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We present a definition for a pair of null coordinates that are naturally adapted to the horizons and future
null infinity of Kerr spacetime, and that are generated by the center-of-mass sections at future null infinity.
They are a smooth, round family of null hypersurfaces which foliate the Kerr spacetime in an outgoing and
an ingoing sense, respectively, and they have a regular extension across the horizons. Because of Kerr’s
peculiar geometry, the construction involves a nonlinear differential equation for a scalar function related to
Carter’s constant, whose solution cannot be expressed in terms of simple analytic functions. We present the
numerical solution of this scalar for a particular choice of the geometrical parameters. In this setting, there
naturally appears a two-dimensional spacelike family of round surfaces Srs that are parametrized by rs,
which are the intersections of both null coordinates, where rs can be thought of as the tortoise coordinate
extension for the Kerr spacetime. The Srs surfaces are axially symmetric, but they have an ðr; θÞ
dependence in Boyer-Lindquist coordinates. They can also be characterized in a complete geometrical way
by their Gaussian and extrinsic curvature scalars, which we were able to compute by the use of Geroch-
Held-Penrose formalism. We compare our definition with other previous attempts in the literature, and we
show that all of them have divergent behavior at the axis of symmetry. Thus, our construction presents the
first double null coordinate system which makes possible computations over all of the Kerr spacetime.
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I. INTRODUCTION

The significance of null coordinates can be traced back
to the beginnings of general relativity. The first solution of
the Einstein-Hilbert equations was discovered for a vacuum
and spherical symmetric spacetime by Schwarzschild very
early in 1916 [1]. But it took several decades to understand
the true meaning of the coordinate singularity r ¼ 2m in
terms of the original coordinate system. The issue was
clarified in the works of Kruskal [2] and Szekeres [3],
where the use of null coordinates was essential in the
process to remove the coordinate singularity. Moreover,
such definitions allowed a complete understanding of the
causal structure and the most important feature of a black
hole spacetime, the event horizon.
Null coordinates also opened a broad spectrum of studies,

including Vaydia spacetimes, Hawking radiation, and the
stability of black holes. Nevertheless, Schwarzschild space-
times are very restrictive and cannot model the final state of a
generic black hole.
This inevitably leads to the study of other vacuum

solutions that could account for a final angular momentum
content. This was achieved by the Kerr solution [4].
Although presented more than fifty years ago, it is still
the subject of interesting studies and discoveries. At
present, the Kerr geometry has acquired renewed relevance,

since it is used to model the spacetime associated with the
first observed picture of a black hole, which corresponds to
a supermassive black hole in M87 [5–10] with a mass of
6.5 × 109 M⊙ and a favored angular momentum parameter
of about a ¼ 0.94M, although other astrophysical studies
[11] set this relation to a ¼ 0.98M.
The general understanding [12] is that these metrics are

the general final stage for dynamically evolving isolated
black holes, so they are the natural candidates to model
black holes with angular momentum as they settle down to
a stationary state. It is for these reasons that the Kerr
spacetimes are continuously studied and new properties are
regularly presented in the literature.
The possibility to generalize the previous knowledge

gained for the Schwarzschild case to this axis-symmetric
spacetime makes the calculation of null coordinates for
Kerr geometry an interesting and necessary subject.
However, it has also been remarkably elusive.
It is an interesting question, since in its construction one

can grasp the details of the geometry encoded in the Kerr
metric. It is a necessary and useful construction for the
discussion and calculation of characteristic problems in the
Kerr geometry, from a theoretical and numerical point of
view. It is elusive, since before this work, there were no
presentations of complete, round, smooth null coordinates
that enfold the horizons in a regular way.
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For spacetimes with spherical symmetry, like
Schwarzschild or Reissner-Nordström, null coordinates
are well known. It is advantageous that in those cases,
principal null congruences do not have twist, so it is
possible to define null coordinates adapted to such con-
gruences, like Edington-Finkelstein and Kruskal-Skeres for
Schwarzschild. But in Kerr geometry, with less symmetry,
the ingredients to define null coordinates are not that easy
to find. In this case, principal null congruences have twist,
so it is not possible to define null coordinates adapted
to them.
The use of functions that are null at certain points in Kerr

spacetime can be traced to Carter’s work [13]. In this way,
he was able to study the causal structure of Kerr geometry
at the axis of symmetry. In many textbooks like Refs. [14]
or [15], inspired by principal null congruences, Carter’s
construction is reproduced. But it must be noted that such
constructions cannot be extended as null coordinates to
other spacetime regions, due to the presence of twist in the
principal null directions. Moreover, all compactified causal
diagrams related to this construction are incomplete, since
they are only valid at the axis of symmetry of Kerr
spacetime.
In the literature, there are several works which deal with

the construction of null coordinates in Kerr spacetime.
Some remarkable ones are Refs. [16–19], each of which
contributes from different approaches with a characteristic
point of view. But as we will discuss at the end of this
manuscript, in spite of all these remarkable contributions,
such definitions still have serious problems with the
presence of divergent behaviors. Therefore, they become
useless for application purposes, failing at the main task of
any coordinate system.
In this work, we solve this situation by presenting a

double null coordinate system for Kerr spacetime. These
null functions surround the black hole in a smooth manner
and fill the spacetime, and coincide at future null infinity
with the center-of-mass sections [20,21]. In the interior of
the black hole, they are also smooth and can be extended all
the way up to the interior horizons, and across them too, up
to the region containing Kerr’s ring singularity.
This article is organized as follows: In Sec. II, we define

the new double null coordinates for Kerr spacetime, starting
from the most general null geodesic congruence. We also
give the integral expressions of each null coordinate
function u and v, together with a plot that compares
Kerr’s and Schwarzschild’s outgoing null functions. In
Sec. III, we present the null tetrad adapted to the new
double null coordinates. To obtain a deeper geometric
perspective, we compute the spin coefficients and the Weyl
scalars that give geometric details of the null congruences
used in our definition. In Sec. IV, we present the surface
family Srs as the intersection of both null coordinates u and
v; where rs can be interpreted as the Kerr extension of the

Schwarzschild’s tortoise coordinate. We give a complete
geometric description of such two-dimensional spacelike
surfaces in terms of their Gaussian and extrinsic curvature
scalars. In Sec. V, we express the Kerr metric in terms of the
null coordinates u and v. We also define a new angular
coordinate and the extended versions of the null coordi-
nates, which we call U and V. These extensions allow the
crossing of the past and future event horizon in a regular
way. In Sec. VI, we compare our definition and results with
other previous attempts found in the literature. We show
that in all those works, there is divergent behavior over the
axis of symmetry, and we explain why such definitions fail
as candidates for coordinate systems and therefore are
unsuitable to be used in many studies of interest. Instead,
with our definition, one obtains a regular behavior, opening
a broad spectrum for possible applications. In Sec. VII, we
give final comments summarizing important aspects of our
contribution.

