPET [133], the appa-
rent horizon finder AHFINDERDIRECT [134] together with
QUASILOCALMEASURES [135] to measure quasilocal hori-
zon quantities of the black holes. The spacetime evolution
is done either by MCLACHLAN [136,137] for the BSSNOK
formulation [138,139] or by ANTELOPE [125] implementing
the BSSNOK [138,139], Z4c [140], and CCZ4 [141,142]
formulations.

A. Sequences of compact binaries

As a first result, and as an effective way to quantify the
reliability of our implementations, we perform an initial
resolution study to determine if the global properties of the
solutions show the expected spectral (i.e., exponential)
convergence for increasing number of collocation points.
To do so we utilize the asymptotic quantities MADM, MK,
JADM defined in Sec. II C and the orbital angular velocityΩ
of an equal-mass BBH system. In this context, we define an
effective resolution across the whole space following [70]

N̄ ≔
�X

i∈DNðiÞ

�1
3

; ð67Þ

where NðiÞ is the total number of points of the i-th domain
part of the space decomposition D, which is rounded to the
closest integer number. In Fig. 2 we report for each quantity
X (i.e., MADM, MK, JADM, and Ω), the absolute value of
the variations of X at a given N̄ with respect to the

FIG. 2. Spectral convergence of the asymptotic quantities
described in Sec. II C and of the orbital frequency Ω for an
equal-mass BBH system. Shown are the absolute values of the
variations of the quantity X at a given effective resolution N̄ given
by Eq. (67) with respect to the corresponding quantity at the
largest effective resolution N̄max ¼ 52. Clearly the variations
decrease exponentially for all quantities considered.
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corresponding quantity at the largest value N̄max (i.e., the
high-resolution solution). While MADM and MK have
consistently smaller relative deviations than JADM, and
Ω, all quantities clearly exhibit the expected spectral
convergence.
Next, we present quasiequilibrium sequences of irrota-

tional BBHs, BNSs, and BHNSs, and compare the corre-
sponding binding energies and orbital angular velocities
with the values obtained from fourth-order post-Newtonian
(4PN) expressions, namely, Eqs. (B4) and (B5) (see,
Appendix B and [143] for a review).
Figure 3, in particular, presents a comparison of the

binding energy Eb [cf. Eq. (24)] of various irrotational
compact binaries, namely, BNS (crosses), BBH (filled
circles), and BHNS (diamonds), that have either equal
masses (q ¼ 1) or unequal masses (q ¼ 0.5, 0.6). In the
case of binaries with at least one neutron star, we model the
latter by a single polytrope with K ¼ 100 and Γ ¼ 2 as a
function of the dimensionless orbital frequencyM∞Ω. Note
that both for equal-mass and unequal-mass binaries our
numerical solutions closely follow the analytical 4PN
estimates (solid lines).
Following a similar spirit, Fig. 4 reports the binding

energy as a function of the normalized orbital frequency for
a selection of equal-mass, irrotational or spinning BNS
configurations with spins that are either aligned and
antialigned to the orbital angular momentum. The EOS
used is the same as in Fig. 3 (a single polytrope with K ¼
100 and Γ ¼ 2). As can be clearly seen, binaries with spin
that are aligned with respect to the orbital angular

momentum are less bound than the irrotational counter-
parts, which, in turn, are less bound than the binaries with
antialigned spins. This result, which is embodied already in
the PN equations (see solid lines), confirms what has been
presented in Refs. [43,54] and highlights that binary
systems with significant aligned spins will require a larger
number of orbits before merging.

B. Evolutions of black-hole binaries

In the following we present the results of the evolutions
of BBHs whose ID have been produced with our new
spectral solver. Note that our evolutions, although com-
prehensive of all the relevant cases, do not explore any new
aspect of the dynamics of compact binaries that has not
been presented already in the literature. Rather, here they
are meant to be used mostly as representative test cases and
clear proofs of the considerable capabilities of the new
spectral-solver library.

1. Representative mass ratio and mixed spins

As a realistic test case to exercise the capabilities of the
BBH ID solver, we generate ID based on the GW150914
detection and thus assuming that the mass ratio is q ¼
0.8055. The primary black hole is set to have a dimension-
less spin of χ1 ¼ 0.31 and the secondary χ2 ¼ −0.46, while
we fix the initial separation to d0 ¼ 10M; this setup is very
similar to the one used in Ref. [144]. A summary of the
dynamics of this binary is offered in Fig. 5, whose different
panels report, respectively, the orbital tracks (left panel),
the coordinate separation between the two black holes
at different stages of the eccentricity-reduction (middle
panel), and the corresponding gravitational-wave strain in

FIG. 3. Behavior of the binding energy [cf. Eq. (24)] as a
function of the dimensionless orbital frequency for sequences of
irrotational BBH, BNS, and BHNS binaries (colored filled
circles), when compared with the combined with the correspond-
ing 4PN prediction given by Eq. (B5) (colored solid lines). For
binaries having the same components, we have considered both
equal-mass binaries (q ¼ 1) and unequal-mass binaries (q ¼ 0.5
for BBHs and q ¼ 0.6 for BNSs). Finally, in the case of the
BHNS binaries, we have computed a rather extreme equal-mass
configurations.

