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Post-Newtonian spherically symmetrical accretion
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The objective of this work is to investigate the influence of the corrections to the spherical symmetrical
accretion of an infinity gas cloud characterized by a polytropic equation into a massive object due to the
post-Newtonian approximation. Starting with the steady state post-Newtonian hydrodynamic equations for
the mass, mass-energy, and momentum densities, the post-Newtonian Bernoulli equation is derived. The
post-Newtonian corrections to the critical values of the flow velocity, sound velocity and radial distance are
obtained from the system of hydrodynamics equations in spherical coordinates. It was considered that the
ratio of the sound velocity far the massive body and the speed of light was of order a.,/c = 1072. The
analysis of the solution led to following results: the Mach number for the Newtonian and post-Newtonian
accretion have practically the same values for radial distances of order of the critical radial distance; by
decreasing the radial distance the Mach number for the Newtonian accretion is bigger than the one for the
post-Newtonian accretion; the difference between the Newtonian and post-Newtonian Mach numbers when
the ratio a.,/c < 1072 is insignificant; the effect of the correction terms in post-Newtonian Bernoulli
equation is more perceptive for the lowest values of the radial distance; the solutions for a.,/c > 10~2 does
not lead to a continuous inflow and outflow velocity at the critical point; the comparison of the solutions
with those that follow from a relativistic Bernoulli equation shows that the dependence of the Mach number
with the radial distance of the former is bigger than the Newtonian and post-Newtonian Mach numbers.
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I. INTRODUCTION

An important area of research in astrophysics is related to
the steady state problem of spherically symmetrical accre-
tion of a perfect gas into a massive object. The pioneers
works in this subject were published by Hoyle and Lyttleton
[1,2], Bondi [3,4] and Michel [5]. Nowadays this problem is
still a subject of several investigations where a relativistic
fluid accretes into a massive body described by other
metrics: Schwarzschild—de Sitter, Reissner-Nordstrom,
Reissner-Nordstrom—de Sitter (see e.g., [6-20] and the
references therein).

The aim of this paper is to investigate the influence
of the corrections to the Newtonian accretion due to
the post-Newtonian approximation. We start from the
post-Newtonian hydrodynamic equations for the mass,
mass-energy and momentum densities and derive the
post-Newtonian Bernoulli equation. The post-Newtonian
corrections to the critical values of the flow velocity, sound
velocity and radial distance are obtained from the system of
hydrodynamics equations. It is shown that due to the post-
Newtonian corrections the critical point does not corre-
spond to the transonic point as in the Newtonian accretion.
The solution for the Mach number as function of a
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dimensionless radial distance depends on the ratio of the
sound velocity far the massive body and the speed of light
a.,/c. This ratio was fixed to be a,/c = 1072 which is of
relativistic order. For values of this ratio greater than 1072
there is no continuity in the inflow and outflow velocity at
the critical point, while for values smaller than 1072 there is
no difference between the Newtonian and post-Newtonian
solutions. For a./c = 1072 the Mach number for the
Newtonian and post-Newtonian accretion have practically
the same values for radial distances of order of the
critical radial distance, but by decreasing the radial distance
the Mach number for the Newtonian accretion is big-
ger than the one for the post-Newtonian accretion. The
weak field limit of the relativistic Bernoulli equation [5] is
also developed and a comparison of the solutions are
investigated.

The paper is organized as follows: in Sec. II the post-
Newtonian hydrodynamic equations are introduced, while
in Sec. III the post-Newtonian mass density accretion rate,
the Bernoulli equation and the critical values for the flow
velocity, sound speed and radial distance are obtained. In
Sec. III B the post-Newtonian equation for the Mach
number as function of a dimensionless radial distance is
deduced. In Sec. IV the relativistic spherically symmetrical
accretion is developed. The analysis of the Newtonian and
post-Newtonian solutions is developed in Sec. V. We close
the paper with a summary of the results in Sec. VI.
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II. POST-NEWTONIAN HYDRODYNAMIC
EQUATIONS

The post-Newtonian approximation is a method of
successive approximations in 1/c?> powers of the light
speed for the solution of Einstein’s field equations. It was
proposed in 1938 by Einstein, Infeld and Hoffmann [21]
and the corresponding hydrodynamic equations in the first
post-Newtonian approximation (1PN) were obtained by
Chandrasekhar [22,23].

