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The objective of this work is to investigate the influence of the corrections to the spherical symmetrical
accretion of an infinity gas cloud characterized by a polytropic equation into a massive object due to the
post-Newtonian approximation. Starting with the steady state post-Newtonian hydrodynamic equations for
the mass, mass-energy, and momentum densities, the post-Newtonian Bernoulli equation is derived. The
post-Newtonian corrections to the critical values of the flow velocity, sound velocity and radial distance are
obtained from the system of hydrodynamics equations in spherical coordinates. It was considered that the
ratio of the sound velocity far the massive body and the speed of light was of order a∞=c ¼ 10−2. The
analysis of the solution led to following results: the Mach number for the Newtonian and post-Newtonian
accretion have practically the same values for radial distances of order of the critical radial distance; by
decreasing the radial distance the Mach number for the Newtonian accretion is bigger than the one for the
post-Newtonian accretion; the difference between the Newtonian and post-Newtonian Mach numbers when
the ratio a∞=c ≪ 10−2 is insignificant; the effect of the correction terms in post-Newtonian Bernoulli
equation is more perceptive for the lowest values of the radial distance; the solutions for a∞=c > 10−2 does
not lead to a continuous inflow and outflow velocity at the critical point; the comparison of the solutions
with those that follow from a relativistic Bernoulli equation shows that the dependence of the Mach number
with the radial distance of the former is bigger than the Newtonian and post-Newtonian Mach numbers.

DOI: 10.1103/PhysRevD.104.024056

I. INTRODUCTION

An important area of research in astrophysics is related to
the steady state problem of spherically symmetrical accre-
tion of a perfect gas into a massive object. The pioneers
works in this subject were published by Hoyle and Lyttleton
[1,2], Bondi [3,4] andMichel [5]. Nowadays this problem is
still a subject of several investigations where a relativistic
fluid accretes into a massive body described by other
metrics: Schwarzschild–de Sitter, Reissner-Nordström,
Reissner-Nordström–de Sitter (see e.g., [6–20] and the
references therein).
The aim of this paper is to investigate the influence

of the corrections to the Newtonian accretion due to
the post-Newtonian approximation. We start from the
post-Newtonian hydrodynamic equations for the mass,
mass-energy and momentum densities and derive the
post-Newtonian Bernoulli equation. The post-Newtonian
corrections to the critical values of the flow velocity, sound
velocity and radial distance are obtained from the system of
hydrodynamics equations. It is shown that due to the post-
Newtonian corrections the critical point does not corre-
spond to the transonic point as in the Newtonian accretion.
The solution for the Mach number as function of a

dimensionless radial distance depends on the ratio of the
sound velocity far the massive body and the speed of light
a∞=c. This ratio was fixed to be a∞=c ¼ 10−2 which is of
relativistic order. For values of this ratio greater than 10−2

there is no continuity in the inflow and outflow velocity at
the critical point, while for values smaller than 10−2 there is
no difference between the Newtonian and post-Newtonian
solutions. For a∞=c ¼ 10−2 the Mach number for the
Newtonian and post-Newtonian accretion have practically
the same values for radial distances of order of the
critical radial distance, but by decreasing the radial distance
the Mach number for the Newtonian accretion is big-
ger than the one for the post-Newtonian accretion. The
weak field limit of the relativistic Bernoulli equation [5] is
also developed and a comparison of the solutions are
investigated.
The paper is organized as follows: in Sec. II the post-

Newtonian hydrodynamic equations are introduced, while
in Sec. III the post-Newtonian mass density accretion rate,
the Bernoulli equation and the critical values for the flow
velocity, sound speed and radial distance are obtained. In
Sec. III B the post-Newtonian equation for the Mach
number as function of a dimensionless radial distance is
deduced. In Sec. IV the relativistic spherically symmetrical
accretion is developed. The analysis of the Newtonian and
post-Newtonian solutions is developed in Sec. V. We close
the paper with a summary of the results in Sec. VI.
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II. POST-NEWTONIAN HYDRODYNAMIC
EQUATIONS

The post-Newtonian approximation is a method of
successive approximations in 1=c2 powers of the light
speed for the solution of Einstein’s field equations. It was
proposed in 1938 by Einstein, Infeld and Hoffmann [21]
and the corresponding hydrodynamic equations in the first
post-Newtonian approximation (1PN) were obtained by
Chandrasekhar [22,23].
In the post-Newtonian approximation Einstein’s field

equations are solved for an Eulerian fluid characterized by
the energy-momentum tensor

Tμν ¼ ðϵþ pÞU
μUν

c2
− pgμν: ð1Þ

Here Uμ denotes the four-velocity (with UμUμ ¼ c2), gμν

the metric tensor while ϵ and p the energy density and
pressure of the fluid, respectively. The energy density has
two parts ϵ ¼ ρc2ð1þ ε=c2Þ one associated with the mass
density ρ ¼ mn and another to the internal energy density ε.
The internal energy density for a nonrelativistic perfect
fluid is given by ε ¼ p=ðγ − 1Þρ, where γ ¼ cp=cv is the
ratio of the specific heats at constant pressure and constant
volume. For a fluid of monatomic molecules cv ¼ 3k=2m
with k denoting Boltzmann constant andm the rest mass of
a fluid molecule.
The solution of Einstein’s field equations leads to the

following components of the metric tensor

g00 ¼ 1þ 2ϕ

c2
þ 2

c4
ðϕ2 þ ψÞ þOðc−6Þ; ð2Þ

g0i ¼ −
1

c3
ζi þOðc−5Þ; ð3Þ

gij ¼ −
�
1 −

2ϕ

c2

�
δij þOðc−4Þ; ð4Þ

while the corresponding components of the four-velocity in
1PN are

U0 ¼ c

�
1þ 1

c2

�
V2

2
− ϕ

�

þ 1

c4

�
3V4

8
−
5ϕV2

2
þ ϕ2

2
− ψ þ ζiVi

��
; ð5Þ

withUi ¼ U0Vi=c. Above ϕ is the Newtonian gravitational
potential which satisfies the Poisson equation∇2ϕ¼4πGρ.
The corresponding Poisson equations for the scalar ψ and
the vector ζi gravitational potentials, read