FIG. 4. Same as in Fig. 3 but for equal-mass, BNS configu-
rations that are either irrotational (χ ¼ 0) or spinning (χ ¼ �0.3),
with spins aligned to the orbital angular momentum. Also in this
case, the colored solid lines refer to the 4PN predictions (B5),
which provide an accurate estimate even in the presence of high
spins in the range of the given orbital frequencies.
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the l ¼ m ¼ 2 multipole of the þ polarization (right
panel). Note that the left and right panels refer to the
configuration with the smallest eccentricity.
The spins of both black holes are perpendicular to the

orbital plane and, as a first step, we generate a correspond-
ing dataset under the assumption of quasiequilibrium (QE)
using Eq. (58). As expected from this raw ID, the actual
evolutions reveal that the initial orbital eccentricity is large,
as can be can be seen from the black line in the middle
panel of Fig. 5; in the same panel, the inset provides a
measure of the time derivative of the coordinate separation
_rðtÞ. Fortunately, this problem can be resolved rather
straightforwardly and already by simply utilizing the
3.5PN estimates for the expansion coefficient, _a [i.e.,
Eq. (B1)], and for the orbital frequency, Ω [i.e.,
Eq. (B2)]. As shown with the blue line in the middle panel
of Fig. 5, this simple estimate already results in a greatly
reduced orbital eccentricity.
An additional reduction can be obtained after performing

four iterations of the eccentricity-reduction procedure
described in Sec. III A 6 and Appendix A, where we start
from the 3.5 PN ID until we obtain an orbital eccentricity of
the order of 10−4; we refer to this ID as “ECC4” hereafter.
More specifically, for each iteration of the eccentricity-
reduction procedure, the eccentricity is measured using the
coordinate separation between the centers of both horizons
rðtÞ, and its time derivative _rðtÞ; the two quantities are then
fitted using the ansatzes (A1) and (A2).3 We note that both
quantities are measured during the first three orbital periods

to ensure a consistent measurement of the eccentricity,
which, in turn, allow us to obtain accurate corrections to the
quantitiesΩ and _a [cf. Eqs. (A4) and (A5)]. Experience has
shown that relying on a single orbit does not yield
sufficiently accurate estimates for corrections to Ω and
_a, thus not yielding a significant decrease in the eccen-
tricity. In all cases, we are able to obtain consistent
measurements and corrections from rðtÞ and _rðtÞ up to
an eccentricity ≲10−3. For eccentricities smaller than these
and up to an eccentricity ≲10−4, we obtain more reliable
results using only the parameters fitted from _rðtÞ, since the
fitting parameters for rðtÞ are unreliable due to the
eccentricity having a weak impact on the separation
distance—the oscillations are too small to fit—when using
the ansatz (A1). Indeed, as remarked also by other authors
[83–85,88], when considering orbits with eccentricities
≲10−3, the correction parameters are very sensitive to
the fitting procedure used, to the initial estimates for these
parameters, and to the evolution window being analyzed.

2. Impact of the ID resolution on the
gravitational-wave phase

To further quantify the impact of the resolution with
which the ID is computed on the overall error budget as
seen from an evolution perspective, we run a series of nine
simulations utilizing the ECC4 initial dataset to determine
the convergence of the gravitational phase evolution up to
merger. The latter is a good choice being a coordinate
independent quantity and the most important in waveform
modelling for template matching [145].
This series of nine evolutions consists of a binary

constructed with three different ID resolutions, i.e.,
N̄ ¼ 24, 38, and 42, and evolved with three different

FIG. 5. Left: orbital trajectories of a representative BBH configuration reproducing the properties of the GW150914 event; shown with
the light-orange track is the orbit of the primary black hole, while the light-blue track refers to the secondary. Middle: evolution of the
coordinate separation rðtÞ of the GW150914 ID when considering only the quasiequilibrium assumption (black solid line), the 3.5 PN
estimates for _a and Ω (blue solid line), or after the fourth iteration (ECC4) of the eccentricity-reduction procedure (red solid line). The
inset shows the time derivative of the coordinate separation, _rðtÞ, for the same datasets. Right: gravitational-wave strain of the l ¼
m ¼ 2 multipole of the þ polarization for the ECC4 dataset.

3Fitting r and _r via (A1) and (A2) obviously yields two distinct
estimates for the parameters associated to Eqs. (A4) and (A5). In
practice we use both of them to ensure reliable corrections, but,
based on experience, we utilize the corrections from _r here.
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evolution resolutions, i.e., ΔxLR=M ¼ 0.024, ΔxMR=M ¼
0.019, and ΔxHR=M ¼ 0.015. The latter correspond to a
number of points across the apparent horizon (AH) of about
nAH ¼ 35, nAH ¼ 45 and nAH ¼ 55 respectively. For all
cases considered, the spacetime evolution utilizes an 8th-
order finite-differencing scheme so as to minimize the error
in the evolution of the binaries.
In Table I we report the magnitude of the phase

differences at merger of the phases of the l ¼ m ¼ 2
mode gravitational-wave strain. For each of the cases
reported, jΔϕj is computed as the difference between the
gravitational-wave phase at merger from evolutions at a
given resolution (i.e., LR, MR, HR) from ID computed
with a given set of collocation points (i.e., N̄ ¼ 24, 38, 42)
relative to the highest-resolution setup (i.e., HR, N̄ ¼ 42).
In addition, and as a reference, Table I reports the various
ADM quantities for each ID resolution.
Similarly, but only for a subset of three binaries in

Table I, we show in Fig. 6 the full time evolution of the
phase differences. In particular, we concentrate on evolu-
tions capturing the differences of the ID datasets with N̄ ∈
f24; 38g and evolved at the highest resolution HR. These
differences are indicated with blue and green lines in Fig. 6
and are meant to highlight the actual impact of the ID
resolution on the error budget of the simulation. In addition,
we report with a dark-red line the phase difference that
develops when comparing evolutions with ID computed at
the highest resolution (i.e., N̄ ¼ 42) between the medium
(MR) and high-resolution (HR) setups. By contrast, this
line is meant to highlight the actual impact of the evolution
resolution on the error budget.
As can be seen already from Fig. 6 and fully deduced

from Table I, the total phase error at merger is completely
dominated by the evolution resolution, at least for the
resolutions considered here. There is only a very weak
dependence on the ID resolution, which converges away
rapidly with increasing number of collocation points.
Stated differently, the ID error contribution is subdominant
already with N̄ ¼ 24 and becomes even less relevant as the
number of collocation points is increased. As customary in
these evolutions, the phase difference increases as the
merger is approached and evolution becomes increasingly

nonlinear. However, even in the case of the low-N̄ ID, the
phase difference is always below Δϕ ∼ 0.1 rad. In contrast,
the phase difference between the two highest evolution
resolutions is one magnitude larger, Δϕ ∼ 1.0 rad, and is
dominating over the whole inspiral. These results clearly
indicate that for vacuum solutions at the resolutions
considered here—and for the ranges of mass ratios and
spins explored so far—the ID resolution plays only a minor
role for the total phase error budget and rather low
resolutions can be used as long as the orbital frequency
is fixed by PN estimates or iterative eccentricity reduction.