In the post-Newtonian approximation Einstein’s field
equations are solved for an Eulerian fluid characterized by
the energy-momentum tensor

vru*

" = (e+p) - pg*. (1)
Here U* denotes the four-velocity (with U*U, = ), ¢*
the metric tensor while ¢ and p the energy density and
pressure of the fluid, respectively. The energy density has
two parts € = pc?(1 + £/c?) one associated with the mass
density p = mn and another to the internal energy density &.
The internal energy density for a nonrelativistic perfect
fluid is given by e = p/(y — 1)p, where y = ¢, /c, is the
ratio of the specific heats at constant pressure and constant
volume. For a fluid of monatomic molecules ¢, = 3k/2m
with k denoting Boltzmann constant and m the rest mass of
a fluid molecule.

The solution of Einstein’s field equations leads to the
following components of the metric tensor

C2

2 2
Joo = 1 +c—‘f +;(¢2 + )+ O(c™®), (2)
1
Joi = —0—351' + O(c™), (3)
2
w=-(1-B)s,r 0. @

while the corresponding components of the four-velocity in
1PN are

1 [V?
Uozc[l—f—?(?—(ﬁ)

1 /3V* 5V ¢?
+?<T— ) +7_W+Civi>j|’ (5)

with U' = UV, /c. Above ¢ is the Newtonian gravitational
potential which satisfies the Poisson equation V2¢ =4zGp.
The corresponding Poisson equations for the scalar y and
the vector {; gravitational potentials, read

VZC,- = 167tGpV,», (6)
2, — 24 £ 3P\ P9
Vl//—87tGp<V ¢+2+2p)+8t2. (7)

The gravitational potentials ¢, {; and y are those intro-
duced by Weinberg [24] and their connection with the gravi-
tational potentials U, U; and ® of Chandrasekhar [22] are

1 %

$=-U. 2000x

§i=-4U; + w=-20, (8)

where y is a superpotential which obeys the equation
V2y = -2U.

The hydrodynamic equation for the mass density is
obtained from the particle four-flow balance law N*,, =0
together with the representation N* = nU" where n
denotes the particle number density, yielding

o ox

=0, wherep*:p{l +i2<v—2—3¢>]. 9)
c=\ 2

This equation is the 1PN approximation of the continuity
equation and corresponds to Eq. (117) of Chandrasekhar [22].

The mass-energy density hydrodynamic equation in
the 1PN approximation follows from the time component
of the energy-momentum tensor balance law 7%, =0,
resulting

Oo 86V,-_1 0_¢ op
Por o

E o 2 —|——) =0, where

1
a:p{lﬁ-?(Vz—Zqﬁ—f—e—I—%)]. (10)

The above equation corresponds to Eq. (9.8.14) of
Weinberg [24] and Eq. (64) of Chandrasekhar [22]. Note
that we have to identify e with p in Weinberg’s book [24]
and take ¢ = 1.

From the spatial components of the energy-momentum
tensor balance law T%,, = 0 follows the 1PN approxima-
tion for the momentum density hydrodynamic equation,
namely

86‘/1- + 30'\/,\/] +i 1 _%
ot Ox/ ax |7 c?

0 2 3
+pi§i [1 +3 <V2—¢+E+—£)]

Ox 2 2p
_ 4_P <a¢vi aébvz') p Oy

2\Tor TVitag ) Taax

p (O ¢, 6Cj .
+?<E+VJW Vjaxi =0, (11)

which matches Eq. (9.8.15) of Weinberg [24] and Eq. (68)
of Chandrasekhar [22].

In the Newtonian limiting case the hydrodynamic
equations for the mass density (9) and the mass-energy
density (10) coincide and become the continuity equation
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ot ox

—0, (12)

while Eq. (11) reduces to the Eulerian momentum density
hydrodynamic equation

ot ox/ ox P oxi

=0. (13)

III. POST-NEWTONIAN ACCRETION

A. Post-Newtonian Bernoulli equation

In the analysis of the spherically symmetrical accretion a
massive object of mass M is surrounded by an infinite gas
cloud and is moving with a velocity V relative to it. The gas
cloud at large distances from the star is at rest with uniform
density and pressure denoted by p,, and p.,, respectively.
The gas motion is steady spherically symmetrical and it is
not taken into account the increase in the massive object.
The gas is characterized by a polytropic equation of state
and by a sound velocity a given by

ld
p=xp’.  a= d—/’j:w% (14)

where « is a constant and y is related to the polytropic index
nbyy=(n+1)/n

For steady states the hydrodynamic equations for mass
density (9), mass-energy density (10) and momentum
density (11) become

op,V

- 1
o O (15)
06‘/[7
o = O (16)

ovV. 0 3 2
"'Vfax;”agb{” < s <y—1>p>}

-9
c C

J 8x1 2 0xi
V. <8xf o) = 0. (17)

In the steady state momentum density hydrodynamic
equation (17) we have used the corresponding mass-energy
density hydrodynamic equation (16) and the relationship
e=p/(r—1p.