II. NULL COORDINATES DEFINITION

A. Basic construction

To make our notation explicit, let us begin by writing the
Kerr line element and its inverse using Boyer-Lindquist
[22] coordinates:

ds2 ¼ ð1 −ΦÞdt2 þ 2Φasin2ðθÞdtdϕ

−
Σ
Δ
dr2 − Σdθ2 −

ϒ
Σ
sin2ðθÞdϕ2; ð1Þ
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�
2

¼ ϒ
ΣΔ

� ∂
∂t
�

2

þ4amr
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� ∂
∂t
�� ∂

∂ϕ
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−
Δ
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� ∂
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�
2

−
1

Σ

� ∂
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�
2

−
Δ−a2sin2ðθÞ
ΣΔsin2ðθÞ

� ∂
∂ϕ

�
2

;

ð2Þ

with

Σ ¼ r2 þ a2cos2ðθÞ; Δ ¼ r2 þ a2 − 2mr;

ϒ ¼ ðr2 þ a2Þ2 − Δa2sin2ðθÞ; Φ ¼ 2mr
Σ

; ð3Þ

where the parameter m denotes the mass, and the angular
momentum of the black holes is given by J ¼ am.
Since the principal null congruences have twist, they do

not help in the search for natural null hypersurfaces. We
have to start by considering all possible null geodesics. It is
well known [14,23] that the most general null geodesics
can be put in terms of first-order derivatives with respect to
an affine parameter λ:

dt
dλ

¼ _t ¼ 1

ΣΔ
½Eϒ − 2amrLz�; ð4Þ
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dr
dλ

¼ _r ¼ �oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðr2 þ a2ÞE − aLz�2 − KΔ

p
Σ

; ð5Þ

dθ
dλ

¼ _θ ¼ � 1

Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

�
Ea sinðθÞ − Lz

sinðθÞ
�
2

s
; ð6Þ

dϕ
dλ

¼ _ϕ ¼ 1

ΣΔ

�
2amrEþ ðΣ − 2mrÞ Lz

sin2ðθÞ
�
: ð7Þ

Then the most general null geodesic congruence for the
Kerr spacetime can be expressed in terms of its tangent
vector

Va ¼ _t

� ∂
∂t
�

a
þ _r

� ∂
∂r

�
a
þ _θ

� ∂
∂θ

�
a
þ _ϕ

� ∂
∂ϕ

�
a
: ð8Þ

All the steps of our definition will be shorter and simpler if
we work with the one form Va, which in Boyer-Lindquist
coordinates is

Va ¼ gabVb

¼ Edta − _r
Σ
Δ
dra − _θΣdθa − Lzdϕa

¼ Edta −
�oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðr2 þ a2ÞE − aLz�2 − KΔ

p
Δ

dra

−
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

�
Ea sinðθÞ − Lz

sinðθÞ
�
2

s �
dθa

− Lzdϕa; ð9Þ

where E, Lz, and K (the Carter constant) are conserved
quantities along each geodesic.
The sign�oi determines the character of the congruence.

We will use la (with �oi ¼ þ) to denote the most general
outgoing null congruence, and na (with�oi ¼ −) to denote
the ingoing null congruence. For the purpose of simpler
presentation, below we will present our definition consid-
ering the outgoing la, but all the steps and main results can
also be obtained for the ingoing one na.
In what follows, without loss of generality, we will take

E ¼ 1, in the outer region. At each point of the spacetime,
the choice of the constants Lz and K singles out a point in
the sphere of directions.
This raises the question of how one can choose the

“constants” Lz and K so that locally they define a hyper-
suface orthogonal null congruence with the properties that
we want—that is, although they are constant along each
null geodesic, we are free to choose them with different
values for each geodesic. The guiding idea is that la must
be an exact differential, but we also demand the congruence
to be orthogonal to a sphere at future null infinity, which
coincides with the center-of-mass section.

As a first step, let us consider a surface Sr, defined by
(t ¼ constant and r ¼ constant), with tangent vectors ð ∂∂θÞb
and ð ∂

∂ϕÞb. We are interested in the limiting case, where this
surface tends to a sphere at infinity, Sr → S∞. In our
approach, we select the congruence la which is orthogonal
to S∞—that is, that

lim
r→∞

gabla

� ∂
∂θ

�
b
¼ 0;

lim
r→∞

gabla

� ∂
∂ϕ

�
b
¼ 0: ð10Þ

From Eqs. (9) and (10), we obtain for each geodesic Lz ¼ 0

and K ¼ a2 sinðθ�Þ2, where θ� ¼ θjr¼∞. These conditions
fix the congruence completely, and since it started orthogo-
nal to a topological 2-sphere, it is hypersurface orthogonal.
It is convenient to mention that the center-of-mass

sections which motivate our definition can be obtained
as the limit of known coordinates as one approaches future
null infinity. The retarded version of the original Kerr
coordinate [4,14] can be defined by dũ ¼ dt − r2þa2

Δ dr,
although we note that this is not a null coordinate. Then,
one can check that the limit where ũ ¼ constant, r → ∞
goes to the center-of-mass sections S∞ at future null
infinity [20].
At an interior point of the spacetime with coordinates