∇2ζi ¼ 16πGρVi; ð6Þ

∇2ψ ¼ 8πGρ

�
V2 − ϕþ ε

2
þ 3p

2ρ

�
þ ∂2ϕ

∂t2 : ð7Þ

The gravitational potentials ϕ, ζi and ψ are those intro-
duced byWeinberg [24] and their connection with the gravi-
tational potentials U, Ui and Φ of Chandrasekhar [22] are

ϕ ¼ −U; ζi ¼ −4Ui þ
1

2

∂2χ

∂t∂xi ; ψ ¼ −2Φ; ð8Þ

where χ is a superpotential which obeys the equation
∇2χ ¼ −2U.
The hydrodynamic equation for the mass density is

obtained from the particle four-flow balance law Nμ
;μ ¼ 0

together with the representation Nμ ¼ nUμ where n
denotes the particle number density, yielding

∂ρ�
∂t þ

∂ρ�Vi

∂xi ¼ 0; where ρ� ¼ ρ

�
1þ 1

c2

�
V2

2
−3ϕ

��
: ð9Þ

This equation is the 1PN approximation of the continuity
equation and corresponds toEq. (117) ofChandrasekhar [22].
The mass-energy density hydrodynamic equation in

the 1PN approximation follows from the time component
of the energy-momentum tensor balance law T0ν

;ν ¼ 0,
resulting

∂σ
∂t þ

∂σVi

∂xi −
1

c2

�
ρ
∂ϕ
∂t þ

∂p
∂t

�
¼ 0; where

σ ¼ ρ

�
1þ 1

c2

�
V2 − 2ϕþ εþ p

ρ

��
: ð10Þ

The above equation corresponds to Eq. (9.8.14) of
Weinberg [24] and Eq. (64) of Chandrasekhar [22]. Note
that we have to identify ϵ with ρ in Weinberg’s book [24]
and take c ¼ 1.
From the spatial components of the energy-momentum

tensor balance law Tiν
;ν ¼ 0 follows the 1PN approxima-

tion for the momentum density hydrodynamic equation,
namely

∂σVi

∂t þ ∂σViVj

∂xj þ ∂
∂xi

�
p

�
1 −

2ϕ

c2

��

þ ρ
∂ϕ
∂xi

�
1þ 2

c2

�
V2 − ϕþ ε

2
þ 3

2

p
ρ

��

−
4ρ

c2

�∂ϕVi

∂t þ Vj
∂ϕVi

∂xj
�
þ ρ

c2
∂ψ
∂xi

þ ρ

c2

�∂ζi
∂t þ Vj

∂ζi
∂xj − Vj

∂ζj
∂xi

�
¼ 0; ð11Þ

which matches Eq. (9.8.15) of Weinberg [24] and Eq. (68)
of Chandrasekhar [22].
In the Newtonian limiting case the hydrodynamic

equations for the mass density (9) and the mass-energy
density (10) coincide and become the continuity equation
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∂ρ
∂t þ

∂ρVi

∂xi ¼ 0; ð12Þ

while Eq. (11) reduces to the Eulerian momentum density
hydrodynamic equation

∂ρVi

∂t þ ∂ρViVj

∂xj þ ∂p
∂xi þ ρ

∂ϕ
∂xi ¼ 0: ð13Þ

III. POST-NEWTONIAN ACCRETION

A. Post-Newtonian Bernoulli equation

In the analysis of the spherically symmetrical accretion a
massive object of mass M is surrounded by an infinite gas
cloud and is moving with a velocity V relative to it. The gas
cloud at large distances from the star is at rest with uniform
density and pressure denoted by ρ∞ and p∞, respectively.
The gas motion is steady spherically symmetrical and it is
not taken into account the increase in the massive object.
The gas is characterized by a polytropic equation of state
and by a sound velocity a given by

p ¼ κργ; a ¼
ffiffiffiffiffiffi
dp
dρ

s
¼

ffiffiffiffiffiffi
γp
ρ

r
; ð14Þ

where κ is a constant and γ is related to the polytropic index
n by γ ¼ ðnþ 1Þ=n.
For steady states the hydrodynamic equations for mass

density (9), mass-energy density (10) and momentum
density (11) become

∂ρ�Vi

∂xi ¼ 0; ð15Þ

∂σVi

∂xi ¼ 0; ð16Þ

σVj
∂Vi

∂xj þ ρ
∂ϕ
∂xi

�
1þ 2

c2

�
V2 − ϕþ 3γ − 2

2ðγ − 1Þ
p
ρ

��

þ ∂
∂xi

�
p

�
1 −

2ϕ

c2

��
−
4ρ

c2
Vj

∂ϕVi

∂xj þ ρ

c2
∂ψ
∂xi

þ ρ

c2
Vj

�∂ζi
∂xj −

∂ζj
∂xi

�
¼ 0: ð17Þ

In the steady state momentum density hydrodynamic
equation (17) we have used the corresponding mass-energy
density hydrodynamic equation (16) and the relationship
ε ¼ p=ðγ − 1Þρ.
In spherical coordinates the fields depend only on the

radial coordinate r and due to the fact that we are dealing
with a spherically symmetrical flow, the components of
the hydrodynamic velocity are Vi ¼ ðVðrÞ; 0; 0Þ. Hence,
Eqs. (15)–(16) become

dfr2ρ½1þ 1
c2 ðV

2

2
− 3ϕÞ�Vg

dr
¼ 0; ð18Þ

dfr2ρ½1þ 1
c2 ðV2 − 2ϕþ γ

γ−1
p
ρÞ�Vg

dr
¼ 0; ð19Þ

ρ

�
1þ 1

c2

�
V2 − 6ϕþ γ

γ − 1

p
ρ

��
V
dV
dr

þ d
dr

�
p

�
1 −

2ϕ

c2

��

þ ρ
dϕ
dr

�
1 −

2

c2

�
V2 þ ϕ −

3γ − 2

2ðγ − 1Þ
p
ρ

��
þ ρ

c2
dψ
dr

¼ 0:

ð20Þ

For the analysis of the flow velocity it is more convenient
to introduce the proper velocity of the flow vr which is
measured by a local stationary observer (see e.g., [25,26]).
The proper velocity is defined by

vr ¼
Ur

U0=c
¼ Ur

ðU0=cÞð1þ 2ϕ=c2Þ : ð21Þ

Since Vi ¼ Ui=ðU0=cÞ, we have that

vr ¼
V

ð1þ 2ϕ=c2Þ ;⇒ V ¼ vrð1þ 2ϕ=c2Þ: ð22Þ

By taking into account the relationship (22) the system of
differential equations (18)–(20) can be rewritten in terms of
the proper velocity vr as

dfr2ρ½1þ 1
c2 ðv

2
r
2
− ϕÞ�vrg

dr
¼ 0; ð23Þ

dfr2ρ½1þ 1
c2 ðv2r þ a2

γ−1Þ�vrg
dr

¼ 0; ð24Þ
�
1þ 1

c2

�
v2r − 2ϕþ a2

γ − 1

��
vr

dvr
dr

þ dρ
dr

a2

ρ

�
1 −

2ϕ

c2

�

þ dϕ
dr

�
1 −

1

c2

�
2ϕ −

a2

γ − 1

��
þ 1

c2
dψ
dr

¼ 0: ð25Þ

Above we have used to the expression for the sound
speed (14).
The integration of (23) and (24) imply the mass density

and mass-energy accretion rates

_Mρ� ¼ 4πρr2
�
1þ 1

c2

�
v2r
2
− ϕ

��
vr; ð26Þ

_Mσ ¼ 4πρr2
�
1þ 1

c2

�
v2r þ

a2

γ − 1

��
vr: ð27Þ

From these equations we obtain a relationship between
both accretion rates
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_Mσ ¼ _Mρ�

�
1þ 1

c2

�
v2r
2
þ ϕþ a2

γ − 1

��
: ð28Þ

Here we can use the Newtonian Bernoulli equation

v2r
2
þ a2

γ − 1
þ ϕ ¼ a2∞

γ − 1
; ð29Þ

for the underlined term, since it is of order 1=c2 in (28),
resulting

_Mσ ¼ _Mρ�

�
1þ 1

γ − 1

a2∞
c2

�
: ð30Þ

Hence, the mass density and mass-energy accretion
rates differ from each other by a 1=c2 term, i.e., in the
Newtonian limiting case both coincide, i.e., _Mσ ¼ _Mρ� ¼
4πρr2V.
The multiplication of the momentum density (25) by

1

ρ

�
1þ 1

c2

�
2ϕ −

a2

γ − 1

��

leads to the following differential equation

vr
dvr
dr

�
1þ v2r

c2

�
þ dρ
dr

a2

ρ

�
1−

a2

c2ðγ − 1Þ
�
þ dϕ

dr
þ 1

c2
dψ
dr

¼ 0:

ð31Þ

The post-Newtonian Bernoulli equation follows from the
integration of (31), yielding

v2r
2

�
1þ v2r

2c2

�
þ a2

γ − 1

�
1 −

a2

2c2ðγ − 1Þ
�
þ ϕþ ψ

c2

¼ a2∞
γ − 1

�
1 −

a2∞
2c2ðγ − 1Þ

�
: ð32Þ

Here we have assumed that the proper velocity vr and the
gravitational potentials ϕ;ψ vanish far from the massive
object. Note that (32) reduces to the Newtonian Bernoulli
equation (29) by neglecting the terms in 1=c2.
We can rewrite the hydrodynamic equations in spherical

coordinates (23), (24) and (31) as

2

r
þ ρ0

ρ
þ v0r
vr

þ 1

c2
ðvrv0r − ϕ0Þ ¼ 0; ð33Þ

2

r
þ ρ0

ρ
þ v0r
vr

þ 1

c2

�
2vrv0r þ a2

ρ0

ρ

�
¼ 0; ð34Þ

�
1þv2r

c2

�
vrv0rþ

�
1−

a2

c2ðγ−1Þ
�
a2

ρ0

ρ
þϕ0 þψ 0

c2
¼ 0; ð35Þ

where the prime denotes the differentiation with respect
to r.
The system of differential equations (33)–(35) can be

solved as a system of algebraic equations for V 0, ρ0 and ψ 0,
yielding

v0r
vr

¼ 2

r

a2ð1− rϕ0
2c2Þ− rϕ0

2

v2rð1− a2

c2Þ−a2
;

ρ0

ρ
¼−

2

r

v2rð1− rϕ0
c2 Þ− rϕ0

2

v2rð1− a2

c2Þ−a2
; ð36Þ

ψ 0 ¼ a4½rϕ0 − 2v2rð1 − rϕ0
c2 Þ� − 2a2ðγ − 1Þv4rð1 − rϕ0

2c2Þ þ rϕ0v4rðγ − 1Þ
rðγ − 1Þ½v2rð1 − a2

c2Þ − a2� : ð37Þ

We infer from (36) that the solution must pass through a
critical point defined by a critical radius rc, a critical proper
velocity Vc and a critical sound velocity ac when the
nominator and denominator of these equations vanish.
The existence of a critical point prevent singularities in
the flow solution and guarantees a smooth monotonic
increase of the flow velocity when r decreases. At the
critical point we have

a2c ¼
rcϕ0

c

2ð1 − rcϕ0
c

2c2 Þ
≈
rcϕ0

c

2

�
1þ rcϕ0

c

2c2

�
; ð38Þ

V2
c ¼

a2c
ð1 − a2c

c2Þ
≈ a2c

�
1þ a2c

c2

�
; ð39Þ

V2
c ¼

rcϕ0
c

2ð1 − rcϕ0
c

c2 Þ
≈
rcϕ0

c

2

�
1þ rcϕ0

c

c2

�
: ð40Þ

The above approximations are valid since we are working
with a first post-Newtonian theory.
The value of ψ 0

c at the critical point is obtained from the
substitution of (40) into (37) yielding