In spherical coordinates the fields depend only on the
radial coordinate r and due to the fact that we are dealing
with a spherically symmetrical flow, the components of
the hydrodynamic velocity are V; = (V(r),0,0). Hence,
Egs. (15)—(16) become

+

+

p[1+i2<

d{rpll + 5 (%

dr

d{rPpll + 5 (V2 =24 + LDV}
dr

y p av d 2¢
64”*—1‘)} ar %[ (1 7”

-3

For the analysis of the flow velocity it is more convenient
to introduce the proper velocity of the flow v, which is
measured by a local stationary observer (see e.g., [25,26]).
The proper velocity is defined by

- 3¢)IV}

=0, (18)

=0, (19)

(20)

U U’
Uo/c (U°/c)(1+2¢/c?)

Since V; = U'/(U°/c), we have that

(1)

v, =

Vv
vV, =, >V
(1+2¢/3)
By taking into account the relationship (22) the system of

differential equations (18)—(20) can be rewritten in terms of
the proper velocity v, as

v,(1+2¢/c?). (22)

dirpll + (3 -¢)lv}
o =0, (23)
d{rpll + (12 + 2o, }
o =0, (24)
1+l vi =24+ < v dv’+@a—2 -2
A\ y=1)| "dr drp c?
L 1 a? ldy
+= [1-—(41— >}+?E_o. (25)

Above we have used to the expression for the sound
speed (14).

The integration of (23) and (24) imply the mass density
and mass-energy accretion rates

) 1 [v2
Mp* = 4npr |:1 + ? (2 - ¢>:| Uy, (26)
a2
= 1)} V. (27)

From these equations we obtain a relationship between
both accretion rates

1
M, = 4zpr? [1 + = (v% +
c
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. . 1 (02
M,=M, 1+C—2 ?—Hﬁ—i—

76121)]' 28)

Here we can use the Newtonian Bernoulli equation

122 (12 a2
—r = © 2
2+y_1+¢ —y (29)

for the underlined term, since it is of order 1/c? in (28),
resulting

. 1 2
M, =M, [1 +—”—°°]. (30)
—1 2

Hence, the mass density and mass energy accretion
rates differ from each other by a 1/c¢* term, i.e., in the
Newtonian limiting case both coincide, i.e., M M =
4zpr*V.

The multiplication of the momentum density (25) by

1 1 a?

M= (2¢4-

L ae5)]
leads to the following differential equation

dv v2] dpa a? dp 1dy
0y Ay .

Tdr [+ }—l_drp[ cz(y—l)}dl_diﬂ_ Adr

(31)

v 2003
v, (1—?—;)—612’
g Clrd ~ 200 )

—2a*(y -

The post-Newtonian Bernoulli equation follows from the
integration of (31), yielding

v? v? a® a’ s
Uy b 1 v
2[ +202]+7—1{ 262(7—1)}+¢+62
612 a2
S p— . 32
7—1[ 202(?-0} G2)

Here we have assumed that the proper velocity v, and the
gravitational potentials ¢,y vanish far from the massive
object. Note that (32) reduces to the Newtonian Bernoulli
equation (29) by neglecting the terms in 1/c?.

We can rewrite the hydrodynamic equations in spherical
coordinates (23), (24) and (31) as

2 p v 1
4l 5 (0,0, —¢') = (33)
rop o v, 2
2 1 /
—+p PG (2vrv’,+a2p—>=0, (34)
p v p

1)2 a2 p/ ll//
1+ v+ 1——2 22w+ ¥ —0. (35
( +cz)wr+[ cz(r—l)}a /)M)Jrc2 (35)

where the prime denotes the differentiation with respect
to r.

The system of differential equations (33)—(35) can be
solved as a system of algebraic equations for V’, p’ and v/,
yielding

2, (36)

Dot(1 = 28) + /vy — 1)

We infer from (36) that the solution must pass through a
critical point defined by a critical radius r.., a critical proper
velocity V., and a critical sound velocity a, when the
nominator and denominator of these equations vanish.
The existence of a critical point prevent singularities in
the flow solution and guarantees a smooth monotonic
increase of the flow velocity when r decreases. At the
critical point we have

/ / /
ag — rC¢C ~ rC¢C <1 + rC¢L‘> , (38)

2(1 _%2/’22) 2 2¢?
az az
V2 — TR za§<1 +?>, (39)

ry = D1 - %) - ¥

(37)

/ / /
2o _tebe  rede (1 + r;f) . (40)

21-2d) 2

The above approximations are valid since we are working
with a first post-Newtonian theory.