C. Evolutions of neutron-star binaries

We next present the results of the evolutions of BNS
configurations whose quasiequilibrium initial configura-
tions have been produced with the new solver utilizing the
KADATH library. Also in this case, our evolutions are here
meant to be used mostly as representative test cases and
clear proofs of the capabilities of the new spectral-solver
library to produce astrophysically useful data, rather than
providing new insight into this process.

1. Spinning binary neutron stars: a comparison

As a first general test of a BNS system containing
spinning companions, we consider the equal-mass, equal-
spin BNS model first presented in Ref. [54], which is based
on a single polytrope with K ¼ 123.6 and Γ ¼ 2. A similar
stellar model was considered also in Ref. [70], but
unfortunately no updated model was discussed in the

TABLE I. Gravitational-wave phase differences for the l ¼
m ¼ 2 strain mode of the þ polarization as computed at merger
when employing either different ID resolutions (N̄ ¼ 24, 38, 42)
or evolution resolutions (LR, MR, HR). Also reported are the
corresponding values of the ADMmassMADM and ADM angular
momentum JADM as computed from the ID.

jΔφjLR jΔφjMR jΔφjHR MADM [M] JADM ½M2�
N̄ ¼ 24 12.214 1.888 0.095 0.9897 0.9572
N̄ ¼ 38 12.067 1.771 0.008 0.9899 0.9573
N̄ ¼ 42 12.067 1.770 0.000 0.9899 0.9573

FIG. 6. Evolution of the differences in the gravitational-wave
phase computed from the l ¼ m ¼ 2 multipole of the þ
polarization produced by BBH configurations representative of
the GW150914 event. Different lines contrast the difference when
considering either different effective ID resolutions, i.e., N̄ ¼ 24,
38, 42), or different evolution resolutions, i.e., low resolution
(ΔxLR), medium resolution (ΔxMR), and high resolution (ΔxHR).
Note that the contribution of the ID to the final error budget is
always subdominant at the evolution resolutions employed here.
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subsequent work Ref. [71]. For this binary, the spin
parameter is fixed to ω ¼ 0.1525 [cf. Eq. (49)], together
with a baryonic mass of Mb ¼ 1.7745 M⊙, and a coordi-
nate separation of d ¼ 47.2 M⊙.
Table II offers a comparison of the quasilocal measure-

ments for the mass and spin computed here with the
corresponding quantities reported in Ref. [54]. Note that
while there is an excellent agreement in the quasilocal mass
computed by (34), there is a small deviation in the
quasilocal spin. We believe this difference is due to the
method used in Ref. [54] to compute the spin, which differs
from the one employed here and that follows the one in
Ref. [70]; the differences are however minute and smaller
than 0.3%.
To further assess the correctness of the implementation

of the spin-velocity field given by Eq. (48) and the resulting
spin angular momenta, we created a sequence of equal-
mass BNS models based on a single polytrope with K ¼
123.6 and Γ ¼ 2. The sequences are parametrized by the

increasing spin parameter ω for a fixed mass
MADM ¼ 1.64 M⊙, thus matching the models given in
[54,70,71]. Note that the baryonic mass decreases for
increasing spin at fixed MADM due to the growing con-
tribution of the spin angular momentum to the gravitational
mass and, thus, has to be adjusted by matching it to single-
star models with the same MADM and χ.
The resulting dependency between the spin parameter ω

and dimensionless spin χ is shown in Fig. 7 and combined
with a smoothly interpolated representation of the data
given in Refs. [54,70,71]; we note that the results reported
in Ref. [70] (black dashed line in Fig. 7) were generated
with an incorrect first-integral equation and has been
corrected in Ref. [71] (blue solid line). It is evident from
Fig. 7 that all three codes reproduce the same relation at low
spin angular momenta and that this is almost linear.
However, for larger spin angular momenta the relation
becomes nonlinear with the spins increasing rapidly as
function of the frequency parameter. Note that for very high
spins a difference appears between the values computed
here and those reported in Ref. [54] (dark-red solid line). As
discussed above, we believe this discrepancy originates
from different methods employed to compute the quasilocal
spin angular momentum; furthermore, since this quantity is
defined only approximately, the variations measured are not
a source of concern.

2. Eccentricity reduction with unequal masses and spins

As done for BBHs, we also employ an iterative eccen-
tricity-reduction procedure on our BNS ID that follows the
same logic mentioned above and presented in more detail in
Appendix A. As it is natural to expect, BNSs that are
increasingly asymmetric in mass and spin exhibit an
increase in the initial eccentricity starting from the qua-
siequilibrium solution using the force-balance constraint
equation (64). Especially in binaries with components with
large dimensionless spin, i.e., χ ≳ 0.6, the initial eccen-
tricity can be extremely large and becoming larger with
increasing spins and decreasing mass ratios.
As a general example of our eccentricity-reduction

process involving extreme spins, we generate a BNS

TABLE II. Comparison with the properties reported in Ref. [54] for either an equal-mass irrotational, or equal-
mass spinning BNS configuration using a single polytrope with K ¼ 123.6 and Γ ¼ 2. Listed are the quantities that
can be compared directly: the fixed spin frequency parameter, ω, the fixed baryonic mass,Mb, the quasilocal ADM
mass, MQL, the spin angular momentum, SQL, and the dimensionless spin normalized by M ¼ 1.64 M⊙. The
agreement is very good and the small differences in the quasilocal measurements are mostly due to the different
approaches to perform the measurements.

