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In fðRÞ gravity, the metric, presented in the form of the multipole expansion, for the external
gravitational field of a spatially compact supported source up to 1=c3 order is provided, where c is the
velocity of light in vacuum. The metric consists of general relativity-like part and fðRÞ part, where the latter
is the correction to the former in fðRÞ gravity. At the leading pole order, the metric can reduce to that for a
pointlike or ball-like source. For the gyroscope moving around the source without experiencing any torque,
the multipole expansions of its spin’s angular velocities of gravitoelectric-type precession, gravitomag-
netic-type precession, fðRÞ precession, and Thomas precession are all derived. The first two types of
precession are collectively called general relativity-like precession, and the fðRÞ precession is the
correction in fðRÞ gravity. At the leading pole order, these expansions can recover the results for the
gyroscope moving around a pointlike or ball-like source. If the gyroscope has a nonzero four-acceleration,
its spin’s total angular velocity of precession up to 1=c3 order in fðRÞ gravity is the same as that in
general relativity.
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I. INTRODUCTION

So far, general relativity (GR) has managed to survive
many tests [1], and in particular, its predictions about
gravitational waves are consistent with the recent observa-
tions by LIGO Scientific Collaboration and Virgo
Collaboration [2,3], which show that GR is a successful
theory of gravity. Even so, there are still some observational
data that cannot be well interpreted by GR at astrophysical
and cosmological scales [4]. In order to understand recent
astronomical observations, the concepts of dark matter and
dark energy have been introduced [5,6]. Another approach to
handling these challenges is to modify the Einstein’s gravity
theory [7]. The metric fðRÞ gravity [8–11] is a typical
relativistic gravity theory, where the Einstein-Hilbert
Lagrangian density of GR is replaced by a general function
of Ricci scalar R.
The symmetric and trace-free (STF) formalism in terms

of the irreducible Cartesian tensors, developed by Thorne
[12], Blanchet, and Damour [13,14], is one of the important
methods with respect to the multipole expansion, which can
be used to describe the external gravitational field of
the source localized in a finite region of space [15]. In
Ref. [16], the method of STF formalism is applied to the

linearized fðRÞ gravity, and its multipole expansion is
presented explicitly in the far-field region, so that the far-
field metric outside a spatially compact supported source
is obtained.
In this paper, for the gyroscope moving around a

spatially compact supported source, we shall make a
multipole analysis on its spin’s angular velocity of
precession in fðRÞ gravity with the STF formalism. To
this end, first we should derive the metric in the whole
region exterior to the source in fðRÞ gravity, so that
gyroscopic precession could be studied in a more general
case. In addition, as the case in GR [17], under the
weak-field and slow-motion (WFSM) approximation, the
metric for the external gravitational field of the source
only needs to be expanded up to 1=c3 order, where 1=c is
used as the WFSM parameter [18], so the linearized fðRÞ
gravity is sufficient to be used to analyze the gyroscopic
precession [19,20].
In fact, it is the condition “up to 1=c3 order” that greatly

simplifies the derivation. By following the method in
Ref. [16], the metric, presented in the form of the multi-
pole expansion, for the external gravitational field of a
spatially compact supported source up to 1=c3 order is
derived under the de Donder condition in the present
paper, and it consists of GR-like part and fðRÞ part, where
the former is exactly the result in GR when fðRÞ gravity
reduces to GR, and the latter is the correction to GR-like
part in fðRÞ gravity. When the leading pole moments are
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considered in the stationary spacetime, the GR-like part
can recover the Lense-Thirring metric, and the fðRÞ
part provides the Yukawa-like correction in fðRÞ gravity,
so the metric can easily reduce to that for a pointlike
source in Refs. [6,19,20]. Further, if the leading
pole moments are considered in the static spacetime,
the metric can also reduce to that for a ball-like source
in Ref. [21].
Following the conventional method in Ref. [17], the

calculation of the precessional angular velocity of gyro-
scopic spin in the stationary spacetime can be performed
easily. However, the metric obtained above for the external
gravitational field of the source is normally time-
dependent, so the method in Ref. [17] should be extended.
In the present paper, for the gyroscope moving around a
spatially compact supported source without experiencing
any torque, the multipole expansions of its spin’s
angular velocities of gravitoelectric-type precession,
gravitomagnetic-type precession, fðRÞ precession, and
Thomas precession, are all derived. The first two types
of precession, associated with the mass-type and current-
type source multipole moments of the GR-like part of the
metric, are collectively called GR-like precession, which is
the result in GR when gyroscope moves along a geodesic.
The fðRÞ precession, associated with the source multipole
moments of the fðRÞ part of the metric, provides the
correction in fðRÞ gravity. The Thomas precession consists
of the corresponding result in special relativity and the
correction to this result brought about by the curved
spacetime in fðRÞ gravity. It can be proved that if the
gyroscope has a nonzero four-acceleration, its spin’s total
angular velocity of precession up to 1=c3 order in fðRÞ
gravity is the same as that in GR.
The four multipole expansions obtained above describe

all the effects of the external gravitational field of the source
up to 1=c3 order on gyroscopic precession, and in general,
since the source multipole moments are time-dependent,
the precessional angular velocities of gyroscopic spin are
also time-dependent. When the effects at the leading
pole order are considered in the stationary spacetime,
the gravitoelectric-monopole effect, the gravitomagnetic-
dipole effect, the fðRÞ-monopole effect, and the Thomas-
monopole effect are given, respectively. The first two
effects, as those of the GR-like precession, can indeed
recover classical geodesic effect and Lense-Thirring effect
in GR, respectively. The fðRÞ-monopole effect provides the
most main correction in fðRÞ gravity, and it can reduce to
that for the gyroscope moving around a pointlike [6,20] or a
ball-like source [21]. The Thomas-monopole effect gives
the most main correction to the result in special relativity.
Further, by analogy, the effects at the next-leading and
higher pole order can also be read out. In Refs. [6,21], by
comparing the effects of the gravitoelectric-type precession
plus fðRÞ precession at the leading pole order with the

measurements of the experiment Gravity Probe B (GP-B),
the constraints on the coefficient of the quadratic term in the
Lagrangian density of fðRÞ gravity are obtained. In this
process, if the effects at the next-leading and higher pole
order are considered further, one will acquire the influence
of the scale and shape of the source (the Earth) on
gyroscopic precession, so that a more accurate result
may be obtained.
This paper is organized as follows. In Sec. II, the STF

formalism and the metric fðRÞ gravity are briefly reviewed.
In Sec. III, the metric for the external gravitational field
of a spatially compact supported source up to 1=c3 order is
derived. In Sec. IV, for the gyroscope moving around the
source, the multipole expansions of its spin’s angular
velocities of precession in fðRÞ gravity are obtained. In
Sec. V, the conclusions and the related discussions are
presented.
As in Ref. [16], the international system of units is used

throughout this paper. When the notation is concerned,
the Greek letters denote spacetime indices and range from
0 to 3, whereas the Latin letters denote space indices and
range from 1 to 3. The repeated indices within a term
represent that the sum should be taken over.

II. PRELIMINARY

A. Relevant notations and formulas
in the STF formalism

The knowledge of the STF formalism is presented in
detail in Ref. [15], and here, only the relevant notations
and formulas are shown. In the linearized gravity theory,
the coordinates ðxμÞ ¼ ðct; xiÞ are regarded as the
Minkowskian coordinates. The spherical coordinate system
ðct; r; θ;φÞ is defined by

x1 ¼ r sin θ cosφ; x2 ¼ r sin θ sinφ; x3 ¼ r cos θ:

ð2:1Þ

In the flat space, the radial vector is x ¼ xi∂i, where xi are
the components, and ∂i ≔ ∂=∂xi are the coordinate basis
vectors. The unit radial vector is n ¼ x=r, where r ¼ jxj is
the length of x, and then, by defining ni ¼ xi=r, there is
n ¼ ni∂i. Obviously, from Eq. (2.1),

∂r ≔
∂
∂r ¼ ni∂i ¼ n: ð2:2Þ

Given a Cartesian tensor with l indices BIl ≔ Bi1i2���il
[12], its STF part is

B̂Il ≔ BhIli ¼ Bhi1i2���ili

≔
X½l2�
k¼0

bkδði1i2 � � � δi2k−1i2kSi2kþ1���ilÞa1a1���akak ; ð2:3Þ
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where

bk ≔ ð−1Þk ð2l − 2k − 1Þ!!
ð2l − 1Þ!!

l!
ð2kÞ!!ðl − 2kÞ! ; ð2:4Þ

and

SIl ≔ BðIlÞ ¼ Bði1i2���ilÞ ≔
1

l!

