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In f(R) gravity, the metric, presented in the form of the multipole expansion, for the external
gravitational field of a spatially compact supported source up to 1/c? order is provided, where c is the
velocity of light in vacuum. The metric consists of general relativity-like part and f(R) part, where the latter
is the correction to the former in f(R) gravity. At the leading pole order, the metric can reduce to that for a
pointlike or ball-like source. For the gyroscope moving around the source without experiencing any torque,
the multipole expansions of its spin’s angular velocities of gravitoelectric-type precession, gravitomag-
netic-type precession, f(R) precession, and Thomas precession are all derived. The first two types of
precession are collectively called general relativity-like precession, and the f(R) precession is the
correction in f(R) gravity. At the leading pole order, these expansions can recover the results for the
gyroscope moving around a pointlike or ball-like source. If the gyroscope has a nonzero four-acceleration,

its spin’s total angular velocity of precession up to 1/¢® order in f(R) gravity is the same as that in

general relativity.

DOI: 10.1103/PhysRevD.104.024052

I. INTRODUCTION

So far, general relativity (GR) has managed to survive
many tests [1], and in particular, its predictions about
gravitational waves are consistent with the recent observa-
tions by LIGO Scientific Collaboration and Virgo
Collaboration [2,3], which show that GR is a successful
theory of gravity. Even so, there are still some observational
data that cannot be well interpreted by GR at astrophysical
and cosmological scales [4]. In order to understand recent
astronomical observations, the concepts of dark matter and
dark energy have been introduced [5,6]. Another approach to
handling these challenges is to modify the Einstein’s gravity
theory [7]. The metric f(R) gravity [8-11] is a typical
relativistic gravity theory, where the FEinstein-Hilbert
Lagrangian density of GR is replaced by a general function
of Ricci scalar R.

The symmetric and trace-free (STF) formalism in terms
of the irreducible Cartesian tensors, developed by Thorne
[12], Blanchet, and Damour [13,14], is one of the important
methods with respect to the multipole expansion, which can
be used to describe the external gravitational field of
the source localized in a finite region of space [15]. In
Ref. [16], the method of STF formalism is applied to the
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linearized f(R) gravity, and its multipole expansion is
presented explicitly in the far-field region, so that the far-
field metric outside a spatially compact supported source
is obtained.

In this paper, for the gyroscope moving around a
spatially compact supported source, we shall make a
multipole analysis on its spin’s angular velocity of
precession in f(R) gravity with the STF formalism. To
this end, first we should derive the metric in the whole
region exterior to the source in f(R) gravity, so that
gyroscopic precession could be studied in a more general
case. In addition, as the case in GR [17], under the
weak-field and slow-motion (WFSM) approximation, the
metric for the external gravitational field of the source
only needs to be expanded up to 1/c> order, where 1/c is
used as the WFSM parameter [18], so the linearized f(R)
gravity is sufficient to be used to analyze the gyroscopic
precession [19,20].

In fact, it is the condition “up to 1/c* order” that greatly
simplifies the derivation. By following the method in
Ref. [16], the metric, presented in the form of the multi-
pole expansion, for the external gravitational field of a
spatially compact supported source up to 1/c? order is
derived under the de Donder condition in the present
paper, and it consists of GR-like part and f(R) part, where
the former is exactly the result in GR when f(R) gravity
reduces to GR, and the latter is the correction to GR-like
part in f(R) gravity. When the leading pole moments are
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considered in the stationary spacetime, the GR-like part
can recover the Lense-Thirring metric, and the f(R)
part provides the Yukawa-like correction in f(R) gravity,
so the metric can easily reduce to that for a pointlike
source in Refs. [6,19,20]. Further, if the Ileading
pole moments are considered in the static spacetime,
the metric can also reduce to that for a ball-like source
in Ref. [21].

Following the conventional method in Ref. [17], the
calculation of the precessional angular velocity of gyro-
scopic spin in the stationary spacetime can be performed
easily. However, the metric obtained above for the external
gravitational field of the source is normally time-
dependent, so the method in Ref. [17] should be extended.
In the present paper, for the gyroscope moving around a
spatially compact supported source without experiencing
any torque, the multipole expansions of its spin’s
angular velocities of gravitoelectric-type precession,
gravitomagnetic-type precession, f(R) precession, and
Thomas precession, are all derived. The first two types
of precession, associated with the mass-type and current-
type source multipole moments of the GR-like part of the
metric, are collectively called GR-like precession, which is
the result in GR when gyroscope moves along a geodesic.
The f(R) precession, associated with the source multipole
moments of the f(R) part of the metric, provides the
correction in f(R) gravity. The Thomas precession consists
of the corresponding result in special relativity and the
correction to this result brought about by the curved
spacetime in f(R) gravity. It can be proved that if the
gyroscope has a nonzero four-acceleration, its spin’s total
angular velocity of precession up to 1/c* order in f(R)
gravity is the same as that in GR.

The four multipole expansions obtained above describe
all the effects of the external gravitational field of the source
up to 1/¢? order on gyroscopic precession, and in general,
since the source multipole moments are time-dependent,
the precessional angular velocities of gyroscopic spin are
also time-dependent. When the effects at the leading
pole order are considered in the stationary spacetime,
the gravitoelectric-monopole effect, the gravitomagnetic-
dipole effect, the f(R)-monopole effect, and the Thomas-
monopole effect are given, respectively. The first two
effects, as those of the GR-like precession, can indeed
recover classical geodesic effect and Lense-Thirring effect
in GR, respectively. The f(R)-monopole effect provides the
most main correction in f(R) gravity, and it can reduce to
that for the gyroscope moving around a pointlike [6,20] or a
ball-like source [21]. The Thomas-monopole effect gives
the most main correction to the result in special relativity.
Further, by analogy, the effects at the next-leading and
higher pole order can also be read out. In Refs. [6,21], by
comparing the effects of the gravitoelectric-type precession
plus f(R) precession at the leading pole order with the

measurements of the experiment Gravity Probe B (GP-B),
the constraints on the coefficient of the quadratic term in the
Lagrangian density of f(R) gravity are obtained. In this
process, if the effects at the next-leading and higher pole
order are considered further, one will acquire the influence
of the scale and shape of the source (the Earth) on
gyroscopic precession, so that a more accurate result
may be obtained.