ψ 0
c

c2
¼ ϕ2

c

2c2rc
¼ G2M2

2c2r3c
; ð41Þ

by taking into account the expression for the Newtonian
gravitational potential
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ϕ ¼ −
GM
r

¼ −rϕ0: ð42Þ

Another way to determine ψ 0 is to observe that this
potential is of order 1=c2 and we can approximate (37) by

ψ 0

c2
¼ −a4½ϕþ 2v2r � − 2a2ðγ − 1Þv4r − ϕv4rðγ − 1Þ

c2rðγ − 1Þ½v2r − a2� ; ð43Þ

by neglecting the terms proportional to 1=c2 and consid-
ering the relationship for the Newtonian potential
ϕ0r ¼ −ϕ. Now by taking into account the virial theorem
2K þW ¼ 0, where K and W represent the kinetic and
potential energies, we can assume that 2v2r þ ϕ ¼ 0 and
(43) reduces to

ψ 0

c2
¼ ϕ2

2c2r
: ð44Þ

The gravitational potential ψ is obtained from the integra-
tion of (44) by using the Newtonian gravitational potential
(42) resulting

ψ

c2
¼ −

G2M2

4c2r2
¼ −

ϕ2

4c2
; so that

ψc

c2
¼ −

ϕ2
c

4c2
: ð45Þ

Above it was considered that ψ vanishes at r → ∞. Note
that ð45Þ2 is the integral of (41) with respect to rc.
For the determination of the critical values we make use

of Bernoulli equation (32) and the expressions of the sound
speed (38), proper velocity (40) and gravitational potential
ð45Þ2. The resulting equation is an algebraic equation for
the determination of ϕc at the critical point. Its value up to
order 1=c2 is

ϕc ¼ −
4a2∞

ð5 − 3γÞ
�
1þ 15 − 11γ

8ðγ − 1Þð5 − 3γÞ
a2∞
c2

�
; ð46Þ

which implies the expression for the critical radius

rc ¼
ð5 − 3γÞ

4

GM
a2∞

�
1 −

15 − 11γ

8ðγ − 1Þð5 − 3γÞ
a2∞
c2

�
; ð47Þ

thanks to the relationship ϕc ¼ −GM=rc.
The critical values of the sound speed ac and proper

velocity Vc are obtained from (38) and (40) by using (46)
for the elimination of ϕ0

c ¼ −ϕc=rc, resulting

a2c ¼
2a2∞

ð5 − 3γÞ
�
1 −

1 − 5γ

8ðγ − 1Þð5 − 3γÞ
a2∞
c2

�
; ð48Þ

V2
c ¼

2a2∞
ð5 − 3γÞ

�
1 −

17 − 21γ

8ðγ − 1Þð5 − 3γÞ
a2∞
c2

�
: ð49Þ

Furthermore, by using the expression for the sound
speed a2 ¼ γp=ρ, the polytropic equation of state

p ¼ κργ and the critical value for the sound speed (48)
it follows the critical value of the mass density

ρc
ρ∞

¼
�
ac
a∞

� 2
γ−1

¼
�

2

5 − 3γ

� 1
γ−1
�
1 −

1 − 5γ

8ðγ − 1Þ2ð5 − 3γÞ
a2∞
c2

�
: ð50Þ

The mass-density accretion rate (26) can be written as

_Mρ� ¼ 4πρcr2c

�
1þ 1

c2

�
V2
c

2
− ϕc

��
Vc

¼ 4πλc

�
GM
a2∞

�
2

ρ∞a∞; ð51Þ

where the so-called critical accretion eigenvalue [25] is
given by

λc ¼ ð5 − 3γÞ3γ−52γ−22
9−7γ
2γ−2

�
1þ 121 − 216γ þ 103γ2

16ð5 − 3γÞðγ − 1Þ2
a2∞
c2

�
: ð52Þ

In the Newtonian limiting case (46)–(52) reduce to the
well-know values found in the literature (see e.g., [25]),
namely

ϕc ¼ −
4a2∞

ð5 − 3γÞ ; rc ¼
ð5 − 3γÞ

4

GM
a2∞

; ð53Þ

a2c ¼ V2
c ¼

2a2∞
ð5 − 3γÞ ;

ρc
ρ∞

¼
�

2

5 − 3γ

� 1
γ−1
; ð54Þ

λc ¼ ð5 − 3γÞ3γ−52γ−22
9−7γ
2γ−2: ð55Þ

B. Mach number as function of the radial distance

For the determination of the dependence of the flow
velocity as function of the radial distance Bondi [4]
introduced the following dimensionless quantities

r� ¼
ra2∞
GM

; s� ¼
V
a∞

; t� ¼
ρ

ρ∞
; ð56Þ

which are related to the radial distance, flow velocity and
mass density, respectively. Another dimensionless quantity
which is useful in this analysis is the ratio of the flow
velocity and the speed of sound u� ¼ V=a, which is the
Mach number.
From the Newtonian mass density accretion rate we have

in these dimensionless quantities

_Mρ ¼ 4πρr2V ¼ 4πλ

�
GM
a2∞

�
2

ρ∞a∞; ð57Þ

where λ ¼ r2�s�t� is a constant.
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For the post-Newtonian approximation the Bondi dimen-
sionless quantities (56) are written as

r� ¼
ra2∞
GM

�
1þ GM

2rc2

�
; s� ¼

vr
a∞

�
1þ v2r

2c2

�
; t� ¼

ρ

ρ∞
:

ð58Þ

Solving (58) for r and vr and considering terms up to 1=c2

we obtain

r ¼ GM
a2∞

r�

�
1 −

β2

2r�

�
; vr ¼ a∞s�

�
1 −

β2

2
s2�

�
; ð59Þ

where β ¼ a∞=c denotes a relativistic parameter which is
the ratio of the value of the sound speed far from the
massive object and the light speed.
With respect to the new variables (58), the mass density

accretion rate (26) becomes

_Mρ� ¼ 4πλ

�
GM
a2∞

�
2

ρ∞a∞; ð60Þ

by taking into account the Newtonian potential ϕ ¼
−GM=r. Here we have also that λ ¼ r2�s�t�.
The dependence of the proper velocity as a function of

the radial velocity is obtained from the Bernoulli equa-
tion (32) written in terms of the dimensionless quantities
ðr�; u�Þ. We begin by writing the dimensionless parameters
s� and t� as functions of ðr�; u�Þ

s� ¼ u
2

γþ1�

�
λ

r2�

�γ−1
γþ1

�
1þ β2

γ þ 1
u

4
γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�
; ð61Þ

t� ¼
�

λ

u�r2�

� 2
γþ1

�
1 −

β2

γ þ 1
u

4
γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�
; ð62Þ

where we have taken into account ð58Þ2, u� ¼ vr=a, λ ¼
r2�s�t� and t� ¼ ρ=ρ∞ ¼ ða=a∞Þ

2
γ−1.

Next we rewrite vr and a in terms of ðr�; u�Þ from ð59Þ2
and a=a∞ ¼ t

γ−1
2� , yielding

vr ¼ a∞u
2

γþ1�

�
λ

r2�

�γ−1
γþ1

�
1 −

β2ðγ − 1Þ
2ðγ þ 1Þ u

4
γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�
; ð63Þ

a ¼ a∞

�
λ

u�r2�

�γ−1
γþ1

�
1 −

β2ðγ − 1Þ
2ðγ þ 1Þ u

4
γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�
: ð64Þ

The last step is to rewrite the gravitational potential ϕ and ψ
as functions of r�

ϕ ¼ −
GM
r

¼ −
a2∞
r�

�
1þ β2

2r�

�
;

ψ

c2
¼ −

ϕ2

4c2
¼ −

a2∞
4r2�

β2: ð65Þ

Note that in (61)–(65) we have considered only terms up to
the order 1=c2.
The final equation which gives the dependence of the

Mach number u� with the dimensionless radial distance r�
is obtained from Bernoulli equation (32) together with
(63)–(65) resulting

u
4

γþ1�
2

�
λ

r2�

�2ðγ−1Þ
γþ1

�
1þ β2

2ðγ þ 1Þ u
4

γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�
−

1

r�

�
1þ 3β2

4r�

�

þ 1

γ − 1

�
λ

u�r2�

�2ðγ−1Þ
γþ1

�
1 −

�
1þ ðγ þ 1Þ

2ðγ − 1Þ2u2�

�
β2ðγ − 1Þ
γ þ 1

u
4

γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�
¼ 1

γ − 1

�
1 −

β2

2ðγ − 1Þ
�
: ð66Þ

In the Newtonian limiting case we get—by neglecting
the β2 terms—Eq. (14) of Bondi [4], namely

u
4

γþ1�
2

�
λ

r2�

�2ðγ−1Þ
γþ1 þ 1

γ − 1

�
λ

u�r2�

�2ðγ−1Þ
γþ1 ¼ 1

r�
þ 1

γ − 1
: ð67Þ

In the next section we shall analyze the relativistic
spherically symmetrical accretion. This analysis will be
based on the work of Michel [5] and on the book by
Shapiro and Teukolsky [25].

IV. RELATIVISTIC ACCRETION

A. Relativistic Bernoulli equation

We begin by writing the line element in spherical
coordinates in the Schwarzschild metric ðr; θ;φÞ

ds2 ¼
�
1 −

2GM
rc2

�
ðdx0Þ2 − 1

ð1 − 2GM
rc2 Þ

ðdrÞ2

− r2½ðdθÞ2 þ sin2 θðdφÞ2�; ð68Þ

where rS ¼ 2GM=rc2 is the Schwarzschild radius which
defines the event horizon of a Schwarzschild black hole.
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The perfect fluid is characterized by particle four-flow
Nμ ¼ nUμ and energy-momentum tensor (1) and the
balance equations for the particle four-flow and energy-
momentum tensor are given by

Nμ
;μ ¼

1ffiffiffiffiffiffi−gp ∂ ffiffiffiffiffiffi−gp
Nμ

∂xμ ¼ 0; ð69Þ

Tμ
ν
;ν ¼

1ffiffiffiffiffiffi−gp ∂ ffiffiffiffiffiffi−gp
Tμ

ν

∂xν −
1

2
Tνσ ∂gνσ

∂xμ ¼ 0: ð70Þ

In the analysis of the spherically symmetrical accretion the
nonvanishing components of the four-velocity are

ðUμÞ ¼
�
U0 ¼ dx0

dτ
; Ur ¼ dr

dτ
; 0; 0

�
: ð71Þ

From the constraint gμνUμUν ¼ c2 the component U0 is
connected with Ur by

U0

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM

rc2 þ ðUr

c Þ2
q

1 − 2GM
rc2

: ð72Þ

The integration of the balance equation for the particle
four-flow (69) and the time component of the energy-
momentum tensor (70) lead to

ffiffiffiffiffiffi
−g

p
nUr¼constant;

ffiffiffiffiffiffi
−g

p ðpþϵÞU
r

c
U0

c
¼constant: ð73Þ

Combining the above equations the following relationship
holds

�
pþ ϵ

ρ

�
2
�
1 −

2GM
rc2

þ
�
Ur

c

�
2
�
¼ constant: ð74Þ

Let us introduce the sound speed a, which for a
relativistic fluid is defined by

a2

c2
¼ ρ

pþ ϵ

�∂p
∂ρ

�
: ð75Þ

We recall that the polytropic equation of state and the
energy density equation are given by

p ¼ κργ; ϵ ¼ ρc2 þ κργ

γ − 1
; ð76Þ

so that we can write from the above equations that

pþ ϵ

ρ
¼ κγργ−1

γ − 1
þ c2 ¼ κγργ−1

a2=c2
; ð77Þ

which implies the following relationships

κγργ−1¼ ðγ−1Þa2
γ−1−a2=c2

;
pþ ϵ

ρ
¼ c2

1−a2=ðγ−1Þc2 : ð78Þ

The relativistic Bernoulli equation follows from (74) and
(78), yielding

�
1−

a2

c2ðγ−1Þ
�

2

¼
�
1−

a2∞
c2ðγ−1Þ

�
2
�
1−

2GM
rc2

þ
�
Ur

c

�
2
�
:

ð79Þ

Here it was supposed that far from the massive body
2GM=rc2 andUr vanishwhile the sound speed becomesa∞.
The determination of the critical points are obtained from

the differentiation of (73) and elimination of dρ, yielding

dUr

Ur

�
a2

c2
−

ðUr=cÞ2
1 − 2GM=rc2 þ ðUr=cÞ2

�

þ dr
r

�
2
a2

c2
−

GM=rc2

1 − 2GM=rc2 þ ðUr=cÞ2
�
¼ 0: ð80Þ

The expressions for the critical gas flow velocity and sound
speed are determined when both expressions in the paren-
thesis in (80) vanish resulting

ðUr
cÞ2¼

GM
2rc

; a2c¼
ðUr

cÞ2
1−3ðUr

c=cÞ2
; ðUr

cÞ2¼
a2c

1þ3ðac=cÞ2
:

ð81Þ

The above equations correspond to the Eqs. (8)–(14) of the
work of Michel [5].
From now one we shall restrict the analysis to the weak

field limit of the relativistic case, since we are interested in
comparing it with the post-Newtonian approximation
developed in the previous section. We begin by writing
the Bernoulli equation (79) at the critical point thanks to
(81) as

�
1þ 3

a2c
c2

��
1 −

a2c
c2ðγ − 1Þ

�
2

¼
�
1 −

a2∞
c2ðγ − 1Þ

�
2

; ð82Þ

which is a third order algebraic equation for the determi-
nation of the critical sound speed a2c. This equation was
solved in [27] but here we are interested in its weak field
approximation which reads

a2c ¼
2a2∞
5 − 3γ

�
1 −

3ð3γ þ 1Þ
2ð5 − 3γÞðγ − 1Þ

a2∞
c2

�
: ð83Þ

From the knowledge of the critical sound speed the
critical values for the flow velocity, mass density and radial
distance read
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ðUr
cÞ2 ¼

2a2∞
5 − 3γ

�
1þ 3ð7 − 11γÞ

4ð5 − 3γÞðγ − 1Þ
a2∞
c2

�
; ð84Þ

ρc
ρ∞

¼
�

2

5 − 3γ

� 1
γ−1
�
1 −

3ð3γ þ 1Þ
2ð5 − 3γÞðγ − 1Þ2

a2∞
c2

�
; ð85Þ

rc ¼
ð5 − 3γÞ

4

GM
a2∞

�
1 −

3ð7 − 11γÞ
4ðγ − 1Þð5 − 3γÞ

a2∞
c2

�
: ð86Þ

Furthermore, from the mass accretion rate _M ¼ 4πr2cρcVc
it follows the critical accretion eigenvalue

λc ¼ ð5 − 3γÞ3γ−52γ−22
9−7γ
2γ−2

�
1þ 3ð17 − 66γ þ 33γ2Þ

8ðγ − 1Þ2ð5 − 3γÞ
a2∞
c2

�
: ð87Þ

Note that the above expressions differ from those obtained
in the post-Newtonian approximation.
From the relativistic Bernoulli equation one may obtain

its weak field limit by considering terms up to the 1=c2

order in (79), yielding

ðUrÞ2
2

�
1−

�
Ur

c

�
2

−
4ϕ

c2

�

þ a2

ðγ − 1Þ
�
1−

a2

2c2ðγ − 1Þ−
2ϕ

c2
−
�
Ur

c

�
2
�
þϕ

�
1−

2ϕ

c2

�

¼ a2∞
ðγ − 1Þ

�
1−

a2∞
2c2ðγ − 1Þ

�
; ð88Þ

where we have introduced the Newtonian potential
ϕ ¼ −GM=r. Without the 1=c2—terms (88) reduces to
the nonrelativistic Bernoulli equation, however this expres-
sion differs from the post-NewtonianBernoulli equation (32).
Let express the weak filed approximation of the

Bernoulli equation in terms of the proper velocity of
the flow vr defined by (21). The relationship between
the components Ur and U0 follows from UμUμ ¼ c2,
yielding

�
U0

c

�
2

¼ 1þ ð1 − 2ϕ
c2 ÞðU

r

c Þ2
1þ 2ϕ

c2
; ð89Þ

and the proper velocity (21) becomes

vr ¼
Urffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2 ϕ
c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − 2ϕ

c2 ÞðU
r

c Þ2
q : ð90Þ

By retaining terms up to 1=c2 the expression of the radial
four-velocity component in terms of the proper velocity
reads

Ur ¼ vr

�
1þ ϕ

c2
þ v2r
2c2

�
: ð91Þ

If we insert (91) into (88) and consider terms up to 1=c2

order we find the weak field Bernoulli equation given in
terms of the proper velocity, namely

v2r
2

�
1−

2ϕ

c2

�
þ a2

ðγ−1Þ
�
1−

a2

2c2ðγ−1Þ−
2ϕ

c2
−
v2r
c2

�

þϕ

�
1−

2ϕ

c2

�
−

a2∞
ðγ−1Þ

�
1−

a2∞
2c2ðγ−1Þ

�

¼ v2r
2

�
1−

2ϕ

c2

�
þ a2

ðγ−1Þ
�
1þ3a2−4a2∞

2c2ðγ−1Þ
�

þϕ

�
1−

2ϕ

c2

�
−

a2∞
ðγ−1Þ

�
1−

a2∞
2c2ðγ−1Þ

�
¼ 0: ð92Þ

For the underlined term above we have used the Newtonian
Bernoulli equation (29), since it is of 1=c2 order.