ðr; θÞ, the quantity K will pick the value from the corre-
sponding null geodesic passing through this point. Then, one
can think in terms of the functional relation Kðr; θÞ. This
allows one to change the logic and ask for the condition of
Kðr; θÞ, so thatla is a hypersurface orthogonal outgoing null
congruence—that is, without twist—which also reaches
future null infinity with K ¼ a2 sinðθ�Þ2. Let us note that
we are requesting Lz ¼ 0 and _r > 0 for this congruence.
The sign for _θ is chosen by thinking on the behavior of

spheroidal coordinates (close to a sphere) in the limit as one
approaches future null infinity following an outgoing null
geodesic, so that we take (þ) for the northern hemisphere
and (−) for the southern hemisphere, and we will express
this by �jh. Therefore, we have

la ¼ dta −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − Kðr; θÞΔ

p
Δ

dra

−�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðr; θÞ − a2 sinðθÞ2

q
dθa; ð11Þ

na ¼ dta þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − Kðr; θÞΔ

p
Δ

dra

� jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðr; θÞ − a2 sinðθÞ2

q
dθa: ð12Þ

The condition for la to be hypersurface orthogonal
(without twist) is equivalent to that for being the differential
of a null function u (outgoing)—that is,

DOUBLE NULL COORDINATES FOR KERR SPACETIME PHYS. REV. D 104, 024049 (2021)

024049-3



ðduÞa ¼ la: ð13Þ

Therefore, the exterior derivative of la must vanish—
namely,

ðdlaÞb≡
�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2Þ2−KΔ

p ∂K
∂θ dθ∧ dr

�jh
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K− ðasinðθÞÞ2

p ∂K
∂r dθ∧ dr

�
¼ 0; ð14Þ

which one can also express as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − KΔ

q ∂K
∂r �

����
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − ða sinðθÞÞ2

q ∂K
∂θ ¼ 0:

ð15Þ

Thus, Eq. (15) constitutes the integrability condition for the
one form la to be the differential of a null function that we
call u.
The natural question arises: Are the solutions of Eq. (15)

consistent with the property that K must be constant along
each null geodesic? To answer this, let us just calculate the
derivative of K with respect to each affine parameter—
namely,

dK
dλ

¼ ∂K
∂r _rþ ∂K

∂θ _θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − KΔ

p
Σ

∂K
∂r

� jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − ða sinðθÞÞ2

p
Σ

∂K
∂θ ¼ 0: ð16Þ

It canbe seen, then, that by imposingEq. (15), oneguarantees
thatK is constant along eachnull geodesic of the congruence.
The same result [Eq. (15)] is obtained when one

considers the ingoing null congruence na [Eq. (12)]
together with both conditions of our definition: the asymp-
totic [Eq. (10)] and local [Eq. (14)] ones. In such case, the
null function is called v (ingoing), where ðdvÞa ¼ na.

B. Solving for the function Kðr; θÞ
The structure of Eq. (15) suggests that we work with the

auxiliary function k defined from

Kðr; θÞ ¼ a2 sinðθÞ2 þ k2ðr; θÞ ð17Þ

so that the function Kðr; θÞ can be expressed in terms of
kðr; θÞ. We also use the variable

ξ ¼ 1

r
ð18Þ

for the computation. One can see then that the boundary
condition

lim
r→∞

K ¼ a2 sinðθ�Þ2 ð19Þ

is equivalent to

lim
ξ→0

k ¼ 0: ð20Þ

In terms of these new variables, Eq. (15) becomes

−2ξ2k
∂k
∂ξ ¼ −

ð�jhξ2jkjÞð2a2 sinðθÞ cosðθÞ þ 2k ∂k
∂θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ ξ2a2Þ2 − ξ4KΔ
p ; ð21Þ

where ∂K
∂r ¼ −2ξ2k ∂k

∂ξ. Such an equation is invariant under
the exchange k → −k with the boundary condition
in Eq. (20).
Note that in the northern hemisphere, sinðθÞ cosðθÞ ≥ 0,

so after we start at ξ ¼ 0 with k ¼ 0, we can elect the sign
of k. If we assume k ≥ 0, we have to solve

∂k
∂ξ ¼

a2 sinðθÞ cosðθÞ þ k ∂k
∂θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ ξ2a2Þ2 − ξ4Δða2 sinðθÞ2 þ k2Þ
p : ð22Þ

Otherwise, if we assume k ≤ 0 in the northern hemisphere,
we have to use Eq. (22) with opposite sign. Note that the
sign of k does not interfere with the sign of _θ. For
simplicity, we assume k ≥ 0 in the northern hemisphere,
in the vicinity of future null infinity. Let us note that with
this choice, we simply have

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − ða sinðθÞÞ2

q
¼ k: ð23Þ

It is important to remark that from an analytical point of
view, the differential equation (22), together with its
boundary condition [Eq. (20)], can be integrated over
the entire spacetime, since it is well behaved everywhere
for every value of the ðr; θÞ coordinates where they make
sense. This means that one can integrate the equation even
at the horizon (where Δ ¼ 0), at the interior horizons, and
across them, too, up to the region containing the Kerr ring
singularity.
Some important properties of k and K can be obtained

from the differential equation (22), together with its boun-
dary condition (20). We know that at infinity (kjξ¼0

¼ 0);
therefore, from Eq. (22) (∂ξkjξ¼0;θ¼0;π

¼ 0), we find that k
remains zero as one integrates over ξ. Then, at the axis of
symmetry, we have

kðr; θÞjθ¼0;π ¼ 0; Kðr; θÞjθ¼0;π ¼ 0: ð24Þ

In the same way, we can see that at the equator
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kðr; θÞjθ¼π
2
¼ 0; Kðr; θÞjθ¼π

2
¼ a2: ð25Þ

To obtain a solution, we have to solve a nonlinear
differential equation. Unfortunately, the solution to Eq. (22)
cannot be expressed in terms of elementary functions, like
trigonometric functions mixed with powers of r or ξ. For
this reason, we have integrated this equation numerically,
which allows us to present the results by means of
computed graphs. This also has the advantage of showing
explicitly that our construction is well behaved for all

regions of the spacetime, and all values of the angular
coordinate θ.
The numerical scheme was implemented with fourth-order

finite difference approximations for angular derivatives, and
a fourth-order Runge-Kutta method to integrate along ξ.
The residual error was computed with output values of order
1 × 10−14 (close to double-precision rounding error).
The solution can be seen in Figs. 1–6 for different

quotient relations (a=m). One can clearly see how the

FIG. 1. Numerical solution kðr; θÞ, with ξ ∈ ½0; 2
r−
�. Using

parameters m ¼ 1, a ¼ 0.8.

