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Emergent black hole thermodynamics from monodromy
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We argue that the equations of motion of quantum field theories in curved backgrounds encode new
underlying black hole thermodynamic relations. We define new entropy variation relations. These
“emerge” through the monodromies that capture the infinitesimal changes in the black hole background
produced by the field excitations. This raises the possibility of new thermodynamic relations defined as
independent sums involving entropies, temperatures, and angular velocities defined at every black hole
horizon. We present explicit results for the sum of all horizon entropy variations for general rotating black
holes, in both asymptotically flat and asymptotically anti—de Sitter spacetimes in four and higher
dimensions. The expressions are universal and in most cases add up to zero. We also find that these
thermodynamic summation relations apply in theories involving multicharge black holes.
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I. INTRODUCTION

Quantum field theory in curved backgrounds is expected
to provide an accurate description of quantum phenomena
occurring near—and inside of—black holes. The simplest
form of the equations of motion are embodied in the Klein-
Gordon (KG) equation, which describes a massless scalar
field in a curved background. Surprisingly, the KG equa-
tions encode not only the analytic structure of the back-
ground geometries but also new underlying black hole
thermodynamic relations. In this paper we will describe the
emergence of a new thermodynamic identity from the KG
equation, a constraint on the sum of the variational horizon
entropies, and identify new universal thermodynamic
relations for black holes.

The discovery of the thermodynamic behavior of black
holes has given rise to most of our present physical insights
into the quantum nature in the strong field regime. Most
famously, in 1973, Bardeen, Carter, and Hawking [1]
provided a general proof of the first laws of thermody-
namics of black holes with the intensive quantities defined
at the black hole event horizon r, . Yet, eternal black hole
solutions contain a much richer geometrical horizon struc-
ture which includes Cauchy horizons (in Kerr spacetimes,
the so-called inner event horizon r_). More recently, it was
shown in [2] that there is a universal “geometrical first law
of thermodynamics” for a Cauchy horizon. And, while
physically unobservable, the fact that the inner horizon
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obeys standard thermodynamic relations is an indication of
the validity of the conformal field theory description [3,4].
This additional horizon structure appears to play an
important role in the precise description of generic micro-
states [S]. It is natural then to inquire whether, analogously,
a geometrical thermodynamic law holds for every (real or
complex valued) horizon in more general classes of black
holes. In what follows, we shall just refer to zeros of the
radial function as horizons, regardless of whether these are
real, imaginary, or complex.

In this paper, we consider the geometrical relation of
black hole thermodynamics:

dE = T;dS; + > @V dig + Y @ldo, (1)
k !

Here S; is the entropy, and the extensive quantities—the
total mass or energy E, the angular momenta J ), and the

total charge Q;,—are the Komar charges. The correspond-
ing intensive quantities—the temperature 7;, the angular
velocities ng), and electromagnetic potential ®!—are
defined at each black hole horizon. The i subscript
represents the r; black hole horizon where the thermody-
namic quantity was defined, the index k =1,2, ..., [%]
represents the independent planes of rotation in a d
spacetime and / the number of electric/magnetic charges.
An explicit examination of a fairly extensive number of
black hole solutions reveals that the geometrical law of
thermodynamics (1) is indeed universal for all black hole
horizons.

Many discussions in the literature of KG wave equations

in curved spacetimes with more than one Killing horizon
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note that these will have dominant contributions associated
with poles at each of these zeros [3—-6]. One can therefore
expect that the thermodynamics associated with each
horizon will play a role in governing the properties of
the black hole at the microscopic level. Remarkably, we
find that the geometrical first law of thermodynamics (1)
for every black hole horizon emerges from the KG equation
(via monodromies). We argue that the variations with
respect to the conserved charges of the black hole entropies
08 are directly proportional to the monodromies a; around
each horizon:

(d-2)

5S; =
i 4

Agra;, (2)

where A,_, = 274"V/2/T'((d — 1)/2) is the area of a unit
(d —2) sphere. The entropy variation relation (2) follows
from a rather remarkable extension of the ideas in [2] for
the black hole event horizon, which is recovered when, e.g.,
d = 4 for the Kerr black hole solution

(0—Q.m)

5S, = 4ni,, =
+

where @, =

(3)

The scalar field excitations produce infinitesimal changes
in the black hole mass @ = M and angular momentum
m = 6J; these associations reproduce (1) for the Kerr black
hole. Having verified (1) explicitly for all horizons, we can
confirm that the monodromies have an important physical
interpretation; namely they represent the variation in the
entropy (2). We find that these infinitesimal relations do not
imply global identities, such as Smarr relations.

Critically, the KG equation can be reduced to a Fuchsian-
type radial ansatz. This equation encodes the monodromy
coefficient at infinity a, of points at r = co. Employing a
similar argument as in (2), we can therefore also define a
new monodromy/entropy variation relation at infinity,
which is 65, = @Ad_z((lC — 1) — a,) with a constant
parameter K.

Subsequently we find another remarkable thermody-
namic feature for black hole solutions emerging from
the KG equation: we find that the summation of all
monodromies—generally, a Fuchs(-type) relation—defines
a new thermodynamic relation of the entropies, namely

Z(SS,» = 5S,,. (4)

We have explicitly verified this relation for an extensive list
of black hole solutions. These include Schwarzschild,
Kerr, d-dimensional Schwarzschild and Myers-
Perry (MP) [7], Banados-Teitelboim-Zanelli (BTZ) [8],
d-dimensional Schwarzschild and Kerr-(A)dS [9-11],
Reissner-Nordstrom (RN) [12], Kerr-Newman [13],
Kerr-Newman-Anti-deSitter (AdS), d-dimensional RN-

(A)dS, d =5 min gauged Supergravity (SUGRA) [14],
and d = 6 gauged SUGRA [15] black hole solutions.

In all cases, except for Kerr and Kerr-Newman,' S,
seems independent of the extensive quantities for all black
holes. Therefore, 6S,, = 0 and the relation (4) leads to

5(Zsi> =0, (5)

and the following new universal relations for black holes:
(k)
1 Q.

Zzzo, Z 7 =0 (6)

It is also possible to verify, by considering charged black
hole solutions, that

Z%: 0. (7)

1

Our results are summarized in Table 1.

The paper proceeds as follows. Section II includes an
overview of the KG equation, our results for the mono-
dromies, and the Fuchs(-type) relation for all black holes
listed in Table I. Section III details the AdS and Flat
calculations for the Scharzschild and Kerr geometries.
Section IV contains the explicit physical parameters for
general asymptotically flat or AdS black holes solutions—
which are in some cases neutral, charged, or rotating—in d-
spacetime dimensions; parameters are defined at every black
hole horizon and individually shown to be consistent with
the first law of thermodynamics for all black hole horizons.
In each case we also assess the relation (5)—(7) employing
purely thermodynamical quantities. In Sec. V, we prove the
new relations (6) and (7) that follow from the first law of
thermodynamics and the properties of the ) _; S;. Finally, in
Sec. VI, concluding remarks are presented.

II. OVERVIEW

One can explore the geometry of a neutral black hole by
considering small perturbations of the background. One of
the simplest possibilities is a minimally coupled scalar, i.e.,
a massless scalar field that satisfies the KG equation,

1
——0,(/=99"0,®) = 0. (8)
V=g " ’
The solutions to this equation can be presented in such a
way that the Killing symmetries deriving from stationarity
and the axial symmetries are satisfied. Then the wave
function can be written as

'"The Kerr black hole solution does partially break the con-
dition for the sum of the entropies being independent of the
extensive quantities. Namely, >, S; =4xM?, and thus
> Tl # 0. Further details can be found in Sec. IVA.
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TABLE 1.