B. Mach number as function of the radial distance

The mass density accretion rate for the weak field is
obtained from (73) which in terms of the proper velocity
reads

_M ¼ 4πρr2Ur ¼ 4πρr2vr

�
1 −

GM
rc2

þ v2r
2c2

�
: ð93Þ

Following the same methodology of the previous section
we introduce the dimensionless quantities

r� ¼
ra2∞
GM

�
1−

GM
2rc2

�
; s� ¼

vr
a∞

�
1þ v2r

2c2

�
; t� ¼

ρ

ρ∞
;

ð94Þ

so that the mass density accretion rate becomes

_M ¼ 4πλ

�
GM
a2∞

�
2

ρ∞a∞; where λ ¼ r2�s�t�: ð95Þ

From (94) we can write

r ¼ GMr�
a2∞

�
1þ β2

2r�

�
; vr ¼ a∞s�

�
1 −

β2s�
2

�
: ð96Þ

Due to the fact that the expression for s� above is the
same as the one in the post-Newtonian approximation (58)
we can use the (63) and (64) for the proper velocity and
sound speed as a function of the Mach number u� and
dimensionless radial distance r�, respectively. For the
gravitational potential we have
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ϕ ¼ −
a2∞
r�

�
1 −

β2

2r�

�
: ð97Þ

The expressions of the dependence of the Mach number
u� as function of the dimensionless radial distance r� is
obtained from the weak field Bernoulli equation (92)
together with (63), (64) and (97), resulting

u
4

γþ1�
2

�
λ

r2�

�2ðγ−1Þ
γþ1

�
1 −

β2ðγ − 1Þ
γ þ 1

u
4

γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1 þ 2β2

r�

�

−
1

r�

�
1þ 3β2

2r�

�
þ 1

γ − 1

�
λ

u�r2�

�2ðγ−1Þ
γþ1

�
1 −

2β2

γ − 1

−
�
1 −

3ðγ þ 1Þ
2ðγ − 1Þ2u2�

�
β2ðγ − 1Þ
ðγ þ 1Þ u

4
γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�

¼ 1

γ − 1

�
1 −

β2

2ðγ − 1Þ
�
: ð98Þ

For the relativistic Bernoulli equation (79) we can use the
Bondi dimensionless quantities (56) and write it as

�
1 −

β2

γ − 1

�
λ

U�r2�

�2ðγ−1Þ
γþ1

�2

¼
�
1 −

β2

γ − 1

�
2
�
1 −

2β2

r�
þ β2U2�

�
λ

U�r2�

�2ðγ−1Þ
γþ1

�
: ð99Þ

Here U� ¼ Ur=a is the Mach number with respect to the
radial component of the four-velocity. The Mach number
written in terms of the proper velocity follows from (90)
and reads

u� ¼
vr
a
¼ U�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2β2

r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1þ2β2

r Þβ2U2�ð λ
U�r2�

Þ2ðγ−1Þγþ1

r : ð100Þ

V. ANALYSIS OF THE SOLUTIONS

In this section we shall compare the solutions for the
Mach number u� ¼ vr=a as function of the dimensionless
radial distance r� which follow from the different approx-
imations of the Bernoulli equation.
In the tables and figures below the Newtonian solution of

(67) is denoted by (N), the post-Newtonian solution of (66)
by (PN) and the weak field approximation solution of (98)
by (WF). For the relativistic accretion—denoted by (R)—
the Bernoulli equation (99) was solved for the Mach
number with respect to the radial four-velocity and from
(100) the Mach number for the proper velocity was
obtained.
In the determination of the Mach number u� as a function

of the dimensionless radial distance r� it was considered
that the ratio of the sound velocity far from the massive

body and the light speed is equal to β ¼ a∞=c ¼ 10−2,
which is of relativistic order.
In Table I the values for the Mach number u� as function

of the dimensionless radial distance r� are given in the
range 5 × 10−4 ≤ r� ≤ 2.5 × 10−2 for a ultrarelativistic
Fermi gas where γ ¼ 4=3. In the Newtonian approximation
the critical radius is r� ¼ 0.25 where the critical Mach
number assumes the value u� ¼ 1. We infer from this table
that by decreasing the dimensionless radial distances r�
from the massive body the Mach number increases.
Furthermore, the values of the Mach number for the
relativistic case are bigger than the Newtonian ones. The
Mach number values for the post-Newtonian and weak
field approximations are practically the same and are
smaller than those for the Newtonian case. The difference
between the Newtonian, post-Newtonian and weak field
solutions becomes very small by increasing the dimension-
less radial distance and the solutions practically coincide at
r� ¼ 10−3. In Fig. 1 it is plotted the contour plot for the
Bernoulli equations: Newtonian (67), post-Newtonian (66)

TABLE I. Mach number u� ¼ vr=a as function of the dimen-
sionless radial distance r� for a ultrarelativistic Fermi gas
γ ¼ 4=3.

r� u� (N) u� (PN) u� (WF) u� (R)

5 × 10−4 10.29 9.66 9.66 20.26
10−3 8.53 8.24 8.26 11.26
5 × 10−3 5.40 5.37 5.37 6.07
10−2 4.35 4.34 4.34 4.97
5 × 10−2 2.40 2.41 2.41 3.31
2.5 × 10−2 1.00 1.07 1.02 2.09

0.001 0.002 0.003 0.004 0.005 0.006

5.0

5.5

6.0

6.5

7.0

7.5

8.0

N

PN WF

FIG. 1. Contour plot showing the Mach number u� as function
of the dimensionless radial distance r� for a ultrarelativistic Fermi
gas γ ¼ 4=3. The Newtonian solution is represented by a dashed
line while the post-Newtonian and weak field solutions by a
straight line.
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and weak field (98). The Newtonian solution is represented
by a dashed line and the post-Newtonian and weak field
approximations by the same straight line, since they
practically coincide. It is shown that the difference between
the Newtonian, post-Newtonian and weak field are very
small and coincide by increasing the dimensionless radial
distance.
The Mach number u� as function of the dimensionless

radial distance r� for a diatomic gas where γ ¼ 7=5 is
displayed in Table II in the range 5×10−4≤r�≤2×10−2.
The same conclusions as in the former case can be drawn,
i.e., in comparison with the Newtonian solutions the
dependence of Mach number with respect to the dimen-
sionless radial distance for the relativistic case is bigger, the
post-Newtonian and the weak field solutions are smaller
and both have practically the same values. For the
Newtonian case the critical radius is r� ¼ 0.2 where the
Mach number attains the value u� ¼ 1. In Fig. 2 the contour
plots of the Newtonian (dotted line), the post-Newtonian
(straight line) and the weak field (dotted line) solutions are

displayed showing that the values of the Mach number for
the Newtonian solution is bigger that those for the post-
Newtonian and weak field solutions and that the difference
between them becomes very small by increasing the
dimensionless radial distance.
For a nonrelativistic Fermi gas or a monatomic gas

