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The measurement of the epicyclic frequencies is a widely used astrophysical technique to infer
information on a given self-gravitating system and on the related gravity background. We derive their
explicit expressions in static and spherically symmetric wormhole spacetimes. We discuss how these
theoretical results can be applied to: (1) detect the presence of a wormhole, distinguishing it by a black hole;
(2) reconstruct wormhole solutions through the fit of the observational data, once we have them. Finally, we
discuss the physical implications of our proposed epicyclic method.
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I. INTRODUCTION

A wormhole (WH) can be intuitively seen as a topo-
logical shortcut structure, which is capable of connecting
two distinct spacetime points. A visual representation of a
WH is obtained through the example of drawing two
separate points on a paper sheet, and then considering as
the shortest connecting trajectory not the joining straight
line, but the bent paper which brings the two points one
over the other. In Fig. 1, we sketch the intuitive picture
reported before. A WH is conceptually defined as a
compact object characterized by no horizons and physical
singularities, and endowed with a traversable bridge,
dubbed WH neck, connecting two universes or two differ-
ent regions of the same spacetime [1].
These objects have been extensively studied in the

literature, indeed there are many authors, who not only
built up new WH solutions, both in general relativity (GR)
and in alternative gravity, but they were also interested in
analyzing their properties [2–8]. On the other hand, there is
also a major research effort in conceiving original astro-
physical strategies to search for WH observational signa-
tures [9–19]. This research topic is strongly motivated not
only by the presence of several complementary data, but

also because there is the great opportunity to perform, now
and in the near future, highly precise observations in strong
field regimes. This is a very crucial point, because the
missed detection of WHs can be so far explained by the fact
that gravity has not been investigated in extreme regimes.
This justifies also the possibility to find a particular
subclass of WH solutions, known in the literature as black
hole (BH) mimickers, which perfectly mimic all observa-
tional properties of a BH with arbitrary accuracy [20] and
their signature may be likely revealed by strong gravity
experiments.
In this respect, an important role can be played by the

epicyclic frequencies. Let us assume that a particle moving
in a closed orbit is disturbed by small perturbations in
the radial, azimuthal, and polar directions. The particle

FIG. 1. Geometrical representation of a WH.
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oscillation frequencies, along the above-mentioned direc-
tions, correspond to the epicyclic frequencies fνr; νφ; νθg,
respectively. These quantities reveal some useful features
[21,22]: (1) strong dependence on the underlying spacetime
geometry; (2) production of observational effects in the
strong field regime; (3) direct possibility in measuring them
with actual and near future data. To the best of our
knowledge, there are only two papers on this subject
applied to WHs, which are: (1) Chakraborty and collab-
orators, who studied the behavior of a test gyroscope
moving towards a Teo rotating traversable WH [23];
(2) Deligianni and coauthors, who focused their attention
on quasiperiodic oscillations (QPOs) from an accretion disk
around Teo rotating traversable WHs [24].
In this work, we adopt the above-cited advantages of

the epicyclic frequencies to elaborate an astrophysical
procedure to both observationally unearth WHs and to
identify the most appropriate WH solution(s) to fit the
observational data. Our analysis concentrates on static
and spherically symmetric WH metrics. The article is
organized as follows: in Sec. II, we summarize our model-
independent approach framed in generic static and spheri-
cally symmetric WH geometries and then derive the
formulas of the epicyclic frequencies; in Sec. III we apply
the approach to both observationally detect the presence of
a WH and to reconstruct theWH solutions through the fit of
the observational data; finally, in Sec. IV, we discuss the
obtained results and draw the conclusions.

II. WORMHOLE EPICYCLIC FREQUENCIES

In this section, we first describe the general theory in
which the WH solutions are framed (see Sec. II A). As a
second step, we consider the timelike geodesic equations
(see Sec. II B), and then finally derive the general expres-
sions of the epicyclic frequencies (see Sec. II C).