FIG. 2. Numerical solution k2ðr; θÞ, with ξ ∈ ½0; 2
r−
�. Using

parameters m ¼ 1, a ¼ 0.8.

FIG. 3. Numerical solution Kðr; θÞ, with ξ ∈ ½0; 2
r−
�. Using

parameters m ¼ 1, a ¼ 0.8.

FIG. 4. Numerical solution kðr; θÞ, with ξ ∈ ½0; 2
r−
�. Using

parameters m ¼ 1, a ¼ 0.4.

FIG. 5. Numerical solution k2ðr; θÞ, with ξ ∈ ½0; 2
r−
�. Using

parameters m ¼ 1, a ¼ 0.4.

FIG. 6. Numerical solution Kðr; θÞ, with ξ ∈ ½0; 2
r−
�. Using

parameters m ¼ 1, a ¼ 0.4.
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functions k and K tend to zero as one reduces the angular
momentum parameter (a → 0).

C. Null functions u and v

From the knowledge of k, we can define the null
functions u (outgoing) and v (ingoing) as the hypersurfaces
generated by the outgoing la and ingoing na null geodesics
congruences, respectively; namely,

du¼ dt−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2Þ2−KΔ

p
Δ

dr−�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr;θÞ

p
dθ; ð26Þ

dv ¼ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − KΔ

p
Δ

dr� jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr; θÞ

p
dθ; ð27Þ

where K ¼ Kðr; θÞ is a solution of Eq. (15), and

Θðr; θÞ ¼ Kðr; θÞ − a2 sin2ðθÞ: ð28Þ

To obtain integrated expressions of u and v, we need to
integrate Eqs. (26) and (27). Because they are very similar,
for simplicity we will work with u, but the same process
follows for v.
We can integrate du along any curve γðs0Þ, which

connects an initial point ðt0; r0; θ0;ϕ0Þ to a final point
ðt; r; θ;ϕÞ. Given a curve γ, with s0 ∈ ½s0; s�, one can
express

uðt; r; θ;ϕÞ − u0ðt0; r0; θ0;ϕ0Þ ¼ t − t0

−
Z

s

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − ΔKðr0; θ00Þ

p
Δ

dr0

ds0
ds0

−
Z

s

s0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr00; θ0Þ

p dθ0

ds0
ds0: ð29Þ

As we know, the difference uðt; r; θ;ϕÞ − u0ðt0; r0; θ0;ϕ0Þ
only depends on the initial and final points. Nevertheless, to
proceed and find a final computable expression, it is useful
to consider an integration path. Because both integrands
depends only on two coordinates ðr; θÞ, we have two
natural paths to connect the initial and final points. One of
them is ½ðr0; θ0Þ → ðr; θ0Þ → ðr; θÞ�; in that case, Eq. (29)
becomes

uðt; r; θ;ϕÞ − u0ðt0; r0; θ0;ϕ0Þ ¼ t − t0

−
Z

r

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − ΔKðr0; θ0Þ

p
Δ

dr0

−
Z

θ

θ0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr; θ0Þ

p
dθ0: ð30Þ

The other one is ½ðr0; θ0Þ → ðr0; θÞ → ðr; θÞ�; in that case,
Eq. (29) becomes

uðt; r; θ;ϕÞ − u0ðt0; r0; θ0;ϕ0Þ ¼ t − t0

−
Z

r

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − ΔKðr0; θÞ

p
Δ

dr0

−
Z

θ

θ0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr0; θ0Þ

p
dθ0: ð31Þ

In what follows, we work with both expressions. Because
they are very similar, for simplicity we show the complete
process only for Eq. (30), but the same final result follows
from Eq. (31). We start with the behavior analysis of the
second term’s integrand at ðΔ ≈ 0Þ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − ΔKðr0; θ0Þ

p
Δ

¼ ðr02 þ a2Þ
Δ

−
K

2ðr02 þ a2Þ −
K2Δ

8ðr02 þ a2Þ3 þOðΔ2Þ: ð32Þ

From Eq. (32), it is clear that Eq. (30) has a divergent term
at ðΔ ≈ 0Þ. We can isolate such behavior in one simpler
term, by simply adding and subtracting ðr02 þ a2Þ=Δ, to
obtain

uðt; r; θ;ϕÞ − u0ðt0; r0; θ0;ϕ0Þ

¼ t − t0 −
Z

r

r0

�ðr02 þ a2Þ
Δ

�
dr0

−
Z

r

r0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − ΔKðr0; θ0Þ

p
Δ

−
ðr02 þ a2Þ

Δ

�
dr0

−
Z

θ

θ0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr; θ0Þ

p
dθ0; ð33Þ

where the divergent term can be integrated analytically:

Z
r

r0

�ðr02 þ a2Þ
Δ

�
dr0 ¼

�
rþ r2þ þ a2

rþ − r−
ln

�
r
rþ

− 1

�

−
r2− þ a2

rþ − r−
ln

�
r
r−

− 1

������r
r0

; ð34Þ

where rþ and r− are the solutions of Δ ¼ 0—namely, rþ ¼
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
and r− ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
.

