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We analyze the canonical quantum dynamics of the isotropic universe, as emerging from the
Hamiltonian formulation of a metric fðRÞ gravity, viewed in the Jordan frame. The canonical method
of quantization is performed by solving the Hamiltonian constraint before quantizing and adopting like a
relational time the nonminimally coupled scalar field emerging in the Jordan frame. The resulting
Schrödinger evolution is then investigated both in the vacuum and in the presence of a massless scalar field,
though as the kinetic component of an inflaton. We show that, in vacuum, the morphology of localized
wave packets is that of a nonspreading profile up to the cosmological singularity. When the external scalar
field is included into the dynamics, we see that the wave packets acquire the surprising feature of increasing
localization of the universe volume, as it expands. This result suggests that, in the metric fðRÞ formulation
of gravity, a spontaneous mechanism arises for the Universe classicalization. Actually, when the phase
space of the scalar field is fully explored, such an increasing localization in the Universe volume is valid up
to a given value of the time, i.e., of the nonminimally coupled mode after which the wave packets spread
again. We conclude our analysis by inferring that before this critical transition age is reached, the
inflationary phase could take place, here modeled via a cosmological constant. This point of view provides
an interesting scenario for the transition from a Planckian Universe to a classical de-Sitter phase, which in
the fðRÞ gravity appears more natural than in the Einsteinian picture.

DOI: 10.1103/PhysRevD.104.024054

I. INTRODUCTION

Among the extended (non-Einsteinian) theories of grav-
ity [1], the so-called fðRÞ-model [2–4] is one of the most
studied in view of possible phenomenology for new
physics, like dark energy and dark matter [5]. The reasons
for such a wide implementation of this approach to
generalize the Einstein-Hilbert action [6] are to be iden-
tified in the simplicity of the reformulation for the gener-
alized Einstein equations, now becoming of the fourth
order in differentiation. Actually, suitable expansions of the
fðRÞ in specific limits (e.g., for large or small values of the
scalar of curvature R), allow a straightforward comparison
with the phenomenology of general relativity, favoring tests
of validity for the revised scenario [7].
However, the value of the fðRÞ formulation for searching

new physics is evident when the scalar-tensor setup of this
approach is outlined [2,6]. Actually, the scalar degree of
freedom contained in the form of the function f can be
translated into the dynamics of a scalar field, nonminimally
coupled to gravity in the so-called Jordan frame, while it

can be restated in a minimally coupled form in a formu-
lation dubbed the Einstein frame (involving a conformal
rescaling of the metric tensor).
Here, we provide an application of the fðRÞmodel in the

Jordan frame to quantum cosmology (for applications to
classical cosmology see [5,7–10] and for the most reliable
models accounting for dark energy see also [11–13]).
In particular, we consider the evolution of an isotropic

universe in the presence of an external minimally
coupled scalar field in addition to the intrinsic nonmini-
mally coupled one of the Jordan frame. Actually, the
nonminimally coupled mode has always a potential term,
summarizing the morphology of the original f (for a gauge-
invariant description of the theory degrees of freedom see
[14]) which is reliably negligible near enough to the initial
singularity since its relevance is controlled by the universe
volume.
The specific point of view we address here is that one in

which the fðRÞ induced scalar mode plays the role of a
relational clock for the canonical quantum dynamics. This
scenario was firstly investigated in [8] on the context of the
Wheeler-Dewitt equation while here we consider an
approach based on an ADM-reduction [15] which leads
to a Schrödinger-like formulation of the quantum evolu-
tion. In other words, we chose here the nonminimally
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coupled scalar field as a time variable before quantizing the
system [16].
We first analyzed the vacuum theory and we see that the

dynamics of a localized wave packet remains nonspreading
for all the system evolution, since the average values follow
classical trajectories which reach the singularity.
Then, we introduce an external matter, in the form of a

massless scalar field, to be thought as the kinetic compo-
nent of an inflation field [6,17] and, as first step, the
simplified case when this scalar field has a small conjugate
momentum (i.e., it is limited to explore a small phase space
region).
In this case, we observe a very peculiar feature, con-