This paper is organized as follows. In Sec. II, the STF
formalism and the metric f(R) gravity are briefly reviewed.
In Sec. III, the metric for the external gravitational field
of a spatially compact supported source up to 1/c> order is
derived. In Sec. IV, for the gyroscope moving around the
source, the multipole expansions of its spin’s angular
velocities of precession in f(R) gravity are obtained. In
Sec. V, the conclusions and the related discussions are
presented.

As in Ref. [16], the international system of units is used
throughout this paper. When the notation is concerned,
the Greek letters denote spacetime indices and range from
0 to 3, whereas the Latin letters denote space indices and
range from 1 to 3. The repeated indices within a term
represent that the sum should be taken over.

II. PRELIMINARY

A. Relevant notations and formulas
in the STF formalism

The knowledge of the STF formalism is presented in
detail in Ref. [15], and here, only the relevant notations
and formulas are shown. In the linearized gravity theory,
the coordinates (x*) = (ct,x;) are regarded as the
Minkowskian coordinates. The spherical coordinate system
(ct,r,0,@) is defined by
Xx; = rsinfdcos @,

X, = rsinf@sing, x3 = rcos6.

(2.1)

In the flat space, the radial vector is x = x;0;, where x; are
the components, and 0, := 0/0x; are the coordinate basis
vectors. The unit radial vector is n = x/r, where r = |x| is
the length of x, and then, by defining n; = x;/r, there is
n = n;0;. Obviously, from Eq. (2.1),

0

0= 5 =

niai =n. (22)

Given a Cartesian tensor with [ indices B, := B;
[12], its STF part is

li2"'il

N@)
|
=

L) = B<

iyiyeip)

(2.3)

i1l i2k—li2kSi2k+]“'il)alal“'akak’
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where
(21 =2k -1 I
by = (=1)k , 2.4
0= (=1) (21 =)0 (2k)!1(1 = 2k)! (2:4)
and
SII = B(Il) (1112 qp) = N ZB 2)+la(l) 2 5)

is its symmetric part with ¢ running over all permutations of
(12---1). The tensor products of / radial and unit radial
vectors are abbreviated by

XI, Xz|i2-- i Xiy Xiy = Xips (26)
NI, = Niliz- i = NN, n; (2-7)
with
X]l = VZN[I. (28)
In addition, there are
N’/ Z bk6 UL lzk 1k 12k+1“'i/)’ (2.9)
i3l
Z bk(S (iyin " le 117Aa’2k+] -ip) (vZ)k’ (210)

l I—k
(I 4 k)! (9, F(r)
) NII Z kk' ! rk+l ’ (2'11)

k=

o, (%

where V2 =
all - 5

iy
derivative with respect to r.

0,0, is the Laplace operator in a flat space,
=0;0;,---0;, and 9% is the (I—k)th

i
B. Metric f(R) gravity

Consider the spacetime with the metric g,, of signature
(=, +,+,+). The action of the metric f(R) gravity [16] is

5= e [ VIR £ Sulgt ). 212

where k = 87G/c* with G as the gravitational constant, g is
the determinant of metric g,,, and Sy, (¢"*,w) is the matter
action. The variation of the above action with respect to
metric ¢*¥ yields the gravitational field equations

Hm, = KTW

(2.13)
with

Hy = = f & (R + 9,0 = V, V) f

(2.14)
where fg = Ogf = 9/0R, and T, is the energy momen-
tum tensor. As in Ref. [16], f(R) is assumed to have the
polynomial form

f(R) =R+ aR* + bR® + (2.15)
where the dimensions of the constants a,b--- are
[R]™',[R]72- -, respectively.

III. METRIC FOR THE EXTERNAL
GRAVITATIONAL FIELD OF A SPATIALLY
COMPACT SUPPORTED SOURCE
UP TO 1/c3 ORDER

In Ref. [16], for a spatially compact supported source,
the multipole analysis on linearized f(R) gravity with the
STF formalism is made in a fictitious flat spacetime with
n* as the Minkowskian metric. First, by defining the
gravitational field amplitude /#** and the effective gravita-
tional field amplitude 7 as

= \/=g¢" =", (3.1)
= f /99" — 1, (32)

the field equations of f(R) gravity are rewritten as
0,7 = 2kt (3.3)

under the de Donder condition @ft"” =0, where
0, = »"9,0,, and the source term

1
— 2 Tuv Hv
= lgUfRT + 5 A (34)

is the stress-energy pseudotensor of the matter fields and
the gravitational field. Here,
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N = =h™9,0,h" —

~ AT 1 Uy =
(fr = 1)§P0,h" 04 n fr —5(1 +2fR)F TP 0 In frOsIn fr

- (1 - 4fR)§”a§Dﬂaa lnfRa/ilnfR - Z(f - 1>§”D§aﬂa 3/3 Infr+ 2<fR - 1>§”a~yﬂ3(zaﬂlnf1e

- 2§]ﬂ,§a(" 0,1V 0, WP —

1 ~ -
+ Egaﬁgﬂyazhmarhm +

with
7" = frv/=99" (3.6)
B 1
G = mgﬂw (3 7)
which satisfy
gﬂg’w = 0. (3.8)

In the linearized f(R) gravity, both #** and A** are the
perturbations, namely,

|| < 1, (3.9)
|| < 1, (3.10)

and the linearized relation between them is
h = h* — 2aRMWy (3.11)

where a is the coefficient of the quadratic term in the
Lagrangian density of f(R) gravity, and R(") is the linear
part of Ricci scalar R. Eq. (3.11) shows that the gravitational
|

h®(1,x) = 4621 0 1' (M,Ir )’
RO (t,x) = 4G R 1 zv (#
o w (1) R (u
Wi(ex) =485, Gl (Tl

o (=1) S (u)
) + @Zl:l %eiabaall,] (“]fl) s

(fr— l)gpo'gﬂ 0] hpaaﬂ Infr + o7 0. h”

- ~ ~ 1
+ Ou Oph** = 2(1 = f)§* Oy In fr = 5 (1

- fR)g[mg/wg(lﬂaailpda/} In fR

1 o U~ ~ o~ ~ o~ Tt 9 T 1€e
g (2g/mguﬁ - gﬂ g ﬁ)(zg/lrgeﬂ - gerg/lﬂ.')aozh/1 8ﬁh

+ ay/=gf RF"“R* + b\/—gf R7"R® + 4agf3R* R + 6bgf%R* R* + higher order terms

(3.5)

|
field amplitude A** consists of the tensor part, associated

with 7#*, and the scalar part, associated with R (1), where h*
satisfies the following system of linear equations,