X
σ

Biσð1Þiσð2Þ���iσðlÞ ð2:5Þ

is its symmetric part with σ running over all permutations of
ð12 � � � lÞ. The tensor products of l radial and unit radial
vectors are abbreviated by

XIl ¼ Xi1i2���il ≔ xi1xi2 � � � xil ; ð2:6Þ

NIl ¼ Ni1i2���il ≔ ni1ni2 � � � nil ð2:7Þ

with

XIl ¼ rlNIl : ð2:8Þ

In addition, there are

N̂Il ¼
X½l2�
k¼0

bkδði1i2 � � � δi2k−1i2kNi2kþ1���ilÞ; ð2:9Þ

∂̂Il ¼
X½l2�
k¼0

bkδði1i2 � � � δi2k−1i2k∂i2kþ1���ilÞð∇2Þk; ð2:10Þ

∂̂Il

�
FðrÞ
r

�
¼ N̂Il

Xl

k¼0

ðlþ kÞ!
ð−2Þkk!ðl − kÞ!

∂l−k
r FðrÞ
rkþ1

; ð2:11Þ

where ∇2 ¼ ∂a∂a is the Laplace operator in a flat space,
∂Il ¼ ∂i1i2���il ≔ ∂i1∂i2 � � � ∂il , and ∂l−k

r is the (l − k)th
derivative with respect to r.

B. Metric f ðRÞ gravity
Consider the spacetime with the metric gμν of signature

ð−;þ;þ;þÞ. The action of the metric fðRÞ gravity [16] is

S ¼ 1

2κc

Z
dx4

ffiffiffiffiffiffi
−g

p
fðRÞ þ SMðgμν;ψÞ; ð2:12Þ

where κ ¼ 8πG=c4 withG as the gravitational constant, g is
the determinant of metric gμν, and SMðgμν;ψÞ is the matter
action. The variation of the above action with respect to
metric gμν yields the gravitational field equations

Hμν ¼ κTμν ð2:13Þ

with

Hμν ≔ −
gμν
2

f þ ðRμν þ gμν□ −∇μ∇νÞfR ð2:14Þ

where fR ≔ ∂Rf ≔ ∂=∂R, and Tμν is the energy momen-
tum tensor. As in Ref. [16], fðRÞ is assumed to have the
polynomial form

fðRÞ ¼ Rþ aR2 þ bR3 þ � � � ; ð2:15Þ

where the dimensions of the constants a; b � � � are
½R�−1; ½R�−2 � � �, respectively.

III. METRIC FOR THE EXTERNAL
GRAVITATIONAL FIELD OF A SPATIALLY

COMPACT SUPPORTED SOURCE
UP TO 1=c3 ORDER

In Ref. [16], for a spatially compact supported source,
the multipole analysis on linearized fðRÞ gravity with the
STF formalism is made in a fictitious flat spacetime with
ημν as the Minkowskian metric. First, by defining the
gravitational field amplitude hμν and the effective gravita-
tional field amplitude h̃μν as

hμν ≔
ffiffiffiffiffiffi
−g

p
gμν − ημν; ð3:1Þ

h̃μν ≔ fR
ffiffiffiffiffiffi
−g

p
gμν − ημν; ð3:2Þ

the field equations of fðRÞ gravity are rewritten as

□ηh̃
μν ¼ 2κτμνf ð3:3Þ

under the de Donder condition ∂μh̃
μν ¼ 0, where

□η ≔ ημν∂μ∂ν, and the source term

τμνf ≔ jgjf2RTμν þ 1

2κ
Λμν
f ð3:4Þ

is the stress-energy pseudotensor of the matter fields and
the gravitational field. Here,
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Λμν
f ≔ −h̃αβ∂α∂βh̃

μν − ðfR − 1Þg̃αβ∂αh̃
μν∂β ln fR −

1

2
ð1þ 2fRÞg̃μνg̃αβ∂α ln fR∂β ln fR

− ð1 − 4fRÞg̃μαg̃νβ∂α ln fR∂β ln fR − 2ðfR − 1Þg̃μνg̃αβ∂α∂β ln fR þ 2ðfR − 1Þg̃μαg̃νβ∂α∂β ln fR

− 2g̃βτg̃αðμ∂λh̃
νÞτ∂αh̃

βλ − ðfR − 1Þg̃ρσ g̃μðαg̃βÞν∂αh̃
ρσ∂β ln fR þ g̃αβg̃λτ∂λh̃

μα∂τh̃
νβ

þ ∂αh̃
μβ∂βh̃

να − 2ð1 − fRÞg̃αðμ∂αh̃
νÞβ∂β ln fR −

1

2
ð1 − fRÞg̃ρσ g̃μνg̃αβ∂αh̃

ρσ∂β ln fR

þ 1

2
g̃αβg̃μν∂λh̃

ατ∂τh̃
βλ þ 1

8
ð2g̃μαg̃νβ − g̃μνg̃αβÞð2g̃λτg̃ϵπ − g̃ϵτg̃λπÞ∂αh̃

λπ∂βh̃
τϵ

þ a
ffiffiffiffiffiffi
−g

p
fRg̃μνR2 þ b

ffiffiffiffiffiffi
−g

p
fRg̃μνR3 þ 4agf2RR

μνRþ 6bgf2RR
μνR2 þ higher order terms ð3:5Þ

with

g̃μν ≔ fR
ffiffiffiffiffiffi
−g

p
gμν; ð3:6Þ

g̃μν ≔
1ffiffiffiffiffiffi−gp
fR

gμν; ð3:7Þ

which satisfy

g̃μλg̃λν ¼ δνμ: ð3:8Þ

In the linearized fðRÞ gravity, both hμν and h̃μν are the
perturbations, namely,

jhμνj ≪ 1; ð3:9Þ

jh̃μνj ≪ 1; ð3:10Þ

and the linearized relation between them is

hμν ¼ h̃μν − 2aRð1Þημν; ð3:11Þ

where a is the coefficient of the quadratic term in the
Lagrangian density of fðRÞ gravity, and Rð1Þ is the linear
part of Ricci scalar R. Eq. (3.11) shows that the gravitational

field amplitude hμν consists of the tensor part, associated
with h̃μν, and the scalar part, associated with Rð1Þ, where h̃μν

satisfies the following system of linear equations,

�
□ηh̃

μν ¼ 2κTμν;

∂μh̃
μν ¼ 0;

ð3:12Þ

and Rð1Þ satisfies a massive Klein-Gordon equation with an
external source,

□ηRð1Þ −m2Rð1Þ ¼ m2κT ð3:13Þ

with T ≔ ημνTμν and

m2 ≔
1

6a
: ð3:14Þ

From Eq. (3.1), the pure information of the metric is
carried by the gravitational field amplitude hμν, so its
expression up to 1=c3 order interests us. Equation (3.11)
implies that the expressions of h̃μν and Rð1Þ up to 1=c3 order
should be derived firstly. In Ref. [16], the multipole
expansion of h̃μν in linearized fðRÞ gravity is

8>>>>><
>>>>>:

h̃00ðt; xÞ ¼ − 4G
c2
P∞

l¼0
ð−1Þl
l! ∂Il

�
M̂Il

ðuÞ
r

�
;

h̃0iðt; xÞ ¼ 4G
c3
P∞

l¼1
ð−1Þl
l! ∂Il−1

�∂tM̂iIl−1 ðuÞ
r

�
þ 4G

c3
P∞

l¼1
ð−1Þll
ðlþ1Þ! ϵiab∂aIl−1

�
ŜbIl−1 ðuÞ

r

�
;

h̃ijðt; xÞ ¼ − 4G
c4
P∞

l¼2
ð−1Þl
l! ∂Il−2

�∂2t M̂ijIl−2 ðuÞ
r

�
− 8G

c4
P∞

l¼2
ð−1Þll
ðlþ1Þ! ∂aIl−2

�
ϵabði∂tŜjÞbIl−2 ðuÞ

r

�
;