A. The Morris-Thorne-like wormhole metrics

A generic static and spherically symmetric WH can be
described by the Morris-Thorne-like metric [25], ds2 ¼
gαβdxαdxβ, which in geometrical units (G ¼ c ¼ 1), in
spherical coordinates ðt; r; θ;φÞ, and set in the equatorial
plane θ ¼ π=2 (without loss of generality due to the
spherical symmetry hypothesis) reads as

ds2 ¼ −e2ΦðrÞdt2 þ dr2

1 − bðrÞ=rþ r2dφ2; ð1Þ

where ΦðrÞ and bðrÞ are the redshift and shape functions,
respectively. Equation (1) is a two-parameters family of
metrics, fully determined once ΦðrÞ and bðrÞ are known,
and it represents also a class of solutions valid both in GR
and in several alternative gravity theories, with the further
request to be traversable and stable. ΦðrÞ and bðrÞ can be
assigned in two ways: (1) a priori, meaning that a new

theoretical WH solution has been found; (2) a posteriori,
referring to the fact that they can be reconstructed through
the fit of the observational data (approach followed in
this paper).
We require that these WH solutions satisfy the follow-

ing properties [25]: (1) ΦðrÞ and bðrÞ are real smooth
functions, and ΦðrÞ is everywhere finite, since there is
the absence of horizons and essential singularities; (2) to
define a finite proper radial distance l, we have that
ð1 − bðrÞ=rÞ ≥ 0; (3) the flaring outward condition
[26–29] requires that b0ðrÞ < bðrÞ=r near and on the throat
[it defines the minimum radius such that rmin ¼ b0 and
bðrminÞ ¼ b0]; (4) asymptotic flatness, namely bðrÞ=r → 0
and ΦðrÞ → 0 for r → þ∞; (5) the WH traversability,
which depending on the gravity framework, can be
obtained by considering exotic matter (especially in GR)
[30–32] or topological defects (mainly in alternative and
extended theories of gravity) [33–35]; (6) the mass M is
defined, according to the Arnowitt, Deser, Misner (ADM)
formalism, as the total mass of the system contained in the
whole spacetime [1]:

M ≡ lim
r→þ∞

mðrÞ ¼ c2b0
2G

þ 4πc2
Z

∞

b0

ρðxÞx2dx: ð2Þ

B. Timelike geodesic equations

A test particle moving around any self-gravitating object,
in particular a WH, and affected only by gravity follows a
timelike geodesic equation, which is

d2xα

dτ2
þ Γα

βγ

dxβ

dτ
dxγ

dτ
¼ 0; ð3Þ

where τ is the affine parameter (proper time) along the test
particle trajectory, and Γα

βγ are the Christoffel symbols. We
prefer to adopt the relativity of observer splitting formal-
ism, which permits to clearly distinguish between gravita-
tional and inertial contributions (see [36–41] for more
details). This approach is equivalent to Eq. (3), but it has
the great advantage that has a direct connection with the
classical description, allowing to understand the physics
behind the symbols we algebraically manipulate. We are
also aware that there are more direct formulas to calculate
the epicyclic frequencies (see Refs. [23,24] for details),
but we deem however pedagogical to present the full
derivation.
The approach can be formulated considering the pres-

ence of two observers: (1) one static located at infinity,
corresponding to our telescopes and detectors with which
we normally perform observations, and measurements in
astrophysics; (2) local static observers (LSOs), in which it
is more easy performing the calculations. A proper refer-
ence frame adapted to the LSOs is given by the orthonormal
basis of vectors [17,25]
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et̂ ¼
∂t

eΦðrÞ ; er̂ ¼ ∂r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðrÞ
r

r
; eφ̂ ¼ ∂φ

r
: ð4Þ

We will denote throughout the paper, vector, and tensor
indices (e.g., vα; Tαβ) evaluated in the LSO frame by a
hat (e.g., vα̂; T α̂ β̂), whereas scalar quantities (e.g., f) are
followed by n [e.g., fðnÞ]. A test particle moves with a
timelike four-velocity U and a spatial velocity νðU; nÞ with
respect to the LSO frames, which both read as [17]