{ O, = 2T,

: 3.12
8, =0 G12)

and R() satisfies a massive Klein-Gordon equation with an
external source,

0,RY — m?RY = m>kT (3.13)

with T := 5, T" and

(3.14)

From Eq. (3.1), the pure information of the metric is
carried by the gravitational field amplitude A**, so its
expression up to 1/c? order interests us. Equation (3.11)
implies that the expressions of 7** and R') up to 1/¢> order
should be derived firstly. In Ref. [16], the multipole
expansion of 7* in linearized f(R) gravity is

(3.15)
1)1 €an(i0rSjpr,_, (1)
) D 1+1 i Oal,. 2(7[) — )

where ¢€;; is the totally antisymmetric Levi-Civita symbol with €53 = 1,

M,,<u> = b [ (R (T ) + T () -

S, (u

4(21+1)
c(I+1)(21+3)

2(21+1)

X'aua T (u.x') + leablla%T?£2(uvxl>)7

(u) = [ dx /(6 iy X iy T (1, %) = T Cabli X acliyi 0T (. x /))’ [>1

(3.16)
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are the mass-type and current-type source multipole moments, respectively [18], u = t — r/c is the retarded time, OF is

the kth derivative with respect to ¢, the symbol (i |ali, - -

20+ 1)!
25 )

indices, and

T () o=

i1> and <i1|(1C|i2 ce

i;) represent that a and ¢ are not the STF

2w ar’
)T u+—.x' |dz (3.17)
c

with /' = |x/| as the length of x'. By directly truncating the above multipole expansion of 7#** under the WFSM
approximation, its expression up to 1/c* order can be readily obtained,

(1, x) =

hii(t,x) =0
with
M, (1) = [ dxX, 0
X 19 (.31 (3.19)
SI/ fd X€ab X‘“hz""l)f’ [>1,
where in this process [15], the conclusion
T% ~ 0(c?), T% ~ O(c"), TV ~0(c%, (3.20)
the following series form of T*",
0 20+ 1) 2k g
T/,w ( o TH /
(1, ') kz NI 2k £ 1)1 gk [ X))
(3.21)

and the conservation of the total mass of the source,
namely,

TOO(Z‘,x’)
2

. (3.22)

M =1, (1) = / By

have been used. Plugging Eq. (3.18) into Eq. (3.12) gives
the system of equations satisfied by 7*° under the WFSM
approximation,

D,,iz”o = 2KkTHO,
(3.23)

0,0 =

which is analogous to Maxwell equations and Lorentz
gauge condition, so 7% and /2% should be related to some
kind of gravitoelectric potential and gravitomagnetic vector
potential [22], respectively, and thus, 2% and 7% could be
called the gravitoelectric and gravitomagnetic components
of the gravitational field amplitude, respectively.

4057, St (0o, (&
B (0x) =29 30, SO, (0)0y,, (1) =495 i eianSar, (00, (1),

(3.18)

|

Equations (3.18) and (3.19) show that gravitoelectric
component 2% (z,x) is only associated with the mass-type
source multipole moments, whereas gravitomagnetic com-
ponents szi(t,x) are associated with both mass-type and
current-type source multipole moments. In the stationary
case, there are

T (1, x') = TH(x'), (3.24)

and substituting them in Eqgs. (3.18) and (3.19) shows that
ho (x) are no longer associated with the mass-type source
multipole moments, which means that 2% (x) and 4% (x) are
decoupled in this case. From Egs. (2.15) and (3.11), when
f(R) gravity reduces to GR, namely,

(3.25)

the above expression of A** up to 1/¢> order is exactly
the corresponding result of #* in GR, also defined by
Eq. (3.1), and therefore, the effective gravitational field
amplitude /**(t,x) is referred to as the GR-like part of
h* [16]. Besides, when the leading pole moments are taken
into account in the stationary spacetime, Eq. (3.18)
becomes

hOO(x) _ 4GzM
RO (x) = 2cigitale, (3.26)
hi(x) =0
with
R TOj !
Jb = Sb = /d3x’ebijx§ ) (327)

as the conserved angular momentum of the source, where if
Eq. (3.25) holds, and the source is rotating around the
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z-axis, Eq. (3.26), as shown by following Egs. (3.42) and
(3.43), can recover the Lense-Thirring metric in the
isotropic coordinate.

The mulitpole expansion of R() is also provided in
Ref. [16], and however, it is valid only in the far-field
region. As mentioned before, gyroscopic precession is
expected to be discussed in the whole region exterior to
the source, so the expression of R(Y) up to 1/¢ order cannot
be directly obtained like that of #**. In this section, we will
rederive the multipole expansion of R(!) outside the source
by imposing the condition “up to 1/c¢? order.” Under
the WESM approximation, expansion of R(") up to 1/¢3
order means

R~ 0 (%) , (3.28)
and then, Eq. (3.13) reduces to [6]
V2R — ;2R — 8”?’"2 , (3.29)
where from Eq. (3.20),
T =-T%~ O0(c?). (3.30)
Equation (3.29) has the following solution [6]
(t,x) /g(x x/ ( 87:Gm T(t,x’))d3x’ (3.31)
with the Green’s function
e~ mk—x'|
G(x;x') = m (3.32)

According to the result in Ref. [16], the above Green’s
function can be written as

20+ 1)1
g(x;xl) = ;%mll('n’k)kl(m’S)
X NI,(Qv ¢)N1,(9/7¢/)’ (3.33)
where
o i>l<sinhz>
@)=z (zdz z )
-z ! |
k(z) = oS R T (3.34)

z = k!\(1—k)! (2z)F
are the spherical modified Bessel functions of [-order [23],

(0,9) and (@', ¢') are the angle coordinates of x and x/,

respectively, r_ represents the lesser of r = |x| and
r' = |x'|, and r., the greater. With the help of Eq. (3.34) and

dl—k
dz'=*

—Z
e -,

e = (_l)l—k

the multipole expansion of R(") outside the source (r = r-.
and ¥ = r_)is given by inserting Eq. (3.33) into Eq. (3.31),
namely,

NI, (0, 9)

0
I —k
(+k) 1k
mr (335
= (=R A g (3:39)

o@D [ d ! (sinh (mr)
Qr,(1) = m2 /rl<r’dr’>< mr’ )

T(t’x/) d3x/
c? ’

x N (0. ¢) (3.36)

where Q,l(t) are the [-pole moments. Then, by using
Eq. 2.11) and X; = /"N, (¢, ¢/
up to 1/c? order is

), the expression of R(!)

