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Compact objects inspiraling into supermassive black holes, known as extreme-mass-ratio inspirals, are
an important source for future space-borne gravitational-wave detectors. When constructing waveform
templates, usually the adiabatic approximation is employed to treat the compact object as a test particle for
a short duration, and the radiation reaction is reflected in the changes of the constants of motion. However,
the mass of the compact object should have contributions to the background. In the present paper,
employing the effective-one-body formalism, we analytically calculate the trajectories of a compact object
around a massive Kerr black hole with generally three-dimensional orbits and express the fundamental
orbital frequencies in explicit forms. In addition, by constructing an approximate “constant” similar
to the Carter constant, we transfer the dynamical quantities such as energy, angular momentum, and the
“Carter constant” to the semilatus rectum, eccentricity, and orbital inclination with mass-ratio corrections.
The linear mass-ratio terms in the formalism may not be sufficient for accurate waveforms, but our
analytical method for solving the equations of motion could be useful in various approaches to building
waveform models.

DOI: 10.1103/PhysRevD.104.024050

I. INTRODUCTION

One of the most promising and rewarding sources of
gravitational waves for low-frequency, space-based gravi-
tational-wave (GW) detectors—such as the future Laser
Interferometer Space Antenna (LISA) [1], Taiji [2] and
Tian-Qin [3]—are the so-called extreme-mass-ratio inspi-
rals (EMRIs) [4–6], which are compact objects (COs) such
as neutron stars or stellar-mass (or stellar origin) black
holes (SOBHs) inspiraling into supermassive black holes
(SMBHs) in the mass range 105–107 M⊙.
The majority of observed EMRI events are expected to

be SOBH-SMBH mergers; this is partly due to mass
segregation concentrating heavier BHs in the Galactic
center and partly because their louder intrinsic amplitude
enables them to be detected out to greater distances. The
small CO is usually approximated as a test particle, and
over the short orbital time scale follows a nearly geodesic
trajectory in the background metric of the SMBH. The
system radiates GWs at harmonics of the geodesic

frequencies, so the GW frequency spectrum encodes details
of the instantaneous geodesic trajectory.
Though the signals from EMRIs are usually very weak,

after one year of observation the signal-to-noise ratio may
be enough to be detected [4]. To detect this kind of long
duration signals, the requirement on the accuracy of
waveform templates is that the dephasing should be less
than a few radians after 105 cycles [5,7].
Nowadays, there are several kinds of EMRI template.

The first kind uses Teukolsky equations [8] and treats COs
as test particles (omitting the mass in their conservation
dynamics part) and thus they just extract a snapshot
waveform; however, accurate Teukolsky-based waveforms
are computationally expensive to generate. Another kind
uses the post-Newtonian (PN) fluxes approximation to
describe the evolution of orbital parameters with gravita-
tional radiation reaction, in particular the so-called kludge
waveforms [9–11]. The third kind considers the correction
due to the small mass by using the effective-one-body
(EOB) formalism, but does not consider the spin of the
small object, such as in circular orbits with PN waveforms
[12,13] and the Teukolsky-based waveforms [14,15]. The
kludge models can generate the waveforms quickly for
three-dimensional (3D) orbits, but they take the COs as test
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particles in the orbital motion even though they include the
radiation reaction.
If the time scale of GW radiation is much larger than that

of the orbital motion, then at a given instant the properties
of motion can be calculated from a conservative equation
ẍμ þ BΓμ

ρσ _xμ _xν ¼ 0þOðνÞ þOðν2Þ þ � � �. Here the label
“B” represents the background field of the massive body. In
popular EMRI template models, like AAK [9], NK [10],
AAK [11], XSPEG [16] etc., the mass-ratio corrections in
the conservative dynamics are omitted, i.e., the right-hand
side of the equation is exactly zero. This is just the geodesic
equation of a test particle around a massive black hole. The
test particle–adiabatic approximation (adiabatic model)
makes the problem much simpler, but induces errors in
the GW simulation. As in Eq. (74) of Ref. [17], the mass-
ratio expansion to the phase evolution is

ϕðtÞ ¼ 1

ν
½ϕð0Þ þ νϕð1Þ þOðν2Þ�: ð1:1Þ

An EMRI model that captures the leading-order term ϕð0Þ is
called an adiabatic model. The calculation of ϕð0Þ requires
only the averaged dissipative first-order self-force (in the
mass-ratio expansion) that is fully equivalent to the fluxes,
and some literature states that in general it may be accurate
enough for detecting EMRI signals using LISA [18]. The
next-to-leading-order termϕð1Þ is called the post-1 adiabatic
term, which includes both the dissipative and conservative
pieces of the first-order self-force as well as the averaged
dissipative piece of the second-order self-force. The post-1
adiabatic phase is required for the parameter estimation of
EMRIs [18]. In the present paper, we mainly focus on the
conservation dynamics part of EMRI, and try to analytically
solve the equation of motion which includes the first-order
mass-ratio corrections. Themass-ratio termswe usemay not
be enough for final EMRI waveforms, so the aim of this
paper is not to construct thewaveform template, but rather to
demonstrate the method for the analytical solution of orbits.
Our method should be useful once there are some more
precise self-force corrections.
The EOB formalism, by including the mass-ratio cor-

rections up to a certain order in the PN expansion, can well
describe the dynamical evolution of binary black holes
[19,20], and is widely used to construct the waveform
templates for LIGO [21–28]. Most of these models only
consider the circular-orbit cases. An eccentric EOB numeri-
cal relativity waveform template for spinning black holes
was developed [29], but the orbits were not geometrized
and the orbital parameters were not well defined. Recently,
an analytically eccentric EOB formalism for Schwarzschild
BHs was given [30]. In a previous work [31], we presented
an analytically equatorial-eccentric EOB formalism for
spinning cases in the extreme-mass-ratio limit. Note that
the EOB formalism’s correction in the extreme-mass-ratio
limit has not been guaranteed. However, as stated in