U ¼ γ½et̂ þ ν�; ν ¼ νðsin αer̂ þ cos αeφ̂Þ; ð5Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
is the Lorentz factor, ν ¼ jjνjj is the

magnitude of the test particle spatial velocity, and α is the
azimuthal angle of the vector ν measured clockwise from
the positive φ̂ direction in the LSO frame.
An important role is played by the LSO kinematical

quantities, which are the acceleration aðnÞr̂, being the
general relativistic gravitational attraction along the radial
direction, and the relative Lie curvature vector kðLieÞðnÞr̂,
corresponding to the general relativistic centrifugal force
along the radial direction. Their explicit expressions are [17]

aðnÞr̂ ¼ Φ0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðrÞ
r

r
; ð6Þ

kðLieÞðnÞr̂ ¼ −
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðrÞ
r

r
; ð7Þ

where ′¼ d=dr. The components of the test particle accel-
eration aðUÞ can be calculated as [17,37,38,41]

aðUÞt̂ ¼ γ2ν sinα aðnÞr̂ þ γ3ν
dν
dτ

; ð8Þ

aðUÞr̂ ¼ γ2½aðnÞr̂ þ kðLieÞðnÞr̂ν2cos2α�

þ γ

�
γ2 sinα

dν
dτ

þ ν cos α
dα
dτ

�
; ð9Þ

aðUÞφ̂ ¼ −γ2ν2 sinα cos αkðLieÞðnÞr̂

þ γ

�
γ2 cos α

dν
dτ

− ν sinα
dα
dτ

�
: ð10Þ

The geodesics equation (3) corresponds to aðUÞ ¼ 0. Using
Eqs. (8) and (9) togetherwith the radial component of Eq. (5),
we obtain the test particle equations of motion, described in
terms of the following set of coupled ordinary differential
equations of first order [17]:

dν
dt

¼ −
eΦðrÞ sinα

γ2
aðnÞr̂; ð11Þ

dα
dt

¼ −
eΦðrÞ cos α

ν
½aðnÞr̂ þ kðLieÞðnÞr̂ν2�; ð12Þ

dr
dt

¼ eΦðrÞν sin α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðrÞ
r

r
; ð13Þ

wherewe havewritten them in terms of the coordinate time t
by using the time component of Eq. (5),

dt
dτ

¼ γ

eΦðrÞ : ð14Þ

C. The epicyclic frequencies

The explicit formulas of the epicyclic frequencies
fνr ¼ Ωr=ð2πÞ; νφ ¼ Ωφ=ð2πÞg can be calculated in terms
of the epicyclic angular velocities fΩr;Ωφg. Defining X ¼
ðν; α; rÞ, the dynamical system given by Eqs. (8)–(10) can
be written as dX=dt ¼ f ðXÞ. We consider a stable circular
orbit X0 ¼ ðνK; 0; r0Þ, where

νK ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

aðnÞr̂
kðLieÞðnÞr̂

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rΦ0ðrÞ

p
; ð15Þ

is the Keplerian angular velocity. It is easy to check that X0

is an equilibrium configuration of Eqs. (8)–(10), namely
f ðX0Þ ¼ 0. Therefore, we consider a small perturbation
ε ≪ 1 around X0 given by

ν ¼ νK þ εν1; α ¼ εα1; r ¼ r0 þ εr1; ð16Þ

or also X ¼ X0 þ εX1, with X1 ¼ ðν1; α1; r1Þ. Linearizing
the dynamical system, we obtain

dX1

dt
¼ A · X1; Aij ¼

�
∂fi
∂Xj

�
X¼X0

: ð17Þ

Therefore, we explicitly obtain

dν1
dt

¼ α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðr0Þ
r0

s
eΦðr0ÞΦ0ðr0Þ½r0Φ0ðr0Þ − 1�; ð18Þ

dα1
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðr0Þ

r0

q
eΦðr0Þ

r0

�
2ν1−r1

½Φ0ðr0Þ þ r0Φ00ðr0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0Φ0ðr0Þ

p �
;

ð19Þ

dr1
dt

¼ α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðr0Þ
r0

s
eΦðr0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0Φ0ðr0Þ

p
: ð20Þ

To calculate the radial epicyclic angular velocity, we must
differentiate Eq. (19) and then use Eqs. (18)–(20), which
implies the following harmonic oscillator equation:

d2α1
dt2

þΩ2
r α1 ¼ 0; ð21Þ
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where the radial epicyclic angular velocity Ωr is

Ω2
r ¼ e2Φðr0Þ bðr0Þ − r0

r0

�
2Φ02ðr0Þ −

3Φ0ðr0Þ
r0

−Φ00ðr0Þ
�
:

ð22Þ

Since the equations of motion are rotationally invariant
due to the spherical symmetry, we have that the azimuthal
epicyclic angular velocity Ωφ is equal to the Keplerian
angular velocity ΩK, given by [18]