(1, x) (10, (e_ > (3.37)
with
. QI+ [ s [ d \![sinh(mr)
Oy (1) = T/X/I’ r'dr mr'
NELULINTN (3.38)
C

From the above process, it can be seen that the condition
“up to 1/c* order” greatly simplifies the derivation. First, it
is due to this condition that Eq. (3.13) reduces to Eq. (3.29)
under the WFSM approximation, and then, because the
Green’s function G(x;x’) of differential equation (3.29) is
the same as that in the stationary spacetime [6], the
expression of R up to 1/¢3 order, presented in the form
of the multipole expansion, is readily derived according to
the result of G(x;x’) in Ref. [16]. Obviously, except that

D(z,x), Q,,(t), and T(t,x’) are time-dependent, the
above expression of R!) up to 1/¢* order is identical to
that in the stationary spacetime [16]. By use of Eqs. (3.14)
and (3.37), the expression of the scalar part of A,
2aRWy, up to 1/c¢> order can be directly obtained,
and then, by inserting it and Eq. (3.18) into Eq. (3.11),
the expression of the gravitational field amplitude /#* up to
1/c3 order is

024052-6
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hO(r,x) = =g CUr (1), (1) —
W (1,x) =465
U([ x) ZG(SU Zl 0 l' 1( )8’1< r )

with 8"/ as the Kronecker symbol, which shows that the
scalar part of 4 is the correction to the tensor part, namely,
the GR-like part. When the leading pole moments are
considered in the stationary spacetime, from Egs. (3.26),
(3.37), and (3.38), Eq. (3.39) becomes

h00(x) _ _46(,;1;/1 _ 230012‘?' —mr
O (x) = 2igtale (3.40)
hij(x) — 23GcMrf —ml‘él}
where
R sinh (mr')\ T(x")
M, =0, = / < Y > SN (341)

is the stationary monopole moment of R(!), and in this case,
the scalar part of /* reduces to the Yukawa-like correction
to the tensor part. In the linearized f(R) gravity, from
Eq. (3.9), the trace of the gravitational field amplitude is
|

_1)\!
Gye S
<mewm® O €S, (09, (1):

QI, (1)31, (e_,mr) ,
(3.39)

h= nﬂbh"”, and then, with Eq. (3.1), the metric for the
gravitational field is given by

G = Mw — h/u/ (342)

with

1

Fu = b = 5. (3.43)

Hv

Thus, by plugging Eq. (3.39) into Eqgs. (3.42) and (3.43),
the metric, presented in the form of the multipole expan-
sion, for the external gravitational field of a spatially
compact supported source up to 1/c3 order is
oo(t,x) =
9oi(t,x) =

9ij(t.x) = 5ij( +2U(tx) -5 V(1. x))

-1 +3U(t.x) + L V(1x),

— 5 U (t.x), (3.44)

where the potentials U(t,x), U'(t,x), and V(t,x) are,
respectively, defined as

o (=) 1
U(t,x) = GZ[:0< 1!) M, (1)), <%>
. 1\ A
wmw=—62ﬁﬁﬁ«mmHmwmc)+Gzluﬂﬁm&m<wm(97 (3.45)
’ e mr
V(tx) = =2 520 5 04,00, ().
[

Equations (2.15) and (3.14) show that the potential V(z, x) U(t,x) = U(x) = G4
will vanish when f(R) gravity reduces to GR, and thus, the _ ’ ‘ r’
metric in Eq. (3.44) recovers the result in GR. Therefore, in U(t,x)=U'(x) =— % , (3.46)
the above expression of the metric, the terms, not related to v  Vix) = _2GM; .
the potential V(z,x), constitute the GR-like part, and the (t.x) = Vix) =-5"e

remaining terms, only related to the potential V(z,x),
constitute the f(R) part, which is the correction to the
GR-like part in f(R) gravity. Obviously, the GR-like part of
the metric contains the mass-type and current-type source
multipole moments associated with the tensor part of the
gravitational field amplitude, whereas the f(R) part con-
tains the source multipole moments associated with the
scalar part of the gravitational field amplitude. In the
stationary spacetime, above three potentials at the leading
pole order reduce to

respectively, and then, Eq. (3.44) yields the corresponding
metric in this case, namely,

2GM
f a—mr
3ctr €

goo(x) = —1 +2G¥ —

’

2Ge;px0J,
Goi(x) = =it

gij(x) = 55,-(1 + M 4 250, e"”’)

3c?r

(3.47)
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It is easy to verify that for the source rotating around the
z-axis, the above metric can recover that for a pointlike
source in Refs. [6,19,20]. Further, if the leading pole
moments are considered in the static spacetime, the above
metric can also recover that for a ball-like source in
Ref. [21].

IV. MULTIPOLE EXPANSIONS OF THE
PRECESSIONAL ANGULAR VELOCITIES OF
GYROSCOPIC SPIN IN f(R) GRAVITY
WITH THE STF FORMALISM

In Ref. [17], the conventional method with respect to
the derivation of the precessional angular velocity of
gyroscopic spin in the stationary spacetime is presented,
and however, the metric obtained in Sec. III for the
gravitational field of the source is normally time-
dependent, so the method in Ref. [17] should be extended.
In this section, for the gyroscope moving in the external
gravitational field of a spatially compact supported source
without experiencing any torque, we will derive the multi-
pole expansion of its spin’s angular velocity of precession
in f(R) gravity with the STF formalism. Consider the
spacetime with g, in Eq. (3.44) as the metric and let x*(7)
be the world line of the gyroscope with 7 as the proper
time. Gyroscopic four-velocity and spin (i.e., the angular
momentum vector), denoted by u* and S, respectively, are
always orthogonal to each other [6], namely,

u*S, = 0. (4.1)
Because gyroscopic spin S* obeys Fermi-Walker transport
along its world line x#(z) [17], the following transport
equation

ds’ 1
uV,S# = -+ u'S', = ?a”Spuﬂ (4.2)

holds, where V,, denotes the covariant derivative, Ffa is the
Christoffel symbol, and a” is gyroscopic four-acceleration.
With Egs. (4.1) and (4.2), there is

d(s’s
ASS) _ UV (SPSp) = 28,uV, S =0,

o (4.3)

which implies that S”S; remains fixed along x*(z).