This table summarizes new thermodynamic relations for a copious number of black hole solutions in

d > 3 spacetime dimensions. The results include the confirmation of the emergent relation for the sum of the entropy
variations of each black hole horizon » ;48S; = 8S,, as well as new thermodynamic relations. These new
relationships, jointly with the properties of the ), S;, are a by-product of the geometrical relation of
thermodynamics for all black hole horizons (1). The v represent the thermodynamic relations that are fulfilled,
while the X signal those that fail to obey the relations. The horizon radii r; are defined by the radial function

A(r;) =0.

Black hole 768 =65

YuTi'=0

>.:Q/T; =0 > ®¢/T; =0

Schwarzschild

Kerr [16]
Reissner-Nordstrom (RN)
Kerr-Newman (KN) [13]
Schwarzschild d > 4 [17]
Myers-Perry [7]

BTZ [8]

Schw-(A)dS

Kerr-(A)dS [9]
Schw-(A)dS,
Kerr-(A)dS, [10,18]
RNy [12]

RN-(A)dS

RN-(A)dS,

KN-(A)dS [12]

5d gauged SUGRA [14]
6d gauged SUGRA [15]

AN NA N TN N N N N N N N N NN

$ESE SRS NG

SNSSSNNSSSNNSNSSS SO % % %%

AN N
AN NE N N NN

(1, 7,0, ;) = exp T2 T(OR(),  (9)

by means of the time coordinate ¢, the radial coordinate r,
the polar coordinate 0, together with [(d — 1)/2] azimuthal
angular coordinates ¢,. From the black hole backgrounds
(given in, e.g., Sec. III) it is straightforward to write out
equation (8) explicitly. For black hole solutions to
Einstein’s equation of general relativity (GR) R, = Ag,,
with A = —(d —1)/L?, in Boyer-Lindquist coordinates,
the wave equation can be reduced in the radial r plane to a
second order differential equation (ODE) with singularities
r1,..., ' and the point at infinity r = oo. It is useful to
define an “evenness” integer € = (d — 1) mod 2 which is 1
for even d and O for odd d to express

K=d+1-e. (10)

For black holes,” while ri,...,rc are regular singular
points, r = co can be either a regular or an irregular
singular point. For instance, in d-spacetime dimensions
we find that the point » = oo is an irregular singular point in
asymptotically flat black holes (A = 0) and is regular for
asymptotically AdS black holes (A # 0)—see Appendix A
for details. This distinction between regular and irregular

*We focus on the nonextremal black holes in this paper where
ri #rj. The extremal black hole cases will be studied elsewhere.

singular points might seem artificial, but their implications
for R(r) are starkly different. Regular singular points have
series expansion around, say, r; of the form

R()=(r=rye(l+0(r=r). (1)

whereas the asymptotic expansion for the solutions, e.g.,
around r = oo, one must also include exponential factors in
the series expansion

R(r) = e rpit=(=22[1 + O(r71)], (12)

where A, is the eigenvalue of the formal monodromy that
we will refer to as fake monodromy.

Having identified the singular points, we turn to the
Fuchs relation, which describes a direct relationship
between the asymptotic exponents «; (i.e., the monodro-
mies) of formal series solutions (11) of Fuchsian linear
differential equations. We argue that the radial ODE for
AdS black holes has all regular singularities (including
r = o0) and is therefore a Fuchsian-type equation with a
corresponding Fuchs relation. As we will now show, the
Fuchs relation relating the sum of the monodromies around
each regular singular point of the ODE is exactly the
relation of the sum of the variation of the black hole
entropies defined at each horizon (4). Furthermore, we will
establish as a limiting case a Fuchs-type relation for the
asymptotically flat black holes. The new Fuchs-type

024055-3



CHANSON, CIAFRE, and RODRIGUEZ

PHYS. REV. D 104, 024055 (2021)

relation also gives account to the sum of the variation of the
black hole entropies defined at each horizon that is found
from purely thermodynamical relations. In this sense, we
find a new emergent black hole thermodynamic relation
from monodromies relations.

Understanding the Fuchs relation will suffice to illustrate
the essence of our approach to the sum of entropy
variations, so we focus first on asymptotically AdS black
holes in Sec. II A, discussing the added complications of
irregular singular points for asymptotically flat black holes
in Sec. II B.

A. ODE with all regular singular points:
Fuchsian equation

Here we give the fundamentals of our approach to the
sum of entropy variations for asymptotically AdS black
holes in all dimensions. We begin by defining the second-
order Fuchsian equation with all K regular singularities at
r=r;, where i =1,2,...,KC, and at oo. This is given by

d’R dR
W%—p(r)%—l-q(r)R—O, (13)

with rational functions of the form

K
q(r) =Y 7 04

F (r—r

P =Y =

— (r-

A brief review can be found in [19]. This representation of
Eq. (13), which we will refer to as the monodromy frame
choice, corresponds to a setup for a Fuchsian equation with
lim,_,, q(r)(r—r;)* =0 where one of the two mono-
dromy exponent parameters (around the regular singular
point) is null. This particular frame gives us the simplest
form for the monodromies to establish the link with the
entropy variations as we explain below. While other frame
choices are possible, we found that alternative frames as
defined in [20] give the same results with slightly more
involved relations.

When the differential equation (13) has regular singu-
larities over P (C), its exponents obey the so-called Fuchs
relation [20]:

a=(K-1)—a. (15)
i=1

Note that at r = r;, the indicial equation is
a;(a; = 1)+ poa; + gy = 0, (16)

where

Do = rh_{rrl(r —r;)p(r), q0 = ll_{rrl(” —ri)q(r).  (17)

For (13), one finds that p) = 1 — @; and g, = 0, so that the
KC-nontrivial monodromy exponent parameters at the finite
singularities r; are @;. The monodromy exponent parameter
a,, relative to the r = oo regular singular point is given by
(11) transformed by x = r~! at x = 0.

Having established our conventions, we proceed to
present our general approach for AdS black holes in
d-spacetime dimensions. An examination of the radial
equation derived from the KG equation in AdS black hole
backgrounds in all dimensions shows that the ODE con-
tains all regular singular points, including asymptotic
infinity (pg, go are finite at every singular point). It is
therefore a Fuchsian equation and its parameters are subject
to the Fuchs relation (15). To implement the Fuchs relation
we set the frame that simplifies the analysis by bringing the
ODE to form (13). The parameter K corresponds to the
total number of horizons in the black hole solution.

Extending the ideas in [2], we argue that at every (regular
singular point) black hole horizon in (15) we can identify
the monodromies with the entropy variations as in Eq. (2).

The Fuchs relation then encodes an emergent relation on
the sum of entropy variations

K K

da=K-1)—ay - ) 85=585, (I8)

i=1 i=1

where we defined 65, = (dzz) Aio(K=1) —ay). As we
will illustrate explicitly in Sec. III, the variation 6S,, = 0
for asymptotically AdS black holes. Therefore, replacing
these emergent relations between the entropy variations and
monodromies, the Fuchs relation (15) can be interpreted as
the sum of the variation of entropies

K

> 688,=0

i=1

for AdS — black holes. (19)

We verified this new emerging thermodynamic relation for
the sum of the variations of entropies in Sec. IV employing
purely thermodynamic definitions. Having identified this
relation, we were able to find and verify the sum of the
entropies being independent of all intrinsic or extrinsic
parameters

5 (Zi: S,-) =0, (20)

which follows (19) and other universal relations (6) for
black holes such as
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(k)

ko1 WiYe)

We present a proof for the latter relations in Sec. V.