Then, we have an equivalent expression of Eq. (30):

uðt; r;θ;ϕÞ− u0ðt0; r0;θ0;ϕ0Þ

¼ t− r−
�
r2þ þ a2

rþ − r−
ln

�
r
rþ

− 1

�
−
r2− þ a2

rþ − r−
ln

�
r
r−

− 1

��

−
Z

r

r0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 −ΔKðr0;θ0Þ

p
Δ

−
ðr02 þ a2Þ

Δ

�
dr0

−
Z

θ

θ0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr;θ0Þ

p
dθ0 þC0ðt0; r0Þ; ð35Þ
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where C0 is a constant. The strategy is to elect

u0ðt0; r0; θ0;ϕ0Þ ¼ −C0ðt0; r0Þ ð36Þ
in such a way that for any initial point ðt0; r0; θ0;ϕ0Þ,

uðt; r; θ;ϕÞ ¼ t− r−
�
r2þ þ a2

rþ − r−
ln

�
r
rþ

− 1

�
−
r2− þ a2

rþ − r−
ln

�
r
r−

− 1

��
−
Z

r

r0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 −ΔKðr0; θ0Þ

p
Δ

−
ðr02 þ a2Þ

Δ

�
dr0

−
Z

θ

θ0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr; θ0Þ

p
dθ0: ð37Þ

The final step in obtaining the coordinate uðt; r; θ;ϕÞ is to elect the initial point ðt0; r0; θ0;ϕ0Þ. We are interested in taking
its value at future null infinity—that is, at r0 → ∞, t0 → ∞, θ0 → θ∞, ϕ0 → ϕ∞, where θ∞ and ϕ∞ are finite. Note that in
Eq. (37), there is no dependence on ϕ0, so we are free to choose ϕ∞ without any change in u. Also, it can be noted that C0 is
finite in this limit. Then, since we can still use Eq. (36), we have

uðt; r; θ;ϕÞ ¼ t− r−
�
r2þ þ a2

rþ − r−
ln

�
r
rþ

− 1

�
−
r2− þ a2

rþ − r−
ln

�
r
r−

− 1

��
−
Z

r

r∞

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 −ΔKðr0; θ∞Þ

p
Δ

−
ðr02 þ a2Þ

Δ

�
dr0

−
Z

θ

θ∞

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðr; θ0Þ− a2 sinðθ0Þ2

q
dθ0: ð38Þ

In the same way, we can start with the second natural integration path [Eq. (31)] and repeat all the steps to obtain

uðt; r; θ;ϕÞ ¼ t − r −
�
r2þ þ a2

rþ − r−
ln

�
r
rþ

− 1

�
−
r2− þ a2

rþ − r−
ln

�
r
r−

− 1

��
−
Z

r

r∞

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − ΔKðr0; θÞ

p
Δ

−
ðr02 þ a2Þ

Δ

�
dr0

−
Z

θ

θ∞

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðr∞; θ0Þ − a2 sinðθ0Þ2

q
dθ0: ð39Þ

Note that when a → 0, we haveK → 0. Then the last two terms in Eq. (38) and (39) become zero, because each integrand
is zero. Also, from (34), when a → 0, we have r− → 0, so we can simply take a ¼ 0 and r− ¼ 0. In this way, we recover
Eddington’s outgoing null function for Schwarzschild spacetime:

lim
a→0

uðt; r; θ;ϕÞ ¼ t −
�
rþ 2m ln

�
r
2m

− 1

��
: ð40Þ

D. Shorter expressions for u and v

We have already mentioned that there are two natural integration paths [Eqs. (30) and (31)]. In this part, we will show
how these paths allow us to find shorter expressions for u and v.
Remember that the first path is ½ðr0; θ0Þ → ðr; θ0Þ → ðr; θÞ�, and that we locate the initial point at r0 ¼ r∞, θ0 ¼ θ∞. To

obtain a shorter expression, we can take advantage of the election freedom and choose ðθ0 ¼ θ∞ ¼ 0Þ. Then, we have to
consider the property [Eq. (24)]

Kðr; θ ¼ 0Þ ¼ 0 ð41Þ
to obtain the shortest expression for u; by substituting Eq. (41) into Eq. (38) and using the properties (r2þ þ a2 ¼ 2mrþ) and
(r2− þ a2 ¼ 2mr−), we find

uðt; r; θ;ϕÞ ¼ t − r −
�

2mrþ
rþ − r−

ln

�
r
rþ

− 1

�
−

2mr−
rþ − r−

ln

�
r
r−

− 1

��
−
Z

θ

0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðr; θ0Þ − a2 sinðθ0Þ2

q
dθ0: ð42Þ
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The second natural path is ½ðr0; θ0Þ → ðr0; θÞ → ðr; θÞ�, with the initial point at r0 ¼ r∞, θ0 ¼ θ∞. To obtain a shorter
expression, we can take advantage of the election freedom and choose ðr0 ¼ r∞ ¼ ∞Þ. Then, we have to consider another
property that comes from the boundary condition [Eq. (19)]:

Kðr ¼ ∞; θ0Þ ¼ a2 sinðθ0Þ2 ð43Þ

to obtain another short expression. By substituting Eq. (43) into Eq. (39), we find

uðt; r; θ;ϕÞ ¼ t − r −
�

2mrþ
rþ − r−

ln

�
r
rþ

− 1

�
−

2mr−
rþ − r−

ln

�
r
r−

− 1

��
−
Z

r

∞

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − ΔKðr0; θÞ

p
Δ

−
ðr02 þ a2Þ

Δ

�
dr0:

ð44Þ

In an analogous way, we can start with Eq. (27) to obtain the corresponding expressions for vðt; r; θ;ϕÞ. The expressions are

vðt; r; θ;ϕÞ ¼ tþ rþ
�

2mrþ
rþ − r−

ln

�
r
rþ

− 1

�
−

2mr−
rþ − r−

ln

�
r
r−

− 1

��
þ
Z

θ

0

�jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðr; θ0Þ − a2 sinðθ0Þ2

q
dθ0 ð45Þ

and

vðt; r;θ;ϕÞ ¼ tþ rþ
�

2mrþ
rþ − r−

ln

�
r
rþ

− 1

�
−

2mr−
rþ − r−

ln

�
r
r−

− 1

��
þ
Z

r

∞

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 −ΔKðr0;θÞ

p
Δ

−
ðr02 þ a2Þ

Δ

�
dr0:

ð46Þ

Then, we can compute u with Eqs. (42) or (44) and v with
Eqs. (45) or (46) to obtain the same result. This has to do
with the path-independent character of the difference
uðt; r; θ;ϕÞ − u0ðt0; r0; θ0;ϕ0Þ, which we integrate from
the beginning [Eq. (29)]. To see this in more detail, note
that the slightly longer expressions for u [Eq. (44)] and v
[Eq. (46)] have the same value for any initial angle
at the asymptotic two-dimensional sphere Sr¼∞—that is,
∀θ∞ ∈ ½0; π�, ∀ϕ∞ ∈ ½0; 2π�. Meanwhile, the shortest

expressions for u [Eq. (42)] and v [Eq. (45)] are obtained
by the election θ0 ¼ θ∞ ¼ 0.

