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We argue that the equations of motion of quantum field theories in curved backgrounds encode new
underlying black hole thermodynamic relations. We define new entropy variation relations. These
“emerge” through the monodromies that capture the infinitesimal changes in the black hole background
produced by the field excitations. This raises the possibility of new thermodynamic relations defined as
independent sums involving entropies, temperatures, and angular velocities defined at every black hole
horizon. We present explicit results for the sum of all horizon entropy variations for general rotating black
holes, in both asymptotically flat and asymptotically anti–de Sitter spacetimes in four and higher
dimensions. The expressions are universal and in most cases add up to zero. We also find that these
thermodynamic summation relations apply in theories involving multicharge black holes.
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I. INTRODUCTION

Quantum field theory in curved backgrounds is expected
to provide an accurate description of quantum phenomena
occurring near—and inside of—black holes. The simplest
form of the equations of motion are embodied in the Klein-
Gordon (KG) equation, which describes a massless scalar
field in a curved background. Surprisingly, the KG equa-
tions encode not only the analytic structure of the back-
ground geometries but also new underlying black hole
thermodynamic relations. In this paper we will describe the
emergence of a new thermodynamic identity from the KG
equation, a constraint on the sum of the variational horizon
entropies, and identify new universal thermodynamic
relations for black holes.
The discovery of the thermodynamic behavior of black

holes has given rise to most of our present physical insights
into the quantum nature in the strong field regime. Most
famously, in 1973, Bardeen, Carter, and Hawking [1]
provided a general proof of the first laws of thermody-
namics of black holes with the intensive quantities defined
at the black hole event horizon rþ. Yet, eternal black hole
solutions contain a much richer geometrical horizon struc-
ture which includes Cauchy horizons (in Kerr spacetimes,
the so-called inner event horizon r−). More recently, it was
shown in [2] that there is a universal “geometrical first law
of thermodynamics” for a Cauchy horizon. And, while
physically unobservable, the fact that the inner horizon

obeys standard thermodynamic relations is an indication of
the validity of the conformal field theory description [3,4].
This additional horizon structure appears to play an
important role in the precise description of generic micro-
states [5]. It is natural then to inquire whether, analogously,
a geometrical thermodynamic law holds for every (real or
complex valued) horizon in more general classes of black
holes. In what follows, we shall just refer to zeros of the
radial function as horizons, regardless of whether these are
real, imaginary, or complex.
In this paper, we consider the geometrical relation of

black hole thermodynamics:

dE ¼ TidSi þ
X
k

ΩðkÞ
i dJðkÞ þ

X
l

Φl
idQl; ð1Þ

Here Si is the entropy, and the extensive quantities—the
total mass or energy E, the angular momenta JðkÞ, and the
total charge Ql—are the Komar charges. The correspond-
ing intensive quantities—the temperature Ti, the angular

velocities ΩðkÞ
i , and electromagnetic potential Φl

i—are
defined at each black hole horizon. The i subscript
represents the ri black hole horizon where the thermody-
namic quantity was defined, the index k ¼ 1; 2;…; ½d−1

2
�

represents the independent planes of rotation in a d
spacetime and l the number of electric/magnetic charges.
An explicit examination of a fairly extensive number of
black hole solutions reveals that the geometrical law of
thermodynamics (1) is indeed universal for all black hole
horizons.
Many discussions in the literature of KG wave equations

in curved spacetimes with more than one Killing horizon
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note that these will have dominant contributions associated
with poles at each of these zeros [3–6]. One can therefore
expect that the thermodynamics associated with each
horizon will play a role in governing the properties of
the black hole at the microscopic level. Remarkably, we
find that the geometrical first law of thermodynamics (1)
for every black hole horizon emerges from the KG equation
(via monodromies). We argue that the variations with
respect to the conserved charges of the black hole entropies
δSi are directly proportional to the monodromies αi around
each horizon:

δSi ¼
ðd − 2Þ

4
Ad−2αi; ð2Þ

where Ad−2 ¼ 2πðd−1Þ=2=Γððd − 1Þ=2Þ is the area of a unit
(d − 2) sphere. The entropy variation relation (2) follows
from a rather remarkable extension of the ideas in [2] for
the black hole event horizon, which is recovered when, e.g.,
d ¼ 4 for the Kerr black hole solution

δSþ ¼ 4πα̃þ; where α̃þ ¼ ðω − ΩþmÞ
4πTþ

: ð3Þ

The scalar field excitations produce infinitesimal changes
in the black hole mass ω ¼ δM and angular momentum
m ¼ δJ; these associations reproduce (1) for the Kerr black
hole. Having verified (1) explicitly for all horizons, we can
confirm that the monodromies have an important physical
interpretation; namely they represent the variation in the
entropy (2). We find that these infinitesimal relations do not
imply global identities, such as Smarr relations.
Critically, the KG equation can be reduced to a Fuchsian-

type radial ansatz. This equation encodes the monodromy
coefficient at infinity α∞ of points at r ¼ ∞. Employing a
similar argument as in (2), we can therefore also define a
new monodromy/entropy variation relation at infinity,

which is δS∞ ¼ ðd−2Þ
4

Ad−2ððK − 1Þ − α∞Þ with a constant
parameter K.
Subsequently we find another remarkable thermody-

namic feature for black hole solutions emerging from
the KG equation: we find that the summation of all
monodromies—generally, a Fuchs(-type) relation—defines
a new thermodynamic relation of the entropies, namelyX

i

δSi ¼ δS∞: ð4Þ

We have explicitly verified this relation for an extensive list
of black hole solutions. These include Schwarzschild,
Kerr, d-dimensional Schwarzschild and Myers-
Perry (MP) [7], Bañados-Teitelboim-Zanelli (BTZ) [8],
d-dimensional Schwarzschild and Kerr-(A)dS [9–11],
Reissner-Nordstrom (RN) [12], Kerr-Newman [13],
Kerr-Newman-Anti-deSitter (AdS), d-dimensional RN-

(A)dS, d ¼ 5 min gauged Supergravity (SUGRA) [14],
and d ¼ 6 gauged SUGRA [15] black hole solutions.
In all cases, except for Kerr and Kerr-Newman,1 S∞

seems independent of the extensive quantities for all black
holes. Therefore, δS∞ ¼ 0 and the relation (4) leads to

δ

�X
i

Si

�
¼ 0; ð5Þ

and the following new universal relations for black holes:

X
i

1

Ti
¼ 0;

X
i

ΩðkÞ
i

Ti
¼ 0: ð6Þ

It is also possible to verify, by considering charged black
hole solutions, that

X
i

Φl
i

Ti
¼ 0: ð7Þ

Our results are summarized in Table I.
The paper proceeds as follows. Section II includes an

overview of the KG equation, our results for the mono-
dromies, and the Fuchs(-type) relation for all black holes
listed in Table I. Section III details the AdS and Flat
calculations for the Scharzschild and Kerr geometries.
Section IV contains the explicit physical parameters for
general asymptotically flat or AdS black holes solutions—
which are in some cases neutral, charged, or rotating—in d-
spacetime dimensions; parameters are defined at every black
hole horizon and individually shown to be consistent with
the first law of thermodynamics for all black hole horizons.
In each case we also assess the relation (5)–(7) employing
purely thermodynamical quantities. In Sec. V, we prove the
new relations (6) and (7) that follow from the first law of
thermodynamics and the properties of the

P
i Si. Finally, in

Sec. VI, concluding remarks are presented.

II. OVERVIEW

One can explore the geometry of a neutral black hole by
considering small perturbations of the background. One of
the simplest possibilities is a minimally coupled scalar, i.e.,
a massless scalar field that satisfies the KG equation,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0: ð8Þ

The solutions to this equation can be presented in such a
way that the Killing symmetries deriving from stationarity
and the axial symmetries are satisfied. Then the wave
function can be written as

1The Kerr black hole solution does partially break the con-
dition for the sum of the entropies being independent of the
extensive quantities. Namely,

P
i Si ¼ 4πM2, and thusP

i
1
Ti
≠ 0. Further details can be found in Sec. IVA.
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Φðt; r; θ;ϕkÞ ¼ exp−iωtþ
P

k
imkϕk TðθÞRðrÞ; ð9Þ

by means of the time coordinate t, the radial coordinate r,
the polar coordinate θ, together with ½ðd − 1Þ=2� azimuthal
angular coordinates ϕk. From the black hole backgrounds
(given in, e.g., Sec. III) it is straightforward to write out
equation (8) explicitly. For black hole solutions to
Einstein’s equation of general relativity (GR) Rμν ¼ Λgμν
with Λ ¼ −ðd − 1Þ=L2, in Boyer-Lindquist coordinates,
the wave equation can be reduced in the radial r plane to a
second order differential equation (ODE) with singularities
r1;…; rK and the point at infinity r ¼ ∞. It is useful to
define an “evenness” integer ϵ ¼ ðd − 1Þ mod 2 which is 1
for even d and 0 for odd d to express

K ¼ dþ 1 − ϵ: ð10Þ

For black holes,2 while r1;…; rK are regular singular
points, r ¼ ∞ can be either a regular or an irregular
singular point. For instance, in d-spacetime dimensions
we find that the point r ¼ ∞ is an irregular singular point in
asymptotically flat black holes (Λ ¼ 0) and is regular for
asymptotically AdS black holes (Λ ≠ 0)—see Appendix A
for details. This distinction between regular and irregular

singular points might seem artificial, but their implications
for RðrÞ are starkly different. Regular singular points have
series expansion around, say, ri of the form

RðrÞ ¼ ðr − riÞiαi ½1þOðr − riÞ�; ð11Þ

whereas the asymptotic expansion for the solutions, e.g.,
around r ¼ ∞, one must also include exponential factors in
the series expansion

RðrÞ ¼ eiωrriλ∞−ðd−2Þ=2½1þOðr−1Þ�; ð12Þ

where λ∞ is the eigenvalue of the formal monodromy that
we will refer to as fake monodromy.
Having identified the singular points, we turn to the

Fuchs relation, which describes a direct relationship
between the asymptotic exponents αi (i.e., the monodro-
mies) of formal series solutions (11) of Fuchsian linear
differential equations. We argue that the radial ODE for
AdS black holes has all regular singularities (including
r ¼ ∞) and is therefore a Fuchsian-type equation with a
corresponding Fuchs relation. As we will now show, the
Fuchs relation relating the sum of the monodromies around
each regular singular point of the ODE is exactly the
relation of the sum of the variation of the black hole
entropies defined at each horizon (4). Furthermore, we will
establish as a limiting case a Fuchs-type relation for the
asymptotically flat black holes. The new Fuchs-type

TABLE I. This table summarizes new thermodynamic relations for a copious number of black hole solutions in
d ≥ 3 spacetime dimensions. The results include the confirmation of the emergent relation for the sum of the entropy
variations of each black hole horizon

P
i δSi ¼ δS∞ as well as new thermodynamic relations. These new

relationships, jointly with the properties of the
P

i Si, are a by-product of the geometrical relation of
thermodynamics for all black hole horizons (1). The ✓ represent the thermodynamic relations that are fulfilled,
while the ✗ signal those that fail to obey the relations. The horizon radii ri are defined by the radial function
ΔðriÞ ¼ 0.