-=0. (21)

1

B. ODE with one irregular singular point:
Fuchs-type relation

In contrast with the black hole solutions in curved
spacetimes, the radial equation derived from the KG
equation in asymptotically flat black hole backgrounds is
irregular at asymptotic infinity. This ODE is not given by a
Fuchsian equation, yet we can still find a Fuchs-type
relation that holds for asymptotically flat black holes.
Asymptotically flat black hole solutions of GR result from
taking a limit of vanishing cosmological constant A — 0.
Equivalently, since A = —(d — 1)/L?, the vanishing cos-
mological constant limit corresponds to L — oo. The
Fuchs-type relation that we find for asymptotically flat
spacetimes (with one irregular singularity at r = oo)
follows from taking the vanishing cosmological constant
limit (L — oo in our case) in Eq. (15):

Lli_l)lg()(iai—(lC—l)Jram):O, (22)

ol —j =0. (23)

We will refer to (23) as the Fuchs-type relation for
asymptotically flat black holes containing one irregular
singular point at co. This relation results from C—2
monodromies remaining finite

Jima; = ", (24)
around the /C — 2 singularities that, in the L — oo limit,
remain (finite) regular singular points. The other two
regular singular points converge to r = co, and, interest-
ingly, the limiting sum of their corresponding monodromies
is precisely the fake monodromy 1., as defined in (12),

Lhm A1 + A = —/100, (25)

We can implement the relation (23) to asymptotically flat
black holes (such as Kerr or Myers-Perry black hole
solutions). The total number of horizons in the black hole
solution in this case is K=d—1—¢ with ¢ =0, 1,
respectively, for odd or even d-dimensional spacetimes
(or alternatively, in terms of the K, K = IC — 2). As in the
previous section, employing Eq. (2) relating the mono-
dromies to the entropy variations at each black hole
horizon (which are always regular singularities) we find
through (2) that

K=2 K=2
at =l =0 - ) sst=gsslt (26

i=1 i=1

where 5flat = @ Ayrs- We therefore argue that a new
universal thermodynamic relation involving the sum of the
variation of entropies emerges from the Fuchs-type
relation (23) for asymptotically flat black hole solutions
with K horizons:

K
Z sshat — sgflat for asymptotically flat black holes.
o1
(1)

As we will explicitly show in Appendix A, the fake
monodromy for asymptotically flat black holes is

For Asympt. Flat,: 1, — 4Mw, (28)
For Asympt. Flat,.,: A, — 0. (29)

We verified in these cases that the new emerging
thermodynamic relation for the sum of the variations of
entropies (27) employing solely the physical thermody-
namic parameters—see Sec. IV for details. A new set of
thermodynamic relations (6) also arises for asymptotically
flat black holes with A, = 0,

K 1 K Q(k)
— =0, L =0 30
7 > (30)

1

that follow from (27). Section V contains further details
and proofs.

III. MONODROMIES AND EMERGENT
THERMODYNAMICS

This section focuses on the study of a scalar field in the
d-dimensional (asymptotically AdS and flat) Schwarzschild
and Kerr black hole background, but the methods are readily
extendable to a broad class of physically relevant situations.
We will first revisit the wave equation of the probes with
particular emphasis on the machinery to compute the (finite
and fake) monodromies.

A. AdS,; Schwarzschild black hole

To set up our notation and conventions, we start by
reviewing aspects of the geometry of a d-dimensional
Schwarzschild black hole with mass M. In Boyer-
Lindquist coordinates, we have

d 2
ds? = —Adi* + -+ Pd . (31)
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where A =1-2% + 2—22 = (r3L) [T (r = 7;) with
K=d+1-e

1. Wave equation

The Klein-Gordon equation for a massless scalar is (8)
and, using (9), makes the equation separable. When the
separation constant is set to zero, the radial equation for
R(r) is given by

_ @’R(r)
mar(rd 2A6,R(r)) + A = O (32)
When choosing
K-1 . ®
R(r) = | (r—r)7%R(r), with @; = ) (33)

1

the ODE for R(r) is a Fuchsian equation of the form (13)
with (14) given by

2r172A0, P + PO, (ri2A)

p(r) - ri2AP ’
2P 0.(r*2A)(0,P)  ?
() =—+ o p T Az (34)
P FIAP A
where P =[[X!'(r—r)7%. In turn, the monodromy

exponents {ag, ;, A} Wwith i=1,2,...,K -1 in the
formal series solutions (11) for R(r) obey the Fuchs
relation

K

Y a=(K-1)-a. (35)

i=0
2. Monodromies and regular singular points

One can identify the nature of the singular points, for
example, by following the steps in Sec. Il and Appendix A.
As it turns out in this case, all singularities in the ODE for
R(r) are regular singular points. In addition to oo, the K
finite regular singularities are located at r = {0, r;}. The
monodromies that we find via the indicial equation are,
respectively,

A, =K -1, ay =0,

a;=2¢q fori=12....,K—-1. (36)

An alternative way of determining the monodromy of the
singularity at, say, r = 0, would be to substitute a series
expansion (11) and study the behavior of the ODE near
these points. And, similarly, substituting the series expan-
sion (11) and changing r — x~! in (32) for R(r) we find
that the monodromy around x = 0 (r = ).

3. Sum of entropy variations

Having computed the monodromies we can verify that
these obey the Fuchs relation (15). We find, replacing the
relation (2) between the monodromies and the entropy
variations in the Fuchs relation, that the sum of the
monodromy parameters is equivalent to the sum of the
variations of the entropies:

K K K
> a=0, - > 55=0, - 5(25,.):0, (37)
i=1 i=1 i=1

where S; = (Ay_,/4)r¢=? is the entropy computed at each
horizon of the AdS, Schwarzschild black hole. We further
verified this new entropy bound employing purely thermo-
dynamic relations in Sec. IV. In agreement with the
previous result in d = 4, Eq. (2) becomes S, = 4zd’, as
found in [2].

B. Schwarzschild black hole in d dimensions

We begin by briefly describing the geometry and
radial part of the wave equation for an asymptotically flat
d-dimensional Schwarzschild black hole describing a
generic asymptotically flat static black hole with mass
M. The line element is of the form (31) where the

function A » A =1 —% = (rd3)"! {C:_ll(”— r;) and
K=d-1-e.

1. Wave equation

The massless scalar Klein-Gordon equation in the back-
ground of a d-dimensional Schwarzschild black hole
solution is separable. Employing the ansatz (9), and setting
the separation constant to zero, the radial equation for the
function R(r) becomes

rd—l_za,(rd—%arze(r)) + “’212(’") —0. (39

As we did in_the previous section, we choose a frame
(33) with I — K to find the corresponding functions p(r)
and ¢(r) which become (34) with A — A.

2. Fake monodromies and irregular singular points

As it turns out in this case, the singularities in the ODE
(38) are

r = {0, (2M)/(d-3)¢i22(i=1))/(d=3) oo}
where i = 1,2,...,d — 3. (39)
Employing the procedure described in Appendix A, we
find that all but co are regular singularities. A way of

determining the monodromy of the regular points of the
ODE would be to solve the indicial equation (16).

024055-6
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Following the previously described steps for regular sin-
gular points, we find that

2w
flat _ ) flat _ _ . 40
20 ’ a; A (ri) ( )
In order to compute the monodromy A, around the

irregular singular point r = co, we analyze the ODE
changing r — x~!. We present the details to compute the
fake monodromy exponent 4., in Appendix A. Our results
are summarized in (28).