ð3:15Þ

where ϵijk is the totally antisymmetric Levi-Civita symbol with ϵ123 ¼ 1,

8<
:

M̂IlðuÞ ¼ 1
c2
R
d3x0

�
X̂0

IlðT̄00
l ðu; x0Þ þ T̄aa

l ðu; x0ÞÞ − 4ð2lþ1Þ
cðlþ1Þð2lþ3Þ X̂

0
aIl∂tT̄0a

lþ1ðu; x0Þ þ 2ð2lþ1Þ
c2ðlþ1Þðlþ2Þð2lþ5Þ X̂

0
abIl∂2

t T̄ab
lþ2ðu; x0Þ

�
;

ŜIlðuÞ ¼ 1
c

R
d3x0

�
ϵabhi1X̂

0jaji2���iliT̄
0b
l ðu; x0Þ − 2lþ1

cðlþ2Þð2lþ3Þ ϵabhi1X̂
0jacji2���ili∂tT̄cb

lþ1ðu; x0Þ
�
; l ≥ 1

ð3:16Þ
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are the mass-type and current-type source multipole moments, respectively [18], u ¼ t − r=c is the retarded time, ∂k
t is

the kth derivative with respect to t, the symbol hi1jaji2 � � � ili and hi1jacji2 � � � ili represent that a and c are not the STF
indices, and

T̄μν
l ðu; x0Þ ≔ ð2lþ 1Þ!!

2lþ1l!

Z
1

−1
ð1 − z2ÞlTμν

�
uþ zr0

c
; x0

�
dz ð3:17Þ

with r0 ¼ jx0j as the length of x0. By directly truncating the above multipole expansion of h̃μν under the WFSM
approximation, its expression up to 1=c3 order can be readily obtained,8>>><

>>>:
h̃00ðt; xÞ ¼ − 4G

c2
P∞

l¼0
ð−1Þl
l! M̂IlðtÞ∂Il

�
1
r

�
;

h̃0iðt; xÞ ¼ 4G
c3
P∞

l¼1
ð−1Þl
l! ð∂tM̂iIl−1ðtÞÞ∂Il−1

�
1
r

�
− 4G

c3
P∞

l¼1
ð−1Þll
ðlþ1Þ! ϵiabŜaIl−1ðtÞ∂bIl−1

�
1
r

�
;

h̃ijðt; xÞ ¼ 0

ð3:18Þ

with

8<
:

M̂IlðtÞ ¼
R
d3x0X̂0

Il
T00ðt;x0Þ

c2 ;

ŜIlðtÞ ¼
R
d3x0ϵabhi1X̂

0jaji2���ili
T0bðt;x0Þ

c ; l ≥ 1;
ð3:19Þ

where in this process [15], the conclusion

T00 ∼Oðc2Þ; T0i ∼Oðc1Þ; Tij ∼Oðc0Þ; ð3:20Þ

the following series form of T̄μν
l ,

T̄μν
l ðu; x0Þ ¼

X∞
k¼0

ð2lþ 1Þ!!
ð2kÞ!!ð2lþ 2kþ 1Þ!!

r02k

c2k
∂2k

∂u2k T
μνðu; x0Þ;

ð3:21Þ

and the conservation of the total mass of the source,
namely,

M ≔ M̂I0ðtÞ ¼
Z

d3x0
T00ðt; x0Þ

c2
ð3:22Þ

have been used. Plugging Eq. (3.18) into Eq. (3.12) gives
the system of equations satisfied by h̃μ0 under the WFSM
approximation,

(
□ηh̃

μ0 ¼ 2κTμ0;

∂μh̃
μ0 ¼ 0;

ð3:23Þ

which is analogous to Maxwell equations and Lorentz
gauge condition, so h̃00 and h̃0i should be related to some
kind of gravitoelectric potential and gravitomagnetic vector
potential [22], respectively, and thus, h̃00 and h̃0i could be
called the gravitoelectric and gravitomagnetic components
of the gravitational field amplitude, respectively.

Equations (3.18) and (3.19) show that gravitoelectric
component h̃00ðt; xÞ is only associated with the mass-type
source multipole moments, whereas gravitomagnetic com-
ponents h̃0iðt; xÞ are associated with both mass-type and
current-type source multipole moments. In the stationary
case, there are

Tμνðt0; x0Þ ¼ Tμνðx0Þ; ð3:24Þ

and substituting them in Eqs. (3.18) and (3.19) shows that
h̃0iðxÞ are no longer associated with the mass-type source
multipole moments, which means that h̃00ðxÞ and h̃0iðxÞ are
decoupled in this case. From Eqs. (2.15) and (3.11), when
fðRÞ gravity reduces to GR, namely,

fðRÞ ¼ R; ð3:25Þ

the above expression of h̃μν up to 1=c3 order is exactly
the corresponding result of hμν in GR, also defined by
Eq. (3.1), and therefore, the effective gravitational field
amplitude h̃μνðt; xÞ is referred to as the GR-like part of
hμν [16]. Besides, when the leading pole moments are taken
into account in the stationary spacetime, Eq. (3.18)
becomes

8>><
>>:

h̃00ðxÞ ¼ − 4GM
c2r ;

h̃0iðxÞ ¼ 2GϵiabxaJb
c3r3 ;

h̃ijðxÞ ¼ 0

ð3:26Þ

with

Jb ≔ Ŝb ¼
Z

d3x0ϵbijx0i
T0jðx0Þ

c
ð3:27Þ

as the conserved angular momentum of the source, where if
Eq. (3.25) holds, and the source is rotating around the
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z-axis, Eq. (3.26), as shown by following Eqs. (3.42) and
(3.43), can recover the Lense-Thirring metric in the
isotropic coordinate.
The mulitpole expansion of Rð1Þ is also provided in

Ref. [16], and however, it is valid only in the far-field
region. As mentioned before, gyroscopic precession is
expected to be discussed in the whole region exterior to
the source, so the expression of Rð1Þ up to 1=c3 order cannot
be directly obtained like that of h̃μν. In this section, we will
rederive the multipole expansion of Rð1Þ outside the source
by imposing the condition “up to 1=c3 order.” Under
the WFSM approximation, expansion of Rð1Þ up to 1=c3

order means

Rð1Þ ∼O

�
1

c2

�
; ð3:28Þ

and then, Eq. (3.13) reduces to [6]

∇2Rð1Þ −m2Rð1Þ ¼ 8πGm2

c4
T; ð3:29Þ

where from Eq. (3.20),

T ¼ −T00 ∼Oðc2Þ: ð3:30Þ

Equation (3.29) has the following solution [6]

Rð1Þðt; xÞ ¼
Z

Gðx; x0Þ
�
−
8πGm2

c4
Tðt; x0Þ

�
d3x0 ð3:31Þ

with the Green’s function

Gðx; x0Þ ¼ e−mjx−x0j

4πjx − x0j : ð3:32Þ

According to the result in Ref. [16], the above Green’s
function can be written as

Gðx; x0Þ ¼
X∞
l¼0

ð2lþ 1Þ!!
4πl!

milðmr<Þklðmr>Þ

× N̂Ilðθ;φÞN̂Ilðθ0;φ0Þ; ð3:33Þ

where

ilðzÞ ≔ zl
�

d
zdz

�
l
�
sinh z
z

�
;

klðzÞ ≔
e−z

z

Xl

k¼0

ðlþ kÞ!
k!ðl − kÞ!

1

ð2zÞk ð3:34Þ

are the spherical modified Bessel functions of l-order [23],
ðθ;φÞ and ðθ0;φ0Þ are the angle coordinates of x and x0,

respectively, r< represents the lesser of r ¼ jxj and
r0 ¼ jx0j, and r> the greater. With the help of Eq. (3.34) and

e−z ¼ ð−1Þl−k dl−k

dzl−k
e−z;

the multipole expansion of Rð1Þ outside the source (r ¼ r>
and r0 ¼ r<) is given by inserting Eq. (3.33) into Eq. (3.31),
namely,

Rð1Þðt; xÞ ¼ −
2Gm2

c2
X∞
l¼0

ð−1Þl
l!

Q̂IlðtÞN̂Ilðθ;φÞ

×
Xl

k¼0

ðlþ kÞ!
ð−2Þkk!ðl − kÞ!