ΩK ≡ dφ
dt

¼ eΦðr0ÞνK
r0

¼ eΦðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0ðr0Þ
r0

s
: ð23Þ

III. APPLICATIONS

The epicyclic frequencies assume a prominent role in
x-ray binaries, which are double systems typically formed
by a BH (or a neutron star) which is gravitationally
bounded to its companion star. They are usually charac-
terized by two distinctive features [42]: (1) the presence of
an accretion disk formed around the compact object, which
emits in all energy bands of the electromagnetic spectrum,
especially with more brightness in the x rays owed to the
radiation coming from the matter inflow in the innermost
regions; (2) the appearance of significant flux variabilities
on long and much shorter time-scales. The former can be
appreciated on long-term light curves and imply significant
changes in the energy spectra as reported in the x-ray
hardness-intensity diagrams; whereas the latter cannot be
studied by investigating the light curve, and, for this reason,
the Fourier analysis is commonly employed through power-
density spectra to reveal very fast aperiodic and quasiperi-
odic variabilities. About the last point, a feature observed in
almost all kinds of accreting systems is the existence of
narrow peaks with a distinct centroid frequency, well
known in the literature as QPOs (see Refs. [21,22] for
reviews).
QPOs are usually associated with accretion-related time-

scales and to certain effects of strong gravity on the motion
of matter around massive compact objects. Their study is
extremely relevant, because they represent an astrophysical
mean to explore the accretion flow around BHs in an
alternative approach not accessible via energy spectra alone
and can provide also indirect tests of gravity within/without
GR theory [21]. Although they are strong and easily
measurable signals, their physical origin remains still
matter of debate. However, many models have been
proposed so far to explain the origin and the evolution
of QPOs in x-ray binaries, which contributed thus to
increase our understanding toward their observational
and theoretical characteristics.
An interesting aspect of all QPOmodels relies on the fact

that they share an extensive use of the epicyclic frequencies

through disparate theoretical treatments to describe the
matter motions in the vicinity of BHs. Therefore, we can
generally state that the observations of the epicyclic
frequencies can be associated with QPO measurements.
The detection of this phenomenon involves also general
relativistic light bending effects in the strongly curved BH
spacetime, and polarization measurements, which allows to
distinguish between the different proposed QPO models
[43]. The acquisition of the observational data can be
performed by the actual telescopes, like Rossi X-ray
Timing Explorer [44], and by near-future space missions,
like Large Observatory for X-ray Timing (LOFT) [45],
Enhanced X-ray Timing and Polarization mission [46], and
Imaging X-ray Polarimetry Explorer [47].
The aim of this digression is critical to raise the

awareness on the strong observational power of the
epicyclic frequencies and on the consequent great possibil-
ity to experimentally achieve the objectives proposed in this
paper. This section is dedicated to the applications of the
results obtained in Sec. II. We first show how to detect WHs
through epicyclic frequencies (see Sec. III A) and then we
illustrate how to reconstruct a WH solution through the
observational data (see Sec. III B).

A. Wormhole’s detection: Deviations from a
Schwarzschild black hole

To determine the presence of a WH, we should be able to
detect metric departures from the Schwarzschild BH
geometry. A direct and simple approach to achieve this
goal can be performed by comparing the epicyclic frequen-
cies of the Schwarzschild spacetime with those detected.
Since we do not have yet observational data, in Table I we
selected, from the literature, different WH solutions framed
both in GR and in some alternative theories of gravity,
which can be considered straightforward extensions of GR
[35,48–52]. Below, we sketch their main features in view of
WH detection.

(i) Metric theories.—In this class of theories, the
variable describing the gravitational field is the
metric tensor. A purely metric Lagrangian, linearly
depending on the Ricci scalar (the Einstein-Hilbert
Lagrangian), is necessary to have a second order
dynamics. Considering nonlinear combinations of
curvature invariants give higher-order Lagrangians
with fourth-order field equations as, e.g., the so-
called fðRÞ gravity. Adopting different forms of f, it
is possible to address a wide range of significant
phenomena at infrared scales, like clustering of
structures and accelerated expansion of the Hubble
flow. The key feature of this approach relies on
solving the dark side problem through geometry. It
exploits the more degrees of freedom of the gravi-
tational field to model the constituents of dark
energy and dark matter, without searching for new
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exotic material components, but standard perfect
fluids can be notwithstanding employed.