Reference ω ½M−1
⊙ � Mb ½M⊙� MQL ½M⊙� SQL ½M2

⊙� SQL=M2

Tichy+ 2019 [54] 0.00000 1.7745 1.620 −0.0007 −0.0003
this work 0.00000 1.7745 1.620 −0.0007 −0.0003
Tichy+ 2019 [54] 0.01525 1.7745 1.626 0.8652 0.3217
this work 0.01525 1.7745 1.626 0.8631 0.3209

FIG. 7. Dimensionless spin χ as function of the stellar spin
frequency parameter ω for a sequence of BNS configurations
using a single polytrope with K ¼ 123.6 and Γ ¼ 2. The
numerical data (open symbols) is compared with the interpolating
functions reported in Refs. [54,70,71], indicating the very good
agreement.
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configuration using the beta-equilibrium slice of the finite-
temperature TNTYST EOS [146] with M∞ ¼ 2.7 M⊙,
q ¼ 0.6875, χ1 ¼ 0, and χ2 ¼ 0.6, where the highly spin-
ning star is also the more massive one.
Starting from the quasiequilibrium solution, the eccen-

tricity of the orbit is progressively reduced via a total of four
steps in which we use the fitting ansatz (A2) for the time
derivative of the proper separation of both neutron stars. We
remark that we employ a Newtonian estimate for the
barycenter of both stars to circumvent the high-frequency
noise in the location of the stellar centers that appears when
defining the stellar centers by a maximum density meas-
urement alone. The eccentricity reduction is performed
using a lower resolution ID with N̄ ¼ 29 and a medium
evolution resolution of Δx ¼ 0.2 M⊙ ≈ 295 m. For the
construction of the fourth and final eccentricity-reduced
dataset, the resolution is increased to N̄ ¼ 38. We note that
further increasing/decreasing the resolution of the ID
between these two values of N̄ ¼ 29, 38 at this stage of
the procedure has no substantial effect on the resulting
evolution, as we further discuss below (see Sec. IV C 3).
In Fig. 8 we present the evolution of the proper sepa-

ration of the initial (black solid line) and final (red solid
line) datasets in the eccentricity reduction procedure.4 In

addition, the same system is solved using fixed values of Ω
and _a estimated from the 3.5PN expression given by
Eqs. (B1) and (B2) (blue solid line), which already provide
a considerable reduction of the eccentricity. With the final
set of parameters we arrive at a residual eccentricity ≲10−4,
at which point the mentioned fitting procedure is no longer
reliable and further reduction becomes infeasible.
Figure 8 shows that the eccentricity-reduction procedure

performs very well even when starting with binary con-
figurations where the high spin of the more massive
companion leads to very large initial eccentricities. At
the same time, it is also apparent that multiple iterations of
the reduction can be skipped by simply starting from the
3.5PN—or higher-order PN estimates—of the initial orbital
parameters. We thus recommend to apply these estimates in
any case instead of resorting to solutions based on the plain
force-balance equation (64) even when no further iterative
reduction is conducted. Indeed with very high spins as in
this binary, resorting to the 3.5 PN expressions leads to
eccentricities that are of the same order as those encoun-
tered in standard irrotational quasiequilibrium configura-
tions without eccentricity reduction.

3. Impact of the ID resolution on the
gravitational-wave phase

In analogy with the results presented in Sec. IV B 1, we
next investigate the impact of the ID resolution and of the
evolution resolution using the gravitational-wave phase as
our reference quantity. For this purpose, we conduct a
series of simulations at varying evolution resolutions,
namely ΔxLR ¼ 0.25 M⊙ ≈ 369 m, ΔxMR ¼ 0.2 M⊙ ≈
295 m and ΔxHR ¼ 0.145 M⊙ ≈ 215 m, in conjunction
with three ID resolutions N̄ILR ¼ 29, N̄IMR ¼ 38 and
N̄IHR ¼ 47.5 In particular, we concentrate on five combi-
nations of these resolutions, considering first the two lower
ID resolutions ILR and IMR and using them for the HR
evolution resolution. Next, we compare and contrast the
results to the highest resolution ID IHR, using it to perform
evolutions at the three different evolution resolutions LR,
MR and HR. As for the binary model, we resort to an
equal-mass binary with individual baryonic masses Mb ¼
1.4946 M⊙ at an initial coordinate separation of 52.42 km
using a tabulated version of the SLy EOS [147].
We note that in order to remove effects of varying

eccentricity at different resolutions introduced by slightly
changing orbital parameters—most notably, Ω—we
enforce a well controlled setup with Ω and _a fixed by
Eqs. (B2) and (B1), respectively. An alternative route

FIG. 8. Representative example of the iterative eccentricity
reduction for a rapidly spinning BNS system modelled with the
TNTYST and withM∞ ¼ 2.7, q ¼ 0.6875, χ1 ¼ 0 and χ2 ¼ 0.6.
Shown is the evolution of the proper separation between the two
stars when using only the quasiequilibrium ID (black line; QE),
or when utilizing the 3.5PN estimates for Ω and _a (blue line;
3.5 PN), or when employing the ID from the final step of the
eccentricity-reduction procedure (red line; ECC4). Note that the
QE condition leads to enormous eccentricities for such a highly
spinning binary.