Now, let us review the fundamental process of evaluating
precessional angular velocity of gyroscopic spin [17]. First,
the coordinate frame

0

8 =55 (4.4)

should be orthonormalized, so that a local orthonormal
tetrad e[, at rest in the coordinate frame, can be defined,

€ = A8, (4.5)

where the Greek indices within square brackets are used to
label the vectors of the tetrad e, and the components of a

tensor with respect to this tetrad. Denote the orthonormal
frame comoving with the gyroscope by e(,), and then, as the
gyroscope moves in the gravitational field, the local
Lorentz boost Al (@ from the local orthonormal tetrad
€|, to its comoving frame e, can be determined with its
four-velocity u®,

e() = ALl e, (4.6)

where the Greek indices within round brackets, similar to
the case of the square bracket, are used to label the vectors
of the frame e, and the components of a tensor with
respect to this frame. In addition, the orthonormality of e,
and e, implies the Greek indices within parentheses
should be raised and lowered with the Minkowski metric.
Combining the above two transformations gives

e(,,) = j'/)(a)gp (47)

with
W = Al @Al (4.8)

where since the gyroscope is at rest in its comoving
orthonormal frame e ,), the following equations

u’
¥ =L, 4.9
0= (4.9)
Nap = ¥ (@A (9)9po (4.10)

hold. Thus, once both Al (@ and A?(, are derived, the
comoving frame of the gyroscope, e(,), can be determined
by the coordinate frame g,. For gyroscopic spin, Eq. (4.7)
gives

SP =2y S, (4.11)
and then, together with Eqgs. (4.1), (4.9), (4.10), and
ugu? = —c2, (4.12)
one can deduce
5O =o, (4.13)

which means that gyroscopic spin is a purely spatial vector
in its comoving frame. Further, Eq. (4.3) implies that the
length of gyroscopic spin S remains fixed along its world
line x*(7), namely,
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(4.14)

and hence, S() always precesses relative to the comoving
frame, which yields

dast)

— ik () §K)
dr €’

(4.15)

with @/) as the angular velocity of S). The objective of the
derivation in this section is to write down the expression of
o) up to 1/¢> order under the WESM approximation.

First, we need to derive the expression of dS\")/dr up to
1/c3 order. With Eqs. (4.11) and (4.13), we have

SO — /4(0)/}5/3 =0,

Sl@) — u(“)ﬂS/’ = ' ' (4.16)
St = M<l)ﬂS/js
where ,u<“) is the inverse transformation of 4# (a)> and they
satisfy

{ o (4.17)

)y = 8.

In Appendix A, after deducing the expressions of both
transformations, A”(, and Al (@>upto 1/ ¢ order, that of

the compound transformation y(?) 5 18 also given by use of
Egs. (4.8) and (4.17),

p0 =1-5U(t,x) =55V (1,x) vy

202
i ik, k

PO, = 2 v 3 (1) + 25V (1,x) + S U (1,x),

ul, = (1 +LU(1.x) —ﬁV(z,x))éj,- +”2’T”2
(4.18)

Plug Eq. (4.18) into Eq. (4.16), and then, the expressions of
S0 and S up to 1/¢> order are, respectively,

v 4 4
SO:S’<U—+—ZU(I,x)——3U’(I,x)>, (4.19)
C C C
. . 1 1 Vil S
s =g <1+62U(t,x)—262V(1,x)) Byt (4.20)

where Eq. (4.19) has been used in the derivation of
Eq. (4.20). Thus, the derivative of SU) with respect to
gyroscopic proper time 7 is

s\ 4s 1 1
= 14+—=U(t,x) ——=V(t,
dz d1< +alEx) =55V x)>
St d 1
S (vx)-Zv(e
+ e (U( ,X) 2V( x))
vSTdvt viSTdv vl dST
oAy Vo dv VA 421
2¢2 dr 2¢* dr 2% dr (4.21)

where 0,(U(t,x) — V(t,x)/2) will appear in the second
term with 0, := 9/0t, and in general, since the metric for
the spacetime is time-dependent, it will not vanish. In
Eq. (4.2), dS'/dr has been provided,

ds'

1 A
= U T 5 d"S g

(4.22)
and as shown in Appendix B, under the WFSM approxi-
mation, its expression up to 1/c¢* order is

as. 2 .. 1.
E:?vafaiU(t,x)—?v/SlajU(t,x)

| 2 . . .
——ZU’SfajU(t,x)——251(3,-U/(t,x)—(9jU’(t,x))
c C

1 .. 1 ..
+ Fv/S’ajV(t,x) + ﬁﬂlsjajV([,X)

1 . 1 1 ...
—?S’(?Z(U(t,x) —EV(l,x)) +?CZJ’UISJ.

(4.23)

In the following, we shall see that 0,(U(¢,x) — V(t,x)/2)
in Egs. (4.21) and (4.23) will cancel out, so in the final
result of the precessional angular velocity of gyroscopic
spin, it will not appear. In addition, from Eq. (B7),
%‘;—”T _ %a’ +%8,U(t,x) +%8iV(Z,x),
and then, by substituting it and Eq. (4.23) in Eq. (4.21),
the expression of dS¥)/dr up to 1/c* order is obtained.
With Eq. (4.20), dS (@) /dr can be rewritten in the form of
Eq. (4.15), and then, the angular velocity of S¢) is given,
namely,

(4.24)

o) = o) + a)‘(f]()R) + oy (4.25)
with
WUl = S ciriprd, Ut x) + = €9, Ut (1.x),  (4.26)
GR 2C2 q ’ c2 p (e :
W 1 gy 4.27
@5ty = " g2V OV x). 427)
() 1 Jpayp g4
wf’ == zePlvPal, (4.28)
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Equation (4.15) describes the precession of gyroscopic
spin S relative to its comoving orthonormal frame €(q) In

complete generality under the WESM approximation, and

a)gl)q, wj;i)le), and a)(Tj) in Eq. (4.25) describe three types of

precession, respectively. As mentioned previously, in terms
of the metric, the potential V(z,x) is associated with the
f(R) part, and it will vanish when f(R) gravity reduces