The value of y. at the critical point is obtained from the
substitution of (40) into (37) yielding

v _ 2 _GM i
223, 2e48 3 ’ (41)
C

by taking into account the expression for the Newtonian
gravitational potential
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p=—""=-rd. (42)

Another way to determine y’ is to observe that this
potential is of order 1/c* and we can approximate (37) by

y'  —atlp +207) = 2a%(y = 1)o7 = pvi(y = 1) 13
7 rly— )i - ) - W

by neglecting the terms proportional to 1/¢* and consid-
ering the relationship for the Newtonian potential
¢'r = —¢. Now by taking into account the virial theorem
2K + W =0, where K and W represent the kinetic and
potential energies, we can assume that 202 + ¢ = 0 and
(43) reduces to

l/// ¢2
32 - 202"

(44)

The gravitational potential y is obtained from the integra-
tion of (44) by using the Newtonian gravitational potential
(42) resulting

w G*M? B P

c? 4c2p?

ve  ¢¢
- E s so that ? = - 462 . (45)

Above it was considered that y vanishes at r — co. Note
that (45), is the integral of (41) with respect to r..

For the determination of the critical values we make use
of Bernoulli equation (32) and the expressions of the sound
speed (38), proper velocity (40) and gravitational potential
(45),. The resulting equation is an algebraic equation for
the determination of ¢, at the critical point. Its value up to
order 1/¢? is

15-11y  a

4a?,
P =53 {”8@—1)(5—3@?}’ (46)

which implies the expression for the critical radius

. :(5—37)%[ B 1511y a%o] (47)
8(

¢ 4 y=1)(-3y) 2]

thanks to the relationship ¢. = —-GM/r..
The critical values of the sound speed a,. and proper
velocity V. are obtained from (38) and (40) by using (46)

for the elimination of ¢, = —¢,./r,, resulting
2a2 1 -5y a
2= = 1- —1, 48
e v
2a? 1721y  a>
2 — © 1= —=21. 4
O e V] e

Furthermore, by using the expression for the sound
speed a’> =yp/p, the polytropic equation of state

p = kp’ and the critical value for the sound speed (48)
it follows the critical value of the mass density

2
e _ (&)r-l
/000 aOO
1 -5y a,

B (5—2—3)_[1 T8 - 172(5-3) ?]' G0)

The mass-density accretion rate (26) can be written as

. 1 /V2
M, =dzp.r; [1 T3 (7 - 4%)] Ve
GM\ 2
= 47, (a—2> Pooloss (51)

[Se]

where the so-called critical accretion eigenvalue [25] is
given by

121 — 216y + 103y2 a,
16(5=3y)(y=1)* ¢* |

A = (5 = 3p)i=2m {1 T (52)

In the Newtonian limiting case (46)—(52) reduce to the
well-know values found in the literature (see e.g., [25]),
namely

4a? (5-3y)GM
S e N =R (53
¢C (5 _ 3}/) rc 4 a%o ( )
2a2 p 2\
al=Vi=__——, ”=< > , (54
(5-3y) P \5—=3y (54)
A, = (5 3y)r22i, (55)

B. Mach number as function of the radial distance

For the determination of the dependence of the flow
velocity as function of the radial distance Bondi [4]
introduced the following dimensionless quantities

2
1%
e =L =L (56)
GM o Poo

r*
which are related to the radial distance, flow velocity and
mass density, respectively. Another dimensionless quantity
which is useful in this analysis is the ratio of the flow
velocity and the speed of sound u, = V/a, which is the
Mach number.

From the Newtonian mass density accretion rate we have
in these dimensionless quantities

, GM\2
M, = 4rnpr’V = 4zl <c12) Pooloos (57)

o)

where A = rZs,t, is a constant.
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For the post-Newtonian approximation the Bondi dimen-
sionless quantities (56) are written as

2 2

ras, 1+ GM v, 1+ vy ; p
ry =—— ~_. 2| S =" A 2| .

GM 2rc? m 2c? Poo

(58)

Solving (58) for r and v, and considering terms up to 1/¢?
we obtain

GM ﬁ2 ﬂZ

=—r 1= = 1 —2s2
) r*< 2r*>’ v, ams*( 5 sz ), (59)

where f# = a.,/c denotes a relativistic parameter which is
the ratio of the value of the sound speed far from the
massive object and the light speed.

With respect to the new variables (58), the mass density
accretion rate (26) becomes

. GM\?
M/)* =4zxl <a—2> Poolos

[Se]

(60)

by taking into account the Newtonian potential ¢ =
—GM /r. Here we have also that 1 = r2s,t,.