4In contrast to what happens with BBHs, whose proper
distance is difficult to calculate because of the inaccurate field
values inside the AHs, the actual proper distance can be
calculated in the case of BNSs.

5In practice, we employ in each dimension an increment of
four to the number of collocation points for the BNS ID in this
case. Considering the exponential convergence of our spectral
approach (see Fig. 2), even such a small increase of collocation
points leads to a nonlinear decrease of the truncation error.
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would be to perform a full eccentricity reduction of the
orbit to fix both parameters.
As discussed in Sec. IV B 2, for each simulation we

compute the phase evolution of the l ¼ m ¼ 2 mode
gravitational-wave strain and present in Fig. 9 the resulting
phase errors. We note that—in contrast with what is done
for BBHs, where this was not necessary—we exclude the
initial phase of the evolution, as the binaries settle down
after the junk is radiated away and we align the waveforms
at 1000 M⊙. When considering the variations in the phase
evolution reported in Fig. 9, a few considerations can be
made. First, the largest differences in Δϕ are measured
when considering differences in the evolution resolution
(dark-red and green solid lines), with the difference when
considering the HR and LR resolutions (dark-red solid
line), being larger than when considering the HR and MR
resolutions (green solid line). In other words, and as already
commented above, the resolution evolution provides the
largest contribution to the error budget and having large ID
resolution does not provide a more accurate phase evolu-
tion for the evolution resolutions considered here. Second,
the smallest values of Δϕ are obtained when considering
the highest evolution resolution and the two largest ID
resolutions (dark-blue solid line). Third, using a low ID
resolution, i.e., N̄ ¼ 29, but high resolution evolution is
already sufficient to obtain an overall difference that is
comparable with that obtained with much higher ID
resolution, i.e., N̄ ¼ 29, but coarser evolution resolution
(light-blue solid line). Finally, note that all the phase
differences have roughly the same growth rate, once again

indicating that the largest source of error is not the
calculation of the ID, but rather the resolution employed
in the evolution and, of course, the order of the numerical
method employed in the evolution part.6

From there on, we follow the phase difference between
the evolution as well as the ID resolutions compared to the
highest resolution simulation. Both, the low evolution and
ID resolution configurations are dominating the phase error
in the early inspiral, while the higher resolution ID starts off
with a significantly lower phase error. The slope of the
growth of both contributions to the error over time is
slightly differing and the evolution error is exceeding the
accumulated errors from the low resolution ID toward
merger, i.e., Δϕ > 1. While the error using very low
resolution ID is still comparable, using higher resolution
ID leads to significantly smaller phase errors at merger
when compared to the pure evolution error, being Δϕ ≈ 1.
Overall, the result of these numerous simulations indi-

cate that the error on the phase evolution introduced by the
ID obtained with N̄ ≥ 38 should be smaller than the typical
error introduced by the evolution, especially for long
inspirals. At the same time, increasing the ID resolution
for evolutions at very high resolutions can improve the
accuracy of the waveforms and yield a phase-evolution
error that is Δϕ ≈ 1. While a more thorough investigation
covering larger portions of the parameter space is necessary
for a precise picture of the error budget, it is already clear
that ID involving source terms like a perfect fluid demands
higher evolution resolutions in general (cf. Sec. IV B 2).

4. Extreme mass ratios and spins

As a final capability test of the new BNS ID spectral-
solver, we consider two configurations that are at the edges
of the physically plausible space of parameters, thus
generating two particularly extreme configurations. More
specifically, we consider binaries built with the TNTYST
tabulated EOS and create a first binary configuration at a
separation of 30 M⊙, with a mass ratio of q ¼ 0.455 and
individual masses M1 ¼ 2.2 M⊙, M2 ¼ 1.0 M⊙, so that
the total mass of the binary is M∞ ¼ 3.2 M⊙.

7 To the best
of our knowledge, this is represents the BNS configuration
with the smallest mass ratio ever computed.
Given these masses, we create one BNS configuration

with both stars being irrotational, i.e., χ1 ¼ χ2 ¼ 0, and a
corresponding configuration where the more massive
companion is spinning extremely rapidly and the less
massive component is nonspinning, i.e., χ1 ¼ 0.6,

FIG. 9. Same as in Fig. 6, but for an equal-mass irrotational
BNS system modelled using the SLy EOS. Also in this case, the
differences are computed either for different effective ID reso-
lutions (N̄ ¼ 29, 38, 47) or for different evolution resolutions
(LR, MR, HR). Also in this case, the resolution evolution
provides the largest contribution to the error budget at least
for the resolutions considered here, although increasing the ID
resolution can reduce the phase difference for HR evolutions.

6We have here employed a 4th-order spatial finite-difference
scheme for the BNS spacetime evolution. This is appropriate,
since the effective convergence order of the hydrodynamics
solver, which is < 3, will determine the accuracy of the results
[125].

7We recall that the TNTYST EOS has a maximum TOV mass
ofMTOV ¼ 2.23 M⊙, so that the more massive component of the
binary is very close to this limit in the irrotational case.
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χ2 ¼ 0.0. This second BNS configuration could be seen as
a realization of a recycled binary pulsar in which one star
gained a significant amount of matter and angular momen-
tum through an exceptional accretion phase. It is important
to remark that a binary configuration with unequal mass
and unequal spins, as the one considered here, is more
challenging to compute than when the masses are the same
or when the spins are the same or, in general, of smaller
magnitude.
Interestingly, despite this being a rather extreme con-

figuration, the solver was able to generate this ID accurately
and without any particular fixes or changes to the equations
discussed in Sec. II E. Indeed, already at a very low
resolution of N̄ ¼ 19 we were able to generate a fully
converged solution, which was successively scaled up
directly to and resolved at a resolution of N̄ ¼ 47.
Finally, before performing the evolution of these BNS
configurations, we employed the iterative eccentricity
reduction procedure using as reference the low-resolution
dataset and thus reaching an orbital eccentricity of ≲10−4.