(ii) Metric-affine theories.—This class of theories con-
cerns a generalization of themetric approach, because
it considers metric and connection as independent
fields, allowing thus thematter to couple not onlywith
metric, but also with connection. In addition, some of
these theories can be formulated relaxing the hypoth-
esis ofmetricity, which practically means considering
the equivalence principle at the foundation of gravi-
tational interaction and then the coincidence of the
causal and geodesic structures of the spacetime. An
example of this formalism is represented by the
Palatini formulation, where metric and affine con-
nections are not necessarily related through the Levi-
Civita connection.

(iii) Teleparallel theories.—The central features of this
class of theories are: (i) the Lagrangian of the
gravitational field is a function f of the torsion scalar
T; (ii) theWeitzenböck connection is adopted instead
of the Levi-Civita connection; (iii) a geodesic struc-
ture is not necessary but dynamics and kinematic are
ruled by affinities. This formulation shares a deep
analogy with GR, because the field equations, written
in terms of T, can be rearranged in the same way as
those expressed in terms ofR. However, despite of the
fact that teleparallel equivalent general relativity
practically coincide with GR from the point of view
of the field equations, discrepancies emerges for the
metric fðRÞ formulation and fðTÞ gravity. They are:
(1) the fðRÞ field equations are of fourth order,
whereas the fðTÞ field equations remain of second
order (as it also occurs in GR); (2) the dynamical
variables in the teleparallel gravity are the tetrad
fields eμα, while, in the metric formulation, this role
is fulfilled by the metric tensor gμν. This means the
breaking of the Lorentz invariance and other
differences which emerge in the two formulations.

It is important to note that the procedure and calculations
we have performed in Secs. II B and II C to derive the
epicyclic frequencies in generic WH spacetimes are
valid not only for metric theories of gravity, but also for
metric-affine and teleparallel models. Indeed, the latter two
theories can be reduced to equivalent metric theories,
where the further degrees of freedom of the geometrical
background are encoded in the metric potentials ΦðrÞ and
bðrÞ (see Refs. [48,51] for more details).
Before showing the method, we recall that the

Schwarzschild metric can be defined by Eq. (1) through

ΦðrÞ ¼ 1

2
log

�
1 −

2M
r

�
; bðrÞ ¼ 2M: ð24Þ

In a Schwarzschild BH spacetime, the innermost stable
circular orbit (ISCO) radius is rISCO ¼ 6M, while the two
epicyclic angular velocities are [53]

ΩG
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r30

�
1 −

6M
r0

�s
; ΩG

φ ¼
ffiffiffiffiffi
M
r30

s
: ð25Þ

Regarding static and spherically symmetric WHs, we
already calculated the epicyclic angular velocities (22) and
(23). The ISCO radius can be calculated through the
formula (see Ref. [18] for details)

L2
z ½Φ0ðrÞr − 1� þΦ0ðrÞr3 ¼ 0; ð26Þ

where Lz is the conserved angular momentum with respect
to z-axis, orthogonal to the equatorial plane, along the test
particle trajectory. Equation (26), solved for the lowest
value of Lz, permits to determine rISCO. In Fig. 2 we show
the trend of the epicyclic angular velocities of some WH
solutions reported in Table I, namely only those that admit
real values. We include also the Schwarzschild values in
order to show how some WH solutions can closely emulate
the BH behavior.

FIG. 2. Plots of the radial (left panel) and azimuthal (right panel) epicyclic angular frequencies in terms of the radius r of some WH
solutions, whose numbers in the legends refer to those reported in Table I. The dashed black line represents the Schwarzschild BH case.
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The practical way to disclose possible departures
from BH geometries through the acquired data is by
first measuring the mass of the compact object M (see
Refs. [61,62] for details), which then implies where the
ISCO radius is located for a BH. As shown in Table I
there are some WH solutions having an ISCO radius
different from 6M (see #1 and #2). These preliminary
crossed observations could reveal already at the begin-
ning whether indications of WH existence can be
present. To better analyze the selected WH solutions,
we consider both the difference and the ratio of the
epicyclic frequencies with respect to the Schwarzschild
known profiles, see Fig. 3. We take into account both
possibilities to quantify how much the data approach
closer to the BH physics and to have an estimate of their
order of magnitude.
From Fig. 3, we can deduce: (1) there exists some WH

geometries that do not admit either one or both epicyclic
frequencies (see #6; #7; #8; #10), or even they admit con-
stant zero values (see #3; #5, because they have constant
redshift function); (2) there are some WH solutions, which
perfectly mimic the BH trends (see #1; #2; #9 in the lower

panels of Fig. 3), and others get closer to the BH profiles at
larger radii (see #7 in the lower panels of Fig. 3). For the
last cases, it would be important to detect the epicyclic