1

rkþ1

dl−k

drl−k
e−mr; ð3:35Þ

Q̂IlðtÞ ≔
ð2lþ 1Þ!!

m2l

Z
r0l
�

d
r0dr0

�
l
�
sinh ðmr0Þ

mr0

�

× N̂Ilðθ0;φ0ÞTðt; x
0Þ

c2
d3x0; ð3:36Þ

where Q̂IlðtÞ are the l-pole moments. Then, by using
Eq. (2.11) and X0

Il
¼ r0lNIlðθ0;φ0Þ, the expression of Rð1Þ

up to 1=c3 order is

Rð1Þðt; xÞ ¼ −
2Gm2

c2
X∞
l¼0

ð−1Þl
l!

Q̂IlðtÞ∂Il

�
e−mr

r

�
ð3:37Þ

with

Q̂IlðtÞ ¼
ð2lþ 1Þ!!

m2l

Z
X̂0

Il

�
d

r0dr0

�
l
�
sinh ðmr0Þ

mr0

�

×
Tðt; x0Þ

c2
d3x0: ð3:38Þ

From the above process, it can be seen that the condition
“up to 1=c3 order” greatly simplifies the derivation. First, it
is due to this condition that Eq. (3.13) reduces to Eq. (3.29)
under the WFSM approximation, and then, because the
Green’s function Gðx; x0Þ of differential equation (3.29) is
the same as that in the stationary spacetime [6], the
expression of Rð1Þ up to 1=c3 order, presented in the form
of the multipole expansion, is readily derived according to
the result of Gðx; x0Þ in Ref. [16]. Obviously, except that
Rð1Þðt; xÞ, Q̂IlðtÞ, and Tðt; x0Þ are time-dependent, the
above expression of Rð1Þ up to 1=c3 order is identical to
that in the stationary spacetime [16]. By use of Eqs. (3.14)
and (3.37), the expression of the scalar part of hμν,
2aRð1Þημν, up to 1=c3 order can be directly obtained,
and then, by inserting it and Eq. (3.18) into Eq. (3.11),
the expression of the gravitational field amplitude hμν up to
1=c3 order is
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8>>>>><
>>>>>:

h00ðt; xÞ ¼ − 4G
c2
P∞

l¼0
ð−1Þl
l! M̂IlðtÞ∂Ilð1rÞ − 2G

3c2
P∞

l¼0
ð−1Þl
l! Q̂IlðtÞ∂̂Il

�
e−mr

r

�
;

h0iðt; xÞ ¼ 4G
c3
P∞

l¼1
ð−1Þl
l! ð∂tM̂iIl−1ðtÞÞ∂Il−1

�
1
r

�
− 4G

c3
P∞

l¼1
ð−1Þll
ðlþ1Þ! ϵiabŜaIl−1ðtÞ∂bIl−1

�
1
r

�
;

hijðt; xÞ ¼ 2G
3c2 δ

ij
P∞

l¼0
ð−1Þl
l! Q̂IlðtÞ∂̂Il

�
e−mr

r

� ð3:39Þ

with δij as the Kronecker symbol, which shows that the
scalar part of hμν is the correction to the tensor part, namely,
the GR-like part. When the leading pole moments are
considered in the stationary spacetime, from Eqs. (3.26),
(3.37), and (3.38), Eq. (3.39) becomes

8>><
>>:

h00ðxÞ ¼ − 4GM
c2r − 2GMf

3c2r e−mr;

h0iðxÞ ¼ 2GϵiabxaJb
c3r3 ;

hijðxÞ ¼ 2GMf

3c2r e−mrδij;

ð3:40Þ

where

Mf ≔ Q̂I0 ¼
Z �

sinh ðmr0Þ
mr0

�
Tðx0Þ
c2

d3x0 ð3:41Þ

is the stationary monopole moment of Rð1Þ, and in this case,
the scalar part of hμν reduces to the Yukawa-like correction
to the tensor part. In the linearized fðRÞ gravity, from
Eq. (3.9), the trace of the gravitational field amplitude is

h ¼ ημνhμν, and then, with Eq. (3.1), the metric for the
gravitational field is given by

gμν ¼ ημν − h̄μν ð3:42Þ
with

h̄μν ≔ hμν −
1

2
ημνh: ð3:43Þ

Thus, by plugging Eq. (3.39) into Eqs. (3.42) and (3.43),
the metric, presented in the form of the multipole expan-
sion, for the external gravitational field of a spatially
compact supported source up to 1=c3 order is

8>><
>>:

g00ðt; xÞ ¼ −1þ 2
c2 Uðt; xÞ þ 1

c2 Vðt; xÞ;
g0iðt; xÞ ¼ − 4

c3 U
iðt; xÞ;

gijðt; xÞ ¼ δij
�
1þ 2

c2 Uðt; xÞ − 1
c2 Vðt; xÞ

�
;

ð3:44Þ

where the potentials Uðt; xÞ, Uiðt; xÞ, and Vðt; xÞ are,
respectively, defined as

8>>>>><
>>>>>:

Uðt; xÞ ≔ G
P∞

l¼0
ð−1Þl
l! M̂IlðtÞ∂Il

�
1
r

�
;

Uiðt; xÞ ≔ −G
P∞

l¼1
ð−1Þl
l! ð∂tM̂iIl−1ðtÞÞ∂Il−1

�
1
r

�
þ G

P∞
l¼1

ð−1Þll
ðlþ1Þ! ϵiabŜaIl−1ðtÞ∂bIl−1

�
1
r

�
;

Vðt; xÞ ≔ − 2G
3

P∞
l¼0

ð−1Þl
l! Q̂IlðtÞ∂Il

�
e−mr

r

�
:

ð3:45Þ

Equations (2.15) and (3.14) show that the potential Vðt; xÞ
will vanish when fðRÞ gravity reduces to GR, and thus, the
metric in Eq. (3.44) recovers the result in GR. Therefore, in
the above expression of the metric, the terms, not related to
the potential Vðt; xÞ, constitute the GR-like part, and the
remaining terms, only related to the potential Vðt; xÞ,
constitute the fðRÞ part, which is the correction to the
GR-like part in fðRÞ gravity. Obviously, the GR-like part of
the metric contains the mass-type and current-type source
multipole moments associated with the tensor part of the
gravitational field amplitude, whereas the fðRÞ part con-
tains the source multipole moments associated with the
scalar part of the gravitational field amplitude. In the
stationary spacetime, above three potentials at the leading
pole order reduce to

8>>><
>>>:

Uðt; xÞ ¼ UðxÞ ¼ GM
r ;

Uiðt; xÞ ¼ UiðxÞ ¼ − GϵiabxaJb
2r3 ;

Vðt; xÞ ¼ VðxÞ ¼ − 2GMf

3r e−mr;

ð3:46Þ

respectively, and then, Eq. (3.44) yields the corresponding
metric in this case, namely,

8>>><
>>>:

g00ðxÞ ¼ −1þ 2GM
c2r − 2GMf

3c2r e−mr;

g0iðxÞ ¼ 2GϵiabxaJb
c3r3 ;

gijðxÞ ¼ δij
�
1þ 2GM

c2r þ 2GMf

3c2r e−mr
�
:

ð3:47Þ
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It is easy to verify that for the source rotating around the
z-axis, the above metric can recover that for a pointlike
source in Refs. [6,19,20]. Further, if the leading pole
moments are considered in the static spacetime, the above
metric can also recover that for a ball-like source in
Ref. [21].