Figure 10 provides a direct measure of the properties of
the two configurations by offering a cut through the ðx; yÞ
and ðx; zÞ plane of the rest-mass density of the more
massive star. The figure is organized in four panels, with
the left column referring to the irrotational binary [ðx; yÞ
plane on the top row and ðx; zÞ plane on the bottom row],
while the right column reports the spinning binary. Also,
we employ contour lines around the highest densities
reached to help locate the most massive parts of the two
stars and include small insets that are representations of the
two binaries (the less massive companion is marked in red).
As expected, the rapidly spinning star is strongly flattened,
extending further out along on the equatorial plane and
having a smaller extent along the z-axis. Furthermore,
because of this distortion, the nuclear region of rest-mass
density ρ > 1015 g=cm3 is smaller as in the irrotational
model, despite having the same MADM at infinity.
We evolve both systems and present their trajectories in

Fig. 11 following the same convention for the quantities
reported in Fig. 5. Here, however, the top row refers to an

FIG. 10. Two-dimensional cuts through the ðx; yÞ (top row) and ðx; zÞ planes (bottom row) of two extreme BNS systems modeled with
the TNTYST EOS and having a very small mass ratio (q ¼ 0.455 corresponding to M1 ¼ 2.2 M⊙, M2 ¼ 1.0 M⊙). The left column
refers to an irrotational binary (χ1 ¼ 0, χ2 ¼ 0), while the right one to a very large spin asymmetry (χ1 ¼ 0.6, χ2 ¼ 0); the latter is the
most extreme BNS configuration considered here. The panels concentrate on the more massive component, but the insets offer views of
the whole binaries, where the secondary is marked in red.
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irrotational binary, while the bottom row reports the same
quantities for a BNS with extreme spin asymmetry,
χ1 ¼ 0.6, χ2 ¼ 0. It is evident that the system with the
highly spinning massive companion takes longer to merge.
With the given fixed initial separation the difference
amounts to approximately one orbit, which is due to the
larger total angular momentum to be radiated away prior to
the merger [148–151]. Finally, in the right panel of Fig. 11
we report the corresponding gravitational-waves strains in
the l ¼ m ¼ 2 mode and þ polarization. An important
consideration to make here is that the binary system having
the rapidly spinning companion is not collapsing promptly
(red solid line in the right panel of Fig. 11), in contrast to
what happens for the irrotational binary (black solid line),
whose merged object collapses right after merger. This
behavior clearly suggests that spins can have a potentially
important impact in determining the threshold mass to
prompt collapse [40,152] and thus need to be properly
modeled to obtain accurate estimates of such masses
over the entire physically relevant part of the space of
parameters.

D. Evolutions of black-hole–neutron-star binaries

As a final application of our new solvers and as an
additional example of its flexibility, we consider the
generation of ID representing a BHNS system. More
specifically, we have considered a BHNS binary with a
mass ratio of q ¼ 0.485 and a separation of 35.2 M⊙
together with aligned spins of χBH ¼ 0.52 and χNS ¼ 0.60
(see also [153]) utilizing the TNTYST EOS [146] to model
the nuclear matter. The initial orbital frequency Ω and the
radial inward velocity of the orbit are fixed by the 3.5PN
estimates given by Eqs. (B1) and (B2), using MADM of the
neutron star in isolation and MCH of the black hole as
measured on the horizon. Although the two spins are
neglected in these first estimates, they yield sufficiently
reasonable initial guess with which to begin the eccentricity
reduction procedure. Indeed, after performing four iterative
steps, the final eccentricity of our binary is ≲10−3, where
the resulting corrections for the first three steps of the
iterative procedure were obtained using both the coordinate
separation rðtÞ and its derivative _rðtÞ. We note, however,

FIG. 11. Same as in Fig. 5 when referring to extreme BNS configurations modeled with the TNTYST EOS (see also Fig. 10). The top
row reports the orbital trajectories, the evolution of the proper separation after different eccentricity reductions, and the gravitational-
wave strain for a irrotational BNS with mass ratio q ¼ 0.455. The bottom row reports the same quantities for a BNS with the same mass
ratio but extreme spin asymmetry, χ1 ¼ 0, χ2 ¼ 0.6. Note that the large angular momentum of the spinning binary leads to more orbits
and to a metastable merged object rather than to a black hole.
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that for eccentricities below ∼5 × 10−3, the corrections
based on rðtÞ lead to an increasingly eccentric orbit, so that
the final (ECC4) ID dataset was obtained using estimates
based on _rðtÞ only.
In analogy with Figs. 5 and 11, we report in Fig. 12 the

orbital trajectories, the evolution of the proper separation
after different eccentricity reductions, and the gravitational-
wave strain for the BHNS ID with mass ratio q ¼ 0.485.
Note that the system undergoes six orbits in total and
exhibits a very low residual eccentricity throughout the
inspiral (middle panel). Furthermore, the center of mass
that can be deduced already from the orbital tracks stays at
the origin of the simulation domain, indicating a successful
removal of the total residual linear momentum of the
spacetime. Finally, note also that the gravitational-wave
signal has a sharp cutoff after merger due to the disruption
of the neutron star (this was remarked also in Ref. [154]).
To highlight this behavior and to reveal the ringdown, we
do not report in the right panel of Fig. 12 the gravitational-
wave strain in the l ¼ m ¼ 2 multipole, but the corre-
sponding multipole of the ψ4 Weyl scalar [(both the real
part (red solid line) and its norm (black solid line)]. It is
clear that in this case the ringdown is very visible even if
restricted to a couple of oscillations.
As a final remark we note that while our exploration of

the space of parameters with the new solver is certainly
very limited and aimed mostly at obtaining some reference
solution, the calculation of BHNS ID has been successful
for all of the cases we have explored and that have been
restricted to black-hole spins χ ≲ 0.75, for which the
conformal flatness is still a reasonable assumption.
Moving to higher-spin black hole may require additional
tuning since it is well known that the conformally flat
background metric is not able to reliably reproduce highly
spinning black-hole solutions (see [74]).