The dependence of the proper velocity as a function of
the radial velocity is obtained from the Bernoulli equa-
tion (32) written in terms of the dimensionless quantities
(r.,u,). We begin by writing the dimensionless parameters
s, and 7, as functions of (r,,u,)

A\ R
t*_(u,ﬁ) {1_”1”*1(?) . (62)

where we have taken into account (58),, u, = v,/a, 1 =

st and 1, = p/pe = (a/a)".
Next we rewrite v, and a in terms of (r,, u, ) from (59),

r=1
and a/a,, =t , yielding

r=1 2(=1)

% AN ﬂz(]/—l) % A\ o=
—a w ([ Z) T M (L ,
V, = dglt <r£> [ Z(y—i—l)u 2 (63)
ANE[ Phr=1) & 2\
— a5 ) 1T (S) ] (64
oman(i) [ - (2) 7] e

The last step is to rewrite the gravitational potential ¢) and y
as functions of r,

oM & 2
YA

r Ty 2r,
W ¢ az,
27 "2 Tl (65)

Note that in (61)—(65) we have considered only terms up to
the order 1/c2.

The final equation which gives the dependence of the
Mach number u, with the dimensionless radial distance r,
is obtained from Bernoulli equation (32) together with
(63)—(65) resulting

2 A\ b B A\
*: t:rl e 1 LA };rl - , 61
s (B) S (2) 7 e
|
A 2(-1) > 2-1)
u i pan 1+ S u’% i pan] _i
2 \r? 200 +1) 7 \2 T
1 [ 2\ (y+1)
—_— 1—-(1
e M (=

In the Newtonian limiting case we get—by neglecting
the > terms—Eq. (14) of Bondi [4], namely

In the next section we shall analyze the relativistic
spherically symmetrical accretion. This analysis will be
based on the work of Michel [5] and on the book by
Shapiro and Teukolsky [25].

352
(1+4m>
Plr—-1) =(2\5 1 iz
) y+1 (ﬁ) }_7—10_2(7—1))’ (66)

IV. RELATIVISTIC ACCRETION

A. Relativistic Bernoulli equation

We begin by writing the line element in spherical
coordinates in the Schwarzschild metric (r, 6, @)
_2GM

a5t = (1= )@ - g
— r?[(d6)?* + sin? O(dg)?],

2GM

rC2

1

(dr)?

(68)

where rg = 2GM/rc? is the Schwarzschild radius which
defines the event horizon of a Schwarzschild black hole.
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The perfect fluid is characterized by particle four-flow
N¥ = nU" and energy-momentum tensor (1) and the
balance equations for the particle four-flow and energy-
momentum tensor are given by

1 9 /=gN*
N”W - —_97 - 0, (69)

1 0=gT,)* 1
TV :—#——TW%:O (70)
o /=g Ox¥ 20 O

In the analysis of the spherically symmetrical accretion the
nonvanishing components of the four-velocity are

dx® dr )

1= (=4 0

71
dr dr (71)

From the constraint g, U*U* = ¢* the component U° is
connected with U" by

p T
- = . 72
¢ 1 —26M (72)

re

The integration of the balance equation for the particle
four-flow (69) and the time component of the energy-
momentum tensor (70) lead to

r

U'u
/=gnU" =constant, /=g(p+e)——=constant. (73)
c c

Combining the above equations the following relationship

holds
p+e\2[. 2GM  [U"\2
l——+— = constant. (74)
P re c

Let us introduce the sound speed a, which for a
relativistic fluid is defined by

a  p (9p
?_p+€(3_p>' (73)

We recall that the polytropic equation of state and the
energy density equation are given by

p=Kpls e=pct -, (76)

v —
so that we can write from the above equations that

p+e xyp!
p r—1

-1
) kyp!
a’/c*’

(77)

which implies the following relationships

(y=1)a? ’

y=1-a?/c%’

p+e c
p o 1=a’/(y=1)c*

xkyp' ™ = (78)

The relativistic Bernoulli equation follows from (74) and
(78), yielding

(=aimn) = (-aize) -7 ()

(79)

Here it was supposed that far from the massive body
2GM /rc? and U" vanish while the sound speed becomes a.,.

The determination of the critical points are obtained from
the differentiation of (73) and elimination of dp, yielding

au’ [a? (U"/c)?
ur {? 1-2GM/rc* + (Ur/c)z}
dr [ a? GM /rc? B
r [2?_ 1-2GM/rc* + (Ur/c)2] =0. (80)

The expressions for the critical gas flow velocity and sound
speed are determined when both expressions in the paren-
thesis in (80) vanish resulting

GM

(L GO “
rC

" o
(81)

The above equations correspond to the Egs. (8)—(14) of the
work of Michel [5].