cerning a progressive localization of the wave packet from
the singularity toward the fully expanded universe. In
other words, we observe a spontaneous mechanism of
“classicalization” of the universe as the relational time
flows. To confirm the validity of this result also in an
extended context, we then analyze the general case,
which include the possibility of a second regime in the
quantum solution, due to the negative character of the
argument of a square root present in the Hamiltonian
(prevented when the phase space is restricted). The pres-
ence of this new regime does not completely suppress the
classicalization phenomenon, which is still present up to a
given instant of time after which, the change of sign of the
mentioned square root induces a new spreading tendency of
the wave packet.
It is easy to realize how the present analysis is of relevant

interest in primordial cosmology, since it offers a natural
scenario via the fðRÞ gravity, as viewed in the Jordan
frame, to account for the classical nature of the isotropic
Universe, as emerging from a Planckian era [6,18–20].
It is worth nothing that classicalization phenomenon is

of interest for the real history of a primordial universe
and in this respect, the following two perspectives can be
considered:

(i) The phase space of the inflaton field remains small
from the Planck era up to the inflation age

(ii) The evolution of the primordial universe is affected
by new physics before the critical instant, when it
starts to delocalize (it is reached).

The first hypothesis can be supported only if we consider
suitable initial conditions and it calls attention for further
investigation when the radiation contribution of the thermal
bath is included. The second scenario appears the most
natural since the new physics is naturally identified in the
phase transition at the beginning of the inflation (say a huge
cosmological constant term arises) which can prevent the
subsequent spreading of the universe wave function. Here,
we infer that when the Universe is characterized by a very
peaked wave function, de facto it is a classical universe, the
evolution is naturally driven toward a de-Sitter phase via
the emergence of the cosmological constant (no spreading
has time to occur).

The present manuscript is structured as follows. In
Sec. II, we present the modified theory of gravity fðRÞ
and construct the Lagrangian formalism in scalar-tensor
representation, making particular attention to the Jordan
frame in which the fðRÞ gravity is expressed through a
nonminimally coupled scalar field to gravity. In Sec. III we
extend the method of Sec. II in order to derive the
Hamiltonian formalism of gravity in the case of fðRÞ
theories in scalar-tensor representation for the isotropic
universe. In Sec. IV we perform a critical study on the
canonical quantization of the isotropic universe in the case
of the fðRÞ theories of gravity in the Jordan frame. In
particular, using the scalar field ξ as the prequantization
time and developing an analysis on the quantum dynamics
of the FLRW model in the vacuum. In Sec. V we repeat the
analysis of Sec. IV adding the matter scalar field ϕ. We
perform this study considering two different cases: the first
one within a perturbation approach in order to facilitate
calculations and so to restrict the dynamics of the field in a
small region of the phase space, and the second one
regarding its exact quantum evolution. Moreover, we
highlight also the classical behavior and we discuss the
role of inflation in constructing a reliable classicalization of
the universe. Finally, in Sec. VI conclusions are drawn.

II. f ðRÞ THEORIES IN THE JORDAN FRAME

Einstein’s theory of general relativity satisfactory
describes gravity phenomenology. Even if the determina-
tion of the gravitational field kinematics is a very consistent
formulation due to its geometrical and tensorial structure, a
wide class of different proposals are admitted by its
dynamics. Actually, the Einstein-Hilbert action contains
the Ricci scalar R that is only the most simple proposal. In
fact, the Ricci scalar depends on the second derivatives of
the metric tensor gμν and, under variation, it provides a
second order differential equations. These metric fðRÞ
theories come from a straightforward generalization of the
Lagrangian in the Einstein-Hilbert action as follows

SEH ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð1Þ

where κ ≡ 8πG
c4 , G is the gravitational constant, g is the

determinant of the metric and the function f corresponds to
∞1 degrees of freedom. In order to derive the Einstein’s
field equations, in literature there are two possible varia-
tional principles: affine and metric approach and in this
study, we will refer to the last one.
We can construct the total action for fðRÞ gravity by

adding a matter term SM,

S ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SMðgμν;ψÞ; ð2Þ

in which ψ represents a generic matter field.
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The variation of the action (1) with respect to the metric
gμν implies the following set of covariant field equations,
characterized by fourth-order differentiation

fðRÞ0Rμν −
1

2
fðRÞgμν − ½∇μ∇μ − gμν□�f0ðRÞ ¼ κTμν; ð3Þ

where f0ðRÞ≡ df=dR and □≡ gij∇i∇j is the d’Alambert
operator in curved manifolds. In order to rewrite both the
action and equations in a more convenient way, one can
introduce two auxiliary fields (i.e., Lagrange multipliers) A
and B, so the action takes the form

S¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½BðA−RÞ þ fðAÞ� þ SMðgμν;ψÞ: ð4Þ

The variation with respect to B gives R ¼ A, while the
variation with respect to A provides B¼−df=dA≡−f0ðAÞ.
We now redefine the field A by introducing the scalar field
ξ ¼ f0ðAÞ and its potential

VðξÞ ¼ AðξÞξ − fðAðξÞÞ: ð5Þ

In this way the action (4) is now rewritten as

SJ ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½ξR − VðξÞ� þ SMðgμν;ψÞ; ð6Þ

and it is known as the fðRÞ gravitational action in the
Jordan frame. Thus, we get a scalar-tensor representation
based on translating the scalar degree of freedom related to
the function fðRÞ into a dynamical scalar field nonmini-
mally coupled with the curvature R.
Hence, the field equations turn out to be

�
Gμν¼ κ

ξTμν− 1
2ξgμνVðξÞþ 1

ξð∇μ∇νξ−gμν□ξÞ¼ κT

R¼V 0ðξÞ
ð7Þ

corresponding now to a second-order formulation. Taking
the trace of the first equation (7) and using the second one
we get

3□ξþ 2VðξÞ − ξ
dV
dξ

¼ κT ð8Þ

that determines the dynamics of the scalar field for a given
source of matter.

III. HAMILTONIAN FORMULATION OF THE
ISOTROPIC UNIVERSE DYNAMICS

We start considering a closed (positive curved) FLRW
model which corresponding ADM line element [19] is
provided by the expression

ds2 ¼ gμνdxμdxν; ð9Þ

in which the metric tensor gμν is written as

gαβ ¼

0
BBB@

N2 0 0 0

0 −a2 0 0

0 0 −a2sin2χ 0

0 0 0 −a2sin2χsin2θ

1
CCCA: ð10Þ

In this way, the covariant volume element necessary for the
construction of the ADM gravity action is the following

ffiffiffiffiffiffi
−g

p ¼ Na3 sin2 χ sin θ: ð11Þ

Using the fðRÞ gravity action in the scalar-tensor formu-
lation of the Jordan frame (6) and outlining the contribute
of ξR as

ξR ¼ −6ξ
��

1

aN
∂
∂t
�
1

N
∂a
∂t
��

þ
�

1

a2N2

�∂a
∂t
�

2
�
þ 1

a2

�
;

ð12Þ

the action takes the form

SADMJF ¼ 3πc3

8G

Z
dt

�
−
ξa _a2

N
−
a2 _a _ξ

N
þ Naξþ a3NVðξÞ

6

�
:

ð13Þ

Hence, the ADM Lagrangian density reads

LADM
JF ¼−

3πc3

4G

�
ξa _a2

N
þa2 _a _ξ

N
−Naξ−

a3NVðξÞ
6

�
: ð14Þ

In order to pass to the Hamiltonian formulation of
gravity, let us perform a Legendre transformation by
defining the momentum pa conjugated to the scale factor
a and the momentum pξ conjugated to the variable ξ as

pa ¼ −
3πc3

4GN
ð2ξa _aþ a2 _ξÞ ð15Þ

pξ ¼ −
3πc3

4GN
a2 _a: ð16Þ

In this way we get

_a ¼ −
4GN
3πc3

pξ

a2
; ð17Þ

_ξ ¼ 8GN
3πc3

ξ

a3
pξ −

4GN
3πc3

pa

a2
: ð18Þ

So that, the Hamiltonian function

Hg ≡ pa _aþ pξ
_ξ − Lg ð19Þ
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is obtained using (14), (17), and (18) as follows