IV. MULTIPOLE EXPANSIONS OF THE
PRECESSIONAL ANGULAR VELOCITIES OF

GYROSCOPIC SPIN IN f ðRÞ GRAVITY
WITH THE STF FORMALISM

In Ref. [17], the conventional method with respect to
the derivation of the precessional angular velocity of
gyroscopic spin in the stationary spacetime is presented,
and however, the metric obtained in Sec. III for the
gravitational field of the source is normally time-
dependent, so the method in Ref. [17] should be extended.
In this section, for the gyroscope moving in the external
gravitational field of a spatially compact supported source
without experiencing any torque, we will derive the multi-
pole expansion of its spin’s angular velocity of precession
in fðRÞ gravity with the STF formalism. Consider the
spacetime with gμν in Eq. (3.44) as the metric and let xμðτÞ
be the world line of the gyroscope with τ as the proper
time. Gyroscopic four-velocity and spin (i.e., the angular
momentum vector), denoted by uα and Sα, respectively, are
always orthogonal to each other [6], namely,

uαSα ¼ 0: ð4:1Þ

Because gyroscopic spin Sα obeys Fermi-Walker transport
along its world line xμðτÞ [17], the following transport
equation

uα∇αSβ ¼
dSβ

dτ
þ uαSλΓβ

λα ¼
1

c2
aρSρuβ ð4:2Þ

holds, where ∇α denotes the covariant derivative, Γ
β
λα is the

Christoffel symbol, and aρ is gyroscopic four-acceleration.
With Eqs. (4.1) and (4.2), there is

dðSβSβÞ
dτ

¼ uα∇αðSβSβÞ ¼ 2Sβuα∇αSβ ¼ 0; ð4:3Þ

which implies that SβSβ remains fixed along xμðτÞ.
Now, let us review the fundamental process of evaluating

precessional angular velocity of gyroscopic spin [17]. First,
the coordinate frame

gρ ≔
∂
∂xρ ð4:4Þ

should be orthonormalized, so that a local orthonormal
tetrad e½σ�, at rest in the coordinate frame, can be defined,

e½σ� ≔ Aρ½σ�gρ; ð4:5Þ

where the Greek indices within square brackets are used to
label the vectors of the tetrad e½σ� and the components of a
tensor with respect to this tetrad. Denote the orthonormal
frame comoving with the gyroscope by eðαÞ, and then, as the
gyroscope moves in the gravitational field, the local
Lorentz boost Λ½σ�ðαÞ from the local orthonormal tetrad
e½σ� to its comoving frame eðαÞ can be determined with its
four-velocity uα,

eðαÞ ≔ Λ½σ�ðαÞe½σ�; ð4:6Þ

where the Greek indices within round brackets, similar to
the case of the square bracket, are used to label the vectors
of the frame eðαÞ and the components of a tensor with
respect to this frame. In addition, the orthonormality of e½σ�
and eðαÞ implies the Greek indices within parentheses
should be raised and lowered with the Minkowski metric.
Combining the above two transformations gives

eðαÞ ¼ λρðαÞgρ ð4:7Þ

with

λρðαÞ ≔ Λ½σ�ðαÞAρ½σ�; ð4:8Þ

where since the gyroscope is at rest in its comoving
orthonormal frame eðαÞ, the following equations

λρð0Þ ¼
uρ

c
; ð4:9Þ

ηαβ ¼ λρðαÞλσðβÞgρσ ð4:10Þ

hold. Thus, once both Λ½σ�ðαÞ and Aρ½σ� are derived, the
comoving frame of the gyroscope, eðαÞ, can be determined
by the coordinate frame gρ. For gyroscopic spin, Eq. (4.7)
gives

Sβ ¼ λβðαÞSðαÞ; ð4:11Þ

and then, together with Eqs. (4.1), (4.9), (4.10), and

uβuβ ¼ −c2; ð4:12Þ

one can deduce

Sð0Þ ¼ 0; ð4:13Þ

which means that gyroscopic spin is a purely spatial vector
in its comoving frame. Further, Eq. (4.3) implies that the
length of gyroscopic spin SðiÞ remains fixed along its world
line xμðτÞ, namely,
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dðSðiÞSðiÞÞ
dτ

¼ dðSðiÞSðjÞδijÞ
dτ

¼ 0; ð4:14Þ

and hence, SðiÞ always precesses relative to the comoving
frame, which yields

dSðiÞ

dτ
¼ ϵijkωðjÞSðkÞ ð4:15Þ

with ωðjÞ as the angular velocity of SðiÞ. The objective of the
derivation in this section is to write down the expression of
ωðjÞ up to 1=c3 order under the WFSM approximation.
First, we need to derive the expression of dSðiÞ=dτ up to

1=c3 order. With Eqs. (4.11) and (4.13), we have

SðαÞ ¼ μðαÞβSβ ⇒

8<
: Sð0Þ ¼ μð0ÞβSβ ¼ 0;

SðiÞ ¼ μðiÞβSβ;
ð4:16Þ

where μðαÞβ is the inverse transformation of λβðαÞ, and they
satisfy

(
μðαÞρλρðβÞ ¼ δαβ;

λαðρÞμðρÞβ ¼ δαβ:
ð4:17Þ

In Appendix A, after deducing the expressions of both
transformations, Aρ½σ� and Λ½σ�ðαÞ, up to 1=c3 order, that of
the compound transformation μðαÞβ is also given by use of
Eqs. (4.8) and (4.17),

8>>>>>><
>>>>>>:

μð0Þ0 ¼ 1− 1
c2 Uðt;xÞ− 1

2c2Vðt;xÞ þ vkvk

2c2 ;

μð0Þi ¼ − vi
c −

vivkvk

2c3 − 3vi

c3 Uðt;xÞ þ vi

2c3Vðt;xÞ þ 4
c3U

iðt;xÞ;
μðjÞ0 ¼ − vj

c −
vjvkvk

2c3 − vj

c3Uðt;xÞ þ vj

2c3Vðt;xÞ;
μðjÞi ¼

�
1þ 1

c2Uðt;xÞ− 1
2c2Vðt;xÞ

�
δji þ vjvi

2c2 :

ð4:18Þ

Plug Eq. (4.18) into Eq. (4.16), and then, the expressions of
S0 and SðiÞ up to 1=c3 order are, respectively,

S0 ¼ Si
�
vi

c
þ 4vi

c3
Uðt; xÞ − 4

c3
Uiðt; xÞ

�
; ð4:19Þ

SðiÞ ¼ Si
�
1þ 1

c2
Uðt; xÞ − 1

2c2
Vðt; xÞ

�
−
vivjSj

2c2
; ð4:20Þ

where Eq. (4.19) has been used in the derivation of
Eq. (4.20). Thus, the derivative of SðiÞ with respect to
gyroscopic proper time τ is

dSðiÞ

dτ
¼ dSi

dτ

�
1þ 1

c2
Uðt; xÞ − 1

2c2
Vðt; xÞ

�

þ Si

c2
d
dτ

�
Uðt; xÞ − 1

2
Vðt; xÞ

�

−
vjSj

2c2
dvi

dτ
−
viSj

2c2
dvj

dτ
−
vivj

2c2
dSj

dτ
; ð4:21Þ

where ∂tðUðt; xÞ − Vðt; xÞ=2Þ will appear in the second
term with ∂t ≔ ∂=∂t, and in general, since the metric for
the spacetime is time-dependent, it will not vanish. In
Eq. (4.2), dSi=dτ has been provided,

dSi

dτ
¼ −uαSλΓi

λα þ
1

c2
aρSσgρσui; ð4:22Þ

and as shown in Appendix B, under the WFSM approxi-
mation, its expression up to 1=c3 order is

dSi

dτ
¼ 2

c2
vjSj∂iUðt; xÞ − 1

c2
vjSi∂jUðt; xÞ

−
1

c2
viSj∂jUðt; xÞ − 2

c2
Sjð∂iUjðt; xÞ − ∂jUiðt; xÞÞ

þ 1

2c2
vjSi∂jVðt; xÞ þ

1

2c2
viSj∂jVðt; xÞ

−
1

c2
Si∂t

�
Uðt; xÞ − 1

2
Vðt; xÞ

�
þ 1

c2
ajviSj:

ð4:23Þ
In the following, we shall see that ∂tðUðt; xÞ − Vðt; xÞ=2Þ
in Eqs. (4.21) and (4.23) will cancel out, so in the final
result of the precessional angular velocity of gyroscopic
spin, it will not appear. In addition, from Eq. (B7),

1

c2
dvi

dτ
¼ 1

c2
ai þ 1

c2
∂iUðt; xÞ þ 1

2c2
∂iVðt; xÞ; ð4:24Þ

and then, by substituting it and Eq. (4.23) in Eq. (4.21),
the expression of dSðiÞ=dτ up to 1=c3 order is obtained.
With Eq. (4.20), dSðiÞ=dτ can be rewritten in the form of
Eq. (4.15), and then, the angular velocity of SðiÞ is given,
namely,