From now one we shall restrict the analysis to the weak
field limit of the relativistic case, since we are interested in
comparing it with the post-Newtonian approximation
developed in the previous section. We begin by writing
the Bernoulli equation (79) at the critical point thanks to
(81) as

which is a third order algebraic equation for the determi-
nation of the critical sound speed a2. This equation was
solved in [27] but here we are interested in its weak field
approximation which reads

30y +1) dl
25=-3y)(y—1) 2|

£ 242,
¢ 5-3y

(83)

From the knowledge of the critical sound speed the
critical values for the flow velocity, mass density and radial
distance read
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2

o 245 3(7-11y) a%
W =52 3y [l a3 - 1)7]’ (64

b (s—iﬁ_ i 1>_°°} (8)

r:(5—37)G_M[_ 3(7 - 11y) a%o] (36)
4( '

¢ 4 @ y—1)(5-3y) 2

Furthermore, from the mass accretion rate M = 4rrip V.,
it follows the critical accretion eigenvalue

ws o [ 3(17 = 66y + 337%) a2,
he = (5 =352 |1 = ®
e=(5-3y) [Jr 8(y —1)2(5=3y) ¢* 57

Note that the above expressions differ from those obtained
in the post-Newtonian approximation.

From the relativistic Bernoulli equation one may obtain
its weak field limit by considering terms up to the 1/c?
order in (79), yielding

(-

1) P‘zczg— R (ZH +"5<1‘2c_?>

- (J/a—gol) <1 _202?50— 1))’ (88)

where we have introduced the Newtonian potential
¢ = —GM/r. Without the 1/c>—terms (88) reduces to
the nonrelativistic Bernoulli equation, however this expres-
sion differs from the post-Newtonian Bernoulli equation (32).

Let express the weak filed approximation of the
Bernoulli equation in terms of the proper velocity of
the flow v, defined by (21). The relationship between
the components U” and U° follows from U,U* = ¢?,

yielding

U\ _ 1+ (1B %
7 - 1+ zc_z, ’ ( )

and the proper velocity (21) becomes
(90)

Ur
v, = .
\/1+2g\/1+(1-%(%’)2

By retaining terms up to 1/c? the expression of the radial
four-velocity component in terms of the proper velocity
reads

4 ”3]. (91)

Ur:Ur|:1+?+2C2

If we insert (91) into (88) and consider terms up to 1/c?
order we find the weak field Bernoulli equation given in
terms of the proper velocity, namely

2

v? 2¢ a a’ 20 02
S-E ey ]

24 az, a2,
+¢<1 _7> S (r-1) (1_262(7—1)>
_2¢ 2 3a2—4a§o}

v a

z%{l ?]+<y—1>[”2c2<y—1>

ro(1-%) ‘<ya—<2>° ) <1‘2c2?f°—1>) =0 02

For the underlined term above we have used the Newtonian
Bernoulli equation (29), since it is of 1/c? order.

B. Mach number as function of the radial distance

The mass density accretion rate for the weak field is
obtained from (73) which in terms of the proper velocity
reads

GM 2

M = 4zpr2U" = 4zpriv, [1 -——+ —2] . (93)
rc 2c

Following the same methodology of the previous section
we introduce the dimensionless quantities

ra, GM v, v2 p
ry,=—— 1 —— K Sy =— 1+ E fa=—,
GM 2rc Ag, 2c Poo
(94)

so that the mass density accretion rate becomes

. GM\?
M = 4zl (2) Pooless Where 1 =r2s,t,.  (95)
a

(5]

From (94) we can write

GM* 2 2*
r= 2r <1+2ﬂr>, vr:ams*<1—ﬁ;>. (96)

Due to the fact that the expression for s, above is the
same as the one in the post-Newtonian approximation (58)
we can use the (63) and (64) for the proper velocity and
sound speed as a function of the Mach number u, and
dimensionless radial distance r,, respectively. For the
gravitational potential we have
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¢:-§(1—ﬁ2). (97)

The expressions of the dependence of the Mach number
u, as function of the dimensionless radial distance r, is
obtained from the weak field Bernoulli equation (92)
together with (63), (64) and (97), resulting

A 2(7-1 2(y-1
N P (A 2
2 \r? y+1 e r2 r,
1 32 1 A\ 22
—— 1 - 1—
*( +2r*>+7—1<u*r3> 7/_1
L3+ ) NP =D A\
(- ol
20— 1)%uz) (r+1) r?
1 B
— 1- .
7—1< %7—D> ©8)

For the relativistic Bernoulli equation (79) we can use the
Bondi dimensionless quantities (56) and write it as

B [ i\

P_7_1<UJ9 ]
B \?2 24 2\

:(1-y_1) {l—r—*+ﬂ2Uﬁ(U*rE) } (99)

Here U, = U"/a is the Mach number with respect to the
radial component of the four-velocity. The Mach number
written in terms of the proper velocity follows from (90)
and reads

~

v, U.