Hg¼N

�
−

4G
3πc3

papξ

a2
þ 4G
3πc3

ξ

a3
p2
ξ−

3πc3

4G
aξ−

πc3

8G
a3VðξÞ

�
:

ð20Þ

In order to introduce the matter component with a free
scalar field which in a cosmological setting depends only
on time ϕðtÞ, we consider a matter action and (11) as
follows

Sϕ ¼ 2π2

c

Z
dt

�
a3

2N
_ϕ2 − a3NVðϕÞ

�
: ð21Þ

Then, performing the Legendre transformation by defin-
ing the momentum pϕ conjugate to the variable ϕ as

pϕ ¼ 2π2

c
a3

N
_ϕ

→ _ϕ ¼ cN
2π2

pϕ

a3
ð22Þ

and following the same steps as before, we achieve

Hϕ ¼ N

�
c
4π2

1

a3
p2
ϕ þ

2π2

c
a3VðϕÞ

�
: ð23Þ

Hence, the total gravity-matter super-Hamiltonian reads as

H ¼ 4G
3πc3

ξ

a3
p2
ξ þ

c
4π2

1

a3
p2
ϕ −

4G
3πc3

papξ

a2
−
3πc3

4G
aξ − a3

�
πc3

8G
VðξÞ − 2π2

c
VðϕÞ

�
: ð24Þ

It is important to stress that variating the total action with
respect to N we easily get that the gravity-matter super-
Hamiltonian above must vanish.

IV. SCHRÖDINGER DYNAMICS
IN VACUUM CASE

In this section, we extend the minisuperspace formalism
to the fðRÞ scalar-tensor representation in which the scalar
field ξ mimics the role of the internal time variable [8],
chosen before quantizing the system. We assume that, near
the Planckian era (i.e., a → 0), we can neglect the potential
terms as they are dominated by a factor a3 as well as the
linear term a due to the positive spatial curvature. In order
to study the vacuum case, we set pϕ ≡ 0. Hence, the
Hamiltonian is written as

H ¼ 4GN
3πc3

�
ξ

a3
p2
ξ −

papξ

a2

�
: ð25Þ

It is now convenient to adopt the change of variable
α ¼ ln a2. Equation (25) takes the form

H ¼ 4GN
3πc3

e−
3
2
α

�
1

2
ξp2

ξ − pαpξ

�
: ð26Þ

According to the ADM procedure [18,21], we solve the
super-Hamiltonian constraint with respect to the conjugate
momentum to the timelike variable ξ

H ¼ 4GN
3πc3

e−
3
2
α

�
1

2
ξp2

ξ − pαpξ

�
¼ 0

→ pξ

�
1

2
ξpξ − pα

�
¼ 0; ð27Þ

hence two possible solutions can be obtained

�pξ;1 ¼ 0

pξ;2 ¼ 2pα
ξ :

ð28Þ

Choosing the nontrivial solution we fix the Hamiltonian
that rules the dynamics of the theory with respect to ξ

hξ ¼ −
2pα

ξ
: ð29Þ

The next step consists in setting the time gauge _ξ ¼ 1 that
fixes the lapse function N to the form

NADM ¼ 3πc3

4G
e−

3
2
α

ðξpξ − pαÞ
ð30Þ

hence we can the reduced ADM action as follows

Sred ¼
Z

dξ

�
pα

∂α
∂ξ − hξ

�
: ð31Þ

According to (31) we derive the Hamilton equations

( ∂α
∂ξ ¼

∂hξ
∂pα

¼ − 2
ξ

∂pα∂ξ ¼ − ∂hξ
∂α ¼ 0

ð32Þ

which determine the classical trajectory with respect to the
time ξ

αðξÞ ¼ −2 lnðξÞ þ α0; ð33Þ

where α0 is set equal to zero in order to have αð0Þ ¼ 0.
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Finally, promoting hξ to a quantum operator we obtain
the equation la Schrödinger

∂ψ
∂ξ ¼ 2∂ψ

ξ∂α : ð34Þ

Substituting the plane wave representation ψðα; ξÞ ¼
eikααγðξÞ we obtain a differential equation for γðξÞ, i.e.:

∂γ
∂ξ ¼

2ikα
ξ

γ ð35Þ

having the solution γðξÞ ¼ d1ξ2ikα , where d1 is an integra-
tion constant. Hence, we get

ψðα; ξÞ ¼ d1eikααξ2ikα : ð36Þ

The next step is to construct a localized wave packet by
using a Gaussian distribution on kα (34), i.e.:

Ψðα; ξÞ ¼
Z þ∞

−∞
dkαAðkαÞψðα; ξÞ; ð37Þ

where we assumed

AðkαÞ ¼
1ffiffiffiffiffiffi
2π

p
σα

e
−ðkα−k̄αÞ2

2σ2α : ð38Þ

Hence, according to the natural scalar product for a
Schrödinger-like equation, the normalizable probability
density is

jΨj2¼ΨΨ�

¼
Z þ∞

−∞
dkαAðkαÞeikααξ2ikα

Z þ∞

−∞
dkαAðkαÞe−ikααξ−2ikα ;

ð39Þ

which provides the probability of finding the universe at a
certain instant ξ for unit of spatial coordinate α. Therefore,
it is possible to evaluate the consistency of the quantum
cosmological model under consideration by studying the
behavior of quantity (52) as time varies Fig. 1, i.e., ξ > 0.
All the calculations of this work are performed with the
help of Wolfram Mathematica.
It is important to stress that the probability density

remains perfectly localized over time.
To demonstrate the consistency of the classical limit with

the quantum behavior, we compare the classical trajectory
(33) provided by the Hamilton equations with the values of
the α coordinates corresponding to the peaks of the
probability density (52) as ξ varies. In fact, for probability
densities well localized, as in the case of a Gaussian, the
value of α for which there is a maximum closely resembles
the expectation value behavior. From Fig. 2, it is clear that
the quantum dynamics formalized by the wave packet
Ψðα; ξÞ correctly follows the classical dynamics of the
FLRW universe in the Jordan frame.
We highlight the remarkable result of having shown that

a cosmological model of this type reaches the singularity
(ξ → þ∞, α → −∞) in a quasiclassical way, allowing to
consider the quantum effects in the Planckian regime as
lower-order effects on a semiclassical Universe.

V. QUANTUM DYNAMICS IN THE PRESENCE
OF MATTER

In this section, we analyze the Hamiltonian (26) con-
sidering the free external scalar field ϕ. Hence, it becomes

H ¼ 4GN
3πc3

e−
3
2
α

�
1

2
ξp2

ξ þ
3c4

16πG
p2
ϕ − pαpξ

�
: ð40Þ

Thus, solving the super-Hamiltonian constraint ðH ¼ 0Þ
with respect to the conjugate momentum pξ, it reads as

FIG. 1. Evolution of the square modulus of the wave function
Ψðα; ξÞ for different values of time. We set k̄α ¼ 1, σα ¼ 1.

Classical trajectory

Expectation value

0 2 4 6 8 10
5

0

5

10

15

20

25

FIG. 2. Comparison between the classical trajectory (solid line)
and the αðξÞ values where the probability density is maximally
localized (points).
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pξ ¼
pα �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
α − 3c4

8πG ξp
2
ϕ

q
ξ

; ð41Þ

we choose the positive solution in order to achieve that one
we found in the case without the scalar field and define the
Hamiltonian that rules the dynamics with respect to ξ as

hξ ¼ −

 
pα þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
α − 3c4

8πG ξp
2
ϕ

q
ξ

!
: ð42Þ

Hence, the Hamilton equations are

8>><
>>:

∂α
∂ξ ¼

∂hξ
∂pα

¼ 1
ξ

�
−1 − 2pαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
α−3c4

8πGξp
2
ϕ

q �

∂pα∂ξ ¼ − ∂hξ
∂α ¼ 0

ð43Þ

which determine the classical trajectory

αðξÞ ¼ α0 − 3 log
h
pα −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
α − 3ξp2