ωðjÞ ¼ ωðjÞ
GR þ ωðjÞ

fðRÞ þ ωðjÞ
T ð4:25Þ

with

ωðjÞ
GR ¼ 3

2c2
ϵjpqvp∂qUðt; xÞ þ 2

c2
ϵjpq∂pUqðt; xÞ; ð4:26Þ

ωðjÞ
fðRÞ ¼ −

1

4c2
ϵjpqvp∂qVðt; xÞ; ð4:27Þ

ωðjÞ
T ¼ −

1

2c2
ϵjpqvpaq: ð4:28Þ
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Equation (4.15) describes the precession of gyroscopic
spin SðiÞ relative to its comoving orthonormal frame eðαÞ in
complete generality under the WFSM approximation, and

ωðjÞ
GR, ω

ðjÞ
fðRÞ, and ωðjÞ

T in Eq. (4.25) describe three types of
precession, respectively. As mentioned previously, in terms
of the metric, the potential Vðt; xÞ is associated with the
fðRÞ part, and it will vanish when fðRÞ gravity reduces

to GR, which then results in ωðjÞ
fðRÞ ¼ 0. Furthermore, if

gyroscope has a vanishing four-acceleration, there is

ωðjÞ
T ¼ 0. Thus, ωðjÞ ¼ ωðjÞ

GR means that ωðjÞ
GR is the preces-

sional angular velocity of gyroscopic spin in GR when
gyroscope moves along a geodesic. The precession resulted

from ωðjÞ
GR is referred to as GR-like precession. As to ωðjÞ

fðRÞ,
it is related to the potential Vðt; xÞ, so it is the corrected
angular velocity of precession of gyroscopic spin in fðRÞ
gravity. The precession resulted from ωðjÞ

fðRÞ is referred to as

fðRÞ precession. Obviously, ωðjÞ
T represents the Thomas

precession, which plays an important role in the fine
structure of atomic spectra [17]. By inserting Eqs. (4.24)
and (A4) into Eq. (4.28), we get

ωðjÞ
T ¼ −

1

2c2
ϵjpqvp

dvq

dt
þ 1

2c2
ϵjpqvp∂qUðt; xÞ

þ 1

4c2
ϵjpqvp∂qVðt; xÞ; ð4:29Þ

where the first term is exactly the corresponding result in
special relativity, and the last two terms, associated with the
potentials Uðt; xÞ and Vðt; xÞ, respectively, come from the
connection coefficients in gyroscopic four-acceleration. In

addition, although Eq. (4.28) implies that ωðjÞ
T in fðRÞ

gravity has the same form as that in GR, they are actually
completely different because the potential Vðt; xÞ is non-
vanishing in fðRÞ gravity. Next, we shall prove that if a
gyroscope has a nonzero four-acceleration, ωðjÞ actually
has nothing to do with the potential Vðt; xÞ. With
Eqs. (4.25)—(4.27) and (4.29), ωðjÞ can be rewritten as

ωðjÞ ¼ −
1

2c2
ϵjpqvp

dvq

dt
þ 2

c2
ϵjpqvp∂qUðt; xÞ

þ 2

c2
ϵjpq∂pUqðt; xÞ; ð4:30Þ

which shows that the potential Vðt; xÞ does not appear in
the expression of ωðjÞ, and namely, the fðRÞ part of the
metric has nothing to do with ωðjÞ, so ωðjÞ is also total
angular velocity of precession of gyroscopic spin up to
1=c3 order in GR.

Let us focus on ωðjÞ
GR. Define

ωðjÞ
GRE ≔

3

2c2
ϵjpqvp∂qUðt; xÞ; ð4:31Þ

ωðjÞ
GRM ≔

2

c2
ϵjpq∂pUqðt; xÞ; ð4:32Þ

and then,

ωðjÞ
GR ¼ ωðjÞ

GRE þ ωðjÞ
GRM: ð4:33Þ

Besides, with Eqs. (3.18) and (3.45), we have

(
Uðt; xÞ ¼ − c2

4
h̃00ðt; xÞ;

Upðt; xÞ ¼ − c3
4
h̃0pðt; xÞ:

ð4:34Þ

Remember that h̃00 and h̃0i are called the gravitoelectric
and gravitomagnetic components of the gravitational field
amplitude, respectively, so two types of precession of

gyroscopic spin resulted from ωðjÞ
GRE and ωðjÞ

GRM could be
referred to as the gravitoelectric-type precession and
gravitomagnetic-type precession, respectively. By inserting
Eq. (3.45) into Eqs. (4.31), (4.32), (4.27), and (4.29), the

expressions of ωðjÞ
GRE, ω

ðjÞ
GRM, ω

ðjÞ
fðRÞ, and ωðjÞ

T up to 1=c3

order, presented in the form of the multipole expansions,
are all derived,

ωðjÞ
GRE ¼ 3G

2c2
X∞
l¼0

ð−1Þl
l!

M̂IlðtÞϵjpqvp∂qIl

�
1

r

�
; ð4:35Þ

ωðjÞ
GRM ¼ 2G

c2
X∞
l¼1

ð−1Þl
l!

ϵjpqð∂tM̂pIl−1ðtÞÞ∂qIl−1

�
1

r

�

−
2G
c2

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ŜIlðtÞ∂jIl

�
1

r

�
; ð4:36Þ

ωðjÞ
fðRÞ ¼

G
6c2

X∞
l¼0

ð−1Þl
l!

Q̂IlðtÞϵjpqvp∂qIl

�
e−mr

r

�
; ð4:37Þ

ωðjÞ
T ¼ −

1

2c2
ϵjpqvp

dvq

dt

þ G
2c2

X∞
l¼0

ð−1Þl
l!

M̂IlðtÞϵjpqvp∂qIl

�
1

r

�

−
G
6c2

X∞
l¼0

ð−1Þl
l!

Q̂IlðtÞϵjpqvp∂qIl

�
e−mr

r

�
; ð4:38Þ

where in the derivation of the second term in Eq. (4.36),
∇2ð1=rÞ ¼ 0ðr ≠ 0Þ has been used. Clearly, in general,
since the source multipole moments are time-dependent,
above precessional angular velocities of gyroscopic spin
are also time-dependent, and it is the dependence on time

that results in that ωðjÞ
GRM is associated with the mass-type

source multipole moments of the GR-like part of the metric.
The above four multipole expansions describe all the
effects of the external gravitational field of the source up
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to 1=c3 order on the gyroscopic precession. When it comes
to the gyroscopic experiment, e.g., GP-B, the results in the
stationary spacetime are significant, and in the following,
we will discuss them. According to Eqs. (3.19) and (3.36),
the dependence of the source multipole moments on time
disappears in the stationary spacetime, so there are

ωðjÞ
GRE ¼ 3G

2c2
X∞
l¼0

ð−1Þl
l!

M̂Ilϵ
jpqvp∂qIl

�
1

r

�
; ð4:39Þ

ωðjÞ
GRM ¼ −

2G
c2

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ŜIl∂jIl

�
1

r

�
; ð4:40Þ

ωðjÞ
fðRÞ ¼

G
6c2

X∞
l¼0

ð−1Þl
l!

Q̂Ilϵ
jpqvp∂qIl

�
e−mr

r

�
; ð4:41Þ

ωðjÞ
T ¼ −

1

2c2
ϵjpqvp

dvq

dt
þ G
2c2

X∞
l¼0

ð−1Þl
l!

M̂Ilϵ
jpqvp∂qIl

�
1

r

�

−
G
6c2

X∞
l¼0

ð−1Þl
l!