U, ——= .
a 2 2-1)
«/1—2%\/1 +(1 +2’}72)ﬂ2U§(#) =

V. ANALYSIS OF THE SOLUTIONS

In this section we shall compare the solutions for the
Mach number u, = v,/a as function of the dimensionless
radial distance r, which follow from the different approx-
imations of the Bernoulli equation.

In the tables and figures below the Newtonian solution of
(67) is denoted by (N), the post-Newtonian solution of (66)
by (PN) and the weak field approximation solution of (98)
by (WF). For the relativistic accretion—denoted by (R)—
the Bernoulli equation (99) was solved for the Mach
number with respect to the radial four-velocity and from
(100) the Mach number for the proper velocity was
obtained.

In the determination of the Mach number u,, as a function
of the dimensionless radial distance r, it was considered
that the ratio of the sound velocity far from the massive

(100)

TABLE I. Mach number u, = v,/a as function of the dimen-
sionless radial distance r, for a ultrarelativistic Fermi gas
y =4/3.

Ty u, (N) u, (PN) u, (WF) u, (R)
5% 107 10.29 9.66 9.66 20.26
1073 8.53 8.24 8.26 11.26
5% 1073 5.40 5.37 5.37 6.07
1072 4.35 4.34 4.34 4.97
5% 1072 2.40 241 241 3.31
2.5%x 1072 1.00 1.07 1.02 2.09

body and the light speed is equal to = a./c = 1072,
which is of relativistic order.

In Table I the values for the Mach number u, as function
of the dimensionless radial distance r, are given in the
range 5x 107 <r, <2.5x 1072 for a ultrarelativistic
Fermi gas where y = 4/3. In the Newtonian approximation
the critical radius is r, = 0.25 where the critical Mach
number assumes the value u, = 1. We infer from this table
that by decreasing the dimensionless radial distances r,
from the massive body the Mach number increases.
Furthermore, the values of the Mach number for the
relativistic case are bigger than the Newtonian ones. The
Mach number values for the post-Newtonian and weak
field approximations are practically the same and are
smaller than those for the Newtonian case. The difference
between the Newtonian, post-Newtonian and weak field
solutions becomes very small by increasing the dimension-
less radial distance and the solutions practically coincide at
r, = 1073, In Fig. 1 it is plotted the contour plot for the
Bernoulli equations: Newtonian (67), post-Newtonian (66)

8.0
7.5
7.0
65 NN e N
PN=WF
6.0
5.5
5.0
0.001 0002 0003 0004 0005  0.006
T
FIG. 1. Contour plot showing the Mach number u, as function

of the dimensionless radial distance r, for a ultrarelativistic Fermi
gas y = 4/3. The Newtonian solution is represented by a dashed
line while the post-Newtonian and weak field solutions by a
straight line.
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TABLE II. Mach number u, = V/a as function of the dimen-
sionless radial distance r, for a diatomic gas y = 7/5.

ri u, (N) u, (PN) u, (WF) u, (R)
5% 107 7.21 6.83 6.81 14.22
1073 6.16 5.99 5.98 8.22

5% 1073 4.16 4.14 4.13 477

1072 3.43 3.43 343 4.02

5x 1072 2.00 2.00 2.00 2.86

2x 1072 1.00 1.02 1.06 2.21

and weak field (98). The Newtonian solution is represented
by a dashed line and the post-Newtonian and weak field
approximations by the same straight line, since they
practically coincide. It is shown that the difference between
the Newtonian, post-Newtonian and weak field are very
small and coincide by increasing the dimensionless radial
distance.

The Mach number u, as function of the dimensionless
radial distance r, for a diatomic gas where y =7/5 is
displayed in Table II in the range 5x 1074 <r, <2x1072.
The same conclusions as in the former case can be drawn,
i.e., in comparison with the Newtonian solutions the
dependence of Mach number with respect to the dimen-
sionless radial distance for the relativistic case is bigger, the
post-Newtonian and the weak field solutions are smaller
and both have practically the same values. For the
Newtonian case the critical radius is r, = 0.2 where the
Mach number attains the value u,, = 1. In Fig. 2 the contour
plots of the Newtonian (dotted line), the post-Newtonian
(straight line) and the weak field (dotted line) solutions are

*
5 9.