: : ()
to GR, which then results in @ )

gyroscope has a vanishing four-acceleration,

= 0. Furthermore, if
there 1is

( ) = 0. Thus, 0U) = a’(m)re means that w<c;1)e is the preces-
sional angular velocity of gyroscopic spin in GR when
gyroscope moves along a geodesic. The precession resulted
from O)(sz)e is referred to as GR-like precession. As to a)gf()m,
it is related to the potential V(z,x), so it is the corrected
angular velocity of precession of gyroscopic spin in f(R)

gravity. The precession resulted from a)%)R) is referred to as
f(R) precession. Obviously, a)(Tj) represents the Thomas
precession, which plays an important role in the fine
structure of atomic spectra [17]. By inserting Eqs. (4.24)
and (A4) into Eq. (4.28), we get

) 1 dvi 1
w(TJ) _ _?equva_ygeﬂ’qvp@ U(t,x)

—l—%czequvpaqV(t,x), (4.29)
where the first term is exactly the corresponding result in
special relativity, and the last two terms, associated with the
potentials U(¢,x) and V(t,x), respectively, come from the
connection coefficients in gyroscopic four-acceleration. In
addition, although Eq. (4.28) implies that a)(T’) in f(R)
gravity has the same form as that in GR, they are actually
completely different because the potential V(z,x) is non-
vanishing in f(R) gravity. Next, we shall prove that if a
gyroscope has a nonzero four-acceleration, /) actually
has nothing to do with the potential V(z,x). With
Egs. (4.25)—(4.27) and (4.29), o) can be rewritten as

o) = _Lelpqvp@+gequvpa ,U(t.x)
2¢? e c?

2 .
+—5€/710,U(t,x), (4.30)
C
which shows that the potential V(z,x) does not appear in
the expression of @'/, and namely, the f(R) part of the
metric has nothing to do with @), so @'/ is also total

angular velocity of precession of gyroscopic spin up to
1/c? order in GR.

Let us focus on a’gz)e Define

3
), = 52 &P 0,U(1.x). (4.31)

. 7
o), = €10, U9(1.x). (4.32)
and then,
Wik = OGke + OgRur- (4.33)
Besides, with Egs. (3.18) and (3.45), we have
U(t,x) = —< 0 t,x),
(tx)=-% " (1.x) (4.34)
UP(t,x) = =< h(t,x).

Remember that 7% and /% are called the gravitoelectric
and gravitomagnetic components of the gravitational field

amplitude, respectively, so two types of precession of

gyroscopic spin resulted from wé}w and a)(G])W could be

referred to as the gravitoelectric-type precession and
gravitomagnetic-type precession, respectively. By inserting
Eq. (3.45) into Eqs. (4.31), (4.32), (4.27), and (4.29), the

expressions of wé}eE, a)(GJ,)eM, w}f()R), and a)(T>

up to 1/¢3
order, presented in the form of the multipole expansions,

are all derived,

=0
() _ dv?
or = 52"
G X(-1) .
+§Z 1 Ml,(t)equ”pal<—>
=0
G o] (—l)l R ) —mr
—@Z T Q,l(t)equvpaq1< ) (4.38)
=0

where in the derivation of the second term in Eq. (4.306),
V2(1/r) = 0(r # 0) has been used. Clearly, in general,
since the source multipole moments are time-dependent,
above precessional angular velocities of gyroscopic spin
are also time-dependent, and it is the dependence on time
that results in that w(GJ1)eM is associated with the mass-type
source multipole moments of the GR-like part of the metric.
The above four multipole expansions describe all the
effects of the external gravitational field of the source up
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to 1/ order on the gyroscopic precession. When it comes
to the gyroscopic experiment, e.g., GP-B, the results in the
stationary spacetime are significant, and in the following,
we will discuss them. According to Egs. (3.19) and (3.36),
the dependence of the source multipole moments on time
disappears in the stationary spacetime, so there are

¢ _ 3G~
“GrE = 22 2]

; 2G X (-1)1 1
ng)eM = ——Z 511311,( ) (4.40)

r

L 1
M, eiravrd,, <—> . (439)
r

> = (I+1)!
G ] (_1)1 R e~mr
a);j()m :@lz_o: I Q,€/7P0,, < " ), (4.41)
0 dv! G S (-1) .
wy ——7€/”qv”—+z—c2; i M, e’P1vP 0, -
G 0 (_1)1 R —mr
—@; N Q,}e”’qvpa I < >, (442)

from which we know that a)g;e 18 no longer related to the
mass-type source multipole moments of the GR-like part of
the metric. First, the effects at the leading pole order need
to be considered, and by truncating the above expansions

we get

) 3GM

GRE = ~5.2,3 €M1, (4.43)

A = ot (el =5y, (444)

a);?R) = - GMf(16;|—2:;1r)e‘m’ e/PapP 9, (4.45)
w(Tj) - %equ VP % - 2(5%3 €iPd P x4

GMf(16;|-2:31r)e‘m’ R (4.46)

with M, J;, and M ; defined in Egs. (3.22), (3.27), and (3.41),
where above a)g;e . a)(G/;e M a);j()R), and a)(Tj ) represent the
gravitoelectric-monopole effect, gravitomagnetic-dipole
effect, f(R)-monopole effect, and Thomas-monopole effect,
respectively. Obviously, the gravitoelectric-monopole effect
is the geodesic effect, and when the source is rotating around
the z-axis, the gravitomagnetic-dipole effect is the Lense-
Thirring effect, where as those of the GR-like precession at
the leading pole order, they can indeed recover the classical
results in GR. The f(R)-monopole effect provides the most
main correction in f(R) gravity, and it can reduce to that for

the gyroscope moving around a pointlike [6,20] or a ball-like
source [21]. As mentioned earlier, the first term in Eq. (4.46)
is the Thomas precession in special relativity, and thus, the
above Thomas-monopole effect, represented by the last two
terms in Eq. (4.46), gives the most main correction to this
result brought about by the curved spacetime in f(R)
gravity. Further, by analogy, the effects at the next-leading
and higher pole order can also be read out.