Black hole
P

i δSi ¼ δS∞
P

i T
−1
i ¼ 0

P
i Ωa

i =Ti ¼ 0
P

i Φa
i =Ti ¼ 0

Schwarzschild ✓ ✗ … …
Kerr [16] ✓ ✗ ✓ …
Reissner-Nordstrom (RN) ✓ ✗ … ✗
Kerr-Newman (KN) [13] ✓ ✗ ✓ ✗
Schwarzschild d > 4 [17] ✓ ✓ … …
Myers-Perry [7] ✓ ✓ ✓ …
BTZ [8] ✓ ✓ ✓ …
Schw-(A)dS ✓ ✓ … …
Kerr-(A)dS [9] ✓ ✓ ✓ …
Schw-ðAÞdSd ✓ ✓ … …
Kerr-ðAÞdSd [10,18] ✓ ✓ ✓ …
RNd [12] ✓ ✓ … ✓
RN-(A)dS ✓ ✓ … ✓
RN-ðAÞdSd ✓ ✓ … ✓
KN-(A)dS [12] ✓ ✓ ✓ ✓
5d gauged SUGRA [14] ✓ ✓ ✓ ✓
6d gauged SUGRA [15] ✓ ✓ ✓ ✓

2We focus on the nonextremal black holes in this paper where
ri ≠ rj. The extremal black hole cases will be studied elsewhere.
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relation also gives account to the sum of the variation of the
black hole entropies defined at each horizon that is found
from purely thermodynamical relations. In this sense, we
find a new emergent black hole thermodynamic relation
from monodromies relations.
Understanding the Fuchs relation will suffice to illustrate

the essence of our approach to the sum of entropy
variations, so we focus first on asymptotically AdS black
holes in Sec. II A, discussing the added complications of
irregular singular points for asymptotically flat black holes
in Sec. II B.

A. ODE with all regular singular points:
Fuchsian equation

Here we give the fundamentals of our approach to the
sum of entropy variations for asymptotically AdS black
holes in all dimensions. We begin by defining the second-
order Fuchsian equation with all K regular singularities at
r ¼ ri, where i ¼ 1; 2;…;K, and at ∞. This is given by

d2R
dr2

þ pðrÞ dR
dr

þ qðrÞR ¼ 0; ð13Þ

with rational functions of the form

pðrÞ ¼
XK
i¼1

1 − αi
ðr − riÞ

; qðrÞ ¼
XK
i−1

qi
ðr − riÞ

: ð14Þ

A brief review can be found in [19]. This representation of
Eq. (13), which we will refer to as the monodromy frame
choice, corresponds to a setup for a Fuchsian equation with
limr→ri qðrÞðr − riÞ2 ¼ 0 where one of the two mono-
dromy exponent parameters (around the regular singular
point) is null. This particular frame gives us the simplest
form for the monodromies to establish the link with the
entropy variations as we explain below. While other frame
choices are possible, we found that alternative frames as
defined in [20] give the same results with slightly more
involved relations.
When the differential equation (13) has regular singu-

larities over P1ðCÞ, its exponents obey the so-called Fuchs
relation [20]:

XK
i¼1

αi ¼ ðK − 1Þ − α∞: ð15Þ

Note that at r ¼ ri, the indicial equation is

αiðαi − 1Þ þ p0αi þ q0 ¼ 0; ð16Þ

where

p0 ¼ lim
r→ri

ðr − riÞpðrÞ; q0 ¼ lim
r→ri

ðr − riÞ2qðrÞ: ð17Þ

For (13), one finds that p0 ¼ 1 − αi and q0 ¼ 0, so that the
K-nontrivial monodromy exponent parameters at the finite
singularities ri are αi. The monodromy exponent parameter
α∞ relative to the r ¼ ∞ regular singular point is given by
(11) transformed by x ¼ r−1 at x ¼ 0.
Having established our conventions, we proceed to

present our general approach for AdS black holes in
d-spacetime dimensions. An examination of the radial
equation derived from the KG equation in AdS black hole
backgrounds in all dimensions shows that the ODE con-
tains all regular singular points, including asymptotic
infinity (p0, q0 are finite at every singular point). It is
therefore a Fuchsian equation and its parameters are subject
to the Fuchs relation (15). To implement the Fuchs relation
we set the frame that simplifies the analysis by bringing the
ODE to form (13). The parameter K corresponds to the
total number of horizons in the black hole solution.
Extending the ideas in [2], we argue that at every (regular

singular point) black hole horizon in (15) we can identify
the monodromies with the entropy variations as in Eq. (2).
The Fuchs relation then encodes an emergent relation on

the sum of entropy variations

XK
i¼1

αi ¼ ðK− 1Þ− α∞ →
XK
i¼1

δSi ¼ δS∞; ð18Þ

where we defined δS∞ ¼ ðd−2Þ
4

Ad−2ððK − 1Þ − α∞Þ. As we
will illustrate explicitly in Sec. III, the variation δS∞ ¼ 0
for asymptotically AdS black holes. Therefore, replacing
these emergent relations between the entropy variations and
monodromies, the Fuchs relation (15) can be interpreted as
the sum of the variation of entropies

XK
i¼1

δSi ¼ 0 for AdS − black holes: ð19Þ

We verified this new emerging thermodynamic relation for
the sum of the variations of entropies in Sec. IV employing
purely thermodynamic definitions. Having identified this
relation, we were able to find and verify the sum of the
entropies being independent of all intrinsic or extrinsic
parameters

δ

�XK
i¼1

Si

�
¼ 0; ð20Þ

which follows (19) and other universal relations (6) for
black holes such as
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XK
i¼1

1

Ti
¼ 0;

XK
i¼1

ΩðkÞ
i

Ti
¼ 0: ð21Þ

We present a proof for the latter relations in Sec. V.

B. ODE with one irregular singular point:
Fuchs-type relation

In contrast with the black hole solutions in curved
spacetimes, the radial equation derived from the KG
equation in asymptotically flat black hole backgrounds is
irregular at asymptotic infinity. This ODE is not given by a
Fuchsian equation, yet we can still find a Fuchs-type
relation that holds for asymptotically flat black holes.
Asymptotically flat black hole solutions of GR result from
taking a limit of vanishing cosmological constant Λ → 0.
Equivalently, since Λ ¼ −ðd − 1Þ=L2, the vanishing cos-
mological constant limit corresponds to L → ∞. The
Fuchs-type relation that we find for asymptotically flat
spacetimes (with one irregular singularity at r ¼ ∞)
follows from taking the vanishing cosmological constant
limit (L → ∞ in our case) in Eq. (15):

lim
L→∞

�XK
i¼1

αi − ðK − 1Þ þ α∞

�
¼ 0; ð22Þ

XK−2

i¼1

αflati − λ∞ ¼ 0: ð23Þ

We will refer to (23) as the Fuchs-type relation for
asymptotically flat black holes containing one irregular
singular point at ∞. This relation results from K − 2
monodromies remaining finite

lim
L→∞

αi ¼ αflati ; ð24Þ

around the K − 2 singularities that, in the L → ∞ limit,
remain (finite) regular singular points. The other two
regular singular points converge to r ¼ ∞, and, interest-
ingly, the limiting sum of their corresponding monodromies
is precisely the fake monodromy λ∞ as defined in (12),

lim
L→∞

αK−1 þ αK ¼ −λ∞; ð25Þ

We can implement the relation (23) to asymptotically flat
black holes (such as Kerr or Myers-Perry black hole
solutions). The total number of horizons in the black hole
solution in this case is K̄ ¼ d − 1 − ϵ with ϵ ¼ 0, 1,
respectively, for odd or even d-dimensional spacetimes
(or alternatively, in terms of the K, K̄ ¼ K − 2). As in the
previous section, employing Eq. (2) relating the mono-
dromies to the entropy variations at each black hole
horizon (which are always regular singularities) we find
through (2) that

XK−2

i¼1

αflati − λ∞ ¼ 0 →
XK−2

i¼1

δSflati ¼ δSflat∞ ; ð26Þ

where δSflat∞ ¼ ðd−2Þ
4

Ad−2λ∞. We therefore argue that a new
universal thermodynamic relation involving the sum of the
variation of entropies emerges from the Fuchs-type
relation (23) for asymptotically flat black hole solutions
with K̄ horizons:

XK̄
i¼1

δSflati ¼ δSflat∞ for asymptotically flat black holes:

ð27Þ

As we will explicitly show in Appendix A, the fake
monodromy for asymptotically flat black holes is

For Asympt: Flat4∶ λ∞ → 4Mω; ð28Þ

For Asympt: Flatd>4∶ λ∞ → 0: ð29Þ

We verified in these cases that the new emerging
thermodynamic relation for the sum of the variations of
entropies (27) employing solely the physical thermody-
namic parameters—see Sec. IV for details. A new set of
thermodynamic relations (6) also arises for asymptotically
flat black holes with λ∞ ¼ 0,

XK̄
i¼1

1

Ti
¼ 0;

XK̄
i¼1

ΩðkÞ
i

Ti
¼ 0 ð30Þ

that follow from (27). Section V contains further details
and proofs.