Ref. [32], the extreme-mass-ratio limit plays a pivotal role
in the EOB development, especially for what concerns
waveforms and fluxes, which can be informed by and
compared with numerical results [33–44]. In addition, the
EOB formalism with the extreme-mass-ratio limit should
be improved due to a lot of works dedicated to analytically
calculating gravitational self-force terms and providing
comparisons with numerical results [45–51].
It is well known that the orbits of EMRIs could be highly

eccentric [5] with orbital inclination (orbital plane proces-
sion), and the supermassive black hole in the center should be
spinning in general. In the present paper, we extend the
previousworkbyHinderer andBabak [30] andourselves [31]
to the inclined-eccentric orbits in the Kerr background with
the extreme-mass-ratio limit. We analytically transfer the
original EOB dynamical equations to geometric kinetic
motion with the semilatus rectum p, eccentricity e, and
orbital inclination ι as the orbital parameters, together with
three phase variables associated with the spatial geometry of
the radial, azimuthal, and polar motion denoted by ðξ;ϕ; χÞ.
Because of the extremely smallmass ratio,weomit the spin of
the effective small body, and thus the very complicated spin-
spin coupling terms disappear but maintain enough accuracy.
An important feature of the dynamics of an extreme-

mass-ratio binary system in a bounded inclined-eccentric
orbit is that the orbit can be characterized by three
frequencies: the radial frequency ωr associated with the
libration between the apoapsis and periapsis, the polar
frequencyωθ associated with the libration between θmin and
π − θmin, and the azimuthal rotational frequency ωϕ. Once
these three frequencies and orbital parameters are obtained,
the frequency of GWs can be obtained and may be encoded
in the Teukolsky equation to get accurate waveforms
[14,15,52–56].
The organization of this paper is as follows. The basic

knowledge of the EOB formalism is introduced in the
following section. In Sec. III, we reparametrize the original
spinning EOB dynamical description to a geometric for-
malism in the more efficient reparametrized terms of
ðp; e; ι; ξ; χ;ϕÞ. We analytically express the fundamental
frequencies in three integrals with two parameters: ξ and χ.
In particular, we investigate the influence of the mass ratio
on the detection of EMRIs. We also give the general forms
for the evolution of orbital parameters with gravitational
radiation reaction. Finally, the last section contains our
conclusions and discussions.
Throughout this paper we use geometric units

G ¼ c ¼ 1, the units of time and length are the mass of
system M, and the units of linear and angular momentum
are μ and μM, respectively, where μ is the reduced mass of
the effective body.

II. EFFECTIVE-ONE-BODY HAMILTONIAN

The EOB formalism was originally introduced in
Refs. [19,20] to describe the evolution of a binary system.
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We start by considering an EMRI system with a central
Kerr black hole m1 and inspiraling object m2 (we assume
that it is nonspinning for simplicity, m2 ≪ m1). For the
moment, we neglect the radiation-reaction effects and focus
on purely geodesic motion. The conservative orbital
dynamics is derived via Hamilton’s equations using the
EOB Hamiltonian

HEOB ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
; ð2:1Þ

where M ¼ m1 þm2, ν ¼ m1m2=M2, μ ¼ νM, and
the reduced effective Hamiltonian Ĥeff ¼ Heff=μ. The
deformed Kerr metric is given by [57]

gtt ¼ −
Λt

ΔtΣ
; ð2:2aÞ

grr ¼ Δr

Σ
; ð2:2bÞ

gθθ ¼ 1

Σ
; ð2:2cÞ

gϕϕ ¼ 1

Λt

�
−
ω̃2
fd

ΔtΣ
þ Σ
sin2 θ

�
; ð2:2dÞ

gtϕ ¼ −
ω̃fd

ΔtΣ
: ð2:2eÞ

The quantities Σ, Δt, Δr, Λt, and ω̃fd in Eqs. (2.2a)–(2.2e)
are given by

Σ ¼ r2 þ a2 cos2 θ; ð2:3aÞ

Δt ¼ r2
�
AðuÞ þ a2

M2
u2
�
; ð2:3bÞ

Δr ¼ ΔtD−1ðuÞ; ð2:3cÞ

Λt ¼ ðr2 þ a2Þ2 − a2Δt sin2 θ; ð2:3dÞ

ω̃fd ¼ 2aMrþ ωfd
1 ν

aM3

r
þ ωfd

2 ν
Ma3

r
; ð2:3eÞ

where a ¼ jSKerrj=M is the effective Kerr parameter and
u ¼ M=r. The values of ωfd

1 and ωfd
2 given by a preliminary

comparison of the EOB model with numerical relativity
results are about −10 and 20 [58,59], and the metric
potentials A andD for the EOB model are given as follows.
The log-resummed, calibrated A potential is given by the

expression from Appendix A of Ref. [60],

AðuÞ ¼ Δu −
a2

M2
u2; ð2:4Þ

Δu ¼ Δ̄uðΔ0νþ ν logðΔ5u5 þ Δ4u4 þ Δ3u3

þ Δ2u2 þ Δ1uþ 1Þ þ 1Þ; ð2:5Þ

with

Δ̄u ¼
a2u2

M2
þ 1

ðKν − 1Þ2 þ
2u

Kν − 1
; ð2:6aÞ

Δ5¼ðKν−1Þ2
�
64

5
logðuÞþ

�
−
1

3
a2ðΔ3

1−3Δ1Δ2þ3Δ3Þ

−
Δ5

1−5Δ3
1Δ2þ5Δ2

1Δ3þ5Δ1Δ2
2−5Δ2Δ3−5Δ4Δ1

5ðKν−1Þ2

þΔ4
1−4Δ2

1Δ2þ4Δ1Δ3þ2Δ2
2−4Δ4

2Kν−2

þ2275π2

512
þ128γ

5
−
4237

60
þ256 logð2Þ

5

��
; ð2:6bÞ

Δ4¼
1

96
½8ð6a2ðΔ2

1−2Δ2ÞðKν−1Þ2þ3Δ4
1þΔ3

1ð8−8KνÞ
−12Δ2

1Δ2þ12Δ1ð2Δ2Kν−2Δ2þΔ3ÞÞ
þ48Δ2

2−64ðKν−1Þð3Δ3−47Kνþ47Þ
−123π2ðKν−1Þ2�; ð2:6cÞ

Δ3 ¼ −a2Δ1ðKν − 1Þ2 − Δ3
1

3
þ Δ2

1ðKν − 1Þ
þ Δ1Δ2 − 2ðKν − 1ÞðΔ2 − Kνþ 1Þ; ð2:6dÞ

Δ2 ¼
1

2
ðΔ1ðΔ1 − 4Kνþ 4Þ − 2a2Δ0ðKν − 1Þ2Þ; ð2:6eÞ

Δ1 ¼ −2ðΔ0 þ KÞðKν − 1Þ; ð2:6fÞ

Δ0 ¼ KðKν − 2Þ; ð2:6gÞ

where K is a calibration parameter tuned to numerical-
relativity simulations whose most recently updated value
was determined in Eq. (4.8) of Ref. [61],