ϕ

q i
þ log

h
pα þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
α − 3ξp2

ϕ

q i
ð44Þ

with α0 an integration constant and pα still a constant of
motion.
Promoting hξ and pξ to quantum operators we derive the

equation la Schrödinger

i
∂ψ
∂ξ ¼ −

1

ξ

�
−i∂α þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂2

α þ
3c4

8πG
ξ∂2

ϕ

r �
ψ ; ð45Þ

as before, we use the ansatz ψðα;ϕ; ξÞ ¼ eiðkααþkϕϕÞβðξÞ
and by applying to the plane wave the square root derived
from the nonlocal Hamiltonian [22], we obtain

iξ∂ξβðξÞ ¼
�
−kα −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2α −

3c4

8πG
ξk2ϕ

r �
βðξÞ: ð46Þ

Now, we consider the change of variable ξ ¼ eτ in order to
achieve an equation for βðτÞ as

i∂τβðτÞ ¼
�
−kα −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2α −

3c4

8πG
k2ϕe

τ

r �
βðτÞ: ð47Þ

In the following subsections, we consider two different
cases. The perturbation approach which consists of having

a small conjugate momentum of the scalar field (so that the
argument of the square root remains always positive) and
eventually the general formulation where no approximation
is made.

A. Perturbation approach

To facilitate the calculation, we start by restricting the
dynamics of the scalar field ϕ to a small region of the phase
space. In other words, we expand the square root of (47)
with Taylor polynomials, obtaining

∂τβðτÞ ≃
�
2ikα −

i
2

3c4

8πG

k2ϕ
kα

eτ
�
βðτÞ: ð48Þ

Hence, an equation for βðτÞ as well as for βðξÞ is found

βðξÞ ¼ ξ2ikαe−
i
2
3c4
16πG

k2
ϕ
kα
ξ; ð49Þ

and the complete wave function is written as

ψðα;ϕ; ξÞ ¼ eiðkααþkϕϕÞξ2ikαe−
i
2
3c4
16πG

k2
ϕ
kα
ξ: ð50Þ

As described in the preceding paragraph, we construct
the normalizable probability density (52), associated to a
Gaussian wave packet in kα and kϕ (running in a small
domain around zero), which gives the probability of finding
the universe at a certain instant ξ per unit of spatial
coordinates α and ϕ. In Fig. 3 we observe a very peculiar
feature concerning a progressive localization of the wave
packet from the singularity toward the expanding universe.
Thus, we see that a spontaneous mechanism of classical-
ization emerges.

B. Exact regime

The interesting result obtained leads us to study the
general case in order to see this feature is maintained even

FIG. 3. Evolution of the square modulus of the wave function
Ψðα;ϕ; ξÞ with the perturbation approach. We take respectively
ξ ¼ 10; 1; 0.1; k̄α ¼ k̄ϕ ¼ 0 and σα ¼ σϕ ¼ 5.
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in this context for arbitrary values of the scalar field conjugate momentum. Hence, substituting the solution of (47) in the
plane wave, we get the total final expression

ψðα;ϕ; ξÞ ¼ eiðkααþkϕϕÞξikαe
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2α−3c4

8πGξk
2
ϕ

q
e
−2ikαarc tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2α−

3c4
8πGξk

2
ϕ

q
kα

�
: ð51Þ

Then, we analyze the behavior of the following wave packet

Ψ ¼
Z þ∞

−∞
dkαdkϕAðkα; kϕÞeiðkααþkϕϕÞξikα e

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2α−3c4

8πGξk
2
ϕ

q
e

−2ikαarc tan h

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2α−

3c4
8πGξk

2
ϕ

q
kα

!
ð52Þ

with Aðkα; kϕÞ being the product of two Gaussian functions
in kα and kϕ respectively. The probability density ΨΨ� is
plotted in Fig. 4. We observe that in a model in which we
use as time not the matter scalar field but the internal fðRÞ
scalar mode nonminimally coupled to gravity, the universe
tends to classicize as the function of this variable time up to
a critical value. When the wave function is peaked, one can
consider the mean values of kα and kϕ as corresponding to
their classical ones, in fact the critical value is ξ ¼ 0.3 for
fixed k̄α ¼ k̄ϕ ¼ 0.3. After that, a change of regime in the
solution is present, i.e., a regime transition of the square
root from imaginary to real values, and a subsequent
spreading of the wave packet in the α variable arises (when
estimated by the mean values), Fig. 4.
To demonstrate the consistency of the classical limit of