In the experiment GP-B, gyroscopes are moving around
the Earth along the polar orbit [24], and since the
gyroscopes are in geodesic motion, one only needs to
consider their gravitoelectric-type precession, gravito-
magnetic-type precession, and f(R) precession. In such
a case, if only the effects at the leading pole order are
considered, Eqs. (4.43)—(4.45) show that the directions
of a)(cjz)eE + wj(f()R) and a)g,)W are orthogonal to each other,
so that these two types of effects can be handled
separately. In addition, Eqs. (4.43)—(4.45) need to be
averaged over a period [6,20], respectively, before com-
pared with the experimental data. From Eqgs. (3.14) and
(4.45), the angular velocity of f(R) precession at the
leading pole order contains the coefficient of the quadratic
term in the Lagrangian density of f(R) gravity, namely, a,
so the constraint on a can be obtained by matching the
theoretical results of the gravitoelectric-monopole effect
plus f(R)-monopole effect with the corresponding data
from GP-B. In Ref. [6], for the gyroscope moving around
a pointlike source, the obtained constraint on a is
la] <5 x 10" m?. In order to obtain a more accurate
result, the influence of the scale and shape of the source
(the Earth) on gyroscopic precession also needs to be
considered. In Ref. [21], by using the result for a ball-like
source at the leading pole order, the constraint on a from
the experiment GP-B does not yield any new result. In
Ref. [20], the influence of the Earth’s oblateness on
gyroscopic precession is considered, but the effective
constraint on « is not obtained. The results in the present
paper provide an approach to effectively acquiring the
influence of the scale and shape of a spatially compact
supported source on gyroscopic precession. In principle,
by comparing the results of gravitoelectric-type preces-
sion plus f(R) precession at the next-leading and higher
pole order with the data from GP-B or the future
gyroscopic experiment, a more tight constraint on a could
be obtained. However, in this process, how to separate the
effects of the gravitoelectric-type precession plus f(R)
precession from those of gravitomagnetic-type precession
is still an open question, and moreover, taking the average
of Egs. (4.39)—(4.41) over a period is strenuous.
Therefore, handling these issues is beyond the scope of
this paper, and we will discuss them in future work.
Anyway, what is confirmed is that the multipole expan-
sions of the precessional angular velocities of gyroscopic
spin presented in this paper are of great significance in
application.
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V. CONCLUSIONS AND DISCUSSIONS

In this paper, for the gyroscope moving around a
spatially compact supported source without experiencing
any torque, the multipole analysis on its spin’s angular
velocity of precession in f(R) gravity has been made under
the WFSM approximation. The first problem that we
confront is how to obtain the metric outside the source.
Although the metric outside the source is explicitly
presented in Ref. [16] by applying the STF formalism,
developed by Thorne [12], Blanchet, and Damour [13,14],
to the linearized f(R) gravity, it is only applicable in the
far-field region. In order that gyroscopic precession could
be studied in a more general case, the metric in the whole
region exterior to the source needs to be derived. In
addition, it needs to be emphasized that as the case in
GR [17], under the WFSM approximation, the metric for
the gravitational field of the source only needs to be
expanded up to 1/c? order, so the linearized f(R) gravity
is sufficient to analyze the gyroscopic precession [19,20].

The condition “up to 1/¢? order” does greatly simplifies
the derivation. In the present paper, by following the STF
formalism in Ref. [16], we derive the metric, presented in
the form of the multipole expansion, for the external
gravitational field of a spatially compact supported source
up to 1/c* order under the de Donder condition, and it
consists of GR-like part and f(R) part, where the former is
exactly the result in GR when f(R) gravity reduces to GR,
and the latter is the correction to GR-like part in f(R)
gravity. In the stationary spacetime, the GR-like part of the
metric at the leading pole order can recover the Lense-
Thirring metric, and the f(R) part of the metric at the
leading pole order yields the Yukawa-like correction in
f(R) gravity, so that the metric obtained can reduce to that
for a pointlike source in Refs. [6,19,20]. Further, in the
static spacetime, the metric at the leading pole order can
also reduce to that for a ball-like source in Ref. [21].

Since the metric obtained above for the external gravi-
tational field of the source is normally time-dependent,
the method in Ref. [17], used for the calculation of the
precessional angular velocity of gyroscopic spin in the
stationary spacetime, has been extended in this paper. Thus,
after a detailed derivation, for the gyroscope moving
around the source without experiencing any torque, we
give all the multipole expansions of its spin’s angular
velocities of gravitoelectric-type precession, gravitomag-
netic-type precession, f(R) precession, and Thomas pre-
cession. The first two types of precession, as the results in
GR when gyroscope moves along a geodesic, are collec-
tively called GR-like precession, and they are associated
with the mass-type and current-type source multipole
moments of the GR-like part of the metric. The f(R)
precession provides the correction in f(R) gravity, and it
is associated with the source multipole moments of the
f(R) part of the metric. The Thomas precession consists
of the corresponding result in special relativity and the

correction to this result brought about by the curved
spacetime in f(R) gravity. We also give the proof that if
the gyroscope has a nonzero four-acceleration, its spin’s
total angular velocity of precession in f(R) gravity is the
same as that in GR.

All the effects of the external gravitational field of the
source up to 1/c> order on gyroscopic precession are
described by the four multipole expansions obtained
above, and in general, since the source multipole
moments are time-dependent, above precessional angular
velocities of gyroscopic spin are also time-dependent.
One might be more interested in the results in the
stationary spacetime, when it comes to the gyroscopic
experiment, and these results are also written down in
this paper. In the stationary spacetime, the effects at
the leading pole order consist of the gravitoelectric-
monopole effect, the gravitomagnetic-dipole effect, the
f(R)-monopole effect, and the Thomas-monopole effect.
The first two effects are those of GR-like precession at
the leading pole order, and they can indeed recover
classical geodesic effect and Lense-Thirring effect in GR,
respectively. The f(R)-monopole effect provides the
most main correction in f(R) gravity, and it can reduce
to that for the gyroscope moving around a pointlike
[6,20] or a ball-like source [21]. The Thomas-monopole
effect gives the most main correction to the result in
special relativity. Further, the effects at the next-leading
and higher pole order can also be read out by analogy.