K¼ 267.788ν3−126.687ν2þ10.2573νþ1.7336: ð2:6hÞ

The D potential is

D−1ðuÞ ¼ 1þ log½DTaylor�
DTaylor ¼ 1þ 6νu2 þ 2νu3ð26 − 3νÞ: ð2:7aÞ

III. GEOMETRIZATION OF THE
CONSERVATIVE EOB DYNAMICS

The EOB Hamiltonian in Eq. (2.1) is canonically
transformed and subsequently mapped to an effective
Hamiltonian Heff describing a particle of effective
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mass μ and effective spin S� ¼ aMðm2=m1Þ, moving
in a deformed Kerr metric of mass M and effective
spin SKerr ¼ aM, and the effective Hamiltonian is given
by [57,62,63]

Heff ¼ HNS þHS −
ν

2r3
S2�; ð3:1Þ

where the first part is just the Hamiltonian of a nonspinning
particle in the deformed Kerr metric with the mass-ratio
correction. When ν → 0, this part goes back to the test-
particle limit in Kerr spacetime. The forms ofHs and S� are
quite trivial; readers can refer to Ref. [62] for details. For
EMRIs, due to the small mass ratio ν ∼ 10−7–10−4, as we
have shown in Ref. [31] the last two terms in Eq. (3.1) can
be neglected without loss of accuracy because they are two
orders less than the mass ratio. The Hamiltonian equations
for the orbital motion are

dr
dt

¼ ∂HEOB

∂P ;
dP
dt

¼ −
∂HEOB

∂r : ð3:2Þ

The above differential equations are coupling each other,
especially for radial r and polar θ equations. Though the

numerical integral can give accurate trajectories, analytical
ones with geometrized parameters will be valuable for
revealing the properties of motion. In the section, we follow
the procedure of the test-particle case, decouple the motion
in the r and θ directions, and give a geometrized formalism
to replace the dynamical equation (3.2).

A. Semi-Carter “constant” in deformed
Kerr spacetime

The effective one-body dynamics was given by a
Hamilton-Jacobi equation of the form [64]

gαβPαPβ þ
Q4M2P4

r

r2μ2
þ μ2 ¼ 0: ð3:3Þ

The function Q4 ¼ 2ð4 − 3νÞν [65] represents a nongeo-
desic term that appears at 3PN order. We omit this term in
the following calculations because it is next-to-leading
order in the mass ratio and the above equation cannot be
separated if we retain this term. We use the deformed Kerr
metric components (2.2a)–(2.2e) to bring Eq. (3.3) into the
concrete form

−μ2Σ ¼ −
ðr2 þ a2Þ2 − a2 sin2 θðr2AðuÞ þ a2Þ

r2AðuÞ þ a2
P2
t − 2

ω̃fd

r2AðuÞ þ a2
PtPϕ þ ΔrP2

r

þ P2
θ þ

1

ðr2 þ a2Þ2 − a2 sin2 θðr2AðuÞ þ a2Þ
�ðr2 þ a2 cos2 θÞ2

sin2 θ
−

ω̃2
fd

r2AðuÞ þ a2

�
P2
ϕ; ð3:4Þ

where Pr, Pϕ, and Pθ are the canonical radial, azimuthal, and polar angular momentum. From the symmetries we
immediately obtain two constants of motion corresponding to the conservation of energy, Heff , and angular momentum
about the symmetry axis, Lz; thus, we have

Pt ¼ −Heff ; ð3:5aÞ

Pϕ ¼ Lz: ð3:5bÞ

Then, Eq. (3.4) becomes

−Σ ¼ −
ðr2 þ a2Þ2 − a2 sin2 θðr2AðuÞ þ a2Þ

r2AðuÞ þ a2
Ĥ2

eff þ 2
ω̃fd

r2AðuÞ þ a2
ĤeffL̂z þ ΔrP̂r

2

þ P̂θ
2 þ 1

ðr2 þ a2Þ2 − a2 sin2 θðr2AðuÞ þ a2Þ
�ðr2 þ a2 cos2 θÞ2

sin2 θ
−

ω̃2
fd

r2AðuÞ þ a2

�
L̂z

2; ð3:6Þ

where we have defined the reduced momenta P̂r ¼ Pr=μ, P̂θ ¼ Pθ=μ, and L̂z ¼ Lz=μ. It is convenient to rewrite this
expression as

−Σ ¼ −
ðaL̂z − ðr2 þ a2ÞĤeffÞ2

r2AðuÞ þ a2
þ ðL̂z − a sin2 θĤeffÞ2

sin2 θ
þ ΔrP̂r

2 þ P̂θ
2

þ 2
ω̃fd þ ar2ðAðuÞ − 1Þ

r2AðuÞ þ a2
ĤeffL̂z −

ω̃2
fd − a2r4ðAðuÞ − 1Þ2

ðr2AðuÞ þ a2Þððr2 þ a2Þ2 − a2 sin2 θðr2AðuÞ þ a2ÞÞ L̂z
2; ð3:7Þ
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and solving this equation by separation of variables gives

�
L̂z

sin θ
− aĤeff sin θ

�
2

þ P̂θ
2 þ a2 cos2 θ

¼ ðaL̂z − ðr2 þ a2ÞĤeffÞ2
r2AðuÞ þ a2

− ΔrP̂r
2 − r2 − 2

ω̃fd þ ar2ðAðuÞ − 1Þ
r2AðuÞ þ a2

ĤeffL̂z þ Fðr; θÞL̂z
2; ð3:8Þ

where

Fðr; θÞ ¼ ω̃2
fd − a2r4ðAðuÞ − 1Þ2

ðr2AðuÞ þ a2Þððr2 þ a2Þ2 − a2 sin2 θðr2AðuÞ þ a2ÞÞ : ð3:9Þ

In the test-particle limit ν → 0, AðuÞ → 1 − 2u, the r-θ
coupling function Fðr; θÞ → 0, and both sides must be
equal to a new constant of the motion since their Poisson
brackets with the Hamiltonian are equal to zero, and thus
we can obtain the reduced Carter constant K̂ expressed in
terms of (θ, P̂θ) like Eq. (49) of Ref. [66],

K̂ ¼ P̂θ
2 þ a2 cos2 θ þ

�
L̂z

sin θ
− a sin θĤeff

�
2

: ð3:10Þ

There is another definition of the Carter constant,
Q̂≡ K̂ − ðL̂z − a ˆHeffÞ2, which vanishes for equatorial
orbits (θ ¼ π=2).
If we consider the cases of the inspirals with nonzero

mass ratio, Fðr; θÞ should no longer be ignored, then the r
and θmotion cannot be decoupled anymore. Now, let us see
if there is an approximation Fðr; θÞ ≈ FðrÞ. It is convenient
to rewrite the function Fðr; θÞ as