FIG. 3. Plots of difference (left panels) and ratio (right panels) between the radial and azimuthal epicyclic angular frequencies for some

WH solutions fΩðWHÞ
r ;ΩðWHÞ

K g (only those admitting real values, see Table I and Fig. 3), and the Schwarzschild BH values

fΩðSchwÞ
r ;ΩðSchwÞ

K g (represented by dashed black lines).

FIG. 4. Precession frequency Ωper in terms of the radius r for
some WH solutions admitting real values of both epicyclic
angular velocities (see Table I). The dashed black line is the
Schwarzschild BH case.
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frequencies closer to the BH ISCO, where their discrep-
ancies are higher.
Another way to infer information consists in considering

the precession frequency νper ¼ νφ − νr [63]. In Fig. 4, we
plot these frequencies only for those WH geometries
admitting both epicyclic frequencies. These measurements
allow to set tighter constraints on the collected data, and
robustly understanding the presence of a WH.

B. Procedure for reconstructing the WH solution
from the fit of the observational data

In this section we propose a method to reconstruct the
WH solution through the fit of the data. We first present the
theoretical strategy (see Sec. III B 1) and then apply it to
some simulated data (see Sec. III B 2).

1. Theoretical strategy

We assume that the epicyclic frequencies fνr; νφg (or
fΩr;Ωφg) are measured in the range r ∈ ½r1; r2�. We note
that Eq. (23) can be arranged in the following way:

Ω2
φðrÞ ¼ e2ΦðrÞΦ

0ðrÞ
r

⇒ ½e2ΦðrÞ�0 ¼ 2rΩ2
φðrÞ: ð27Þ

Integrating both members of the above equation between
½r1; r� with r ∈ ½r1; r2�, we obtain

ΦðrÞ ¼ 1

2
log

�
e2Φðr1Þ þ

Z
r

r1

2xΩ2
φðxÞdx

�
: ð28Þ

Since the term e2Φðr1Þ is unknown, it can be calculated
exploiting different (and complementary) techniques, like
measuring the photon impact parameter bphðr1Þ, the photon
emission angle αE, and the position r1 at which the photon
has been emitted, and after that it is possible to determine
eΦðr1Þ ¼ r1 sin αE=bphðr1Þ [18,64]; invoking gravitational
redshift effects, which permit to have 1þ z ¼ eΦðr1Þ

[65–67]; in the case where r2 ≫ r1, it would be reasonable
to have e2Φðr1Þ ≈ 1, and so recast Eq. (28) in a way that
e2Φðr2Þ appears, instead of e2Φðr1Þ.
On the other hand, the integral term can be exactly

calculated depending on how Ωφ is sampled in the
region ½r1; r2�. Let us assume N þ 1 points r1 ≡
x0 < x1 � � � < xN−1 < xN ≡ r2, in correspondence of
which we have our measured samples fΩφðx̄iÞgi¼1;…;N ,
where x̄i ∈ ½xi−1; xi� for i ¼ 1;…; N. Therefore, we arrive
to the formulaZ

r2

r1

2xΩ2
φðxÞdx ¼

XN
i¼1

2x̄iΩ2
φðx̄iÞðxi − xi−1Þ; ð29Þ

which allows to obtain theN nodes fx̄i;Φðx̄iÞgi¼1;…;N to be
fitted. We finally reconstruct the explicit expression of
ΦðrÞ, and we can also calculate Φ0ðrÞ and Φ00ðrÞ.
Now instead, using Eq. (22) we can determine the shape

function bðrÞ in ½r1; r2� through the formula

bðrÞ ¼
�

Ω2
rðrÞ

e2ΦðrÞ½2Φ02ðrÞ − 3Φ0ðrÞ
r −Φ00ðrÞ�

þ 1

�
r: ð30Þ

We then discretize the interval ½r1; r2� and use the observed
samples fΩrðx̄iÞgi¼1;…;N . In this way, we straightforwardly
obtain the nodes fx̄i; bðx̄iÞgi¼1;…;N , which in turn can be
fitted to reconstruct also bðrÞ.