V. DISCUSSION

A considerable effort has been dedicated in recent years
to the construction of accurate and realistic initial data
representing generic configurations of compact-object
binaries in quasiequilibrium. These configurations—which
can either be of two black holes, of two neutron stars, or of
a black hole and a neutron star—have then been employed
for successful evolutions, starting from the early inspiral
and well past merger. All of these simulations have
enriched our understanding of merging binaries and helped
in the interpretation of the signal from gravitational-wave
detectors such as LIGO and Virgo.
While there are laudable examples of publicly available

codes generating this type of initial data, these codes often
provide only a limited capability in terms of mass ratios and
spins of the components in the binary. In particular, there is
at present no open-source code including the treatment of
spinning neutron stars and an efficient procedure for the
reduction of the initial eccentricity. In addition, there also
exists a portion of the space of parameters—namely, the
one considering the combination of extreme mass ratio and
extreme and possibly differing spins for systems of binary
neutron stars—that has, to date, not been explored in the
context of constraint-satisfying initial data.
The work presented here aimed at filling this gap by

providing an open-source collection of elliptic solvers that
are capable of exploring a major part of the space of
parameters relative to binary black holes (BBHs), binary
neutron stars (BNSs), and mixed binaries of black holes
and neutron stars (BHNSs). The starting point of our
development has been the KADATH library, which is a
highly parallelized spectral solver designed for numerical-
relativity applications [90]. In addition, it is equipped with a
layer of abstraction that allows equations to be inserted in -
like format.

FIG. 12. Same as in Figs. 5 and 11 but for a BHNS configuration. Note that the right panel reports the l ¼ m ¼ 2 multipole the ψ4

Weyl scalar [(both the real part (red solid line) and its norm (black solid line)] in order to highlight the very short ringdown that would
not be visible in the gravitational-wave strain.
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The set of elliptic equations employed for the calculation
of the ID is well-known and has been presented in a number
of related works. More specifically, we employ the
extended conformal thin-sandwich method (XTCS), where
the presence of a black hole is modeled by the usual
excision approach using particular inner boundary con-
ditions on the horizons, while the presence of a neutron star
is modeled by either pure irrotational or with an additional
rotational velocity contribution. By supporting both ana-
lytic EOSs, e.g., single polytropes and piecewise poly-
tropes, but also tabulated EOSs at zero or finite
temperature, the new infrastructure is particularly geared
toward allowing for the construction of BHNS and BNS
binaries. For the latter, we showed that the new spectral
solvers are able to reach the most extreme corners in the
physically plausible space of parameters, including extreme
mass ratios and spin angular momenta, the most extreme
computed to date. For a first application of such extreme
configurations with stellar companions close to their
maximum mass MTOV see [153]. In this work we went
even further and presented for the temperature-dependent
TNTYST two BNS systems with an extreme mass asym-
metry of q ¼ 0.455, a primary component with mass very
close to the maximum mass i.e., M1=MTOV > 0.98. These
binaries are either irrotational or with large spin asymmetry,
where the primary is very rapidly rotating with χ1 ¼ 0.6. To
the best of our knowledge, this is the most extreme BNS
configuration computed to date.
As illustrated in terms of a systematic series of examples,

the new spectral-solvers are able to construct quasiequili-
brium and eccentricity-reduced ID for BBHs, BNSs, and
BHNSs, achieving spectral convergence in all cases.
Furthermore, to assess the correctness of the newly con-
structed binary configurations, we have carried out evolu-
tions of these systems from the inspiral to after the merger,
obtaining in all cases a behavior consistent with the
expectations and previous results. An important aspect
of these evolutions has been represented by the construc-
tion of ID that has only a minimal amount of initial
eccentricity. The latter can be particularly large in the case
of BNSs with small mass ratios and containing rapidly
spinning companions, but is suitably reduced to acceptable
values ≲10−4 − 10−3 after employing an iterative eccen-
tricity-reduction procedure, thus leading to accurate gravi-
tational waveforms.
Finally, the evolution of the newly constructed ID has

allowed us to obtain a partial first estimate of the error
budget introduced by the finite resolution of the ID
compared and to contrast it with the error introduced by
the resolution employed for the solution of the evolution
equations. While it is not in the scope of this paper to
achieve a complete quantitative analysis of the impact in the
case of different initial configurations, we have shown
that the error budget contributed by the ID resolution
on the gravitational-wave phase evolution is in general

subdominant when compared to the errors introduced
throughout the evolution, even for relatively low ID
resolutions. Of course, these considerations only strictly
apply to the configurations considered here and to the
resolutions employed both for the ID and the evolution,
which are, however, rather typical or real-life simulations of
BHNS and BNSs.
Looking forward, there are multiple aspects of the

spectral-solver library presented here that can be improved
in the future. First, the current numerical setup inherits an
assumed symmetry with respect to the ðx; yÞ plane, so that
only spinning configurations with spins aligned or anti-
aligned with the orbital angular momentum can be con-
sidered. There are at least two different ways to further
generalize this setup and thus incorporate spin angular
momenta that are not aligned along the z-direction: either
by generalizing the domain decomposition and relaxing the
symmetry conditions enforced in the basis functions or by
splitting the tensor fields into symmetric and anti-sym-
metric parts. Second, the system of equations is built and
solved in the most straightforward way possible, and often
this is not necessarily optimal. Considering that the
Jacobian exhibits a structure that is known a priori and
that the latter is partly sparse, more efficient nonlinear
solvers could be employed, thus reducing the large memory
demands and computational costs of solving the system
using the full Jacobian. Third, the implementation of the
black-hole boundary conditions could be generalized to use
locally a Kerr spacetime background as done in Ref. [66],
thus enabling the solver to cover the parameter space close
to maximal black-hole spin angular momentum.