Fðr; θÞ ¼ ω̃2
fd − a2r4ðAðuÞ − 1Þ2

ðr2AðuÞ þ a2Þðr2 þ a2Þ2 ×
1

1 − a2 sin2 θðr2AðuÞþa2Þ
ðr2þa2Þ2

:

ð3:11Þ

It can be easily noticed that a2 sin2 θðr2AðuÞþa2Þ
ðr2þa2Þ2 is a 2PN

correction and we abort it first, and thus the first-order
Maclaurin series of Fðr; θÞ is obtained as

Fðr; θÞ ≃GðrÞ þ a2 sin2 θ
ðr2 þ a2Þ4 ðω̃

2
fd − a2r4ðAðuÞ − 1Þ2Þ;

ð3:12Þ

where

GðrÞ ¼ ω̃2
fd − a2r4ðAðuÞ − 1Þ2

ðr2AðuÞ þ a2Þðr2 þ a2Þ2 ; ð3:13Þ

and through 3PN order [20,65]

AðuÞ ¼ 1 − 2uþ ν

�
2u3 þ

�
94

3
−
41π2

32

�
u4
�
: ð3:14Þ

Inserting it into Eq. (3.12) [truncated at the OðνÞ term]
leads to

Fðr;θÞ≃GðrÞþ4νa4M4 sin2 θ
ðr2þa2Þ4

×

�
2þ
�
94

3
−
41π2

32

�
uþωfd

1 þωfd
2

a2

M2

�
; ð3:15Þ

where the second term as a function of both r and θ is just
8PN with a mass ratio and can be safely ignored. We
replace Fðr; θÞ by G(r) to decouple r and θ so that Eq. (3.8)
can be separated. As shown in Fig. 1, the error between
Fðr; θÞ and GðrÞ mainly depends on the value of r and is
maximal when θ ¼ π=2 (the equatorial plane). One can see
that even very close to the horizon (ξ → 0 for the orange

FIG. 1. Error of the approximation of the coupling function
Fðr; θÞ. The solid line and points represent ν ¼ 10−4 and 10−6,
respectively. It is a very close approximation to substitute the r
function GðrÞ for Fðr; θÞ. Even if we chose the extreme orbital
parameters near LSO (for the orange line, ps ¼ 2.96M), the error
is less than 0.1ν.
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line) the error is still one order smaller than the mass ratio.
Otherwise, the term we aborted is two or more orders less
than the mass ratio. We believe that replacing Fðr; θÞ with
GðrÞ retains enough accuracy for EMRIs.
Now we can obtain the approximate reduced Carter

constant K̂ in terms of (θ, P̂θ) as same as Eq. (3.10) and the
other expression in terms of (r, P̂r)

K̂ ¼ ½aL̂z − ðr2 þ a2ÞĤeff �2
r2AðuÞ þ a2

− ΔrP̂r
2 − r2

− 2
ω̃fd þ ar2ðAðuÞ − 1Þ

r2AðuÞ þ a2
ĤeffL̂z þ GðrÞL̂z

2: ð3:16Þ

By using these constants of motion, the angular momen-
tum P̂θ and P̂r can be expressed as

P̂θ
2 ¼ Q̂ − cos2θ

�
a2ð1 − Ĥ2

effÞ þ
L̂z

2

sin2θ

�
; ð3:17aÞ

P̂r
2 ¼

½aL̂z − ðr2 þ a2Þ ˆHeff �2 − ðr2AðuÞ þ a2Þ½r2 þ K̂þ 2
ω̃fdþar2ðAðuÞ−1Þ

r2AðuÞþa2 ĤeffL̂z −GðrÞL̂z
2�

ðr2AðuÞ þ a2Þ2D−1ðuÞ : ð3:17bÞ

In Eq. (3.17a), if P̂θ ¼ 0, the polar motion is at the
turning points θ ¼ θmin or π − θmin. Then, we get the
relation between the semi-Carter “constant” and the orbital
inclination,

Q̂ ¼ cos2θmin

�
a2ð1 − Ĥ2

effÞ þ
L̂z

2

sin2θmin

�
: ð3:18Þ

This semi-Carter constant has the same form as in the test-
particle case, but with mass-ratio corrections hidden inHeff
and Lz, which will be given explicitly later.
There is another straightforward way to get P by

numerically solving the Hamiltonian equations (3.2).

We then compare the analytical equation (3.17a) and the
numerical results (also including the spin terms like Hs)
and show the results in Table I. We find that our analytical
approximations are very close to the numerical results, even
for a mass ratio as large as 0.01, which proves that our
approximation works well for EMRIs or even intermediate-
mass-ratio inspirals.

B. Reparametrization of the energy and angular
momentum

Solving Eqs. (3.3) and (3.5a) for Heff yields the effective
Hamiltonian associated with the deformed Kerr metric,

Heff ¼
gtϕ

gtt
Pϕ þ

1ffiffiffiffiffiffiffiffi
−gtt

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ

�
gϕϕ −

ðgtϕÞ2
gtt

�
P2
ϕ þ grrP2

r þ gθθP2
θ

s
: ð3:19Þ

The energy of the system is given by

E ¼ HEOB; ð3:20Þ

which implies the relation

ĤeffðEÞ ¼ 1þ 1

2ν

�
E2

M2
− 1

�
: ð3:21Þ

The constants of motion and the dynamical equations
in the last subsection can be written in terms of the

TABLE I. Comparison of the maximum P̂θ (P̂θ at θ ¼ π=2) between the analytical formalism and numerical integration.

ν ¼ 0.01 Analytical max P̂θ Numerical max P̂θ

p ¼ 8; e ¼ 1=3; a ¼ 0.99; θmin ¼ π=4 2.2909944716 2.2909945165
p ¼ 4; e ¼ 1=3; a ¼ 0.99; θmin ¼ π=4 1.8126129568 1.8126323323
p ¼ 8; e ¼ 1=3; a ¼ 0.1; θmin ¼ π=4 2.5258065572 2.5258065544
p ¼ 8; e ¼ 1=3; a ¼ 0.99; θmin ¼ π=10 3.2445223467 3.2445223751
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geometrized orbital elements: the semilatus rectum p,
eccentricity e, and orbital inclination ι. This will make
the description of the system more intuitive. For an
eccentric orbit, there exist apastron and periastron points
which can be expressed as

r1 ¼
pM
1 − e

; r2 ¼
pM
1þ e

; ð3:22Þ

where r1, r2 are the turning points of the radial motion. θmin
and π − θmin is the turning points of polar motion, and ι≡
π=2 − θmin defines the so-called orbital inclination (see
Fig. 2). These turning points are computed by solving the
radial and polar equations of motion for _r ¼ 0; _θ ¼ 0. By
setting the radial and polar equations of motion equal to
zero with Pr ¼ Pθ ¼ 0, evaluating Eq. (3.21) at ðr1; θminÞ
and ðr2; θminÞ leads to