It is easily verified that these flat spacetime monodro-
mies {al®, A} can also be found from those in AdS-
Schwarzschild backgrounds in taking the flat spacetime
limit, L. — oo, while keeping the other physical quantities
fixed. For example in d = 4, the nonvanishing monodro-
mies (36) yield

flat

lima, = a}*,
L—>o

Llim o+ oy =—4Mw = —Ay,. (41)

3. Sum of entropy variations

In general, the monodromy exponents in ODEs that have
an irregular singular point do not satisfy a Fuchs relation.
However, in the present flat case, taking the sum of the
monodromy coefficients found in the preceding subsection
leads to a relation that is consistent with the Fuchs-type
relation. Plugging these expressions into (23) and employ-
ing the relation (2) between the monodromies and the
entropy variations

U
s8]

a; = /100,

Il
o

i

d-3 d-3
= > 588, = oSt — 5(2&-) —

{ 8zMSM d=4
i=0

0 d>4’
(42)

where S; = (Ay_,/4)r¢=2 is the entropy computed at each
horizon of the d-dimensional Schwarzschild black hole.
This new entropy bound is consistent with purely thermo-
dynamic relations in Sec. IV.

C. Kerr-AdS black hole

We start by reviewing aspects of a four-dimensional
AdS-Kerr black hole with mass M employing the notation
in [4]. In d =4 AdS spacetime, using Boyer-Lindquist
coordinates, the corresponding line element is

S A >
ds? = 3 dr* — < (di - %sinzﬁdqﬁ)z ta 46>

+ % sin%0 (M dep — adt> y (43)

—

where

@ 2
Ay=1—-—cos"0, -,
0 72C08 2

2
A_(rz—l—az)(l—%-%) -

Further, we define the event horizons as the zeros of the A
function: here, A has four roots, two are real (r) and two
are imaginary (3 4). Therefore Kpgskerr = 4. The analytic
value of these roots, additional to particular properties of
these roots, can be found in Appendix B.

T =r>+a’cos’d, (44)

14
:Eg(”—”i)- (45)

1. Wave equation

Using the process illustrated in Appendix A and the
results found in [4], the differential equation for the radial
ansatz is found to be

B =

X Rags(r) = KjaasRaas (), (46)

(w — Q;m)? 128 4 azm2

where Q; = - (1 +75). Here Kjqs is the angular

coupling constant, and to simplify the calculations it will
be set to zero here. For the form of the angular ansatz, see
[4]. Next, we follow the procedure of (33)

(0 — Q;m). (47)

24: a; = 0. (48)

Then, with A* = —L2Ew?
Eq. (46) becomes

(522

i=1

2.2
+% and some algebra,

err

i /;ez
+Zr Zr (HiiA(;(fij)_l)+ﬂie(r)=o. (49)

The above expression is, in the notation of (13),
lim,_,, q(r)(r —r;)* = 0. Further, here, lim,_, p(r)(r—
r,-) = 1—21&1
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2. Monodromies and sum of entropy variations

The indicial equation determining the monodromies «; in
the R frame reads

ai(a; = 2a;) =0

= a,- = {0,2&1} - {O,

2(r? 2

% (0 - Q,.m)}. (50)
where to be consistent with the definition in (11) the
coefficients a; € R. By mapping r — x~!' and analyzing
x=0, it can be proven independently that a, =
{=>"%,a,3->"% &}. Considering the relation (48)
that was previously identified, we conclude that

e = {0.3}. (51)

Our results are in agreement with a,, = Kagsger — 1 and
the limiting AdS-Schwarschild results (36). It is worth
noting that similar results hold in more exotic AdS (dS)
spacetimes: for an analysis of dS spacetime, see [21], and
for an analysis of NUT spacetimes, see [22]. Using the
same associations as (3)

4

> a=0, - 24:55,.:0, - 5(24:5,.):0, (52)
=1 i=1 i=1

where S; is the entropy computed at the r; horizon.
Additionally, this new bound is reverified using purely
thermodynamic relations in Sec. IV.

D. Kerr black hole

In this section we will consider a Kerr black hole with
mass M and angular momentum J = Ma. Using Boyer-
Lindquist coordinates, for this asymptotically flat space-
time we find that

((r* + a®)de — adt)?, (53)

where A=r>+a>-2Mr=(r—r_)(r—ry) and T =
r? + a?cos? 6. As above, the event horizon radii are the

zeros of the A function; here, r, =M + VM? —d°.
Therefore, K = 2.

1. Wave equation

Using the process illustrated in Appendix A and [3], the
radial ansatz is found to be

- a% az
{&Aa, +(ry—r) (r - ) + A*} R(r)

= K;R(r), (54)
where

A'(ry)
a4 :m(a)—ﬂim), (55)
the function A* = (2 4+ 2M(r +2M))w?, and K, is the
angular coupling constant. For the analysis of the angular
ansatz, see [3]. We can again follow the transform of (33)

and K; = 0, leading to an analogue of (49):
2 i~ -~ . ~
1 —2ia; 2a,a_+i(a, +a_)

2 2 : i + +

|:ar+<,‘1 r_ri>ar_ A
2 ~2 A *
a: ri—r; A*| -
+‘_Zl‘.(r—r)2<r—r- >+A] (r) (56)
=1 j#i J

As in (13), lim,., g(r)(r—ry)* =0. Further, here,
lim,_,, p(r)(r—ry) = 1-2ia,. Then, the indicial equa-
tion reads

a?at(aiﬂat _ Z&i) =0

= ol = {0, 2@} —{ Al 2) (w—Qim)}, (57)
(ri+a?)

where o™ € R. Using the mapping r — x~! and a

Frobemus expansion about x = 0 it can be directly shown
that A, = 4Mw. Additionally, an analysis similar to that
done in Appendix A is also possible. For more analysis of
the irregular singularity, including a discussion of its unique
scattering properties and the Stoke’s phenomenon, see [23].

2. Fake monodromies and sum of entropy variations

From (57), we find the Fuchs-type relation a1 + o2 =

4Mw. 1t is also possible to show the monodromic sum
evolves under L — oo such as (23). In fact, the Kerr-AdS
monodromies (50) in the limit yield

lima, — aia‘, limaz 4y > —2Mo +iwlim L, (58)
L—oo L—>oo L—oo
and the Fuchs relation
4
lim (Za,) =0 - o —4Mae=0. (59)

Letting Ay = —1lim;_ (a3 + ay) = 4M® and the identi-

fications in (2) we find

ag_at + aﬂat — /100 N 5(Sﬂat Sﬂat) 5Sﬂdt (60)
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where ST is the entropy computed at the r, horizon.
Additionally, this new bound is reverified using purely
thermodynamic relations in Sec. IV.

IV. THERMODYNAMIC IDENTITIES
OF BLACK HOLES

We now turn to the study of the geometrical relation of
thermodynamics for every black hole horizon (1) and the
novel thermodynamic identities of black holes (5)—(7) from
a purely thermodynamic perspective. Our focus is on
thermodynamics properties of black hole solutions that
have smooth horizons with spherical topologies. To estab-
lish a well rounded catalog for the thermodynamic iden-
tities we shall present explicitly several examples in this
section. Some of these results were previously assessed
in literature. We indicate the references accordingly in
each case.

In general, these equations involve the physical param-
eters defined at each black hole horizon. It is convenient to
define the intensive quantities employing the Arnowitt-
Deser-Misner (ADM) formalism in which the line element is

ds® = —=N2dP + y,(dx® + N°dr)(dx” + Nbdr), (61)

with x¢ spatial directions, and N(x%) and N”(x%) are the
lapse function and the shift vector, respectively. The inten-
sive variables are intrinsic to each horizon that will be
indicated by the subscripts.