III. MONODROMIES AND EMERGENT
THERMODYNAMICS

This section focuses on the study of a scalar field in the
d-dimensional (asymptotically AdS and flat) Schwarzschild
and Kerr black hole background, but the methods are readily
extendable to a broad class of physically relevant situations.
We will first revisit the wave equation of the probes with
particular emphasis on the machinery to compute the (finite
and fake) monodromies.

A. AdSd Schwarzschild black hole

To set up our notation and conventions, we start by
reviewing aspects of the geometry of a d-dimensional
Schwarzschild black hole with mass M. In Boyer-
Lindquist coordinates, we have

ds2 ¼ −Δdt2 þ dr2

Δ
þ r2dΩ2

d−2; ð31Þ
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where Δ ¼ 1 − 2M
rd−3

þ r2

L2 ¼ ðrd−3L2Þ−1QK−1
i¼1 ðr − riÞ with

K ¼ dþ 1 − ϵ.

1. Wave equation

The Klein-Gordon equation for a massless scalar is (8)
and, using (9), makes the equation separable. When the
separation constant is set to zero, the radial equation for
RðrÞ is given by

1

rd−2
∂rðrd−2Δ∂rRðrÞÞ þ

ω2RðrÞ
Δ

¼ 0: ð32Þ

When choosing

RðrÞ ¼
YK−1

i¼1

ðr − riÞ−iα̃i R̃ðrÞ; with α̃i ¼
ω

Δ0ðriÞ
; ð33Þ

the ODE for R̃ðrÞ is a Fuchsian equation of the form (13)
with (14) given by

pðrÞ ¼ 2rd−2Δ∂rPþ P∂rðrd−2ΔÞ
rd−2ΔP

;

qðrÞ ¼ ∂2
rP
P

þ ∂rðrd−2ΔÞð∂rPÞ
rd−2ΔP

þ ω2

Δ2
; ð34Þ

where P ¼QK−1
i¼1 ðr − riÞ−iα̃i . In turn, the monodromy

exponents fα0; αi; α∞g with i ¼ 1; 2;…;K − 1 in the
formal series solutions (11) for R̃ðrÞ obey the Fuchs
relation

XK
i¼0

αi ¼ ðK − 1Þ − α∞: ð35Þ

2. Monodromies and regular singular points

One can identify the nature of the singular points, for
example, by following the steps in Sec. II and Appendix A.
As it turns out in this case, all singularities in the ODE for
R̃ðrÞ are regular singular points. In addition to ∞, the K
finite regular singularities are located at r ¼ f0; rig. The
monodromies that we find via the indicial equation are,
respectively,

α∞ ¼ K − 1; α0 ¼ 0;

αi ¼ 2α̃i for i ¼ 1; 2;…:;K − 1: ð36Þ

An alternative way of determining the monodromy of the
singularity at, say, r ¼ 0, would be to substitute a series
expansion (11) and study the behavior of the ODE near
these points. And, similarly, substituting the series expan-
sion (11) and changing r → x−1 in (32) for R̃ðrÞ we find
that the monodromy around x ¼ 0 (r ¼ ∞).

3. Sum of entropy variations

Having computed the monodromies we can verify that
these obey the Fuchs relation (15). We find, replacing the
relation (2) between the monodromies and the entropy
variations in the Fuchs relation, that the sum of the
monodromy parameters is equivalent to the sum of the
variations of the entropies:

XK
i¼1

αi¼0; →
XK
i¼1

δSi¼0; → δ

�XK
i¼1

Si

�
¼0; ð37Þ

where Si ¼ ðAd−2=4Þrd−2i is the entropy computed at each
horizon of the AdSd Schwarzschild black hole. We further
verified this new entropy bound employing purely thermo-
dynamic relations in Sec. IV. In agreement with the
previous result in d ¼ 4, Eq. (2) becomes Sþ ¼ 4πα̃þ as
found in [2].

B. Schwarzschild black hole in d dimensions

We begin by briefly describing the geometry and
radial part of the wave equation for an asymptotically flat
d-dimensional Schwarzschild black hole describing a
generic asymptotically flat static black hole with mass
M. The line element is of the form (31) where the
function Δ → Δ̄ ¼ 1 − 2M

rd−3
¼ ðrd−3Þ−1QK̄−1

i¼1 ðr − riÞ and
K̄ ¼ d − 1 − ϵ.

1. Wave equation

The massless scalar Klein-Gordon equation in the back-
ground of a d-dimensional Schwarzschild black hole
solution is separable. Employing the ansatz (9), and setting
the separation constant to zero, the radial equation for the
function RðrÞ becomes

1

rd−2
∂rðrd−2Δ̄∂rRðrÞÞ þ

ω2RðrÞ
Δ̄

¼ 0: ð38Þ

As we did in the previous section, we choose a frame
(33) with K → K̄ to find the corresponding functions pðrÞ
and qðrÞ which become (34) with Δ → Δ̄.

2. Fake monodromies and irregular singular points

As it turns out in this case, the singularities in the ODE
(38) are

r ¼ f0; ð2MÞ1=ðd−3Þeið2πði−1ÞÞ=ðd−3Þ;∞g;
where i ¼ 1; 2;…; d − 3: ð39Þ

Employing the procedure described in Appendix A, we
find that all but ∞ are regular singularities. A way of
determining the monodromy of the regular points of the
ODE would be to solve the indicial equation (16).
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Following the previously described steps for regular sin-
gular points, we find that

αflat0 ¼ 0; αflati ¼ 2ω

Δ̄0ðriÞ
: ð40Þ

In order to compute the monodromy λ∞ around the
irregular singular point r ¼ ∞, we analyze the ODE
changing r → x−1. We present the details to compute the
fake monodromy exponent λ∞ in Appendix A. Our results
are summarized in (28).
It is easily verified that these flat spacetime monodro-

mies fαflati ; λ∞g can also be found from those in AdS-
Schwarzschild backgrounds in taking the flat spacetime
limit, L → ∞, while keeping the other physical quantities
fixed. For example in d ¼ 4, the nonvanishing monodro-
mies (36) yield

lim
L→∞

αþ ¼ αflatþ ; lim
L→∞

α2 þ α3 ¼ −4Mω ¼ −λ∞: ð41Þ

3. Sum of entropy variations

In general, the monodromy exponents in ODEs that have
an irregular singular point do not satisfy a Fuchs relation.
However, in the present flat case, taking the sum of the
monodromy coefficients found in the preceding subsection
leads to a relation that is consistent with the Fuchs-type
relation. Plugging these expressions into (23) and employ-
ing the relation (2) between the monodromies and the
entropy variations

Xd−3
i¼0

αi ¼ λ∞;

→
Xd−3
i¼0

δSi ¼ δSflat∞ → δ

�Xd−3
i¼0

Si

�
¼
�
8πMδM d ¼ 4

0 d > 4
;

ð42Þ

where Si ¼ ðAd−2=4Þrd−2i is the entropy computed at each
horizon of the d-dimensional Schwarzschild black hole.
This new entropy bound is consistent with purely thermo-
dynamic relations in Sec. IV.

C. Kerr-AdS black hole

We start by reviewing aspects of a four-dimensional
AdS-Kerr black hole with mass M employing the notation
in [4]. In d ¼ 4 AdS spacetime, using Boyer-Lindquist
coordinates, the corresponding line element is

ds2 ¼ Σ
Δ
dr2 −

Δ
Σ
ðdt − a

Ξ
sin2θdϕÞ2 þ Σ

Δθ
dθ2

þ Δθ

Σ
sin2θ

�ðr2 þ a2Þ
Ξ

dϕ − adt

�
2

; ð43Þ

where

Δθ¼1−
a2

l2
cos2θ; Ξ¼1−

a2

l2
; Σ¼ r2þa2cos2θ; ð44Þ

Δ ¼ ðr2 þ a2Þ
�
1þ r2

L2

�
− 2Mr ¼ 1

L2

Y4
i¼1

ðr − riÞ: ð45Þ

Further, we define the event horizons as the zeros of the Δ
function: here, Δ has four roots, two are real (r�) and two
are imaginary (r3;4). Therefore KAdSKerr ¼ 4. The analytic
value of these roots, additional to particular properties of
these roots, can be found in Appendix B.