E. Plot of u

Figure 7 shows the Kerr center-of-mass null surface
when u ¼ 0, with angular parameter values a ¼ 0.8 and
a ¼ 0, and so includes the Schwarzschild case for com-
parison. Note that this comparison is only about the
functional dependence of uðt; r; θÞ with respect to the
coordinates ðt; r; θÞ.
We have computed numerically both expressions (42)

and (44). We corroborate that they have the same value up
to machine rounding error, 1 × 10−15.

III. ADAPTED NULL TETRAD

A. The tetrad

From Eqs. (26) and (27), we have two null directions
ðduÞa ¼ la, ðdvÞa ¼ na to build a null tetrad. As usual, we
have to use a normalized direction to satisfy Eq. (58):

na ¼
1

2

ΣΔ
ϒ

na: ð47Þ

Then, we can compute the spin coefficients in the Geroch-
Held-Penrose (GHP) [24] notation to make a complete
geometric analysis.
In what follows, from Eqs. (23) and (28), we can

simplify our notation by taking
FIG. 7. Center-of-mass null surface (u ¼ 0) for Kerr and
Schwarzschild spacetimes.
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�jh
ffiffiffiffi
Θ

p
¼ k: ð48Þ

Then, the center-of-mass null tetrad in its covariant form is

la ¼ dta −
ffiffiffiffiffi
R

p

Δ
dra − kdθa; ð49Þ

na ¼
1

2

ΣΔ
ϒ

�
dta þ

ffiffiffiffiffi
R

p

Δ
dra þ kdθa

�
; ð50Þ

ma ¼ i

ffiffiffi
2

p
amr sinðθÞffiffiffiffiffiffiffi

ϒΣ
p dta þ k

ffiffiffiffiffiffiffi
Σ
2ϒ

r
dra

−
ffiffiffiffiffiffiffiffi
ΣR
2ϒ

r
dθa − i

ffiffiffiffiffiffi
ϒ
2Σ

r
sinðθÞdϕa; ð51Þ

and in its contravariant form, it is

la ¼ ϒ
ΣΔ

∂a
t þ

ffiffiffiffiffi
R

p

Σ
∂a
r þ

k
Σ
∂a
θ þ

2amr
ΔΣ

∂a
ϕ; ð52Þ

na ¼ ∂a
t

2
−

ffiffiffiffiffi
R

p
Δ

2ϒ
∂a
r −

kΔ
2ϒ

∂a
θ þ

2amr
2ϒ

∂a
ϕ; ð53Þ

ma ¼ −
kΔffiffiffiffiffiffiffiffiffiffi
2ϒΣ

p ∂a
r þ

ffiffiffiffiffiffiffiffiffiffi
R

2ϒΣ

r
∂a
θ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ

2ϒsin2ðθÞ

s
∂a
ϕ; ð54Þ

where

R ¼ ðr2 þ a2Þ2 − KΔ; ð55Þ

ϒ ¼ Rþ ΘΔ ¼ Rþ k2Δ: ð56Þ

It can be verified that the null tetrad relations are satisfied:

lala ¼ nana ¼ mama ¼ m̄am̄a ¼ 0; ð57Þ

lana ¼ 1; ð58Þ

mam̄a ¼ −1; ð59Þ

where m̄ is obtained fromm by the exchange of i for −i. We
have preserved the traditional notation for each null tetrad
element, where ma and m̄a must not be confused with the
spacetime mass parameter m.

B. The spin coefficients

For the spin coefficients, we use the GHP notation of
Ref. [24]. We will focus on those spin coefficients which
capture the most relevant congruence features. For exam-
ple, κGHP indicates if the congruence is geodesic (κGHP ¼ 0),
and ρ indicates if it is hypersurface orthogonal (ρ ¼ ρ̄). The
extra notation of GHP in the scalar function κGHP is used to
clearly distinguish it with respect to a parameter that will be
used later.
The spin coefficient κGHP is given by

κGHP ¼
ffiffiffi
2

p

2

ffiffiffiffi
ϒ

p

Σ3
2Δ

� ∂
∂θ

ffiffiffiffiffi
R

p
− Δ

∂k
∂r

�
: ð60Þ

It can be seen that in our case κGHP ¼ 0, because of
Eq. (15). Such a result is consistent with our definition,
because we start with a geodesic null congruence.
Then, we have ρ:

ρ ¼ −
1

2Σ

� ∂
∂r

ffiffiffiffiffi
R

p
þ ∂k
∂θ þ

cosðθÞ
sinðθÞ k

�
: ð61Þ

Clearly it is a real quantity. It means that the congruence is
hypersurface orthogonal, which is in total consistence with
our definition; see Eq. (14). Note that in the poles
(θ ¼ 0; π), the function kðr; θÞ → 0; see Eq. (24). It can
be shown that

lim
θ→0;π

cosðθÞ
sinðθÞ k ¼ ∂k

∂θ ; ð62Þ

where ∂kðr;θÞ
∂θ has a smooth behavior at the poles.

Another important spin coefficient is σ. Remember that
the principal null congruences have σ ¼ 0. But in the case
of the center-of-mass null coordinates, its associated null
tetrad has

σ ¼ −i
am sinðθÞ

Σ2ϒ
½

ffiffiffiffiffi
R

p
a2r cosðθÞ sinðθÞ þ kð2r4 þ 2a2r2 þ ða2mr − a2r2Þsin2ðθÞÞ�

þ 1

ϒΣ
½ð2r3 þ ðrþmÞa2 þ ðr −mÞa2cos2ðθÞÞ

ffiffiffiffiffi
R

p
− kΔa2 cosðθÞ sinðθÞ�

þ 1

4 sinðθÞΣ2k
ð− sinðθÞΣ∂θK þ ð2KΣ − 4a2sin2ðθÞK þ 4a4sin4ðθÞÞ cosðθÞÞ

þ 1

Σ2
ffiffiffiffiffi
R

p
�
ΣΔ∂θK

4
− rRþ ðr −mÞK

2
þ ra2 − r3

�
: ð63Þ
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In further discussions of this work, we will use two other
spin coefficients that in GHP notation [24] are

ρ0 ¼ −
1

2

ΣΔ
ϒ

ρ; ð64Þ

σ0 ¼ −
1

2

ΣΔ
ϒ

σ: ð65Þ

All spin coefficients were computed with the tensorial
manipulation software GRTensorII.