Q̂Ilϵ
jpqvp∂qIl

�
e−mr

r

�
; ð4:42Þ

from which we know that ωðjÞ
GRM is no longer related to the

mass-type source multipole moments of the GR-like part of
the metric. First, the effects at the leading pole order need
to be considered, and by truncating the above expansions
we get

ωðjÞ
GRE ¼ −

3GM
2c2r3

ϵjpqvpxq; ð4:43Þ

ωðjÞ
GRM ¼ GJi

c2r5
ð3xixj − δijr2Þ; ð4:44Þ

ωðjÞ
fðRÞ ¼ −

GMfð1þmrÞe−mr

6c2r3
ϵjpqvpxq; ð4:45Þ

ωðjÞ
T ¼ −

1

2c2
ϵjpqvp

dvq

dt
−

GM
2c2r3

ϵjpqvpxq

þ GMfð1þmrÞe−mr

6c2r3
ϵjpqvpxq ð4:46Þ

withM; Ji, andMf defined in Eqs. (3.22), (3.27), and (3.41),

where above ωðjÞ
GRE, ω

ðjÞ
GRM, ω

ðjÞ
fðRÞ, and ωðjÞ

T represent the

gravitoelectric-monopole effect, gravitomagnetic-dipole
effect, fðRÞ-monopole effect, and Thomas-monopole effect,
respectively. Obviously, the gravitoelectric-monopole effect
is the geodesic effect, and when the source is rotating around
the z-axis, the gravitomagnetic-dipole effect is the Lense-
Thirring effect, where as those of the GR-like precession at
the leading pole order, they can indeed recover the classical
results in GR. The fðRÞ-monopole effect provides the most
main correction in fðRÞ gravity, and it can reduce to that for

the gyroscope moving around a pointlike [6,20] or a ball-like
source [21]. As mentioned earlier, the first term in Eq. (4.46)
is the Thomas precession in special relativity, and thus, the
above Thomas-monopole effect, represented by the last two
terms in Eq. (4.46), gives the most main correction to this
result brought about by the curved spacetime in fðRÞ
gravity. Further, by analogy, the effects at the next-leading
and higher pole order can also be read out.
In the experiment GP-B, gyroscopes are moving around

the Earth along the polar orbit [24], and since the
gyroscopes are in geodesic motion, one only needs to
consider their gravitoelectric-type precession, gravito-
magnetic-type precession, and fðRÞ precession. In such
a case, if only the effects at the leading pole order are
considered, Eqs. (4.43)—(4.45) show that the directions

of ωðjÞ
GRE þ ωðjÞ

fðRÞ and ωðjÞ
GRM are orthogonal to each other,

so that these two types of effects can be handled
separately. In addition, Eqs. (4.43)—(4.45) need to be
averaged over a period [6,20], respectively, before com-
pared with the experimental data. From Eqs. (3.14) and
(4.45), the angular velocity of fðRÞ precession at the
leading pole order contains the coefficient of the quadratic
term in the Lagrangian density of fðRÞ gravity, namely, a,
so the constraint on a can be obtained by matching the
theoretical results of the gravitoelectric-monopole effect
plus fðRÞ-monopole effect with the corresponding data
from GP-B. In Ref. [6], for the gyroscope moving around
a pointlike source, the obtained constraint on a is
jaj≲ 5 × 1011m2. In order to obtain a more accurate
result, the influence of the scale and shape of the source
(the Earth) on gyroscopic precession also needs to be
considered. In Ref. [21], by using the result for a ball-like
source at the leading pole order, the constraint on a from
the experiment GP-B does not yield any new result. In
Ref. [20], the influence of the Earth’s oblateness on
gyroscopic precession is considered, but the effective
constraint on a is not obtained. The results in the present
paper provide an approach to effectively acquiring the
influence of the scale and shape of a spatially compact
supported source on gyroscopic precession. In principle,
by comparing the results of gravitoelectric-type preces-
sion plus fðRÞ precession at the next-leading and higher
pole order with the data from GP-B or the future
gyroscopic experiment, a more tight constraint on a could
be obtained. However, in this process, how to separate the
effects of the gravitoelectric-type precession plus fðRÞ
precession from those of gravitomagnetic-type precession
is still an open question, and moreover, taking the average
of Eqs. (4.39)—(4.41) over a period is strenuous.
Therefore, handling these issues is beyond the scope of
this paper, and we will discuss them in future work.
Anyway, what is confirmed is that the multipole expan-
sions of the precessional angular velocities of gyroscopic
spin presented in this paper are of great significance in
application.
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V. CONCLUSIONS AND DISCUSSIONS

In this paper, for the gyroscope moving around a
spatially compact supported source without experiencing
any torque, the multipole analysis on its spin’s angular
velocity of precession in fðRÞ gravity has been made under
the WFSM approximation. The first problem that we
confront is how to obtain the metric outside the source.
Although the metric outside the source is explicitly
presented in Ref. [16] by applying the STF formalism,
developed by Thorne [12], Blanchet, and Damour [13,14],
to the linearized fðRÞ gravity, it is only applicable in the
far-field region. In order that gyroscopic precession could
be studied in a more general case, the metric in the whole
region exterior to the source needs to be derived. In
addition, it needs to be emphasized that as the case in
GR [17], under the WFSM approximation, the metric for
the gravitational field of the source only needs to be
expanded up to 1=c3 order, so the linearized fðRÞ gravity
is sufficient to analyze the gyroscopic precession [19,20].
The condition “up to 1=c3 order” does greatly simplifies

the derivation. In the present paper, by following the STF
formalism in Ref. [16], we derive the metric, presented in
the form of the multipole expansion, for the external
gravitational field of a spatially compact supported source
up to 1=c3 order under the de Donder condition, and it
consists of GR-like part and fðRÞ part, where the former is
exactly the result in GR when fðRÞ gravity reduces to GR,
and the latter is the correction to GR-like part in fðRÞ
gravity. In the stationary spacetime, the GR-like part of the
metric at the leading pole order can recover the Lense-
Thirring metric, and the fðRÞ part of the metric at the
leading pole order yields the Yukawa-like correction in
fðRÞ gravity, so that the metric obtained can reduce to that
for a pointlike source in Refs. [6,19,20]. Further, in the
static spacetime, the metric at the leading pole order can
also reduce to that for a ball-like source in Ref. [21].
Since the metric obtained above for the external gravi-

tational field of the source is normally time-dependent,
the method in Ref. [17], used for the calculation of the
precessional angular velocity of gyroscopic spin in the
stationary spacetime, has been extended in this paper. Thus,
after a detailed derivation, for the gyroscope moving
around the source without experiencing any torque, we
give all the multipole expansions of its spin’s angular
velocities of gravitoelectric-type precession, gravitomag-
netic-type precession, fðRÞ precession, and Thomas pre-
cession. The first two types of precession, as the results in
GR when gyroscope moves along a geodesic, are collec-
tively called GR-like precession, and they are associated
with the mass-type and current-type source multipole
moments of the GR-like part of the metric. The fðRÞ
precession provides the correction in fðRÞ gravity, and it
is associated with the source multipole moments of the
fðRÞ part of the metric. The Thomas precession consists
of the corresponding result in special relativity and the

correction to this result brought about by the curved
spacetime in fðRÞ gravity. We also give the proof that if
the gyroscope has a nonzero four-acceleration, its spin’s
total angular velocity of precession in fðRÞ gravity is the
same as that in GR.
All the effects of the external gravitational field of the

source up to 1=c3 order on gyroscopic precession are
described by the four multipole expansions obtained
above, and in general, since the source multipole
moments are time-dependent, above precessional angular
velocities of gyroscopic spin are also time-dependent.
One might be more interested in the results in the
stationary spacetime, when it comes to the gyroscopic
experiment, and these results are also written down in
this paper. In the stationary spacetime, the effects at
the leading pole order consist of the gravitoelectric-
monopole effect, the gravitomagnetic-dipole effect, the
fðRÞ-monopole effect, and the Thomas-monopole effect.
The first two effects are those of GR-like precession at
the leading pole order, and they can indeed recover
classical geodesic effect and Lense-Thirring effect in GR,
respectively. The fðRÞ-monopole effect provides the
most main correction in fðRÞ gravity, and it can reduce
to that for the gyroscope moving around a pointlike
[6,20] or a ball-like source [21]. The Thomas-monopole
effect gives the most main correction to the result in
special relativity. Further, the effects at the next-leading
and higher pole order can also be read out by analogy.
As far as we know, such expressions in fðRÞ gravity,

especially for the multipole expansions of the preces-
sional angular velocities of gyroscopic spin, have not
been given before. Although the results obtained in this
paper, expanded only up to 1=c3 order, are derived in the
theoretical framework of the linearized fðRÞ gravity, they
are sufficient to be used to explain the data from the
experiment GP-B since the Earth’s gravitational field is
weak, and the gyroscope moves slowly. Further, if one
wants to acquire the expression of the precessional
angular velocity of gyroscopic spin up to 1=c4 order,
from Eq. (3.15), we know that the quadratic terms of the
effective gravitational field amplitude, like ðh̃00Þ2, also
need to be taken into consideration. The metric fðRÞ
gravity is one of the simplest modified gravity theories.
Although some models of fðRÞ gravity can explain the
inflation in early universe successfully [10], in order to
better explain more observed phenomena, many gener-
alized modified gravity theories, like fðR;GÞ gravity
[25,26] and fðX; Y; ZÞ gravity [5], are attracting consid-
erable attention, where G is the Gauss-Bonnet invariant,
X ≔ R is the Ricci scalar, Y ≔ RμνRμν is the quadratic
contraction of two Ricci tensors, and Z ≔ RμνσρRμνσρ is
the quadratic contraction of two Riemann tensors. The
result for fðRÞ gravity in this paper might be generalized
to these theories, so that they can have a wide range of
applications.
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APPENDIX A: DERIVATION OF EQ. (4.18)