1. Wave equation

Using the process illustrated in Appendix A and the
results found in [4], the differential equation for the radial
ansatz is found to be

�
∂rΔ∂r þ

X
i

ðr2i þ a2Þ2
Δ0ðriÞ

ðω −ΩimÞ2
r − ri

− L2Ξω2 þ a2m2

L2

�

× RAdSðrÞ ¼ Kl;AdSRAdSðrÞ; ð46Þ

where Ωi ¼ a
r2iþa2 ð1þ ri

L2Þ. Here Kl;AdS is the angular

coupling constant, and to simplify the calculations it will
be set to zero here. For the form of the angular ansatz, see
[4]. Next, we follow the procedure of (33)

RðrÞ ¼
Y4
i¼1

ðr − riÞ−iα̃i R̃ðrÞ;

with α̃i ¼
r2i þ a2

Δ0ðriÞ
ðω − ΩimÞ: ð47Þ

It can easily be verified that in this case

X4
i¼1

α̃i ¼ 0: ð48Þ

Then, with Δ� ¼ −L2Ξω2 þ a2m2

L2 and some algebra,
Eq. (46) becomes

�
∂2
rþ
�X4

i¼1

1−2iα̃i
r−ri

�
∂r−

X4
i

X4
j≠i

α̃iðiþ α̃jÞ
ðr−riÞðr−rjÞ

þ
X4
i¼1

α̃2i
ðr−riÞ2

�
L2Δ0ðriÞQ
j≠iðr−rjÞ

−1

�
þΔ�

Δ

�
R̃ðrÞ¼0: ð49Þ

The above expression is, in the notation of (13),
limr→ri qðrÞðr − riÞ2 ¼ 0. Further, here, limr→ri pðrÞðr−
riÞ ¼ 1–2iα̃i.
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2. Monodromies and sum of entropy variations

The indicial equation determining the monodromies αi in
the R̃ frame reads

αiðαi − 2α̃iÞ ¼ 0

⇒ αi ¼ f0; 2α̃ig ¼
�
0;
2ðr2i þ a2Þ
Δ0ðriÞ

ðω −ΩimÞ
�
: ð50Þ

where to be consistent with the definition in (11) the
coefficients αi ∈ R. By mapping r → x−1 and analyzing
x ¼ 0, it can be proven independently that α∞ ¼
f−P4

i¼1 α̃i; 3 −
P

4
i¼1 α̃ig. Considering the relation (48)

that was previously identified, we conclude that

α∞ ¼ f0; 3g: ð51Þ

Our results are in agreement with α∞ ¼ KAdSKerr − 1 and
the limiting AdS-Schwarschild results (36). It is worth
noting that similar results hold in more exotic AdS (dS)
spacetimes: for an analysis of dS spacetime, see [21], and
for an analysis of NUT spacetimes, see [22]. Using the
same associations as (3)

X4
i¼1

αi¼0; →
X4
i¼1

δSi¼0; → δ

�X4
i¼1

Si

�
¼0; ð52Þ

where Si is the entropy computed at the ri horizon.
Additionally, this new bound is reverified using purely
thermodynamic relations in Sec. IV.

D. Kerr black hole

In this section we will consider a Kerr black hole with
mass M and angular momentum J ¼ Ma. Using Boyer-
Lindquist coordinates, for this asymptotically flat space-
time we find that

ds2 ¼ Σ
Δ̄
dr2 −

Δ̄
Σ
ðdt − a sin2 θdϕÞ2 þ Σdθ2

þ sin2 θ
Σ

ððr2 þ a2Þdϕ − adtÞ2; ð53Þ

where Δ̄ ¼ r2 þ a2 − 2Mr ¼ ðr − r−Þðr − rþÞ and Σ ¼
r2 þ a2 cos2 θ. As above, the event horizon radii are the
zeros of the Δ̄ function; here, r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Therefore, K̄ ¼ 2.

1. Wave equation

Using the process illustrated in Appendix A and [3], the
radial ansatz is found to be

�
∂rΔ̄∂r þ ðrþ − r−Þ

�
α̃2þ

r − rþ
−

α̃2−
r − r−

�
þ Δ�

�
RðrÞ

¼ KlRðrÞ; ð54Þ

where

α̃� ¼ Δ0ðr�Þ
ðr2� þ a2Þ ðω −Ω�mÞ; ð55Þ

the function Δ� ¼ ðr2 þ 2Mðrþ 2MÞÞω2, and Kl is the
angular coupling constant. For the analysis of the angular
ansatz, see [3]. We can again follow the transform of (33)
and Kl ¼ 0, leading to an analogue of (49):

�
∂2
r þ

�X2
i¼1

1 − 2iα̃i
r − ri

�
∂r −

2α̃þα̃− þ iðα̃þ þ α̃−Þ
Δ̄

þ
X2

i¼1;j≠i

α̃2i
ðr − riÞ2

�
ri − rj
r − rj

− 1

�
þ Δ̄�

Δ̄

�
R̄ðrÞ ¼ 0: ð56Þ

As in (13), limr→r� qðrÞðr − r�Þ2 ¼ 0. Further, here,
limr→r� pðrÞðr − r�Þ ¼ 1–2iα̃�. Then, the indicial equa-
tion reads

αflati ðαiflat − 2α̃�Þ ¼ 0

⇒ αflati ¼ f0; 2α̃ig ¼
�
0;

2Δ0ðr�Þ
ðr2� þ a2Þ ðω −Ω�mÞ

�
; ð57Þ

where αflati ∈ R. Using the mapping r → x−1 and a
Frobenius expansion about x ¼ 0 it can be directly shown
that λ∞ ¼ 4Mω. Additionally, an analysis similar to that
done in Appendix A is also possible. For more analysis of
the irregular singularity, including a discussion of its unique
scattering properties and the Stoke’s phenomenon, see [23].

2. Fake monodromies and sum of entropy variations

From (57), we find the Fuchs-type relation αflatþ þ αflat− ¼
4Mω. It is also possible to show the monodromic sum
evolves under L → ∞ such as (23). In fact, the Kerr-AdS
monodromies (50) in the limit yield

lim
L→∞

α� → αflat� ; lim
L→∞

α3;4 → −2Mω� iω lim
L→∞

L; ð58Þ

and the Fuchs relation

lim
L→∞

�X4
i¼1

αi

�
¼ 0 → αflatþ þαflat− −4Mω¼ 0: ð59Þ

Letting λ∞ ≔ − limL→∞ðα3 þ α4Þ ¼ 4Mω and the identi-
fications in (2) we find

αflatþ þ αflat− ¼ λ∞ → δðSflatþ þ Sflat− Þ ¼ δSflat∞ ; ð60Þ
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where Sflat� is the entropy computed at the r� horizon.
Additionally, this new bound is reverified using purely
thermodynamic relations in Sec. IV.

IV. THERMODYNAMIC IDENTITIES
OF BLACK HOLES

We now turn to the study of the geometrical relation of
thermodynamics for every black hole horizon (1) and the
novel thermodynamic identities of black holes (5)–(7) from
a purely thermodynamic perspective. Our focus is on
thermodynamics properties of black hole solutions that
have smooth horizons with spherical topologies. To estab-
lish a well rounded catalog for the thermodynamic iden-
tities we shall present explicitly several examples in this
section. Some of these results were previously assessed
in literature. We indicate the references accordingly in
each case.
In general, these equations involve the physical param-

eters defined at each black hole horizon. It is convenient to
define the intensive quantities employing the Arnowitt-
Deser-Misner (ADM) formalism inwhich the line element is

ds2 ¼ −N2dt2 þ γabðdxa þ NadtÞðdxb þ NbdtÞ; ð61Þ

with xa spatial directions, and NðxaÞ and NbðxaÞ are the
lapse function and the shift vector, respectively. The inten-
sive variables are intrinsic to each horizon that will be
indicated by the subscripts.
Note that with this foliation of spacetime, the black hole

horizons ri (real or complex) are at N2 ¼ 0. As in [24], the
angular potentials and temperatures for each horizon are
defined:

ΩðkÞ
i ¼ −Nkjri ; Ti ¼

1

4π

ðN2Þ0ffiffiffiffiffiffiffiffiffiffiffi
grrN2

p 				
ri

; ð62Þ

where k ¼ 1; 2;…; ½d−1
2
� represents the independent planes

of rotation in d dimensions. Indeed, when evaluated at the
black hole event horizon rþ we recover the Hawking
temperature Tþ.
In the ensuing analysis we will find the entropy sums

over all horizons. In almost all cases the relation is
independent of the extensive parameters, which in turn
implies the addition of the variations of the entropies to
vanish. In all cases we find a perfect agreement with the
corresponding results of the entropy and monodromy
relations analyzed in previous sections. From each of these
examples, new thermodynamic identities involving the sum
of the intensive quantities are obtained.

A. Kerr black hole

The radii function of a Kerr black hole [16] of mass M
and angular momentum J ¼ Ma satisfying Rμν ¼ 0 is
defined by the function ΔðrÞ ¼ r2 þ a2 − 2Mr. The outer

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and inner event horizons r− ¼

M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
are located at Δðr�Þ ¼ 0. The correspond-

ing physical parameters are given by

T� ¼ Δ0ðriÞ
8πMr�

; S� ¼πðr2�þa2Þ; Ω� ¼ a
r2�þa2

; ð63Þ

corresponding to Hawking’s temperature, the entropy, the
angular momentum, and the angular velocity defined at
black hole horizons. In this case we checked that the above
physical parameters obey the relation (1). The sum of the
horizon areas is

X2
i¼1

Si ¼ 4πM2: ð64Þ

The variation of this expression is

δ

�X2
i¼1

Si

�
¼ 8πMδM; ð65Þ

consistent with Sec. III. Note also that

X2
i¼1

1

Ti
¼ 8πM;

X2
i¼1

Ωi

Ti
¼ 0: ð66Þ

These can be viewed as a consequence of the first law of
thermodynamics at each horizon ri. Treatments of some
notable cases are given in the following subsections and a
completely analogous story holds for general black hole
solutions, as we prove in Sec. V.