L̂2
z ¼

ða1 − a2Þ2ðb21 þ b22Þ − ðb21 − b22Þðb21c1 − b22c2Þ − 2ða1 − a2Þb1b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 − a2Þ2 − ðb21 − b22Þðc1 − c2Þ

p
½ða1 − a2Þ2 − ðb21c1 − b22c2Þ�2

ð3:23aÞ

E2

M2
¼ 1þ 2ν

�
a1L̂z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1L̂

2
z þ 1

b1

s
− 1

�
; ð3:23bÞ

where the coefficients are

a1 ¼
ω̃fd1

Λt1
; ð3:24aÞ

a2 ¼
ω̃fd2

Λt2
; ð3:24bÞ

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ1Δt1

Λt1

s
; ð3:24cÞ

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ2Δt2

Λt2

s
; ð3:24dÞ

c1 ¼
Σ1

ð1 − cos2 θminÞΛt1
; ð3:24eÞ

c2 ¼
Σ2

ð1 − cos2 θminÞΛt2
; ð3:24fÞ

in which the subscripts 1 and 2 mean that the function is to
be evaluated at ðr1; θminÞ and ðr2; θminÞ,

Σ1 ¼ a2 cos2 θmin þ r21; ð3:25aÞ

Σ2 ¼ a2 cos2 θmin þ r22; ð3:25bÞ

Δt1 ¼ a2 þ Aðr1Þr21; ð3:25cÞ

Δt2 ¼ a2 þ Aðr2Þr22; ð3:25dÞ

Λt1 ¼ ða2 þ r21Þ2 − a2 sin2 θminΔt1; ð3:25eÞ

Λt2 ¼ ða2 þ r22Þ2 − a2 sin2 θminΔt2; ð3:25fÞ

ω̃fd1 ¼
a3νω2

r1
þ aνω1

r1
þ 2ar1; ð3:25gÞ

ω̃fd2 ¼
a3νω2

r2
þ aνω1

r2
þ 2ar2: ð3:25hÞ

The above formalism for a Kerr black hole is much more
complicated than the Schwarzschild ones in Ref. [30].
Obviously, for the test-particle limit ν → 0, the above
results will go back to the geodesic motion of a test particle
in Kerr spacetime.

FIG. 2. Diagram of 3D motion of a CO around a Kerr black
hole. The area encircled by the solid red line is the section of
trajectories on the r-θ plane. Here, rmax =min is just r1=2 in
Eq. (3.22).
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C. Determination of the fundamental frequencies

Since in our approximation the equations of motion in
the deformed Kerr spacetime are separable in the coor-
dinates r, θ, and ϕ, the action variables can be calculated
from cyclic integrals over the spatial conjugate momenta in
the Boyer-Lindquist coordinate representation:

Jr ¼
1

2π

I
Prdr; ð3:26Þ

Jθ ¼
1

2π

I
Pθdθ; ð3:27Þ

Jϕ ¼ 1

2π

I
Pϕdϕ ¼ Lz: ð3:28Þ

The standard procedure of determining fundamental
frequencies is to find the explicit form of the Hamiltonian
in the action-angle representation, HðaaÞ, and calculate the
frequencies from the partial derivatives with respect to the
radial and polar action variables Jk [67]:

μωk ¼
∂H
∂Jk

ðaaÞ
: ð3:29Þ

Unfortunately, Eqs. (3.26) and (3.27) cannot be solved
analytically, and so they do not admit an explicit inversion.
However, according to the Schmidt method [68], Eq. (3.29)
can be solved even without knowing the functional form of
the HamiltonianHðaaÞ if the theorem on implicit functions is
employed.
Let PðaaÞ

β ¼ fðaaÞβ ð−μ2=2; Heff ; Lz; QÞ be the momenta

given by PðaaÞ
0 ¼ pt ¼ −Heff and PðaaÞ

k ¼ Jk. If we denote
the Jacobian matrix of f by Df, then, by the theorem on
implicit functions, Df · Dðf−1Þ ¼ Df · ðDfÞ−1 ¼ I , pro-
vided that f is nonzero and the Jacobian does not vanish
[69]. As −μ2=2 is the invariant value of the Hamiltonian,
we can substitute −μ2=2 ¼ gαβPαPβ=2 ¼ HðaaÞð−Heff ; JkÞ.
In addition, two rows of the Jacobian matrix are trivial due

to the identities PðaaÞ
0 ¼ −Heff and Jϕ ¼ Lz. For simplicity,

we use the symbol H to denote the Hamiltonian HðaaÞ

below. Thus, the equation Df · Dðf−1Þ ¼ I reads0
BBBBB@

0 −1 0 0
∂Jr∂H

∂Jr∂Heff

∂Jr∂Lz

∂Jr∂Q
∂Jθ∂H

∂Jθ∂Heff

∂Jθ∂Lz

∂Jθ∂Q
0 0 1 0

1
CCCCCA ·

0
BBBBB@

− ∂H
∂Heff

∂H
∂Jr

∂H
∂Jθ

∂H
∂Jϕ

− 1 0 0 0

0 0 0 1

− ∂Q
∂Heff

∂Q
∂Jr

∂Q
∂Jθ

∂Q
∂Jϕ

1
CCCCCA ¼ I:

ð3:30Þ

The above matrix equation is valid if and only if the orbit is
nonequatorial [68]. We have discussed the condition of
equatorial orbits in our previous work [31]. Then, it can be

split into four nontrivial sets of linear equations in the eight
unknowns − ∂H

∂Heff
, ∂H
∂Jk, −

∂Q
∂Heff

, and ∂Q
∂Jk:

−A ·
∂

∂Heff

�
H

Q

�
¼
�
2Wðr1; r2Þ
2a2HeffUðθmin; π=2Þ

�
; ð3:31Þ

A ·
∂
∂Jr

�
H

Q

�
¼
�
2π

0

�
; ð3:32Þ

A ·
∂
∂Jθ

�
H

Q

�
¼
�
0

π

�
; ð3:33Þ

A ·
∂

∂Jϕ
�
H

Q

�
¼
�
2Zðr1; r2Þ
2LzVðθmin; π=2Þ

�
; ð3:34Þ

with the coefficient matrix

A ¼
 
2π ∂Jr∂H 2π ∂Jr∂Q
π ∂Jθ∂H π ∂Jθ∂Q

!