C. Weyl scalars

In this section, we will obtain the expressions of all the
Weyl scalars fΨ0;Ψ1;Ψ2;Ψ3;Ψ4g, with particular focus on
Ψ2, which will be useful in the next section. To accomplish
such a task, we will make a tetrad rotation from the
principal null tetrad to the center-of-mass null tetrad
[Eqs. (52), (53), (54)].
For the principal null congruence, it is well known that

the only nonzero Weyl scalar is

Ψ2p ¼ −
m

ðrþ ia cosðθÞÞ3 ; ð66Þ

which is written in Boyer-Lindquist coordinates. Then, if
we make the mentioned rotation, from general change rules
under rotations, we can obtain the expressions of all of
Weyl’s scalars in terms of Ψ2p.

1. Tetrad rotation

We start with the principal null congruence and then
rotate it to obtain the center-of-mass null tetrad. The
rotation is made up of a sequence of three different types
of rotations, called types I, II, and III; see the Appendix of
Ref. [25]. The sequence we follow is type II, type III, and
then type I:

n̂aII ¼ na; ð67Þ

m̂a
II ¼ ma þ Λna; ð68Þ

l̂a
II ¼ la þ Λm̄a þ Λ̄ma þ ΛΛ̄na; ð69Þ

n̂aII:III ¼ Z−1n̂aII; ð70Þ

m̂a
II:III ¼ eism̂a

II; ð71Þ

l̂a
II:III ¼ Zl̂a

II; ð72Þ

n̂aI:II:III ¼ n̂aII:III þ Γ ¯̂ma
II:III þ Γ̄m̂a

II:III þ ΓΓ̄l̂II:III; ð73Þ

m̂a
I:II:III ¼ m̂a

II:III þ Γl̂a
II:III; ð74Þ

l̂a
I:II:III ¼ l̂II:III: ð75Þ

All involved coefficients are determined by the condition
that after the last rotation, the center-of-mass null tetrad is
obtained. If we write down everything in terms of principal
null tetrad elements, following each conversion, we have

la ¼ Zla þ ZΛm̄a þ ZΛ̄ma þ ZΛΛ̄na; ð76Þ

ma ¼ ΓZla þ ΓZΛm̄a þ ðΓZΛ̄þ eisÞma

þ ΛðΓZΓ̄þ eisÞna; ð77Þ

na ¼ ΓΓ̄Zla þ ðΓ̄e−is þ Γ̄ΓZΛÞm̄a

þ
�
1

Z
þ ΓΛ̄e−is þ Γ̄Λeis þ ΓΓ̄ZΛΛ̄

�
na: ð78Þ

Finally, each coefficient Z, Λ, Γ, eis is calculated using the
contraction properties of the principal null congruence
elements (the only nonzero ones are lana ¼ 1 and
mam̄a ¼ −1). In this way, we obtain

Z ¼ nala ¼
ffiffiffiffiffi
R

p þ r2 þ a2

2Σ
; ð79Þ

Λ ¼ −
mala

Z
¼ 1

Z
ðk − ia sinðθÞÞffiffiffi
2

p ðrþ ia cosðθÞÞ ; ð80Þ

Γ ¼ nama

Z
¼ −

1

Z

ffiffiffi
2

p

4

ðia sinðθÞ þ kÞΔffiffiffiffiffiffiffi
ϒΣ

p ; ð81Þ

eis ¼ m̄ama − namaΛ̄

¼ aΔ½k sinðθÞðir − a cosðθÞÞ�ffiffiffiffiffiffiffi
ϒΣ

p ð ffiffiffiffiffi
R

p þ r2 þ a2Þ

þ aΔ½−arsin2ðθÞ þ ik2 cosðθÞ�ffiffiffiffiffiffiffi
ϒΣ

p ð ffiffiffiffiffi
R

p þ r2 þ a2Þ : ð82Þ

In the work of Ref. [26] similar computations were
performed to obtain a rotated arbitrary null tetrad, but it
differs from our results, because in our work rotations are
taken to reach the center-of-mass null tetrad.

2. Final expressions of Weyl scalars

From previous results, we can compute all Weyl scalars
related to the center-of-mass null tetrad. Under such a
sequence of rotations, we have
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Ψ0 ¼ 6Z2e2isΛ2Ψ2p;

Ψ1 ¼ ½3ZeisΛþ 6Γ̄Z2e2isΛ2�Ψ2p;

Ψ2 ¼ ½1þ 6ðΓ̄ZeisΛþ Γ̄2Z2e2isΛ2Þ�Ψ2p;

Ψ3 ¼ ½3Γ̄þ 9Γ̄2ZeisΛþ 6Γ̄3Z2e2isΛ2�Ψ2p;

Ψ4 ¼ ½6Γ̄2 þ 12Γ̄3ZeisΛþ 6Γ̄4Z2e2isΛ2�Ψ2p: ð83Þ

For our main purpose, we focus on

Ψ2 ¼ ½1þ 6ðΓ̄ZeisΛþ Γ̄2Z2e2isΛ2Þ�Ψ2p: ð84Þ

We can work out and conveniently express

Ψ2p ¼ ðΨ2pÞRe þ iðΨ2pÞIm
¼ 3mra2cos2ðθÞ −mr3

Σ3
þ i

ma cosðθÞð3r2 − a2cos2ðθÞÞ
Σ3

ð85Þ

and

1þ 6ðΓ̄ZeisΛþ Γ̄2Z2e2isΛ2Þ ¼ 1þ 6ðαþ α2Þ; ð86Þ

where the real and imaginary parts of α are

αRe ¼
−Ka2Δ2ðk cosðθÞ þ r sinðθÞÞ2

2ϒΣð ffiffiffiffi
R

p þ r2 þ a2Þ2 ; ð87Þ

αIm ¼ −Ka2Δ2ðk2r cosðθÞ þ k sinðθÞðr2 − a2 cosðθÞ2ÞÞ
2ϒΣð ffiffiffiffi

R
p þ r2 þ a2Þ2 −

Ka2Δ2ða2r cosðθÞ3 − a2r cosðθÞÞ
2ϒΣð ffiffiffiffi

R
p þ r2 þ a2Þ2 : ð88Þ

Finally, we can write a short version for each component of Ψ2. In terms of the real and imaginary parts of Ψ2p and α,