B. Kerr-AdS black hole

The metric of the four-dimensional Kerr-AdS black
hole [9], satisfying Rμν ¼ −3L−2gμν is asymptotic to
AdS4 in a rotating frame, with angular velocity Ω∞ ¼
−aL−2. The radii function is determined by Δ ¼
ðr2 þ a2Þð1þ r2L−2Þ − 2Mr. The horizons are located at
ΔðriÞ ¼ 0 with i ¼ 1; 2;…; 4. The physical parameters
corresponding to Hawking’s temperature, the entropy, and
the angular velocity of the horizon (as measured in the
asymptotically rotating frame) are given by

Ti ¼
Δ0ðriÞ

4πðr2i þ a2Þ ; Si ¼
πðr2i þ a2Þ

Ξ
;

Ωi ¼
að1þ r2þ=L2Þ

r2þ þ a2
; ð67Þ

where Ξ ¼ 1 − a2=L2 and Ωi is the angular velocity
measured relative to a rotating observer at infinity. In
[25] the physical mass E and angular momentum J of the
AdS-Kerr black hole solution were computed at the
boundary (infinity) via the Komar integrals
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E ¼ M
Ξ2

; J ¼ Ea: ð68Þ

It is straightforward to verify that these quantities obey the
geometrical law of thermodynamics (1). Further properties
among the horizons of the Kerr-AdS black hole solution
can be found in Appendix B. Using these, the sum of the
entropies at every horizon is independent of the physical
parameters

X4
i¼1

Si ¼ −2πL2; ð69Þ

and, also

X4
i¼1

Ωi

Ti
¼ 0;

X4
i¼1

1

Ti
¼ 0: ð70Þ

In the study of this system obeying the KG equation, we
found in Sec. III C the thermodynamic relation (5) from the
Fuchs relation. Given the sum of entropies relation (69),
one can compute its variation (keeping L fixed) and thence
obtain the associated thermodynamic relation δ

P
Si ¼ 0

consistent with previous results. A completely analogous
story holds for all the AdS black holes in all dimensions.
See Secs. IV C and IV D 3 for details.

C. BTZ black hole

The mass, angular momentum, and entropy of the BTZ
black hole [8] are

M ¼ r2þ þ r2−
L2

; J ¼ 2rþr−
L

; Si ¼ 4πri; ð71Þ

and the Hawking temperature Ti and angular velocity Ωi
are

Ti ¼
r2þ − r2−
2πL2ri

; Ωi ¼
J
2r2i

: ð72Þ

For this black hole solution, the roots of the radii equation

J2

4r2
þ r2

L2
−M ¼ 0 ð73Þ

are found to be ri ¼ f�rþ;�r−g with r� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðML�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ML2−J2

p
Þ

2

q
.

Just as in the previous cases, we compute the sum of all
entropies defined at each horizon ri

X4
i¼1

Si ¼ 0: ð74Þ

Considering the intensive quantities we further find

X4
i¼1

Ωi

Ti
¼ 0;

X4
i¼1

1

Ti
¼ 0: ð75Þ

D. Higher-dimensional black holes

In this paper we are also interested in higher-dimensional
black holes. The physical parameters for each d ≥ 5 black
hole solution are described in the following subsections.
Employing these quantities, we are able to establish new
thermodynamic relations.

1. Myers-Perry black hole in d = 5

The metric of the five-dimensional rotating black hole,
satisfying Rμν ¼ 0, was found in [7]. The function

ΔðrÞ ¼ 1

r2
ðr2 þ a21Þðr2 þ a22Þ − 2M ð76Þ

defines the horizon radii located at ΔðriÞ ¼ 0 with
i ¼ 1;…; 4. While the four roots are real, only two are
positive roots and correspond to the outer and inner event
horizons. Hawking’s temperature, the entropy, both angular
momenta, the angular velocities of the horizon, and
physical mass parameters are, respectively, given by3

Ti ¼
r2iΔ0ðriÞ

4πðr2i þa21Þðr2i þa22Þ
; Si ¼

π2ðr2i þa21Þðr2i þa22Þ
2ri

;

JðkÞ ¼
πMak
2

; ΩðkÞ
i ¼ ak

r2i þa2k
; E¼ 3π

4
M; ð77Þ

where k ¼ 1, 2. The geometrical thermodynamical relation
(1) for the above quantities is satisfied as well as the
following relations:

X4
i¼1

Si ¼ 0 ð78Þ

and

X4
i¼1

ΩðkÞ
i

Ti
¼ 0;

X4
i¼1

1

Ti
¼ 0: ð79Þ

2. Myers-Perry black holes

The extension of Einstein’s gravity for asymptotically
flat rotating black holes in d ≥ 5 spacetime dimensions is
shown in [10,11]. The K ¼ d − 1 − ϵ horizons can be
found by the following radial equation:

3In particular, for r� we can write the temperature as T� ¼
r4�−a

2
1
a2
2

2πr�ðr2�þa2
1
Þðr2�þa2

2
Þ.
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ΔðrÞ ¼ rϵ−2
Y½ðd−1Þ=2�

k¼1

ðr2 þ a2kÞ − 2M ¼ 0; ð80Þ

where ϵ ¼ ðd − 1Þ mod 2. As in [25] the entropy is
defined by

Si ¼
Ad−2

4r1−ϵi

Y½ðd−1Þ=2�

k¼1

ðr2i þ a2kÞ: ð81Þ

The Hawking temperatures Ti, angular velocitiesΩ
ðkÞ
i , mass

E, and angular momenta JðkÞ are given, respectively, by

Ti ¼
1

2π

�
ri

X½ðd−1Þ=2�

k¼1

1

r2i þ a2k
−
2 − ϵ

2ri

�
;

ΩðkÞ
i ¼ ak

r2i þ a2k
; ð82Þ

E ¼ MAd−2

4π

�
d − 2

2

�
; JðkÞ ¼

MakAD−2

4π
; ð83Þ

where i ¼ 1;…;K includes all horizons. For the above
quantities, we find that geometrical thermodynamical
relation (1) is satisfied as well as the following relations:

XK
i¼1

Si ¼ 0 ð84Þ

and

XK
i¼1

ΩðkÞ
i

Ti
¼ 0;

XK
i¼1

1

Ti
¼ 0: ð85Þ

Some of the results in this subsection for the entropy sum
were derived in [26].

3. Kerr-AdS black holes in d ≥ 5

The extension of Einstein’s gravity for rotating black
holes that are asymptotically AdS in d ≥ 5 dimensions is
shown in [10,11].
The horizons can be found by the following radial

equation:

ΔðrÞ¼ rϵ−2ð1þ r2L−2Þ
Y½ðd−1Þ=2�

k¼1

ðr2þa2kÞ−2M¼ 0; ð86Þ

where ϵ ¼ ðd − 1Þ mod 2.

As in [25] the entropy is defined by

Si ¼
Ad−2

4r1−ϵi

Y½ðd−1Þ=2�

k¼1

r2i þ a2k
1 − a2kL

−2 : ð87Þ

The Hawking temperatures Ti, angular velocities

ΩðkÞ
i , mass E, and angular momenta JðkÞ are given,

respectively, by

Ti ¼
1

2π

�
rið1þ r2i L

−2Þ
X½ðd−1Þ=2�

k¼1

1

r2i þa2k
−
2− ϵð1− r2i L

−2Þ
2ri

�
;

ð88Þ

ΩðkÞ
i ¼ ð1þ r2i L

−2Þak
r2i þ a2k

; ð89Þ

E¼ MAd−2

4π
Q½ðd−1Þ=2�

k¼1 ð1−a2kL
−2Þ

� X½ðd−1Þ=2�

i¼1

1

1−a2kL
−2−

1− ϵ

2

�
;

ð90Þ

JðkÞ ¼
MakAd−2

4πð1 − a2kL
−2ÞQ½ðd−1Þ=2�

k¼1 ð1 − a2kL
−2Þ

; ð91Þ

where i includes all horizons. The geometrical thermody-
namical relation (1) for the above quantities is satisfied as
well as the following relations:

XK
i¼1

Si ¼
�
0 d is odd
Ld−2

2
Ad−2 d is even

ð92Þ

and

XK
i¼1

ΩðkÞ
i

Ti
¼ 0;

XK
i¼1

1

Ti
¼ 0: ð93Þ

Some of the results in this subsection for the entropy sum
were derived in [26,27].

E. Charged black holes

We now turn to the study of the sum of entropies of
charged holes. It is convenient to first define the relevant
thermodynamic quantities. Given a black hole solution one
can also compute new relations involving the intensive
physical parameter such as (6) and (7).

1. Reissner-Nordstrom black hole

The metric of a four-dimensional static, charged black
hole in the usual Weyl coordinates is presented [28,29]
where the vanishing of the function
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ΔðrÞ ¼ 1 −
2M
r

þQ2

r2
ð94Þ

determines the horizon radii ΔðriÞ ¼ 0. These are trivially

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð95Þ

The entropy, Hawking’s temperature, and electric potential
parameters are, respectively, given by

S� ¼ πr2�; T� ¼ r2� −Q2

4πr3�
; Φ� ¼ Q

r�
: ð96Þ

The geometrical law of thermodynamics (1) for the above
quantities is satisfied as well as the following relations:

X2
i¼1

Si ¼ 2πð2M2 −Q2Þ ð97Þ

and

X2
i¼1

Φi

Ti
¼ 4πQ;

X2
i¼1

1

Ti
¼ 8πM: ð98Þ

2. Reissner-Nordstrom-AdS black hole

The solution representing a four-dimensional static,
charged black hole in AdS is presented in [28,29]. The
function

ΔðrÞ ¼ 1 −
2M
r

þQ2

r2
þ r2

3L2
ð99Þ

defines the horizon radii located at ΔðriÞ ¼ 0 with
i ¼ 1;…; 4. The entropy, Hawking’s temperature, and
electric potential parameters are, respectively, given by

Si ¼ πr2i ; Ti ¼
3r4i L

−2 þ r2i −Q2

4πr3i
; Φi ¼

Q
ri
: ð100Þ

The geometrical law of thermodynamics (1) for the above
quantities is satisfied as well as the following relations:

X4
i¼1

Si ¼ −2πL2 ð101Þ

and

X4
i¼1

Φi

Ti
¼ 0;