Note that with this foliation of spacetime, the black hole
horizons r; (real or complex) are at N> = 0. As in [24], the
angular potentials and temperatures for each horizon are
defined:

2\/
() " I (V)
Q" = -N¥,, T,=— , (62)
4” V grrN2 ri
where k = 1,2, ..., [%] represents the independent planes

of rotation in d dimensions. Indeed, when evaluated at the
black hole event horizon r, we recover the Hawking
temperature T, .

In the ensuing analysis we will find the entropy sums
over all horizons. In almost all cases the relation is
independent of the extensive parameters, which in turn
implies the addition of the variations of the entropies to
vanish. In all cases we find a perfect agreement with the
corresponding results of the entropy and monodromy
relations analyzed in previous sections. From each of these
examples, new thermodynamic identities involving the sum
of the intensive quantities are obtained.

A. Kerr black hole

The radii function of a Kerr black hole [16] of mass M
and angular momentum J = Ma satisfying R,, =0 is

defined by the function A(r) = 1> + a®> — 2Mr. The outer

r. =M+ VM?—-a®> and inner event horizons r_ =
M — vV M? — a? are located at A(r.) = 0. The correspond-

ing physical parameters are given by
- A/(” i)
a SﬂM}’i ’

a
2 2°
ry+a

Ti Si:ﬂ(ri‘f'az), Q:t: (63)

corresponding to Hawking’s temperature, the entropy, the
angular momentum, and the angular velocity defined at
black hole horizons. In this case we checked that the above
physical parameters obey the relation (1). The sum of the
horizon areas is

[\S}

Z ;= 4nM>. (64)

i=1

The variation of this expression is

5(22: S,») = 8xMSM, (65)

i=1

consistent with Sec. III. Note also that

2] 2.Q,
Z?ZSJTM, Z#:o. (66)

i=1 i=1

These can be viewed as a consequence of the first law of
thermodynamics at each horizon r;. Treatments of some
notable cases are given in the following subsections and a
completely analogous story holds for general black hole
solutions, as we prove in Sec. V.

B. Kerr-AdS black hole

The metric of the four-dimensional Kerr-AdS black
hole [9], satisfying R, = —3L‘Zg,“, is asymptotic to
AdS, in a rotating frame, with angular velocity Q. =
—aL™2. The radii function is determined by A =
(r* +a*)(1 + r*L=2) — 2Mr. The horizons are located at
A(r;) =0 with i =1,2,...,4. The physical parameters
corresponding to Hawking’s temperature, the entropy, and
the angular velocity of the horizon (as measured in the
asymptotically rotating frame) are given by

1 o) o mite)
Ar(r; +a*) B
1+r3/L?
o = rri/L) (67)
ry+a

where E=1-a?/L? and Q; is the angular velocity
measured relative to a rotating observer at infinity. In
[25] the physical mass E and angular momentum J of the
AdS-Kerr black hole solution were computed at the
boundary (infinity) via the Komar integrals
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M

—
-
—

E==., J=Ea. (68)

It is straightforward to verify that these quantities obey the
geometrical law of thermodynamics (1). Further properties
among the horizons of the Kerr-AdS black hole solution
can be found in Appendix B. Using these, the sum of the
entropies at every horizon is independent of the physical
parameters

4
> 8 =-2alL?, (69)

and, also

4 Q. 4 1
;Ezo, ;izo. (70)

In the study of this system obeying the KG equation, we
found in Sec. III C the thermodynamic relation (5) from the
Fuchs relation. Given the sum of entropies relation (69),
one can compute its variation (keeping L fixed) and thence
obtain the associated thermodynamic relation 6> S; = 0
consistent with previous results. A completely analogous
story holds for all the AdS black holes in all dimensions.
See Secs. IV C and IV D 3 for details.

C. BTZ black hole

The mass, angular momentum, and entropy of the BTZ
black hole [8] are

2+ r? 2r.r
M=-"+2"= J=""=
L? L

S, =4xr,, (71)

and the Hawking temperature 7; and angular velocity €;
are

2 2
oy —rs - J
21"?

(72)

For this black hole solution, the roots of the radii equation

JZ 7"2

iat = M=0 (73)

are found to Dbe

L(MLEVML*-J?)
\

Just as in the previous cases, we compute the sum of all
entropies defined at each horizon r;

i S; =0. (74)

i=1

ri=A{%r.,£r_} with r,=

Considering the intensive quantities we further find

4 4
Z%:o, ;Tii:o. (75)

D. Higher-dimensional black holes

In this paper we are also interested in higher-dimensional
black holes. The physical parameters for each d > 5 black
hole solution are described in the following subsections.
Employing these quantities, we are able to establish new
thermodynamic relations.

1. Myers-Perry black hole in d=5

The metric of the five-dimensional rotating black hole,
satisfying R, = 0, was found in [7]. The function
1
A(r) == (r* +a})(r* +a3) —2M (76)
r
defines the horizon radii located at A(r;) =0 with
i=1,...,4. While the four roots are real, only two are
positive roots and correspond to the outer and inner event
horizons. Hawking’s temperature, the entropy, both angular
momenta, the angular velocities of the horizon, and
physical mass parameters are, respectively, given by3

| A(r) o PR ra)E )
! 47r(r +al)(rl2 a3)” ! 2r; ’
zMay ) Gk 3z
To=—7F" “Pral E=-"M, (77)

where k = 1, 2. The geometrical thermodynamical relation
(1) for the above quantities is satisfied as well as the
following relations:

24: S; =0 (78)

and

4 Q('k) 4 1
Z =0, > —=o. (79)

2. Myers-Perry black holes

The extension of Einstein’s gravity for asymptotically
flat rotating black holes in d > 5 spacetime dimensions is
shown in [10,11]. The K =d —1— ¢ horizons can be
found by the following radial equation:

3 .

In particular, for r, we can write the temperature as 7, =
r4 —a2u2
+ 172

ani(riJra )(r +a§)’
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[(d-1)/2]
A(ry=r2 J[ (P+a)-2M=0. (80)
k=1

where ¢ = (d—1) mod 2. As in [25] the entropy is
defined by

A, [(d=1)/2]
=22 [ (F+a). (81)
i k=1

The Hawking temperatures 7';, angular velocities Ql(k), mass

E, and angular momenta J ;) are given, respectively, by

k=1
(k) _ _ %
@ = ri4a;’ (82)
M.Ad_z d-2 MakAD—Z
e

where i = 1, ..., K includes all horizons. For the above
quantities, we find that geometrical thermodynamical
relation (1) is satisfied as well as the following relations:

K
> 8i=0 (84)

i=1

and

Sy
: » ——=o. (85)

K oW
Q)
> o,
= T i=1 "
Some of the results in this subsection for the entropy sum
were derived in [26].

3. Kerr-AdS black holes in d > 5

The extension of Einstein’s gravity for rotating black
holes that are asymptotically AdS in d > 5 dimensions is
shown in [10,11].

The horizons can be found by the following radial
equation:

[(d=1)/2]
A(r)=r2(1+2L72) J] (P+a})-2M=0, (86)
k=1

where ¢ = (d — 1) mod 2.