¼
�
2Yðr1; r2Þ −Xðr1; r2Þ
2a2Uðθmin; π=2Þ Tðθmin; π=2Þ

�
; ð3:35Þ

where r1 and r2 are the turning points of radial motion, and
Xðr1; r2Þ, Yðr1; r2Þ, Zðr1; r2Þ, and Wðr1; r2Þ are radial
integrals defined by

Xðr1; r2Þ ¼
Z

r2

r1

dr
ΔrPr

; ð3:36aÞ

Yðr1; r2Þ ¼
Z

r2

r1

r2dr
ΔrPr

; ð3:36bÞ

Zðr1; r2Þ ¼ −
Z

r2

r1

∂Pr

∂Lz
dr; ð3:36cÞ

Wðr1; r2Þ ¼
Z

r2

r1

∂Pr

∂Heff
dr: ð3:36dÞ

Tðθmin; π=2Þ, Uðθmin; π=2Þ, and Vðθmin; π=2Þ are polar
integrals defined by

Tðθmin; π=2Þ ¼
Z

π=2

θmin

dθ
Pθ

; ð3:37aÞ

Uðθmin; π=2Þ ¼
Z

π=2

θmin

cos2 θ
Pθ

dθ; ð3:37bÞ

Vðθmin; π=2Þ ¼
Z

π=2

θmin

cot2 θ
Pθ

dθ: ð3:37cÞ

The above radial functions X, Y, Z, W and polar functions
T, U, V are not proper integrals because the integrated
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functions are divergent at the turning points r1, r2 and
θmin; π − θmin. Thus, we define ξ by the equation
r ¼ pM=ð1þ e cos ξÞ, where p is called the semilatus
rectum and e is the eccentricity of the orbit, and we define χ
with cos2 θ ¼ cos2 θmin cos2 χ. As ξ varies from 0 to 2π as r
goes through a complete cycle, χ varies from 0 to 2π as θ
oscillates through its full range of motion. Then, we
transform X, Y, X, W and T, U, V into well-behaved
integrals,

X ¼
Z

π

0

ep sin ξ
ð1þ e cos ξÞ2

dξ
ΔrPr

; ð3:38aÞ

Y ¼
Z

π

0

ep sin ξ
ð1þ e cos ξÞ2

r2dξ
ΔrPr

; ð3:38bÞ

Z ¼ −
Z

π

0

ep sin ξ
ð1þ e cos ξÞ2

∂Pr

∂Lz
dξ; ð3:38cÞ

W ¼
Z

π

0

ep sin ξ
ð1þ e cos ξÞ2

∂Pr

∂Heff
dξ; ð3:38dÞ

which transforms Eq. (3.17a) into

β2ðz2 − z2þÞðz2 − z2−Þ ¼ P2
θð1 − z2Þ; ð3:39Þ

where β2 ¼ a2ðμ2 −Heff
2Þ, and z2� are the two roots of the

equation Pθ ¼ 0 when substituting cos θ ¼ z into Pθ, and
they are given by

z− ¼ cos θmin; ð3:40Þ

zþ ¼ L2
z þQþ β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2

z þQþ βÞ2 − 4βQ
p

2β
: ð3:41Þ

In this way, Schmidt derived the following expressions [68]
for the polar integrals:

T ¼ 1

βzþ
KðkÞ; ð3:42aÞ

U ¼ zþ
β
½KðkÞ − EðkÞ�; ð3:42bÞ

V ¼ zþ
β
½Πðz2−; kÞ − KðkÞ�; ð3:42cÞ

where k ¼ z2−=z2þ, and KðkÞ, EðkÞ, and Πðz2−; kÞ are,
respectively, the complete elliptical integrals of the first,
second, and third kind,

KðkÞ ¼
Z

π=2

0

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ

p ; ð3:43aÞ

EðkÞ ¼
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ

q
dχ; ð3:43bÞ

Πðz2−; kÞ ¼
Z

π=2

0

dχ

ð1 − z2− sin2 χÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ

p : ð3:43cÞ

The solutions of the above systems of equations for
− ∂H

∂Heff
and ∂H

∂Jk are given by

−
∂H
∂Heff

¼ KðkÞW þ a2z2þE½KðkÞ − EðkÞ�X
KðkÞY þ a2z2þ½KðkÞ − EðkÞ�X ; ð3:44Þ

∂H
∂Jr ¼

πKðkÞ
KðkÞY þ a2z2þ½KðkÞ − EðkÞ�X ; ð3:45Þ

∂H
∂Jθ ¼

πβzþX
2fKðkÞY þ a2z2þ½KðkÞ − EðkÞ�Xg ; ð3:46Þ

∂H
∂Jϕ ¼ KðkÞZ þ Lz½Πðz2−; kÞ − KðkÞ�X

KðkÞY þ a2z2þ½KðkÞ − EðkÞ�X : ð3:47Þ

From Eqs. (3.29) and (3.44)–(3.47), the coordinate-time
frequencies ωr, ωθ, and ωϕ are obtained,

ωr ¼
πKðkÞ

KðkÞW þ a2z2þE½KðkÞ − EðkÞ�X ; ð3:48Þ

ωθ ¼
πβzþX

2fKðkÞW þ a2z2þE½KðkÞ − EðkÞ�Xg ; ð3:49Þ

ωϕ ¼ KðkÞZ þ Lz½Πðz2−; kÞ − KðkÞ�X
KðkÞW þ a2z2þE½KðkÞ − EðkÞ�X : ð3:50Þ

The above equations have the same forms as the test
particle ones given in Ref. [68]. However, the mass-ratio
corrections have to be encoded in each variable. To explore
the influence of the mass ratio on these frequencies, we
demonstrate the relative frequency shift ðωðνÞ − ω0Þ=ω0

(where the subscript 0 means the test-particle case ν → 0)
with varied orbital parameters.
In Fig. 3, we can see that the three frequency shifts due to

the mass-ratio corrections are one order larger than the
mass ratio, especially when p approaches ps (the edge of
the last stable orbit). The effective spin terms we omitted at
the beginning of this section have much smaller magni-
tudes. This proves again that the approximation we made is
reasonable for EMRIs.
Figure 4 demonstrates the relations of frequency shifts

due to mass ratios with eccentricities. Interestingly, the
azimuthal and polar frequency shifts increase when the
eccentricity grows, but the radial frequency error is not
sensitive to the eccentricity [about OðνÞ]. When e becomes
extreme, the shift decreases.
The variation of frequency shifts also depends on the

orbital inclination. In Fig. 5, for small semilatus rectum, the
frequency errors due to the mass ratio grow very fast when
the orbital inclination ι increases (i.e., θmin → 0). However,
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for large p, the frequency shifts are not very sensitive to the
orbital inclination.
Finally, Fig. 6 shows the frequency shifts vs the effective

Kerr parameter a (approachs to the Kerr parameter of the
central black hole when ν → 0). When a becomes smaller,
the last stable orbit (LSO) is farther away from the black
hole (i.e., ps becomes larger). Then, for the fixed p ¼ 6, the

orbit is closer to the LSO as a decreases, so we can see that
the frequency shifts increase. When p ¼ 8, which is just a
little larger than the radius of the innermost stable circular
orbit (risco ¼ 6 for a nonspinning BH), the dependence is
no longer obvious.
All of the above results state that the mass-ratio correc-

tion has a substantial influence on the orbital frequencies,

FIG. 3. Frequency shifts Δω
νω0

vs semilatus rectum p in the cases
of various a; ν; e; θmin. The solid line and points represent
ν ¼ 10−4 and 10−6, respectively.