X4
i¼1

1

Ti
¼ 0; ð102Þ

3. Reissner-Nordstrom black hole in d ≥ 5

A charged, nonrotating, asymptotically flat black hole in
d ≥ 5 dimensions is described in detail in [30]. The radii
function in this case can be written as

ΔðrÞ ¼ 1 −
2μ

rd−3
þ q2

r2ðd−3Þ
: ð103Þ

Integral to defining thermodynamic properties are the
outermost and innermost radii,

rd−3� ¼ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − q2

q
; ð104Þ

where

μ ¼ 8πM
Ad−2ðd − 2Þ ; q2 ¼ 2Q2

ðd − 2Þðd − 3Þ : ð105Þ

Thus the ADM mass and charge can be constructed,

M ¼ Ad−2ðd − 2Þ
16π

ðrd−3þ þ rd−3− Þ;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3Þðd − 2Þ

2

r
ðrþr−Þd−32 : ð106Þ

The entropy, Hawking temperature, and electric potential
defined at the outermost and innermost horizons can be
generalized:

Si ¼
Ad−2

4
rd−2i ; T� ¼ d − 3

4πr�

�
1 −

�
r∓
r�

�
d−3
�
;

Φi ¼
Ad−2Q

4πðd − 3Þrd−3i
: ð107Þ

The geometrical relation of thermodynamics (1) for the
above quantities is satisfied as well as the following
relations for d > 4:

X2d−6
i¼1

Si ¼ 0 ð108Þ

and

X2d−6
i¼1

Φi

Ti
¼ 0;

X2d−6
i¼1

1

Ti
¼ 0: ð109Þ

4. Reissner-Nordstrom-AdS black hole in d ≥ 5

The asymptotically AdS static charged black hole in d
dimensions is described in detail in [31,32] with a radii
function,
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ΔðrÞ ¼ 1 −
2μ

rd−3
þ q2

r2ðd−3Þ
þ 2r2

ðd − 2Þðd − 1ÞL2
; ð110Þ

where μ and q have the same definitions of (105). In this
case, Hawking’s temperature, entropy, and electric poten-
tial defined at the respective black hole (BH) horizons
located at ri can be generalized:

Ti ¼
2r2dþ2

i ðd−1Þ
L2 þ ðd − 2Þðd − 3Þr2di − 32π2Q2r6i

A2
d−2

4πðd − 2Þr2dþ1
i

; ð111Þ

Si ¼
Ad−2rd−2i

4
; Φi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 2

2ðd − 3Þ

s
Q
rd−3i

: ð112Þ

Note that the geometrical relation of thermodynamics (1)
for the above quantities is satisfied as well as the following
relations for d ≥ 4:

X2ðd−2Þ
i¼1

Si ¼
�
0 d is odd
1
2
ð2−d

2
Þðd−2Þ=2Ad−2Ld−2 d is even

ð113Þ

and

X2ðd−2Þ
i¼1

Φi

Ti
¼ 0;

X2ðd−2Þ
i¼1

1

Ti
¼ 0: ð114Þ

5. Kerr-Newman black hole

The metric of a four-dimensional (asymptotically flat)
rotating, charged black hole was found in [12]. The
function that defines the horizons is

ΔðrÞ ¼ ðr2 þ a2Þ − 2MrþQ2 ð115Þ

when Δðr�Þ ¼ 0 and r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ða2 þQ2Þ

p
. The

entropy, Hawking’s temperature, angular velocity, and
electric potential that are, respectively, given by

S� ¼ 4πðr2� þ a2Þ; T� ¼ r2� − ða2 þQ2Þ
4πr�ðr2� þ a2Þ ;

Ω� ¼ a
a2 þ r2�

; Φ� ¼ Qr�
a2 þ r2�

: ð116Þ

Employing these quantities the geometrical law of thermo-
dynamics (1) and the following relations can be verified:

X2
i¼1

Si ¼ 2πð2M2 −Q2Þ ð117Þ

and

X2
i¼1

Φi

Ti
≠ 0;

X2
i¼1

Ωi

Ti
¼ 0;

X2
i¼1

1

Ti
≠ 0: ð118Þ

6. Kerr-Newman-AdS black hole

The metric of a four-dimensional rotating, charged black
hole in AdS is presented in [12]. The function

ΔðrÞ ¼ ðr2 þ a2Þ
�
1þ r2

L2

�
− 2MrþQ2 ð119Þ

defines the horizon radii located at ΔðriÞ ¼ 0 with
i ¼ 1;…; 4. The mass, angular momentum, entropy,
Hawking’s temperature, angular velocity, and electric
potential parameters are, respectively, given by

E ¼ M
ð1 − aL−2Þ2 ; J ¼ aM

ð1 − aL−2Þ2 ;

Si ¼ 4π
ðr2i þ a2Þ
ð1 − a2

L2Þ
; ð120Þ

Ti ¼
ri


1þ a2

L2 þ 3
r2i
L2 − a2þQ2

r2i

�
4πðr2i þ a2Þ ; Ωi ¼

a


1 − a2

L2

�
a2 þ r2i

;

Φi ¼
Qri

a2 þ r2i
: ð121Þ

The geometrical law of thermodynamics (1) for the
above quantities is satisfied as well as the following
relations:

X4
i¼1

Si ¼ −8πL2 ð122Þ

and

X4
i¼1

Φi

Ti
¼ 0;

X4
i¼1

Ωi

Ti
¼ 0;

X4
i¼1

1

Ti
¼ 0: ð123Þ

7. Nonextremal rotating black holes
in minimal d = 5 gauged supergravity

The solution of a nonextremal rotating black hole in
minimal d ¼ 5 gauged supergravity is presented in [14].
The coordinate choice is a Boyer-Lindquist type of
ðt; r; θ;ϕ;ψÞ. The function

ΔðrÞ ¼ ðr2 þ a21Þðr2 þ a22Þð1þ L−2r2Þ þQ2 þ 2a1a2Q
r2

− 2M ð124Þ
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defines the horizon radii located at ΔðriÞ ¼ 0 with
i ¼ 1;…; 6. The entropy, Hawking’s temperature, angular
velocities, and electric potential parameters are, respec-
tively, given by

Si ¼
π2½ðr2i þ a21Þðr2i þ a22Þ þ a1a2Q�
2ð1 − a21L

−2Þð1 − a22L
−2Þri

;

Ti ¼
r4i ½ð1þ L−2ð2r2i þ a21 þ a22Þ� − ða1a2 þQÞ2

2πri½ðr2i þ a21Þðr2i þ a22Þ þ a1a2Q� ;

Ωð1Þ
i ¼ a1ðr2i þ a22Þð1þ L−2r2i Þ þ a2Q

ðr2i þ a21Þðr2i þ a22Þ þ a1a2Q
;

Ωð2Þ
i ¼ a2ðr2i þ a21Þð1þ L−2r2i Þ þ a1Q

ðr2i þ a21Þðr2i þ a22Þ þ a1a2Q
;

Φi ¼ ðlμAμÞi; ð125Þ

where

Ai ¼
ffiffiffi
3

p
Q

r2i þ a21cos
2θ þ a22sin

2θ

×

�
1 − a21L

−2cos2θ − a22L
−2sin2θ

ð1 − a21L
−2Þð1 − a22L

−2Þ dt

−
a1sin2θ

1 − a21L
−2 dϕ −

a2cos2θ
1 − a22L

−2 dψ

�
;

l ¼ ∂
∂tþ Ωð1Þ

i
∂
∂ϕþ Ωð2Þ

i
∂
∂ψ : ð126Þ

The generalized first law of thermodynamics (1) takes the
form

dE ¼ TidSþ Ωð1Þ
i dJð1Þ þ Ωð2Þ

i dJð2Þ þΦidQ; ð127Þ

where the mass and angular momenta are defined, respec-
tively, as

E ¼ πL4½Mð3L4 − ða21 þ a22ÞL2 − a21a
2
2Þ − 2a1a2Qða21 þ a22 − 2L2Þ�

4ða21 − L2Þ2ðL2 − a22Þ2
; ð128Þ

Jð1Þ ¼
π½2a1M þQa2ð1þ a21L

−2Þ�
4ð1 − a21L

−2Þ2ð1 − a22L
−2Þ ; Jð2Þ ¼

π½2a2M þQa1ð1þ b2L−2Þ�
4ð1 − a22L

−2Þ2ð1 − a21L
−2Þ : ð129Þ

Our results show that the relation of the entropy sum
vanishes,

X6
i¼1

Si ¼ 0; ð130Þ

and the relations between the intensive quantities yield

X6
i¼1

Φi

Ti
¼ 0;

X6
i¼1

Ωð1;2Þ
i

Ti
¼ 0;

X6
i¼1

1

Ti
¼ 0: ð131Þ

8. Charged rotating black holes
in d = 6 gauged supergravity

The metric of a six-dimensional rotating, charged black
hole in d ¼ 6 gauged supergravity is presented in [15]. The
function

ΔðrÞ¼ðr2þa21Þðr2þa22Þ
þL−2½rðr2þa21ÞþQ�½rðr2þa22ÞþQ�−2Mr ð132Þ

defines the horizon radii located at ΔðriÞ ¼ 0 with
i ¼ 1;…; 6. The entropy, angular velocities, electric poten-
tial, and Hawking’s temperature are, respectively, given by

Si ¼
2π2½ðr2i þ a21Þðr2i þ a22Þ þQri�
3ð1 − a21L

−2Þð1 − a22L
−2Þ ;

Ωð1Þ
i ¼ a1½ð1þ L−2r2i Þðr2i þ a22Þ þQriL−2�

ðr2i þ a21Þðr2i þ a22Þ þQri
;

Ωð2Þ
i ¼ a2½ð1þ L−2r2i Þðr2i þ a21Þ þQriL−2�

ðr2i þ a21Þðr2i þ a22Þ þQri
;