the examined quantum model, we compare the classical
trajectory provided by the Hamilton equations (44) and the
mean values of the coordinate α as ξ varies. Such a choice
of the mean values is to be considered as a more
quantitative analysis than the previous one in Sec. IV
and Sec. VA. In fact, from the mean values

hαi ¼
Z

dαdϕΨ�αΨ; ð53Þ

we can study the evolution of the basic variable α
fluctuation, i.e.,

Σα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hα2i − hαi2

q
: ð54Þ

Where h::i denotes the mean values of the enclosed
quantities. Here as well, from Fig. 5 it can be realized
that the quantum expectation value dynamics follows the
classical one of the FLRW universe in the Jordan frame.
Moreover, from Fig. 6 it is evident the decreasing behavior
of the standard deviation Σα up to the critical value of the
time ξ after which it starts further to increase. It is worth
noting that it is reliable the possibility to characterize the
quantum probability distribution in terms of hαi and Σα

because we are dealing with Gaussian wave packets. It is
also the Gaussian nature of our localization that ensures
that the quantities σα and Σα naturally obey the uncertainty
principle. Our analysis acquires a rather general character,

FIG. 4. Evolution of the probability density jΨj2 for differ-
ent values of ξ ¼ 10; 1; 0.01. We take k̄α ¼ k̄ϕ ¼ 0.3 and
σα ¼ σϕ ¼ 2.

classical trajectory

mean value
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FIG. 5. Comparison between the classical trajectory (solid line)
and the αðξÞ mean values (points).
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as soon as we consider that a localized wave packet
(symmetric with respect to the mean value) can be always
approximated by a Gaussian one to a given order.

C. The role of inflation

The result of the previous section leads to the very
surprising feature in the behavior of the universe volume
that an increasing localization of the quantum wave
packet takes place as it expands. We clarified how this
classicalization tendency of the quantum dynamics is
sensitive to the sign of the square root present in the
reduced Hamiltonian (42). The idea of a small initial value
of pϕ is supported by the scenario of an inflation field that
is laying nearby the minimum of its potential, before the
phase transition of the inflation paradigm takes place.
However, the possibility for a non-negligible kinetic term
of the field ϕ, near enough the Planckian era can not be
ruled out at all from the problem. In fact, the kinetic energy
of a massless free scalar field increases toward the
singularity as e−3α and this fact is at the ground of the
implementation of this term to construct a relational clock
for the quantum universe dynamics. Thus, the question
concerning a subsequent spreading of the wave packet,
after its localization in the variable α must be discussed.
Independently of the mean value taken by pϕ during the

Planckian era, we suggest the following scenario to connect
the primordial quantum phase with a classical inflationary
stage. During the classicalization process, we can infer that
the phase transition of the inflaton paradigm can start, here
modeled via the introduction of a cosmological constant
term in the (emerging) classical dynamics. This hypothesis
is clearly more reliable as smaller is the mean value of pϕ in
the quantum phase, since the transition has more available
time to take place.
The Hamilton equations describing the universe evolu-

tion in the presence of a cosmological constant take the
form

8>>>>><
>>>>>:

∂α
∂ξ ¼ − 3ΛeαðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
α−2ξð3c48πGp

2
ϕþΛe3αðξÞ

q
Þ

∂pα∂ξ ¼ 1
ξ

�
−1 − 2pαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
α−2ξð3c48πGp

2
ϕþΛe3αðξÞ

q
Þ

� ð55Þ

We see that for positive value ofpα the derivative ∂α=∂ξ is
negative, i.e., as without the cosmological constant. Thus,
the universe expands as the clock coordinate ξ decreases
(i.e., the arrow of time is reversed with respect to the
synchronous gauge) and it is worth observing that the critical
value of ξ at which without the cosmological constant a
singularity behavior emerged, is instead now regular.
A singular behavior of the dynamics is now recovered for

a smaller value of ξ, namely when the following condition
takes place

ξ ¼ p2
α

2ð 3c4
8πGp

2
ϕ þ Λe3αÞ : ð56Þ

It is very easy to realize that, in correspondence to this
singular instant, the quantity ∂α=∂ξ approaches −∞ and an
asymptote for the function αðξÞ arises. Such an asymptotic
behavior as ξ approaches the critical value (56), contains all
the universe inflationary (de Sitter-like) evolution, i.e., in
the limit of our representation, all the slow-rolling phase.
These considerations suggest that the presence of a

cosmological constant can drive the localized universe
volume to a rapid expansion phase, without the possibility
of a new spreading of the wave function.