As in [25] the entropy is defined by

e 4r}_5 1- a%L‘2 '

The Hawking temperatures 77,
ng), mass E, and angular momenta J( are given,

respectively, by

angular velocities

[(d-1)/2] 27 -2
1 1 2—e(l1=riL™?)
T =— (1 21,2 _ i
Y 2m (rl( +ril™) ; ri+a; 2r; )
(88)
’ tai

MA,, [(d=1)/2] 1 l—e
_4ﬂH,[((iIl)/z](l—aiL_2)( ; l—a%L_z 2 >’
(90)

Ma, A,

Sy = sl .o

_ d-1)/2 _
an(1 - L) [ (1 - a1 ?)

where i includes all horizons. The geometrical thermody-
namical relation (1) for the above quantities is satisfied as
well as the following relations:

K 0 disodd ©2)
; i L;_Q Ay, diseven
and
K (k) K
Q: 1
L —(, —=0. 93
27, 2.7, )

Some of the results in this subsection for the entropy sum
were derived in [26,27].

E. Charged black holes

We now turn to the study of the sum of entropies of
charged holes. It is convenient to first define the relevant
thermodynamic quantities. Given a black hole solution one
can also compute new relations involving the intensive
physical parameter such as (6) and (7).

1. Reissner-Nordstrom black hole

The metric of a four-dimensional static, charged black
hole in the usual Weyl coordinates is presented [28,29]
where the vanishing of the function
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A(r)=1-—+= (94)
determines the horizon radii A(r;) = 0. These are trivially
ry =M=+ M?* - Q. (95)

The entropy, Hawking’s temperature, and electric potential
parameters are, respectively, given by

2 2
2 _ri-0 _Q
Sj: = nry, T:I: = 4”r3i . q):i: = ri. (96)

The geometrical law of thermodynamics (1) for the above
quantities is satisfied as well as the following relations:

2

> S =2x(2M? - Q?) (97)

i=1

and

2 D, 2 1
i=1 "1

i=1 "1

2. Reissner-Nordstrom-AdS black hole

The solution representing a four-dimensional static,
charged black hole in AdS is presented in [28,29]. The
function

(99)

defines the horizon radii located at A(r;) =0 with
i=1,...,4. The entropy, Hawking’s temperature, and
electric potential parameters are, respectively, given by

3L 42— P
_ rl 4+§1 Q i (D,:g (100)
r; r;

_ 2
Sl'—ﬂ'rl-, Ti

The geometrical law of thermodynamics (1) for the above
quantities is satisfied as well as the following relations:

4
> 8 =-2aL?

i=1

(101)
and

o, 1
;7:0, ZF:O’ (102)

t i=1

3. Reissner-Nordstrom black hole in d > 5

A charged, nonrotating, asymptotically flat black hole in
d > 5 dimensions is described in detail in [30]. The radii
function in this case can be written as

u

A(r) =1- F 7,-2(51_3) .

(103)

Integral to defining thermodynamic properties are the
outermost and innermost radii,

r =it - (104)
where
8xM ) 202
P A2 T a-a-y 1Y

Thus the ADM mass and charge can be constructed,

CAad=2)
A
0- W(”r‘ﬁ (106)

The entropy, Hawking temperature, and electric potential
defined at the outermost and innermost horizons can be
generalized:

-Ad—2 d-3 r d-3
S; = 4= a2, T, = 1-(—= :
! 4 rl = 4m’i[ (ri)

= A
" 4a(d=3)rt3

(107)

The geometrical relation of thermodynamics (1) for the
above quantities is satisfied as well as the following
relations for d > 4:

2d—-6
> si=0 (108)
i=1
and
2d—6 2d—-6
@, 1
Zi_, ~ -0 109
27 > 7 (109)

4. Reissner-Nordstrom-AdS black hole in d > 5

The asymptotically AdS static charged black hole in d
dimensions is described in detail in [31,32] with a radii
function,
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o, @ 2
=) (d=2)(d-1)L*’

(110)

where y and g have the same definitions of (105). In this
case, Hawking’s temperature, entropy, and electric poten-
tial defined at the respective black hole (BH) horizons
located at r; can be generalized:

2722 (d-1) 3222 Q%%
2

+ (d—2)(d=3)r? -

L? A2
= 4r(d = 2) 2% ==
Ad_zrd_z d-2 Q
S ==t D, = — 112
! 4 2(d-13) rj"3 (112)

Note that the geometrical relation of thermodynamics (1)
for the above quantities is satisfied as well as the following
relations for d > 4:

2(d-2)

disodd 13
z:: l % (HH@=22 4, ,L472  diseven )
and
2(d-2) 2(d-2)
) o, 1
— = —=0. 114
T 2T (114)

i=1 l i=1 t

5. Kerr-Newman black hole

The metric of a four-dimensional (asymptotically flat)
rotating, charged black hole was found in [12]. The
function that defines the horizons is

A(r) = (r* + a*) = 2Mr + Q? (115)
when A(ry) =0 and rp =M + — (a®> 4+ Q?). The
entropy, Hawking’s temperature, angular velocity, and
electric potential that are, respectively, given by

-+ 0
Sy =dn( +a?), T.="% ,
= 4n(ri + ) = drry (r3 + a?)
a Ory
Q, =———+, b, = . 116
* a*+r = a*+rk (116)

Employing these quantities the geometrical law of thermo-
dynamics (1) and the following relations can be verified:

MN

S; = 2x(2M? — Q?) (117)

i=1

6. Kerr-Newman-AdS black hole

The metric of a four-dimensional rotating, charged black
hole in AdS is presented in [12]. The function

)
A(r) = (r* + a?) (1 —|—p> —2Mr+ Q? (119)

defines the horizon radii located at A(r;) =0 with
i=1,...,4. The mass, angular momentum, entropy,
Hawking’s temperature, angular velocity, and -electric
potential parameters are, respectively, given by

o M - aM
C(1—alL™?)?’ (1—aL™?)?’
2 2
5, = ap it a) (120)
(1-%)
T_r,»(1+g—§+3£_i_a2j?Q2) . _a(l—g—i)
i 4rn(r? + a?) ' PRI
Or;
= +’r2. (121)

The geometrical law of thermodynamics (1) for the
above quantities is satisfied as well as the following
relations:

4
> S =-8xL?

i=1

(122)

and

4
(OF
27, =0

(123)

‘0, 4

7. Nonextremal rotating black holes
in minimal d =5 gauged supergravity

The solution of a nonextremal rotating black hole in
minimal d = 5 gauged supergravity is presented in [14].
The coordinate choice is a Boyer-Lindquist type of
(t,r,0,¢,w). The function

(r* +a})(r* + @) (1 + L7r) + 0* + 2a,a,0

’,.2

Ar) =

—2M (124)
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defines the horizon radii located at A(r;) =0 with V30
i =1,...,6. The entropy, Hawking’s temperature, angular A= 2 + a2cos?0 + a2sin’0
velocities, and electric potential parameters are, respec- ! s s
tively, given by 1 — a}L~2cos?0 — a3L~%sin0
(1=aiL™)(1 - a3L7?)
S, 7*((rf + a7)(r} + @3) + 414, 0] __asin’g i a2c0s2¢9
T (-2l (1-aL ) - L™ 22V
H1+ L2(2rF + al + ad)] - 2 9] 9] )
Ti rz[( + grztalz+a23} (ala2+Q) ’ f:_+Ql)_+Q 2) (126)
2mri[(ri + a1)(ri + a3) + @12, 0] ot o oy’
ol :al(r?ﬂl%)(l +L7r) + a0 o |
i P +a) (P +dd) + aaQ "fl"he generalized first law of thermodynamics (1) takes the
orm
o®? :a2(r +af)(1+L7 2)+Cl1Q
(rf +ai)(rf + @) + @1020 dE = T:dS + Q" dJ ) + QP dJ ) + ®,dQ,  (127)
= (*A,),, (125)
where the mass and angular momenta are defined, respec-
where tively, as
|
_ mL*M(3L* - (a} + az)L2 —ata3) — 2a,a,0(a3 + a3 — 2L?)) (128)
B Aaf - L) (L? - i3)? ’
I z2a,M + Qay(1 + a3L72)] . x2a;,M + Qa, (1 + b*L72)] (129)
O 41— a2l 22 (1- L) BT a1 -dL (1 -aL7)