Φi ¼
Qri
π

ð1 − a21L
−2Þð1 − a22L

−2Þ
ðr2i þ a21Þðr2i þ a22Þ þQri

; ð133Þ

and

Ti ¼
2ð1þL−2r2i Þr2i ð2r2i þa21þa22Þ
4πri½ðr2i þa21Þðr2i þa22ÞþQri�

þ 4QL−2r3i − ð1−L−2r2i Þðr2i þa21Þðr2i þa22Þ−Q2L−2

4πri½ðr2i þa21Þðr2i þa22ÞþQri�
; ð134Þ
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E¼
π
h
2M



1
ð1−a2

1
L−2Þþ 1

ð1−a2
2
L−2Þ
�
þQ



1þð1−a2

1
L−2Þ

ð1−a2
2
L−2Þþ

ð1−a2
2
L−2Þ

ð1−a2
1
L−2Þ
�i

3ð1−a21L
−2Þð1−a22L

−2Þ ; ð135Þ

Jð1Þ ¼
πa1ð2M þ ð1 − a2L−2ÞQÞ
3ð1 − a1L−2Þ2ð1 − a2L−2Þ ; Jð2Þ ¼

πa2ð2M þ ð1 − a1L−2ÞQÞ
3ð1 − a1L−2Þð1 − a2L−2Þ2 : ð136Þ

For the above quantities, the geometrical thermodynamical
law (1) is satisfied as well as the following relations:

X6
i¼1

Si ¼ 0 ð137Þ

and

X6
i¼1

Φi

Ti
¼ 0;

X6
i¼1

ΩðjÞ
i

Ti
¼ 0;

X6
i¼1

1

Ti
¼ 0: ð138Þ

V. GENERAL THERMODYNAMIC RELATIONS
FOR BLACK HOLES

In this section we will show the new thermodynamic
relations follow from the mechanical law of black hole
horizons and the properties of the sum of the entropies. Our
starting point is the first law for all black hole horizons (1)
for a black hole solution with ri horizons (including all
horizons). This property for all black hole horizons can be
written as

dSi ¼
1

Ti
dE −

X
k

ΩðkÞ
i

Ti
dJðkÞ −

X
l

Φl
i

Ti
dQl: ð139Þ

Now, adding all these equations together for every black
hole horizon leads to the expression

X
i

dSi ¼
�X

i

1

Ti

�
dE −

X
a

�X
i

Ωa
i

Ti

�
dJa

−
X
b

�X
i

Φb
i

Ti

�
dQb: ð140Þ

The left-hand side is

X
i

dSi ¼ d

�X
i

Si

�
; ð141Þ

such that when
P

i Si is independent of the extensive
quantities,

X
i

Si ≠ fðE; Ja;QbÞ →
X
i

1

Ti
¼ 0;

X
i

Ωa
i

Ti
¼ 0;

X
i

Φb
i

Ti
¼ 0: ð142Þ

Therefore, together with the universal property of a first law
for every black hole horizon, it is only necessary to identify
the functional dependence of the sum of the entropies of
every horizon in the solution

P
Si to single out the

thermodynamic relations the solution will obey. For black
hole solutions, such as for the Schwarzschild, Kerr,
Reissner-Nordstrom, and Kerr-Newman black hole solu-
tions, where

P
i Si ¼ fðE;QÞ we can infer that

X
i

Si ¼ fðE;QÞ →
X
i

Ωa
i

Ti
¼ 0; ð143Þ

while

X
i

1

Ti
≠ 0;

X
i

Φb
i

Ti
≠ 0: ð144Þ

VI. DISCUSSION

We have verified that the equations of motion of
quantum field theories in curved backgrounds, more
precisely the KG equation in black hole backgrounds,
encode important black hole thermodynamic relations. The
universality of the entropy variation relations was estab-
lished for a large class of black holes, and dimensions, in
both asymptotically flat and asymptotically anti–de Sitter
spacetimes. The monodromies capture the infinitesimal
changes in the black hole background produced by the field
excitations. This emergent link between monodromies and
entropies results in a thermodynamic identity for the sum of
all horizon entropy variations. This raises the possibility of
further thermodynamic relations defined as independent
sums of temperatures and angular velocities defined at
every black hole horizon. Their structure may be inter-
preted as conditions for thermodynamical equilibrium.4 In
fact, for a fixed value of the black hole mass, all black hole
systems would seem to be in thermodynamic equilibrium

4We thank the referee for this comment.
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giving rise to a relation between the thermodynamic
systems defined at each horizon.
The origin of these relations can be put down to the fact

that
P

i Si ≠ fðE; Jk; QlÞ. Our explicit results indicate that
black hole solutions with at least one imaginary horizon
obey all the thermodynamics relations (6) and (7). We
emphasize that the thermodynamic summation relations
apply in theories involving multicharge black holes,
including black hole solutions in gauged supergravities.
For example, the charged rotating black holes in minimal
d ¼ 5 and d ¼ 6 gauged supergravity are consistent with

δ

�XK
i¼1

Si

�
¼ 0: ð145Þ

From the more formal perspective, we have here worked out
the details for the link between the monodromies and
entropies for charged black holes. Nevertheless, our thermo-
dynamic analysis contains robust evidence to argue that
similar results will be found. A way to formally verify this
proposal is to consider a field interacting with electromag-
netism through the equations of motion for a massless
charged scalar. We leave this analysis for the future.
Note that the KG equation for extremal asymptotically

flat black hole solutions contain two irregular singular
points (the event horizon and infinity). This is in contrast
with nonextremal asymptotically flat black hole solutions
containing only one irregular singular point at r ¼ ∞. The
emergence of thermodynamic relations is also expected and
will be studied elsewhere.
Black hole solutions in GR in higher dimensions also

contain more exotic solutions such as black rings, bicycling
black rings, black branes, and black strings. It would be
interesting to analyze the first law of all black hole horizons
and the emergent thermodynamic relations from monodro-
mies for all these other cases. Further tests will include
those for black hole solutions in alternatives of GR, e.g.,
Gauss-Bonnet or fðRÞ theories.
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APPENDIX A: REGULAR AND IRREGULAR
SINGULAR POINTS FOR BLACK HOLES

Here we elaborate some subtleties that arise in the
computations of the fake monodromy λ∞. Section II A
focused on regular singular points. In order to determine the
fake monodromy around an irregular singular point, such as
r ¼ ∞ in this paper, we consider an ODE of the form

d2R
dr2

þ pðrÞ dR
dr

þ qðrÞR ¼ 0: ðA1Þ

Then the following definition can be applied to determine
the nature of any singularity. Definition: Point a is an
ordinary point when functions pðrÞ and qðrÞ are analytic at
r ¼ a. When the functions pðrÞ, qðrÞ each have poles on,
e.g., r ¼ a, we call a singular point a to be regular if either
pðrÞ or qðrÞ diverges as r → a but

lim
r→a

ðr − aÞpðrÞ ¼ finite ¼ p0;

lim
r→a

ðr − aÞ2qðrÞ ¼ finite ¼ q0: ðA2Þ

Otherwise, we call it irregular.
By performing a suitable coordinate transformation to a

new variable uðrÞ ¼ fðrÞRðrÞ, for some function fðrÞ to be
determined, we may write this differential equation (A1) in
the language of [33] as

u00 þ q̃ðrÞu¼ 0; with q̃ðrÞ ¼ q0þ
q1
r
þq2
r2

þ� � � ðA3Þ

around the irregular singular point r ¼ ∞. Using Eq. (3) in
[33] Sec. III.2,

uðrÞ ¼ e�
ffiffiffiffi
q0

p
rriλ∞

�
1þ

X
n≥1

an
rn

�
; ðA4Þ

where the fake monodromy is determined by λ∞ ¼ �q1
2i
ffiffiffiffi
q0

p .

This prescription for computing λ∞ is employed throughout
this paper. We present the explicit computations for the fake
λ∞ (at the irregular singular point r ¼ ∞) for a d-dimen-
sional Schwarzschild black hole back to back with the
asymptotically AdS black hole cousin (with all regular
singular points, including r ¼ ∞).
Example: d ≥ 4 Schwarzschild black hole (asymptoti-

cally flat and AdS)
Consider first an AdSd Schwarzschild black hole:

ds2 ¼ −Δdt2 þ Δ−1dr2 þ r2dΩ; ðA5Þ

where Δ ¼ 1 −
2M
rd−3

þ r2

L2
: ðA6Þ

Then,

gμν ¼

0
B@

−Δ
Δ−1

r2½Σ�ij

1
CA: ðA7Þ

Here, ½Σ�ij is the surface submetric. By dimensional analy-
sis, it is apparent that, if dimΣ ¼ n: detΣ ¼ r2nfðϕαÞ,
where fðϕαÞ is some function of the generalized angles
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[in fact, using generalized polar coordinates: fðϕαÞ ¼Q
n−2
i¼1 sin

n−1−iðϕiÞ]. Because it is a strictly projected sub-
metric, n ¼ d − 2, then, det g ¼ −r2d−4fðϕαÞ.
We now turn to the Klein-Gordon equation