As far as we know, such expressions in f(R) gravity,
especially for the multipole expansions of the preces-
sional angular velocities of gyroscopic spin, have not
been given before. Although the results obtained in this
paper, expanded only up to 1/¢? order, are derived in the
theoretical framework of the linearized f(R) gravity, they
are sufficient to be used to explain the data from the
experiment GP-B since the Earth’s gravitational field is
weak, and the gyroscope moves slowly. Further, if one
wants to acquire the expression of the precessional
angular velocity of gyroscopic spin up to 1/c* order,
from Eq. (3.15), we know that the quadratic terms of the
effective gravitational field amplitude, like (7100)2, also
need to be taken into consideration. The metric f(R)
gravity is one of the simplest modified gravity theories.
Although some models of f(R) gravity can explain the
inflation in early universe successfully [10], in order to
better explain more observed phenomena, many gener-
alized modified gravity theories, like f(R,G) gravity
[25,26] and f(X,Y,Z) gravity [5], are attracting consid-
erable attention, where G is the Gauss-Bonnet invariant,
X := R is the Ricci scalar, Y := R, R* is the quadratic
contraction of two Ricci tensors, and Z := R,,,,R" is
the quadratic contraction of two Riemann tensors. The
result for f(R) gravity in this paper might be generalized
to these theories, so that they can have a wide range of
applications.
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APPENDIX A: DERIVATION OF EQ. (4.18)

Equations (4.8) and (4.17) show that in order to obtain
the expression of the transformation () puptol/ 3 order,
those of both transformations, A”|, and Al (a)» Deed to be
derived firstly. The metric for the external gravitational
field of the source up to 1/c? order has been presented in
Eq. (3.44), and then, by applying the Gram-Schmidt
orthogonalization to the coordinate frame g, under the
WEFSM approximation, the local tetrad ey, in Eq. (4.5) is

e = (1 +5U(t.x) +#V(l,x)>go,

e = — S Ui(1,x)gy + (1 ~LU(tx) + 55 V(t,x))g,»,
(A1)

from which, the expression of the transformation A” |, up to

1/c? order is obtained,
Ay =1+5U(t.x) +32V(t.x),
Ag.] = -4 U'(1.x),

A
Ap =0,

Al =(1

(A2)
~LU(t,x) —I—#V(l,x))éﬁ.

Next, we will make use of gyroscopic four-velocity u” to
derive the Lorentz boost Al“! («) from the tetrad e[, to the
comoving frame e(,). Gyroscopic four-velocity u® can be
rewritten as

(A3)

where 1 = xV/c is the coordinate time, and v’ := dx'/dt is
gyroscopic velocity measured using the coordinate frame.
Then, due to Eq. (4.12), the expression of dt/dr up to 1/¢3
order is

dt 1 1 1
— =1+5U(t,x) + =5 V(t.x) + = v* v~
C

A4
dr 22 202 (A4)

Similarly, in the local tetrad e, gyroscopic four-velocity
ul® can also be rewritten as

u[o] = C%’
ulil — plil dio

dr’

(AS)

where 1, is the proper time of the observer at rest in the
tetrad e[,), and vl is gyroscopic velocity in this tetrad.
Equation (4.5) yields

ulel = (A1l

P
/’u ’

and then, together with Eq. (A2)—(AS), we get

dt, vRok

ol = (1 —|—%U(t,x)> V', (A7)

As mentioned earlier, v/ is gyroscopic velocity in the tetrad
e|), and then, with Egs. (A6) and (A7), the expression of the

Lorentz boost Al (@) up to 1/ ¢3 order is

vk Uk

A[O] (0) - 1 +

272
A0y =2 20 4 2 (1 x),
[l v vivk ok 20/ (Ag)
A 0 =7 + 23 + P U(Ex),

Plug Egs. (A2) and (AS8) into Eq. (4.8), and then, from
Eq. (4.17), the expression of the compound transformation
4“5 up to 1/c* order is derived, namely, Eq. (4.18).

APPENDIX B: DERIVATION OF EQ. (4.23)

First, from Eq. (4.22), the coefficients of the Levi-Civita

connection, Ffa, need to be derived, and under the weak-
field approximation, their definitions are

—_—

(8(1(_}7}2) + (9,1(—/71/}0,) - aﬁ(_ilﬂa))’ (Bl)

where 0" :=n#?0,. By using Egs. (3.42) and (3.44), we
have
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and then, inserting them into Eq. (B1) gives the expressions of the connection coefficients up to 1/c> order,

55 0,V(1,x),

[y =—50,U(t.x) —5
. _#ajv(t’x)’

00 =
J

)
)

9, = 2 (9;U(t,x) + U (1,x)) + % <6,U(t,x) - %8,V(t,x)),
)

]

c

F60 = —C—lzaiU(t,x —ﬁai‘/(t’x),
Th; = 2 (0,U/(1,x) = 9,Ui(1.x)) + 4 (atU(t,x) _ %@V(z,x)),
[ = & (6,0.U(1.%) + 830,U(1.%) = 6, 0;U (1.%)) = 5 (8,;0,V (1. %) + 630,V (1.%) = 6,0,V (1.x)).

Thus, together with Egs. (4.19), (A3), (A4), and (B3), the expression of the first term in Eq. (4.22) up to 1/¢3 order is
oS = 2 i§i0,U ! iSio.U ! iSi0.U 2 Si(0;U7 o;U!
—Uu la_c—ZU i ([,x)-;v g (l,x)—?l) g ([,x)—? ( i (t,x)— i (t,x))
1 i I, ; I 1
+2—c2’US(9]V(t,x) +2—C2’US a’V(t,x) —?S a,U(t,x) —EalV(I,x) . (B4)
Gyroscopic four-acceleration is
du?
& =it = | e, (85)
T

and then, with Egs. (A3), (A4), and (B3), there are

1 1 d@*%) 2 . 1 .

?aozﬁ dr —?vfajU(t,x)—?vf(')jV(t,x), (B6)
1. 1dv 1 1
—a' :———_aU t, __81‘/ ) . B7
C2a Cz dT C2 i ( x) 2C2 (t x) ( )

By plugging Egs. (3.44), (4.19), (B6), and (B7) into the second term in Eq. (4.22), its expression up to 1/c* order is
ia”S”g u = iajv"Sj. (B8)
2 po o2

Thus, the expression of dS'/dr up to 1/c* order can be obtained from Eqgs. (B4) and (B8), namely, Eq. (4.23).
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