Our results show that the relation of the entropy sum
vanishes,

6
>

i=1

(130)

and the relations between the intensive quantities yield

defines the horizon radii located at A(r;) =0 with
i = 1,...,6. The entropy, angular velocities, electric poten-
tial, and Hawking’s temperature are, respectively, given by

27°((r; + a})(r; + a3) + Ori

S; = ,
icpi o igf.“) o Z Lo s " 3(1-diL?)(1 - a3l )
=T = =T o) — a[(1+ L7r7)(r + a3) + QriL 7]
ST A ad) T on
L4+ L72r)(r} + a? L2
8. Charged rotating black holes Q% — ap[(1 + (i +aj) + OnL™
. . ! (r? +a?)(r? + a3) + QOr;
in d =6 gauged supergravity i 7 2 i
The metric of a six-dimensional rotating, charged black _ Qi (1 -aiL™?)(1 - a3L7?) (133)
hole in d = 6 gauged supergravity is presented in [15]. The n (rF+a})(rr+a3)+ 0r’
function
A(r)=(r*+a?)(r*+a3)
d
LR +ad) + Ol (P +ad) + Q) —2mr (132)
|
200+ L2k 2rr+at +a3) | AQL7Er—(1—L72r3)(r} +a3)(r} +a3) — Q°L™2 (134)

dari[(r} 4 ai)(r; + a3) + Ori]

dari[(r7 +ai)(r; +a3) + Qr|]
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7 |2M (e ) @ (1 + s )|
(1-aiL7?) ' (1- azL 1-a3L72) ' (1-a?L7?)

laL)

E—

_7a,(2M 4 (1 — a,L72)Q)

J
W31 - a L) (1 - L)

For the above quantities, the geometrical thermodynamical
law (1) is satisfied as well as the following relations:

3(1-a2L7%)(1—-a3L72) ' (135)
_ may(2M 4 (1 - a;L72)Q)
0= 30— L (1 - al 27 (136)
1
D Si# f(EJ0Qp) > Y 7 =0,
Q @} _
ZT,._O’ ZT[_O. (142)

(137)

and

©)

6
Qi
=0, ; =

1

ﬂye

6 6 1
Z > =0, (138)
i=1 i=1 "1

V. GENERAL THERMODYNAMIC RELATIONS
FOR BLACK HOLES

In this section we will show the new thermodynamic
relations follow from the mechanical law of black hole
horizons and the properties of the sum of the entropies. Our
starting point is the first law for all black hole horizons (1)
for a black hole solution with r; horizons (including all
horizons). This property for all black hole horizons can be
written as

1 ol o!
dS; = —dE = ——dJy - Z?’dQ,. (139)

k ! l

Now, adding all these equations together for every black
hole horizon leads to the expression

st = (Z >dE Z(Z%)d]
D;
-3 (57 )
The left-hand side is

st,- = d(ZS,),

(140)

(141)

such that when ), S; is independent of the extensive
quantities,

i

Therefore, together with the universal property of a first law
for every black hole horizon, it is only necessary to identify
the functional dependence of the sum of the entropies of
every horizon in the solution ) S; to single out the
thermodynamic relations the solution will obey. For black
hole solutions, such as for the Schwarzschild, Kerr,
Reissner-Nordstrom, and Kerr-Newman black hole solu-
tions, where ), S; = f(E, Q) we can infer that

while

1 o
D #0. Y #O (144)

i

VI. DISCUSSION

We have verified that the equations of motion of
quantum field theories in curved backgrounds, more
precisely the KG equation in black hole backgrounds,
encode important black hole thermodynamic relations. The
universality of the entropy variation relations was estab-
lished for a large class of black holes, and dimensions, in
both asymptotically flat and asymptotically anti—de Sitter
spacetimes. The monodromies capture the infinitesimal
changes in the black hole background produced by the field
excitations. This emergent link between monodromies and
entropies results in a thermodynamic identity for the sum of
all horizon entropy variations. This raises the possibility of
further thermodynamic relations defined as independent
sums of temperatures and angular velocities defined at
every black hole horizon. Their structure may be inter-
preted as conditions for thermodynamical equilibrium.4 In
fact, for a fixed value of the black hole mass, all black hole
systems would seem to be in thermodynamic equilibrium

*We thank the referee for this comment.
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giving rise to a relation between the thermodynamic
systems defined at each horizon.

The origin of these relations can be put down to the fact
that >, S; # f(E, Jy, Q;). Our explicit results indicate that
black hole solutions with at least one imaginary horizon
obey all the thermodynamics relations (6) and (7). We
emphasize that the thermodynamic summation relations
apply in theories involving multicharge black holes,
including black hole solutions in gauged supergravities.
For example, the charged rotating black holes in minimal
d =5 and d = 6 gauged supergravity are consistent with

5(2% S,-> —0.

i=1

(145)

From the more formal perspective, we have here worked out
the details for the link between the monodromies and
entropies for charged black holes. Nevertheless, our thermo-
dynamic analysis contains robust evidence to argue that
similar results will be found. A way to formally verify this
proposal is to consider a field interacting with electromag-
netism through the equations of motion for a massless
charged scalar. We leave this analysis for the future.

Note that the KG equation for extremal asymptotically
flat black hole solutions contain two irregular singular
points (the event horizon and infinity). This is in contrast
with nonextremal asymptotically flat black hole solutions
containing only one irregular singular point at » = co. The
emergence of thermodynamic relations is also expected and
will be studied elsewhere.

Black hole solutions in GR in higher dimensions also
contain more exotic solutions such as black rings, bicycling
black rings, black branes, and black strings. It would be
interesting to analyze the first law of all black hole horizons
and the emergent thermodynamic relations from monodro-
mies for all these other cases. Further tests will include
those for black hole solutions in alternatives of GR, e.g.,
Gauss-Bonnet or f(R) theories.
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APPENDIX A: REGULAR AND IRREGULAR
SINGULAR POINTS FOR BLACK HOLES

Here we elaborate some subtleties that arise in the
computations of the fake monodromy A.. Section II A
focused on regular singular points. In order to determine the
fake monodromy around an irregular singular point, such as
r = oo in this paper, we consider an ODE of the form

d*R dR

(A1)
Then the following definition can be applied to determine
the nature of any singularity. Definition: Point a is an
ordinary point when functions p(r) and ¢(r) are analytic at
r = a. When the functions p(r), g(r) each have poles on,
e.g., r = a, we call a singular point a to be regular if either
p(r) or g(r) diverges as r — a but

lim(r — a) p(r) = finite = py,

r—a

lim(r — a)?q(r) = finite = g,. (A2)

r—a
Otherwise, we call it irregular.