Kg½Φ�≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞ½Φ� ¼ 0; ðA8Þ

1

rd−2
ffiffiffiffiffiffiffiffiffiffiffiffi
fðϕαÞ

p ∂μðrd−2
ffiffiffiffiffiffiffiffiffiffiffiffi
fðϕαÞ

p
gμν∂νÞ½Φ� ¼ 0; ðA9Þ

1

rd−2
ffiffiffiffiffiffiffiffiffiffiffiffi
fðϕαÞ

p ð∂t½rd−2
ffiffiffiffiffiffiffiffiffiffiffiffi
fðϕαÞ

p
ð−Δ−1∂tÞ�

þ ∂r½rd−2
ffiffiffiffiffiffiffiffiffiffiffiffi
fðϕαÞ

p
ðΔ∂rÞ�

þ ∂i½rd−2
ffiffiffiffiffiffiffiffiffiffiffiffi
fðϕαÞ

p
ðΣij∂jÞ�Þ½Φ� ¼ 0: ðA10Þ

Thus, invoking the separation of variables, letΦðt; r;ϕαÞ ¼
WðtÞRðrÞQn−2

i¼1 θiðϕiÞ, so that

Kg½Φ�
Φ

¼ 0; ðA11Þ

−Δ−1∂2
t ½WðtÞ�

WðtÞ þ ∂r½rd−2Δ∂rR�
rd−2RðrÞ

þ ∂ið
ffiffiffiffiffiffiffiffiffiffiffi
fðθαÞ

p
Σij∂j

Q
n−2
i¼1 θiðϕiÞÞffiffiffiffiffiffiffiffiffiffiffi

fðθαÞ
p Q

n−2
i¼1 θiðϕiÞ

¼ 0: ðA12Þ

Then, imposing eigenvalues,

−Δ−1∂2
t ½WðtÞ�

WðtÞ ¼ −ω2 ⇔ WðtÞ ¼ W0e�iωt; ðA13Þ

1ffiffiffiffiffiffiffiffiffiffiffi
fðθαÞ

p Q
n−2
i¼1 θiðϕiÞ

∂i

� ffiffiffiffiffiffiffiffiffiffiffi
fðθαÞ

p
Σij∂j

Yn−2
i¼1

θiðϕiÞ
�

¼
X

KLi
; ðA14Þ

so that we may rewrite the radial ansatz as

ω2

Δ
þ 1

rd−2RðrÞ ∂r½rd−2Δ∂rR� þ
X

KLi
¼ 0; ðA15Þ

or

�
1

rd−2
∂r½rd−2Δ∂rR�þ

ω2

Δ
þ
X

KLi

�
RðrÞ¼ 0: ðA16Þ

The transform

RðrÞ ¼ ðrd−2 − 2MrÞ−1=2uðrÞ ðA17Þ

eliminates the first order term, yielding

∂2
ruðrÞ þ

�∂rðrd−2Δ∂rðrd−2 − 2MrÞ−1=2Þ
rd−2Δðrd−2 − 2MrÞ−1=2 þ ω2

Δ2

�
uðrÞ ¼ 0:

ðA18Þ

In the above form, the asymptotic waveform is more
apparent, albeit with a local, functional frequency ∂2

ruðrÞ þ
ω̄2ðrÞuðrÞ ¼ 0,

ω̄2 ¼ −
∂rðrd−2ΔÞððd − 2Þrd−3 − 2MÞ

2rd−2Δðrd−2 − 2MrÞ −
ðd − 2Þðd − 3Þðrd−2 − 2MrÞrd−4 − 3ððd − 2Þrd−3 − 2MÞ2

2ðrd−2 − 2MrÞ2 þ ω2

Δ2
ðA19Þ

or

ω̄2 ¼ −
ð d
L2 þ d−2

r2 − 2M
rd−1

Þððd − 2Þ − 2M
rd−3

Þ
2r2ð 1

L2 þ 1
r2 −

2M
rd−1

Þð1 − 2M
rd−3

Þ −
ðd − 2Þðd − 3Þð1 − 2M

rd−3
Þ − 3ððd − 2Þ − 2M

rd−3
Þ2

2r2ð1 − 2M
rd−3

Þ2 þ ω2

r4ð 1
L2 þ 1

r2 −
2M
rd−1

Þ2 : ðA20Þ

For AdS (or finite L), asymptotically expanding at r → ∞

ω̄2 ≈ −
L2

2r2

�
d
L2

þ d − 2

r2
−

2M
rd−1

��
ðd − 2Þ − 2M

rd−3

��X
n¼0

�
rd−3 − 2M

rd−1

�
n
l2n
��X

n¼0

�
2M
rd−3

�
n
�

−
1

2r2

�
ðd − 2Þðd − 3Þ

�
1 −

2M
rd−3

�
− 3

�
ðd − 2Þ − 2M

rd−3

�
2
��X

n¼1

n

�
2M
rd−3

�
n−1
�

þ L4ω2

r4

�X
n¼1

n

�
rd−3 − 2M

rd−1

�
n−1

L2n−2
�

ðA21Þ

≈
L4ω2

r4

�
1þO

�
1

r2

��
þ ðd − 2Þðd − 3Þ

2r2

�
1þO

�
1

r

��
: ðA22Þ
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Thus, using (A1), we see that p0 ¼ 0 and q0 ¼ ðd−2Þðd−3Þ
2

. Therefore, r → ∞ is a regular singular point in AdSd, ∀ d.
Returning to (A20) and considering the flat case, limL→∞ ω̄2 ¼ ω̄2

flat:

ω̄2
flat ¼

ω2

ð1 − 2M
rd−3Þ2

−
ðd − 2Þðd − 3Þð1 − 2M

rd−3
Þ − 2ððd − 2Þ − 2M

rd−3
Þ2

2r2ð1 − 2M
rd−3Þ2

≈
�
ω2 −

1

2r2
ððd − 2Þðd − 3Þ

�
1 −

2M
rd−3

�
− 2

�
ðd − 2Þ − 2M

rd−3

�
2
��X

n¼1

n

�
2M
rd−3

�
n−1

: ðA23Þ

Clearly, due to the constant term, ω̄2 fails the criteria in
(A1): limr→∞ r2ω̄2 ¼ ∞. Thus, we must analyze the point
r → ∞ as irregular. As described in [33], the ODE is of the
form (A3). Here q0 ¼ −ω2 ∀ d. For d ¼ 4, q1 ¼ 4ω2M2,
while ∀ d ≠ 4, q1 ¼ 0. Using [33] Sec. III.2 Eq. (6), we
find

λ̃ðd¼4Þ
∞ ¼ �2Mω; λ̃d>4∞ ¼ 0: ðA24Þ

Then, in the uðrÞ frame we find the asymptotic solutions
to be

uðrÞ ¼ e�iωr · r�iλ̃∞

�
1þO

�
1

r

��
:

Equivalently, we can determine the asymptotic expansion
in the R frame by employing the transform (A17) between
the different frames

RðrÞ ¼ e�iωr · r�iλ̃∞−ðd−2Þ=2
�
1þO

�
1

r

��
: ðA25Þ

In the case of d ¼ 4, we find

RðrÞ ¼ e�iωr · r�2iMω−1
�
1þO

�
1

r

��
: ðA26Þ

Note that in the R frame, one finds two (rather than one)
values of the fake monodromy �λ̃∞. As we explain in
Sec. II, the frame that simplifies the identification between
the monodromies and entropy variations is a frame in
which one of the monodromies vanishes at each of the
singularities. This complication is an artifact of the coor-
dinate system, where having two monodromies at each
point may result in ambiguities. We argue that this
complication does not arise in the R̃ frame where the
ODE is of the form (13) with (14). Moreover, for
consistency in implementing the Fuchs-type relation the
monodromies have to be determined in the same frame. The
R̃ frame was the preferred choice in the previous sections to
find the monodromies αi at the finite regular singular
points. Inverting the relation (33)

R̃ðrÞ ¼
YK̄−1

i¼1

ðr − riÞþiα̃iRðrÞ; with α̃i ¼
ω

Δ̄0ðriÞ
: ðA27Þ

To be explicit, the associated asymptotic expansions at r ¼
∞ in the R̃ frame are

R̃ðrÞ ¼ e−iωr · r−ðd−2Þ=2
�
1þO

�
1

r

��
; ðA28Þ

R̃ðrÞ ¼ eþiωr · rþi2λ̃∞−ðd−2Þ=2
�
1þO

�
1

r

��
: ðA29Þ

Within this frame λ∞ ¼ 2λ̃∞, the fake monodromy, con-
tributes to the Fuchs-type relation at r ¼ ∞ and, equiv-
alently, constrains the variational entropy sum over nite
horizons. To summarize, the fake monodromies in the R̃
frame are

For Asympt; Flat4∶ λ∞ → 4Mω; ðA30Þ

For Asympt; Flatd>4∶ λ∞ → 0: ðA31Þ

APPENDIX B: PROPERTIES
OF KERR-AdS HORIZONS

We briefly describe a few useful properties of the Kerr-
AdS black hole solution: (1) The function ΔðrÞ ¼ 0 has
four roots r1 ¼ rþ, r2 ¼ r−, r3, r4 and can be written as

ΔðrÞ ¼ ðr − rþÞðr − r−Þðr − r3Þðr − r4Þ=L2: ðB1Þ

(2) The roots of ΔðrÞ ¼ 0 are related in the following way:

X4
i¼1

ri ¼ 0;
Y4
i¼1

ri ¼ L2a2; ðB2Þ

Y
ðr2i þ a2Þ ¼ ð2MaL2Þ2;Y

ð1þ r2i =L
2Þ ¼ ð2M=LÞ2: ðB3Þ

(3) This implies that we can rewrite the parameters as
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M ¼ ðL2 þ r2−ÞðL2 þ r2þÞðr− þ rþÞ
2L2ðL2 − r−rþÞ

; a2 ¼ r−rþðL2 þ r2− þ r−rþ þ r2þÞ
L2 − r−rþ

; ðB4Þ

r3 ¼ −
1

2

 
r− þ rþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L4 þ L2ð3r2− þ 2r−rþ þ 3r2þÞ þ r−rþðr− þ rþÞ2

r−rþ − L2

s !
; ðB5Þ

r4 ¼ −
1

2

 
r− þ rþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L4 þ L2ð3r2− þ 2r−rþ þ 3r2þÞ þ r−rþðr− þ rþÞ2

r−rþ − L2

s !
: ðB6Þ
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