Equations (4.8) and (4.17) show that in order to obtain
the expression of the transformation μðαÞβ up to 1=c3 order,
those of both transformations, Aρ½σ� and Λ½σ�ðαÞ, need to be
derived firstly. The metric for the external gravitational
field of the source up to 1=c3 order has been presented in
Eq. (3.44), and then, by applying the Gram-Schmidt
orthogonalization to the coordinate frame gρ under the
WFSM approximation, the local tetrad e½σ� in Eq. (4.5) is

8<
:

e½0� ¼
�
1þ 1

c2 Uðt; xÞ þ 1
2c2 Vðt; xÞ

�
g0;

e½i� ¼ − 4
c3 U

iðt; xÞg0 þ
�
1 − 1

c2 Uðt; xÞ þ 1
2c2 Vðt; xÞ

�
gi;

ðA1Þ

from which, the expression of the transformation Aρ½σ� up to
1=c3 order is obtained,

8>>>>>><
>>>>>>:

A0
½0� ¼ 1þ 1

c2 Uðt; xÞ þ 1
2c2 Vðt; xÞ;

A0
½i� ¼ − 4

c3 U
iðt; xÞ;

Aj
½0� ¼ 0;

Aj
½i� ¼

�
1 − 1

c2 Uðt; xÞ þ 1
2c2 Vðt; xÞ

�
δji:

ðA2Þ

Next, we will make use of gyroscopic four-velocity uα to
derive the Lorentz boost Λ½σ�ðαÞ from the tetrad e½σ� to the
comoving frame eðαÞ. Gyroscopic four-velocity uα can be
rewritten as

(
u0 ¼ c dt

dτ ;

ui ¼ vi dtdτ ;
ðA3Þ

where t ¼ x0=c is the coordinate time, and vi ≔ dxi=dt is
gyroscopic velocity measured using the coordinate frame.
Then, due to Eq. (4.12), the expression of dt=dτ up to 1=c3

order is

dt
dτ

¼ 1þ 1

c2
Uðt; xÞ þ 1

2c2
Vðt; xÞ þ 1

2c2
vkvk: ðA4Þ

Similarly, in the local tetrad e½σ�, gyroscopic four-velocity
u½α� can also be rewritten as

(
u½0� ¼ c dt0

dτ ;

u½i� ¼ v½i� dt0dτ ;
ðA5Þ

where t0 is the proper time of the observer at rest in the
tetrad e½σ�, and v½i� is gyroscopic velocity in this tetrad.
Equation (4.5) yields

u½σ� ¼ ðA−1Þ½σ�ρuρ;

and then, together with Eq. (A2)–(A5), we get

dt0
dτ

¼ 1þ vkvk

2c2
; ðA6Þ

v½i� ¼
�
1þ 2

c2
Uðt; xÞ

�
vi: ðA7Þ

As mentioned earlier, v½i� is gyroscopic velocity in the tetrad
e½σ�, and then, with Eqs. (A6) and (A7), the expression of the
Lorentz boost Λ½σ�ðαÞ up to 1=c3 order is

8>>>>><
>>>>>:

Λ½0�ð0Þ ¼ 1þ vkvk

2c2 ;

Λ½0�ðiÞ ¼ vi
c þ vivkvk

2c3 þ 2vi

c3 Uðt; xÞ;
Λ½j�ð0Þ ¼ vj

c þ vjvkvk

2c3 þ 2vj

c3 Uðt; xÞ;
Λ½j�ðiÞ ¼ δji þ vjvi

2c2 :

ðA8Þ

Plug Eqs. (A2) and (A8) into Eq. (4.8), and then, from
Eq. (4.17), the expression of the compound transformation
μðαÞβ up to 1=c3 order is derived, namely, Eq. (4.18).

APPENDIX B: DERIVATION OF EQ. (4.23)

First, from Eq. (4.22), the coefficients of the Levi-Civita
connection, Γβ

λα, need to be derived, and under the weak-
field approximation, their definitions are

Γβ
λα ¼

1

2
ð∂αð−h̄βλÞ þ ∂λð−h̄βαÞ − ∂βð−h̄λαÞÞ; ðB1Þ

where ∂μ ≔ ημρ∂ρ. By using Eqs. (3.42) and (3.44), we
have

8>>><
>>>:

−h̄00ðt; xÞ ¼ 2
c2 Uðt; xÞ þ 1

c2 Vðt; xÞ;
−h̄0iðt; xÞ ¼ − 4

c3 U
iðt; xÞ;

−h̄ijðt; xÞ ¼ δij
�

2
c2 Uðt; xÞ − 1

c2 Vðt; xÞ
�
;

ðB2Þ
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and then, inserting them into Eq. (B1) gives the expressions of the connection coefficients up to 1=c3 order,8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Γ0
00 ¼ − 1

c3 ∂tUðt; xÞ − 1
2c3 ∂tVðt; xÞ;

Γ0
0j ¼ − 1

c2 ∂jUðt; xÞ − 1
2c2 ∂jVðt; xÞ;

Γ0
jk ¼ 2

c3 ð∂jUkðt; xÞ þ ∂kUjðt; xÞÞ þ δjk
c3

�
∂tUðt; xÞ − 1

2
∂tVðt; xÞ

�
;

Γi
00 ¼ − 1

c2 ∂iUðt; xÞ − 1
2c2 ∂iVðt; xÞ;

Γi
0j ¼ 2

c3 ð∂iUjðt; xÞ − ∂jUiðt; xÞÞ þ δij
c3

�
∂tUðt; xÞ − 1

2
∂tVðt; xÞ

�
;

Γi
jk ¼ 1

c2 ðδij∂kUðt; xÞ þ δik∂jUðt; xÞ − δjk∂iUðt; xÞÞ − 1
2c2 ðδij∂kVðt; xÞ þ δik∂jVðt; xÞ − δjk∂iVðt; xÞÞ:

ðB3Þ

Thus, together with Eqs. (4.19), (A3), (A4), and (B3), the expression of the first term in Eq. (4.22) up to 1=c3 order is

−uαSλΓi
λα ¼

2

c2
vjSj∂iUðt; xÞ − 1

c2
vjSi∂jUðt; xÞ − 1

c2
viSj∂jUðt; xÞ − 2

c2
Sjð∂iUjðt; xÞ − ∂jUiðt; xÞÞ

þ 1

2c2
vjSi∂jVðt; xÞ þ

1

2c2
viSj∂jVðt; xÞ −

1

c2
Si
�
∂tUðt; xÞ − 1

2
∂tVðt; xÞ

�
: ðB4Þ

Gyroscopic four-acceleration is

aβ ¼ uλ∇λuβ ¼
duβ

dτ
þ uρuσΓβ

ρσ; ðB5Þ

and then, with Eqs. (A3), (A4), and (B3), there are

1

c2
a0 ¼ 1

2c3
dðvkvkÞ

dτ
−

2

c3
vj∂jUðt; xÞ − 1

c3
vj∂jVðt; xÞ; ðB6Þ

1

c2
ai ¼ 1

c2
dvi

dτ
−

1

c2
∂iUðt; xÞ − 1

2c2
∂iVðt; xÞ: ðB7Þ

By plugging Eqs. (3.44), (4.19), (B6), and (B7) into the second term in Eq. (4.22), its expression up to 1=c3 order is

1

c2
aρSσgρσui ¼

1

c2
ajviSj: ðB8Þ

Thus, the expression of dSi=dτ up to 1=c3 order can be obtained from Eqs. (B4) and (B8), namely, Eq. (4.23).
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