2. A test example

This section aims at exhibiting a practical example to
further clarify how the above outlined theoretical procedure
works. We provide some simulated data to compensate for
the actual absence of real data on WHs.
Let us assume to measure the radial νr and azimuthal

νφ epicyclic frequencies related to a WH of mass M ¼
105 M⊙ in N ¼ 10 points fx̄igi¼1;…;10, included in the
radial interval ½r1 ¼ 7M; r2 ¼ 10M�, see Table II. Let us

TABLE II. We report the N ¼ 10 points xi ∈ ½r1 ¼ 7M; r2 ¼ 10M� in correspondence of which we have the
sampled values of the radial and azimuthal epicyclic frequencies fνr; νφg, and angular velocities fΩr;Ωφg (both in
dimensional and geometrical units). We stress that these are not real data.

xi νr Ωr Ωr νφ Ωφ Ωφ

ðMÞ ð10−3 HzÞ ðrad=sÞ ð10−3 M−1Þ ð10−3 HzÞ ðrad=sÞ ðM−1Þ
7.17 7.07 0.044 2.40 1.75 0.110 0.059
7.52 7.46 0.047 2.53 1.66 0.104 0.056
7.84 7.68 0.048 2.61 1.59 0.100 0.054
8.04 7.76 0.049 2.63 1.54 0.097 0.052
8.44 7.84 0.049 2.66 1.46 0.092 0.049
8.55 7.85 0.049 2.66 1.44 0.090 0.049
8.91 7.83 0.049 2.66 1.37 0.086 0.047
9.11 7.80 0.049 2.65 1.34 0.084 0.045
9.57 7.70 0.048 2.61 1.26 0.079 0.043
9.82 7.62 0.048 2.59 1.22 0.077 0.042
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then calculate the related epicyclic angular velocities
fΩr;Ωφg, and, since we know the WH mass M, we can
further convert them into geometrical units, see Table II.
Furthermore, we divide uniformly the interval ½r1; r2� in
bins of amplitude Δr ¼ ðr2 − r1Þ=10 ¼ 0.3M. This means
that there exists N þ 1 ¼ 11 points such that r1 ¼ x0 <
x1 < � � � < x9 < x10 ¼ r2 and xi − xi−1 ¼ Δr for all
i ¼ 1;…; 10.
We need first to determine the redshift function by

exploiting Eq. (28). Let us assume we are able to provide
the estimation eΦðr1Þ ¼ 1.15 through some observational
technique. Calculating the integral (29) through the data of
Table II, we are finally able to obtain the nodes for the
redshift function fx̄i;Φðx̄iÞgi¼1;…;10. In Fig. 5, the nodes
and the best fit function are represented (calculations are
performed in the Mathematica 12 environment)

ΦðrÞ ¼ −
2.95168

r
; ð31Þ

together with the relative fit errors,1 whose minimum,
mean, and maximum values are 0.001, 0.007, 0.015,
respectively, attesting thus the good agreement of the fit.
Once we have the fitted ΦðrÞ, we can analytically

calculate Φ0ðrÞ;Φ00ðrÞ, which permits to determine the
shape function through Eq. (30). Using also the values
reported in Table II, we can calculate the nodes
fx̄i; bðx̄iÞgi¼1;…;10. In Fig. 6, nodes are fitted with the
following function:

bðrÞ ¼ re1.355−0.557r; ð32Þ

whose minimum, mean, and maximum relative fit-error
values are 0.0018, 0.0460, 0.1164, respectively, confirming
thus again an excellent agreement of the fit.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we considered static and spherically sym-
metric WH geometries described by theMorris-Thorne-like
metric (1), defined in terms of the redshift and shape
functions. This theory-independent formalism provides a
general approach to investigate several possible WH
solutions within different gravity frameworks. We explore
the inverse problem, namely the reconstruction of the WH
solution through the fit of possible observational data.
In our approach, we used the observer splitting formal-

ism (see Sec. II), which is very useful to disentangle among
gravitational and inertial effects, and it also permits to
have a direct connection with the classical description,
assigning therefore a precise physical meaning to the
quantities theoretically manipulated, see Eqs. (6) and (7).
There is a direct way to obtain the epicyclic frequencies
through the formulas [23,24]:

Ωφ ¼
ffiffiffiffiffiffiffiffiffiffiffi
∂rgtt
∂rgφφ

s
; ð33Þ

Ωr ¼
1

2grr
½g2tt∂2rgtt þ ðΩφgφφÞ2∂2rgφφ�; ð34Þ

which can be checked that are equivalent to Eqs. (23) and
(22), respectively. In addition, Eqs. (33) and (34) can be
very useful for numerical implementations.

FIG. 5. Upper panel: the blue points represent the nodes
fx̄i;Φðx̄iÞgi¼1;…;10, and the black line is the best fit
ΦðrÞ ¼ −2.95168=r. Lower panel: there are the relative fit errors
and the dashed blue line is set at the mean error 0.007.

FIG. 6. Upper panel: the red points represent the nodes
fx̄i; bðx̄iÞgi¼1;…;10, and the black line is the best fit
bðrÞ ¼ re1.355−0.557r. Lower panel: there are the relative fit errors
and the dashed red line is set at the mean error 0.0460.

1Denoted with fΦigi¼1;…;10 the real-measured values, and with
fΦ̃igi¼1;…;10 those values obtained through the fitting function
(31) evaluated at fx̄igi¼1;…;10, then the relative fit errors are
calculated as follows fjΦi − Φ̃ij=jΦijgi¼1;…;10.
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We have stressed the observational aspect of the epicyclic
frequencies, since they are extensively used as a fundamental
ingredient for the development of QPO models, which are
easy to be detected and are a common feature in several x-ray
binaries. The study of QPOs requires theoretically a general-
relativistic ray-tracing code to inquire their x-ray timing
spectroscopy andpolarizationproperties, and experimentally
simultaneous observations through first-generation x-ray
polarimeters and LOFT-type missions. After having derived
the epicyclic frequencies (22) and (23), which include a
combination of the redshift, together with its derivatives, and
shape functions, see Sec. II A, we then applied our formulas
for achieving two goals: (1) detecting the presence of a WH,
distinguishing it from a BH (see Sec. III A); (2) exhibiting a
procedure for reconstructing aWH solution through the fit of
observational data (see Sec. III B).
The first point is timely and essential, because it provides

a further astrophysical strategy to reveal the observational
existence of a WH. The method is very simple, because
it relies on comparing the observed data with the BH
information in order to see whether there are some relevant
discrepancies. This would mean that metric changes may
occur and a WH may exist. There are some WH solutions,
which closely mimic the BH observational proprieties,
therefore this procedure alone is not enough sometimes and
it must be complemented with other approaches presented
in the literature to extract more information and tighter
constraint on the theoretical models.
Once there would be available data on WHs, we should

be able to reconstruct the WH solution. Specifically,
exploiting Eqs. (28) and (30), it would be possible to
reconstruct the redshift and shape functions. We provide
also a test example based on some simulated data, see

Sec. III B 2. This section has only the aim to better clarify
how the outlined procedure works practically with the data.
Therefore, the following remarks are in order: (i) the data in
Table II may be in principle not observable; (ii) the data in
Table II are listed without detection errors (depending
mainly on the instrument sensitivity used to perform the
measurements), so they can be interpreted as the mean
values of the detection; (iii) the fit of the data and the related
fit errors can be performed with more advanced statistical
methods (see e.g., [68]); (iv) the sampled epicyclic frequen-
cies and radial extent ½r1; r2� may be different from those
observed.
This paper is part of a series of works aimed at providing

both observational evidences of WH existence and different
techniques to reconstruct them through potential future
observational data. This model-independent approach
allows not only to determine the WH solutions, but also
to provide indirect observational tests of gravity within GR
theory or towards alternative theories of gravity. In addi-
tion, all these procedures can be adapted and extended also
to study other classes of compact objects different from
WHs. As near-future projects we aim at complementing
this approach with other astrophysical techniques. In
particular, this work can be also extended and improved
for axially symmetric WHs.
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