VI. CONCLUDING REMARKS

We analyzed the canonical quantum dynamics of the
isotropic universe, as viewed in the metric fðRÞ in the
Jordan frame and in the presence of a free massless scalar
field (thought as the inflaton field in the preinflation age).
The peculiarity of our study consists of adopting as time

variable the nonminimally coupled scalar field emerging
from the scalar-tensor formulation of the fðRÞ gravity. We
have chosen such a scalar field as a clock for our quantum
cosmology before quantizing, i.e., we fix the time gauge
which selected this time coordinate and then we solved the
Hamiltonian constraint with respect to its conjugate
momentum. As result of this Hamiltonian reduction pro-
cedure, we arrive to a Schrödinger dynamics for the
universe wave function which depends on time and on
the two spacelike variables corresponding to α and ϕ.
We first analyzed the vacuum case, by showing the

nonspreading character of the localized wave packets up to
the singularity. Then, we included the massless scalar field
into the dynamics (initially by a perturbation approach and
eventually in its general formulation). We demonstrate how
the presence of such a scalar field affects the wave packet
evolution by inducing a progressive peaking of the wave

0 2 4 6 8 10 12
0

2

4

6

8

10

FIG. 6. Evolution of the standard deviationΣα at different values
of ξ. Σα ¼ 7.8; 2.41; 3.4; 4.93, ξ ¼ 0.01; 0.1; 1; 10 respectively.
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function, as the universe volume increases (i.e., still for
increasing values of α).
Actually, the progressive localization of the wave func-

tion takes place (in the case of generic initial condition for
the inflaton) only up to a given instant of time, depending
on the Cauchy problem for the Schrödinger dynamics.
This peculiar feature suggested a spontaneousmechanism

of classicalization, absent in the canonical quantization of
the standard Einsteinian picture. The scenario we infer here
is that before a new spreading of thewave packet takes place
in the universe future, the inflation phase transition starts,
inducing a new dynamical regime. In other words, the
universe tends to a classical stage as a natural consequence
of its quantum evolution and then it starts to feel the presence
of a huge cosmological constant term which maintains this
classical behavior and causes a very rapid expansion.
This result calls attention, in view of its generalization to

more complicated situations, like the evolution of Bianchi
universes [6,23], e.g., the types I, V, and IX models, which
generalize to the anisotropic sector the evolution of the three
isotropic available geometries [24]. It is a well-known
result, see [25] that it is not possible, in the canonical
picture, that the universe approaches a classical regime
before the oscillations of the Bianchi IXmodel ends (i.e., the
so-called Mixmaster model) [26]. For isotropization

mechanisms in the picture of a WKB approach for the
anisotropy degrees of freedom see [27–29].
The Bianchi IX model is of particular interest because it

admits the isotropic limit and provides a valuable minis-
uperspace model for the generic inhomogeneous universe
[30,31]. Thus, the present study suggests that the proposed
dynamical paradigm must be extended to more general
cosmological models, in order to understand if, adopting
the nonminimally coupled scalar field of the fðRÞ gravity
as physical clock, allows a tendency of the universe volume
to a classical limit, even in the presence of anisotropy
degrees of freedom. Such a point of view could justify the
implementation of a WKB model for the anisotropy
variables, as a natural result of the quantization of the
considered models in the context of an extended metric
fðRÞmodel, as described in the Jordan frame. The idea that
the result here obtained survives also in the presence of
anisotropies of the universe is made very reliable because of
the equivalence that a massless scalar field and the kinetic
term associated to the anisotropy contributions single out
in the morphology of the gravitational Hamiltonian.
Nonetheless, the peculiarity of the potential term associated
to this anisotropies, i.e., the three-scalar curvature of the
universe, can have a significant role in this respect and it
calls attention for further investigations.
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