FIG. 4. Frequency shifts Δω
νω0

vs eccentricity e in the cases of
various a; ν; p; θmin. The solid line and points represent ν ¼ 10−4

and 10−6, respectively.
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even for the extreme-mass-ratio limit. This means that in
the construction of the waveform templates for EMRIs, the
mass ratio needs to be included in the orbital calculations.
However, as we stated in the Introduction, the frequency
shifts in Figs. 3–6 are not guaranteed quantitatively.

Comparison of innermost stable circular orbit (ISCO) shifts
between the EOB and gravitational self-force (GSF) in
Ref. [70] shows obvious deviation, but still hints that the
frequency shift is at about the same order of mass ratio,
which coincides with our results in Figs. 3–6. The ISCO
shifts in Ref. [70] were calculated based on an earlier
version of the EOB potential; we recalculated the ISCO

FIG. 5. Frequency shifts Δω
νω0

vs the minimal polar angle θmin in
the cases of various a, ν, p, e. The solid line and points represent
ν ¼ 10−4 and 10−6, respectively.

FIG. 6. Frequency shifts Δω
νω0

vs spin a in the cases of various
ν; p; e; θmin. The solid line and points represent ν ¼ 10−4 and
10−6, respectively.
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shifts based on the updated potential which is used in this
work [60], and we found that the results improve a lot (see
Fig. 7). If the spin of a SMBH is not extreme (below 0.8,
based on Fig. 7), the EOB’s ISCO frequency shifts exhibit
less than a 50% difference from the GSF ones. This may
support our results in Figs. 3–6 which qualitatively state
that the influence of the mass ratio on the conservative
dynamics of EMRIs cannot be ignored and give qualitative
magnitudes. In other words, the test-particle approximation
may not be enough for the EMRI waveform simulation, and
we expect more accurate self-force corrections.

D. Orbits of conservative dynamics

We find evolution equations for r, ϕ, and χ with the
forms

_r ¼ ∂E
∂Pr

¼ −
grrP̂r

E=MðgttĤeff − gtϕL̂zÞ
; ð3:51aÞ

_ϕ ¼ ∂E
∂Pϕ

¼
gtϕ − ½gttgϕϕ − ðgtϕÞ2� L̂z

gttĤeff−gtϕL̂z

gttE=M
; ð3:51bÞ

_θ ¼ ∂E
∂Pθ

¼ −
gθθP̂θ

E=MðgttĤeff − gtϕL̂zÞ
; ð3:51cÞ

where P̂r, P̂θ have been analytically obtained in
Eqs. (3.17a)–(3.17b), and Ĥeff , L̂z have been given in
Eq. (3.23). The metric components are Eqs. (2.2a)–(2.2e).
Due to the definitions of ξ, χ, all the variables in terms of r
and θ can be transfer to the functions of ξ, χ. Finally, the
above equations can now be expressed in terms of only the
variables ðξ; χÞ and orbital parameters ðp; e; θminÞ
or ðp; e; ιÞ,

_ξ ¼ −
ð1þ e cos ξÞ2
epM sin ξ

grrP̂r

E=MðgttĤeff − gtϕL̂zÞ
¼ Ξðp; e; ι; ξ; χÞ; ð3:52aÞ

_χ¼−
gθθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2ð1− Ĥ2

effÞÞðz2þ−z2−cos2χÞ
q

E=MðgttĤeff −gtϕL̂zÞ
¼Θðp;e; ι;ξ;χÞ;

ð3:52bÞ

_ϕ ¼
gtϕ − ½gttgϕϕ − ðgtϕÞ2� L̂z

gttĤeff−gtϕL̂z

gttE=M
¼ Φðp; e; ι; ξ; χÞ:

ð3:52cÞ

The detailed expressions of Ξ, Θ, and Φ can be directly
obtained, but they are too long to be written here. Solving
the above ordinary differential equations by numerical
integration, we can get ξ, χ, and ϕ associated with
coordinate time t, i.e., the orbital motion. Projecting the
Boyer-Lindquist coordinates onto a spherical coordinate
grid, we can define the corresponding Cartesian coordinate
system,

x̃ ¼ p cosϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2−cos2χ

p
1þ e cos ξ

; ð3:53aÞ

ỹ ¼ p sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2−cos2χ

p
1þ e cos ξ

; ð3:53bÞ

z̃ ¼ pz− cos χ
1þ e cos ξ

: ð3:53cÞ

Combining the equations of the motion (3.52a)–(3.52c),
we can plot the orbits of conservative dynamics in the
Cartesian coordinates (see Fig. 8).
Like the zoom-whirl orbits [71] in r-ϕ components, from

Fig. 8 there are similar zoom-whirl phenomena in the r-θ
directions. Different orbital parameters with a correspond-
ing prograde separatrix have different polar angular peri-
ods. We can imagine that as the orbit gradually approaches
the separatrix, the test particle will spend a more consid-
erable amount of its orbital “life” (in both the azimuthal and
polar directions) close to the periastron.