4.0
0.001 0.002 0.003 0.004 0.005
e

FIG. 2. Contour plot showing the Mach number u, as function
of the dimensionless radial distance r, for a diatomic gas
y = 7/5. The Newtonian solution is represented by a dashed
line, the post-Newtonian by straight line and weak field by a
dotted line.

displayed showing that the values of the Mach number for
the Newtonian solution is bigger that those for the post-
Newtonian and weak field solutions and that the difference
between them becomes very small by increasing the
dimensionless radial distance.

For a nonrelativistic Fermi gas or a monatomic gas
y=25/3 and in this case the contour plots of the
Newtonian and weak field solutions are shown in Fig. 3.
The critical dimensionless radial distance for the Newtonian
case is r, = 0 where the Mach number becomes equal to
u, = 1. We note that r, =0 is a turning point for the
Newtonian solution where a transition occurs from an
accretion flow to a wind flow. The weak field solution is
smaller than the Newtonian ones and the turning point is
about r, ~4 x 1073,

Here it is important to comment the behaviors of the
post-Newtonian and weak field solutions found in the
above analysis when compared with the Newtonian and
relativistic solutions. It was expected that the post-
Newtonian and weak field solutions should be more
close to the relativistic one and not smaller than the
Newtonian solution. By inspecting the Newtonian (67),
the post-Newtonian (66) and the weak field (98) equations
we infer that the two latter equations have corrections from
the Newtonian one and their solutions should furnish
different results for the dependence of the Mach number
as function of the dimensionless radial distance. But why
the values of the Mach number for the post-Newtonian and
weak field are smaller than in the Newtonian case? The
only clue is to look at the expression for the proper velocity
(63) for the post-Newtonian and weak field which can be
written as

210
0.8}
0.6}
0.000 0.005 0.010 0.015 0.020
e
FIG. 3. Contour plot showing the Mach number u, as function

of the dimensionless radial distance r, for a nonrelativistic Fermi
gas y = 5/3. The Newtonian solution is represented by a dashed
line while the weak field solution by a straight line.
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2 (NF[ Plr—1) H(2\F
— N e _ [

:yN 1_mb/i—' i 2(;;][)
’ 20r+1) 7 \r2 ’

where vY is the Newtonian expression for the proper

velocity. One infers from the above equation that the
proper velocities for the post-Newtonian and weak field
should be smaller than the one for the Newtonian case,
which could explain the difference in the behavior of the
solutions.

(101)

VI. SUMMARY

In this work we have analyzed the influence of the first
post-Newtonian approximation in the spherical symmetri-
cal accretion of an infinity gas cloud characterized by a
polytropic equation of state into a massive object. The
starting point was the steady state post-Newtonian hydro-
dynamics equations for mass, mass-energy and momentum
densities. The integration of the system of equations in
spherical coordinates—where the fields depend only on the
radial coordinate—lead to the determination of the mass
accretion rate and the Bernoulli equation in the post-
Newtonian approximation. From the system of differential
equations for mass density, flow velocity and post-
Newtonian potentials the critical point was identified.
The critical point prevent singularities in the flow solution
and guarantees a smooth monotonic increase of the flow
velocity along the trajectory of the particle so that through
the critical point a continuous inflow and outflow velocity
happen. The critical point in the accretion Newtonian
theory corresponds to the transonic point where the flow
velocity matches the sound speed. In the post-Newtonian
approximation the critical flow velocity is connected with

the sound speed but their expression are not the same. From
the post-Newtonian Bernoulli equation an equation for the
Mach number was obtained as a function of a dimension-
less radial coordinate. Similar expressions were derived for
the relativistic Bernoulli equation and its weak field
approximation based on the work by Michel [5]. For the
solution of the post-Newtonian equation it was considered
that the ratio of the sound velocity far the massive body and
the speed of light was of order a.,/c = 1072 which is of
relativistic order. The results obtained were: (i) the Mach
number for the Newtonian, post-Newtonian and weak field
accretions have practically the same values for radial
distances of order of the critical radial distance; (ii) by
decreasing the radial distance the Mach number for the
Newtonian accretion is bigger than the one for the post-
Newtonian and weak field accretions; (iii) the effect of the
correction terms in post-Newtonian and weak field
Bernoulli equations are more perceptive for the lowest
values of the radial distance; (iv) practically there is no
difference between the Newtonian, post-Newtonian and
weak field Mach numbers when the ratio a.,/c < 1072;
(v) the solutions for a./c > 1072 does not lead to a
continuous inflow and outflow velocities at the critical
point; (vi) from the comparison of the solutions with those
that follow from the relativistic Bernoulli equation shows
that the Mach number of the former is bigger than the
Newtonian, post-Newtonian and weak field Mach numbers.
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