γ ¼ 5=3 and in this case the contour plots of the
Newtonian and weak field solutions are shown in Fig. 3.
The critical dimensionless radial distance for the Newtonian
case is r� ¼ 0 where the Mach number becomes equal to
u� ¼ 1. We note that r� ¼ 0 is a turning point for the
Newtonian solution where a transition occurs from an
accretion flow to a wind flow. The weak field solution is
smaller than the Newtonian ones and the turning point is
about r� ≈ 4 × 10−3.
Here it is important to comment the behaviors of the

post-Newtonian and weak field solutions found in the
above analysis when compared with the Newtonian and
relativistic solutions. It was expected that the post-
Newtonian and weak field solutions should be more
close to the relativistic one and not smaller than the
Newtonian solution. By inspecting the Newtonian (67),
the post-Newtonian (66) and the weak field (98) equations
we infer that the two latter equations have corrections from
the Newtonian one and their solutions should furnish
different results for the dependence of the Mach number
as function of the dimensionless radial distance. But why
the values of the Mach number for the post-Newtonian and
weak field are smaller than in the Newtonian case? The
only clue is to look at the expression for the proper velocity
(63) for the post-Newtonian and weak field which can be
written as

TABLE II. Mach number u� ¼ V=a as function of the dimen-
sionless radial distance r� for a diatomic gas γ ¼ 7=5.

r� u� (N) u� (PN) u� (WF) u� (R)

5 × 10−4 7.21 6.83 6.81 14.22
10−3 6.16 5.99 5.98 8.22
5 × 10−3 4.16 4.14 4.13 4.77
10−2 3.43 3.43 3.43 4.02
5 × 10−2 2.00 2.00 2.00 2.86
2 × 10−2 1.00 1.02 1.06 2.21

0.000 0.005 0.010 0.015 0.020

0.6

0.8

1.0

1.2

1.4

N

WF

FIG. 3. Contour plot showing the Mach number u� as function
of the dimensionless radial distance r� for a nonrelativistic Fermi
gas γ ¼ 5=3. The Newtonian solution is represented by a dashed
line while the weak field solution by a straight line.

0.001 0.002 0.003 0.004 0.005
4.0

4.5

5.0

5.5

6.0

N

PN

WF

FIG. 2. Contour plot showing the Mach number u� as function
of the dimensionless radial distance r� for a diatomic gas
γ ¼ 7=5. The Newtonian solution is represented by a dashed
line, the post-Newtonian by straight line and weak field by a
dotted line.
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vr ¼ a∞u
2

γþ1�

�
λ

r2�

�γ−1
γþ1

�
1 −

β2ðγ − 1Þ
2ðγ þ 1Þ u

4
γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�

¼ vNr

�
1 −

β2ðγ − 1Þ
2ðγ þ 1Þ u

4
γþ1�

�
λ

r2�

�2ðγ−1Þ
γþ1

�
; ð101Þ

where vNr is the Newtonian expression for the proper
velocity. One infers from the above equation that the
proper velocities for the post-Newtonian and weak field
should be smaller than the one for the Newtonian case,
which could explain the difference in the behavior of the
solutions.

VI. SUMMARY

In this work we have analyzed the influence of the first
post-Newtonian approximation in the spherical symmetri-
cal accretion of an infinity gas cloud characterized by a
polytropic equation of state into a massive object. The
starting point was the steady state post-Newtonian hydro-
dynamics equations for mass, mass-energy and momentum
densities. The integration of the system of equations in
spherical coordinates—where the fields depend only on the
radial coordinate—lead to the determination of the mass
accretion rate and the Bernoulli equation in the post-
Newtonian approximation. From the system of differential
equations for mass density, flow velocity and post-
Newtonian potentials the critical point was identified.
The critical point prevent singularities in the flow solution
and guarantees a smooth monotonic increase of the flow
velocity along the trajectory of the particle so that through
the critical point a continuous inflow and outflow velocity
happen. The critical point in the accretion Newtonian
theory corresponds to the transonic point where the flow
velocity matches the sound speed. In the post-Newtonian
approximation the critical flow velocity is connected with

the sound speed but their expression are not the same. From
the post-Newtonian Bernoulli equation an equation for the
Mach number was obtained as a function of a dimension-
less radial coordinate. Similar expressions were derived for
the relativistic Bernoulli equation and its weak field
approximation based on the work by Michel [5]. For the
solution of the post-Newtonian equation it was considered
that the ratio of the sound velocity far the massive body and
the speed of light was of order a∞=c ¼ 10−2 which is of
relativistic order. The results obtained were: (i) the Mach
number for the Newtonian, post-Newtonian and weak field
accretions have practically the same values for radial
distances of order of the critical radial distance; (ii) by
decreasing the radial distance the Mach number for the
Newtonian accretion is bigger than the one for the post-
Newtonian and weak field accretions; (iii) the effect of the
correction terms in post-Newtonian and weak field
Bernoulli equations are more perceptive for the lowest
values of the radial distance; (iv) practically there is no
difference between the Newtonian, post-Newtonian and
weak field Mach numbers when the ratio a∞=c ≪ 10−2;
(v) the solutions for a∞=c > 10−2 does not lead to a
continuous inflow and outflow velocities at the critical
point; (vi) from the comparison of the solutions with those
that follow from the relativistic Bernoulli equation shows
that the Mach number of the former is bigger than the
Newtonian, post-Newtonian and weak field Mach numbers.
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