E. Evolution of orbital parameters
under radiation reaction

The description of geodesic motion around BHs is based
on the semilatus rectum p, the eccentricity e, and the orbital
inclination ι, together with three phase variables associated
with the spatial geometry of the radial, azimuthal, and polar
motion denoted by ðξ;ϕ; χÞ. ξ was already defined by
expressing the radial motion as

FIG. 7. Relative difference of the ISCO frequency shift
ΔCΩ=CΩ ≔ 1 − CEOB

Ω =CGSF
Ω between the EOB and GSF

methods [70].
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r ¼ pM
1þ e cos ξ

: ð3:54Þ

Taking the derivative of Eq. (3.54), we get the evolution
equation for the phase variable ξ,

_ξ ¼ ð1þ e cos ξÞ2
epM sin ξ

_r −
1þ e cos ξ
ep sin ξ

_pþ cot ξ
e

_e: ð3:55Þ

For a conservative system, _p ¼ _e ¼ 0. However, if we take
the radiation reaction of GWs into account, the rate of
change of the energy, the reduced angular momentum, and
the Carter constant are given by

(a) (b)

(c) (d)

FIG. 8. Four orbits of different initial parameters. We set ν ¼ 10−4; θmin ¼ π=4 in all four orbits and just plot half of the orbital period
from the apastron to the periastron.
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dE
dt

¼ ∂E
∂p _pþ ∂E

∂e _eþ ∂E
∂ι _ι; ð3:56aÞ

dL̂z

dt
¼ ∂L̂z

∂p _pþ ∂L̂z

∂e _eþ ∂L̂z

∂ι _ι ð3:56bÞ

dQ̂
dt

¼ ∂Q̂
∂p _pþ ∂Q̂

∂e _eþ ∂Q̂
∂ι _ι: ð3:56cÞ

From Eqs. (3.56a)–(3.56c), we express the evolution of
ðp; e; ιÞ using the energy and angular momentum fluxes of
gravitational radiation,

_p¼cðL̂z;Q̂Þðe;ιÞ
dE
dt

þcðE;Q̂Þðι;eÞ
dL̂z

dt
þcðE;L̂zÞðe;ιÞ

dQ̂
dt

; ð3:57aÞ

_e¼cðL̂z;Q̂Þðι;pÞ
dE
dt

þcðE;Q̂Þðp;ιÞ
dL̂z

dt
þcðE;L̂zÞðι;pÞ

dQ̂
dt

; ð3:57bÞ

_ι¼cðL̂z;Q̂Þðp;eÞ
dE
dt

þcðE;Q̂Þðe;pÞ
dL̂z

dt
þcðE;L̂zÞðp;eÞ

dQ̂
dt

; ð3:57cÞ

where the coefficients are given by

cðC1;C2Þðo1;o2Þ ¼
½∂C1∂o1

∂C2∂o2 −
∂C1∂o2

∂C2∂o1 �
½∂E∂ι L̂z∂p −

∂E
∂p

∂L̂z∂ι � ∂Q̂∂e þ ½∂E∂e L̂z∂ι −
∂E
∂ι

∂L̂z∂e �
∂Q̂ϕ

∂p þ ½∂E∂p L̂z∂e −
∂E
∂e

∂L̂z∂p �
∂Q̂ϕ

∂ι
; ð3:57dÞ

where C ¼ fE; L̂z; Q̂g and o ¼ fp; e; ιg, and the deriva-
tives can be computed from the expressions in Eqs. (3.18)
and (3.23). We do not write the complete expressions
here because they can be calculated quite directly but are
very long.
Once we have the GW fluxes _E; _Lz, and _Q, the orbital

evolution can be obtained. We have no plan to introduce the
detailed fluxes in the present paper, and thus we do not
calculate the specific orbital evolution here. We will leave
this task to the next paper on gravitational waveforms. In
this work, we just focus on the geometrization of the EOB
formalism in extreme-mass-ratio cases.
The final set of EOB equations of motion with radiation

reaction are Eqs. (3.57a)–(3.57b) together with the evolu-
tion of the phases described by Eqs. (3.55) and (3.57c), and
the radius of motion at any arbitrary moment is given by
Eq. (3.51a). Now all of the equations of motion are
expressed in terms of only the geometric parameters
ðp; e; ι; ξ; χÞ and the effective Kerr parameter a.

IV. CONCLUSIONS AND OUTLOOK

In the present paper, based on the EOB deformed metric
and Hamiltonian, we gave the geometrized formalism of
the equations of motion for the inclined-eccentric EMRIs
with spinning black holes. The solutions were derived with
the geometric parameters p, e, and ι instead of the EOB
coordinates and momentum. The fundamental properties of
the motion due to the mass ratio and black hole spin were
discussed. We also gave expressions for three orbital
frequencies ωr, ωθ, and ωϕ. With these formalisms in
hand, it is convenient to obtain the motion of a compact
object around a supermassive black hole with the orbital
parameters p, e, ι.
Our results show that the influence on the orbital motion

due to the small compact object’s gravitational self-force on

the background of a SMBH cannot be ignored. The
analytical formalism in this work makes the inclusion of
the mass ratio in the motion much more intuitive. Although
we did not give a waveform template in the present work,
we believe that our analytical method (not the formalisms
themselves) should be a useful way to build waveform
models in the future for EMRIs to replace the test-particle
approximation, which is used in popular waveform models.
In the present work, a few approximations have been

used. As we mentioned before, in the present model we
temporarily omitted the effective spin of the small object. In
the EOB theory, this spin of the effective test particle is
∼μa=M even if the small object does not rotate. The
omission of this term will only induce a relative error of the
Hamiltonian at least two orders lower than the mass ratio.
Furthermore, for decoupling the equations of motion, we
used the approximation Fðr; θÞ ≈ FðrÞ. This usually indu-
ces an error atOð10−2Þν order, even at the edge of the LSO,
the error still ≲0.1ν. The analysis of these approximations
performed here showed that the errors could be ignored for
EMRIs due to the very small mass ratio (see Table I). By
encoding the mass-ratio correction in the HamiltonianHNS,
our expressions may be an improvement compared to the
test-particle approximation.
However, as stated in the previous sections, the EOB

formalism’s description in the extreme-mass-ratio limit
does not get guarantee. Considering that the comparison
of the ISCO shifts with the gravitational self-force has
obvious deviations for the extreme spin cases, we can only
state that our detailed results qualitatively reveal the
influences of the mass ratio on the conservative dynamics.
Fortunately, our analytical technology presented in this
paper can be used for any similar deformed Kerr metrics.
Once there is an updated version of the EOB resummation
approximation, the EOB corrections in the extreme-mass-
ratio limit can be improved or guaranteed, our results can be

ZHANG, HAN, ZHONG, and WANG PHYS. REV. D 104, 024050 (2021)

024050-14



easily updated by replacing the EOB potentials, and then
we can get an accurate analytical formalism with mass-ratio
corrections for the EMRIs.
One of the scientific targets of EMRIs is to detect the

spacetime geometry of a SMBH. For this target, an accurate
and efficient waveform template is needed. However, this is
still a challenge. The analytical orbital solution including
the mass ratio, eccentricity, and orbital inclination given in
this paper is more accurate than the test-particle model and
more convenient than the original EOB equations for
inclined-eccentric orbits over a long-term evolution.

Due to the analytical frequencies, a combination with the
frequency-domain Teukolsky equation [8] will be more
convenient and can generate numerical waveforms. In the
future, we will use the formalisms in this work to generate
the orbital evolution and waveforms for EMRIs.
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