The official release of the codes are available on the
Kadath website: https://kadath.obspm.fr.
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APPENDIX A: ECCENTRICITY REDUCTION

To employ the eccentricity-reduction procedure men-
tioned extensively in the main text, we have essentially
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utilized the methods detailed in Refs. [66,85] as an effective
manner to iteratively reduce the eccentricity of our binary
ID. In essence, once a binary evolution is carried out and
the distance between the two components—either a coor-
dinate distance in the case of BBHs and BHNSs, or a proper
distance in the case of BNSs—rðtÞ and the corresponding
time derivative _rðtÞ are measured and fitted using the
following ansatzes

rðtÞ ¼ SrðtÞ −
Br

ωr
cosðωrtþ ϕrÞ; ðA1Þ

_rðtÞ ¼ SrðtÞ þ Br sinðωrtþ ϕrÞ; ðA2Þ

where Br, ωr, and ϕr are fitting parameters from which it is
possible to estimate the eccentricity e as

e ≔ −
B

ωrd0
; ðA3Þ

with d0 being the initial separation.
The function SrðtÞ in Eqs. (A1) and (A2) is freely

specifiable and is used to fit, and hence remove any linear
regression in the data while the periodic term is used to
extract information regarding eccentricity induced oscil-
lations in the orbit. In this work, we have used the following
definition of SrðtÞ to produce the results described in
Sec. IV

SrðtÞ≡ A0 þ A1t:

We have tested the use of quadratic terms in the expression
for SrðtÞ and in the time dependencies of the oscillatory
terms; however, this had a negligible impact on the fit
parameters for the binary configurations considered in this
work, hence prompting us to ignore these terms.

At each iteration, we use the fitting parameters Br, ωr,
and ϕr to estimate the corrections, δ _a and δΩ, to _a andΩ in
Eq. (17) using

δ _a ≔ −
B sinϕ
d0

; ðA4Þ

δΩ ≔ −
Bωr cosϕ
2Ωd0

; ðA5Þ

so that the new shift in Eq. (17) becomes

βicor ¼ ðΩþ δΩÞ∂i
φðxcÞ þ ð _aþ δ _aÞri; ðA6Þ

where the values of _a and Ω are those obtained from the
previous iteration.
This procedure is iterated until the eccentricity is reduced

to an acceptable value, which, in all cases discussed in this
work, was obtained with four iterations. Note that fits
using rðtÞ provide reasonable corrections until e ≈ 10−3.
Attempting to reduce eccentricity below this threshold
required the use of _rðtÞ as the oscillations in rðtÞ are too
small to obtain an accurate fit.

APPENDIX B: POST-NEWTONIAN ESTIMATES

In the post-Newtonian framework, the equations of
motion describing circular motion in the center-of-mass
frame corotating with the binary become much simpler (see
Ref. [143], Sec 7.4). In particular, at the 3.5PN order, the
quantities _a and Ω can be expressed as

_a3.5 PN ¼ 1

r

�
−
64

5

M3ν

r3

�
1þ γ

�
−
1751

336
−
7

4
ν

���
; ðB1Þ

Ω2
3.5 PN ¼ M

r3

�
1þ ð−3þ νÞγ þ

�
6þ 41

4
νþ ν2

�
γ2 þ

�
−10 −

75707

840
þ 41

64
π2 þ 22 ln

�
r
r0

�
νþ 19

2
ν2 þ ν3

�
γ3
�
: ðB2Þ

where μ≔M1M2=M∞ is the reducedmass, ν≔q=ð1þqÞ2¼
μ=M∞ is the symmetric mass ratio, r is the (coordinate)
separation between the centers of the two compact objects,
and r0 is the logarithmic barycenter defined by,

ln r0 ≔
1

M∞
ðM1 ln r1 þM2 ln r2Þ; ðB3Þ

where r1 and r2 are the separation distances of the two
compact objects relative to the center-of-mass.
We have therefore used Eqs. (B1) and (B2) to obtain

initial estimates for these quantities and employed them, for
instance, in the eccentricity-reduction procedure discussed
in Appendix A. Perhaps a bit unexpectedly, we have found

that the ID computed in this way provides a much better
approximation to quasicircular orbits of more challenging
configurations than ID obtained assuming a quasiequili-
brium. This is even more surprising since the approxima-
tions (B1) and (B2) do not take into account spin or spin-
orbit couplings. At the same time, it is important to
underline that these estimates do require an accurate
measurement of the center-of-mass to determine the
radial position of each object relative to center-of-mass.
Therefore, quasiequilibrium is an important initial solution
to obtain accurate PN estimates from Eqs. (B1) and (B2).
Additionally, Eqs. (B4) and (B5) have been used

to compute the binding energy curves shown in Figs. 3
and 4
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Eb;3.5 PN ¼−
μx
2

�
1þ

�
−
3

4
−

1

12
ν

�
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�
−
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8
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8
ν−

1

24
ν2
�
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−
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Eb;4 PN ¼ Eb;3.5 PN þ −
μx
2

��
−
3969

128
þ 448

15
ν ln xþ e4νþ

�
−
498449

3456
þ 3157

576
π2
�
ν2 þ 301

1728
ν3 þ 77

31104
ν4
�
x4
�
; ðB5Þ

where x ≔ Ω2=3 and e4 is the 4 PN coefficient given by

e4 ≔ −
123671

5760
þ 9037

1536
π2 þ 1792

15
ln 2þ 896

15
e: ðB6Þ
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