By performing a suitable coordinate transformation to a
new variable u(r) = f(r)R(r), for some function f(r) to be
determined, we may write this differential equation (A1) in
the language of [33] as

q1 , 92

u"+g(r)u=0, with Z](r)zqo—k?—f—ﬁ—km (A3)

around the irregular singular point r = oo0. Using Eq. (3) in
[33] Sec. III.2,

u(r) = e*Vaoryits <1 + Z%) (A4)

n>1

where the fake monodromy is determined by 4., = ZT\%—O'
This prescription for computing 4, is employed throughout
this paper. We present the explicit computations for the fake
A (at the irregular singular point 7 = oo) for a d-dimen-
sional Schwarzschild black hole back to back with the
asymptotically AdS black hole cousin (with all regular
singular points, including r = o).

Example: d > 4 Schwarzschild black hole (asymptoti-
cally flat and AdS)

Consider first an AdS,; Schwarzschild black hole:

ds® = —Adi® + A~'dr? + r2dQ, (AS)
2M
whereAzl—F—FP. (A6)
Then,
—-A
G = A7 (A7)
r’[Z]

Here, [2];; is the surface submetric. By dimensional analy-
sis, it is apparent that, if dimX = n: det= = r*'f(¢,),
where f(¢,) is some function of the generalized angles
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[in fact, using generalized polar coordinates: f(¢,) =
[17=7 sin"~'=/(¢;)]. Because it is a strictly projected sub-
metric, n = d — 2, then, detg = —r>~*£(¢,).

We now turn to the Klein-Gordon equation

K,j0] = =0, (V=g 0)[0] = 0. (a9
1

rd_z—f(%)aﬂ(rd_z f(#a)g"0,)[®] =0,  (A9)
1

G (-AT0,

i f(¢a)( [ f(¢a)(=A710,)]
+ 0,[r"7\/ (o) (40,)]
+ 0:[r 2/ f(da) (279))]) [@] = 0. (A10)

Thus, invoking the separation of variables, let ®(¢, r, ¢,,) =

W(O)R(r) TT/=2 0i(h). so that

Ky [®]

{T =0, (A11)
AW | 0,[¥240,R)
W(r) ri2R(r)
0i( f(ea)zijaj H:’:_lz 0:(¢:))

=0.  (A12)

VI(0) T 0:(¢0)

Then, imposing eigenvalues,

—AT' W (1 ‘
w =0’ & W(H) = Woe™, (A13)
1
)20 A
T (e [[ow)
=> Ky, (A14)
so that we may rewrite the radial ansatz as
ANy PRI RI+3 K, =0, (AlS)
—_— r pu—
A r2R(r) T " L '
{ —0,[r"2 A0, R +— +ZKL} r)=0. (Al6)
The transform
R(r) = (r*2 = 2Mr)~2u(r) (A17)
eliminates the first order term, yielding
9,(ri2A0,(r1% - 2Mr)_1/2) w?
Oru(r) + < ri2A(rd=2 = 2Mr)~1/2 * A2 u(r) =0.
(A18)

In the above form, the asymptotic waveform is more
apparent, albeit with a local, functional frequency 9%u(r) +

@*(r)u(r) =0,

5 0,(r'2A)((d=2)ri3 —=2M)  (d=2)(d =3)(ri2 = 2Mr)ri=* = 3((d = 2)r43 — 2M)? N w? (A19)
- = — — P
2r2A(rd2 = 2Mr) 2(rd2 —2Mr)? A?
or
T ER-dE-D) =) (@-DE-(1-F)-3@-D - a0
2P - 20 - 2 270 - 357 AT
For AdS (or finite L), asymptotically expanding at r — oo
_ d d-2 2M 2M ri= —2Mm\" 2M\ "
e (522 (0 20) [ 2] [ 2]
n=0 n=0
1 2M 2M N\ 2 2M N\ 1
_M{(d—z)(d—3)<1 _rd‘3> 3<(d 2) - rd-3> HZ”(M—Q ]
L*w? rd=3 — 20\ -1
T3 [Z"( ] ) LG—z] (A21)
n=1
SO o(L)) £ U=DE=3 (oL (A22)
T4 r 2r? r))

7
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(d-2)(d-3)

Thus, using (Al), we see that py =0 and g, = 5

Returning to (A20) and considering the flat case, lim; _,

, 0 (d=2)(d-3)(1 -2

. Therefore, r — oo is a regular singular point in AdS,, V d.

=2 =2 .
W™ = Wy

-2((d-2) - %)

(0]

ﬂat*(l_%y_

Clearly, due to the constant term, @ fails the criteria in
(A1): lim,_ , r*@* = co. Thus, we must analyze the point
r — oo as irregular. As described in [33], the ODE is of the
form (A3). Here gy = —w* ¥V d. For d = 4, q; = 40*M?,
while Vd # 4, g, = 0. Using [33] Sec. 1.2 Eq. (6), we
find

A4 = 1oMw,

it =o0. (A24)

Then, in the u(r) frame we find the asymptotic solutions

to be
: = 1
u(r) — eizwr . riz/lm (1 +0 (_))
7

Equivalently, we can determine the asymptotic expansion
in the R frame by employing the transform (A17) between
the different frames

R(r) — pior, rﬂ:ilw—(d—Z)ﬂ(l + 0(1))
r

In the case of d = 4, we find

(A25)

. . 1
R(r) — eilwr . riZzMa)—l (1 +0 (_) > . (A26)
r

Note that in the R frame, one finds two (rather than one)
values of the fake monodromy +1.. As we explain in
Sec. I, the frame that simplifies the identification between
the monodromies and entropy variations is a frame in
which one of the monodromies vanishes at each of the
singularities. This complication is an artifact of the coor-
dinate system, where having two monodromies at each
point may result in ambiguities. We argue that this
complication does not arise in the R frame where the
ODE is of the form (13) with (14). Moreover, for
consistency in implementing the Fuchs-type relation the
monodromies have to be determined in the same frame. The
R frame was the preferred choice in the previous sections to
find the monodromies «; at the finite regular singular
points. Inverting the relation (33)

2r3(1 -

1 2M

)’

)-a{a-n- 2 )

(A23)

Al(r;)

(r—r)T4R(r), with @ = (A27)

To be explicit, the associated asymptotic expansions at r =
co in the R frame are

R(r) = eior . p=(d=2)/2 (1 +0 <i> >, (A28)

- . s 1
R(I") — etior, r+l2/1m—(d—2)/2 <1 +0 (_)) (A29)
r

Within this frame A, = 2., the fake monodromy, con-
tributes to the Fuchs-type relation at r = co and, equiv-
alently, constrains the variational entropy sum over nite
horizons. To summarize, the fake monodromies in the R
frame are

For Asympt, Flat,: 1o, = 4Mw, (A30)

For Asympt, Flat,.,: A, — 0. (A31)

APPENDIX B: PROPERTIES
OF KERR-AdS HORIZONS

We briefly describe a few useful properties of the Kerr-
AdS black hole solution: (1) The function A(r) =0 has
four roots ry =r,, r, = r_, r3, r4 and can be written as

A(r) = (r=r)(r=ro)(r=ry)(r—ry)/L?  (Bl)

(2) The roots of A(r) = 0 are related in the following way:

Sheo [[n-re )
i=1 i=1
[10? + a®) = (2maL?)?,

[J+r2/L%) = @2m/L)>. (B3)

(3) This implies that we can rewrite the parameters as
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(L2 + ) (L2 + 1) (4 ry)

5 rer (L2 +r2 +ror, + r%r)

- : - : B4

2L (L* —r_r,) “ L>—r_r, (B4)

- 1 <r_ bt \/4L4 + L2(3r% +2r_ry + 3r2§) +rory(r+ r+)2>’ (BS)
2 rry —L

Y 1 (r_ . \/4L4 + L*(3r2 +2r_r, + 3;&2) +ror(ro+ r+)2>. (B6)
2 rry —L
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