ðΨ2ÞRe ¼ ð1þ 6αRe þ 6α2Re − 6α2ImÞðΨ2pÞRe − 12ðΨ2pÞImαIm
�
1

2
þ αRe

�
; ð89Þ

ðΨ2ÞIm ¼ ð1þ 6αRe þ 6α2Re − 6α2ImÞðΨ2pÞIm þ 12ðΨ2pÞReαIm
�
1

2
þ αRe

�
: ð90Þ

IV. SURFACE FAMILY Srs
Note that Eqs. (26) and (27) can be written as

du ¼ dt − drs; ð91Þ

dv ¼ dtþ drs; ð92Þ

where

drs ≡
ffiffiffiffiffi
R

p

Δ
drþ kdθ: ð93Þ

The intersection of both null coordinate families u
and v—that is, (du ¼ dv ¼ 0)—define a family of two-
dimensional spacelike surfaces Srs , where the function rs ¼
ðv − uÞ=2 is constant. In terms of Boyer-Lindquist coordi-
nates, such a surface (drs ¼ 0) is given by rðθÞ, which
satisfies

dr
dθ

¼ −
kΔffiffiffiffiffi
R

p : ð94Þ

Note that rs can be interpreted as the Kerr extension of the
Schwarzschild’s tortoise coordinate. In particular, we can
express the function rs in the exterior region as
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rsðr; θÞ ¼ rþ 2mrþ
rþ − r−

ln

�
r
rþ

− 1

�
−

2mr−
rþ − r−

ln

�
r
r−

− 1

�

þ
Z

θ

0

kðr; θ0Þdθ0: ð95Þ

It is easy to show that the induced metric over the two-
dimensional spacelike surface family Srs is given by

ds2 ¼ −
ϒΣ
R

dθ2 −
ϒ
Σ
sin2ðθÞdϕ2; ð96Þ

which can be obtained directly from Eq. (104) below, by
simply taking (du ¼ dv ¼ 0). Note that in Boyer-Lindquist
coordinates at each surface Srs , Eq. (94) is satisfied, which
also implies that at the horizons the surface Srs is given by
r ¼ rþ; r−, as one could expect. But it should be remarked
that Eq. (94) still makes sense even at the horizons where rs
diverges—that is, the family Srs has a smooth extension at
the horizons, even though the behavior of rs.
A convenient geometric description of such a surface

family can be made in terms of their Gaussian and extrinsic
curvatures, as described in the GHP [24] formalism. Then,
one has

CGaussian ¼ ðQ̄GHP þQGHPÞ; ð97Þ

CExtrinsic ¼ iðQ̄GHP −QGHPÞ; ð98Þ

which are given in terms of the complex curvature scalar
QGHP, given by

QGHP ¼ σσ0 − ρρ0 − Ψ2 þ ΛþΦ11; ð99Þ

where σ; σ0; ρ; ρ0 are the spin coefficients in the GHP
formalism [see Eqs. (61), (63), (64), and (65)], and in
the Kerr spacetime one has Λ ¼ Φ11 ¼ 0.
Figures 8 and 9 show the numerical calculation of these

quantities, where their smooth nature can be inferred.
It is important to mention that in the limit case where

a ¼ 0 (Schwarzschild), one has

lim
a→0

CGauss ¼
1

r2
; ð100Þ

lim
a→0

CExtrinsic ¼ 0; ð101Þ

where the two-dimensional spacelike surfaces (drs ¼ 0) in
Schwarzschild’s case are given by (dr ¼ 0). But in Kerr,
without spherical symmetry, these curvatures are not
constant (see Figs. 8 and 9). In particular, Gaussian
curvature gives information about the intrinsic geometry
of Srs .
It is even more interesting what happens in the interior

regions, close to the horizon and the ring’s singularity. In
Figs. 10, 11, and 12, we plot the Gaussian curvature of Srs
in those regions.
The intrinsic character of Gaussian curvature allows us to

establish an analogy with two-dimensional spacelike sur-
faces embedded in R3. Far away from the horizon, r ≫ rþ,
the Gaussian curvature is almost constant (see Fig. 9), so
the analogous embedded surface is almost a sphere. As one
goes closer to the horizon, Gaussian curvature has lower
values at the poles (θ ¼ 0; π) and bigger ones at the equator
ðθ ¼ π=2Þ, so the analogous embedded surface is an oblate
spheroid (see Fig. 10). In Fig. 11, we have negative values
of Gaussian curvature at the poles, so the analogous

FIG. 8. Extrinsic curvature of Srs , using parameters a ¼ 0.8,
m ¼ 1.0. Case rðθÞ ≈ 3rþ.

FIG. 9. Gaussian curvature of Srs , using parameters a ¼ 0.8,
m ¼ 1.0. Case rðθÞ ≈ 3rþ.

FIG. 10. Gaussian curvature of Srs , using parameters a ¼ 0.8,
m ¼ 1.0. Case rðθÞ ≈ rþ.
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embedded surface should have a pothole at the poles.
Finally, in Fig. 12 (the closer region to the ring’s singu-
larity), the Gaussian curvature is very close to zero at the
poles, negative as one approaches the equator, and positive
with high values at the equator, so the analogous embedded
surface in this case can be constructed as a torus with a disk
at the center instead of a hole.
Let us note that for each surface Srs , we have computed

the Gaussian and extrinsic curvature scalars at different
spacetime regions using the presented expressions,
although in the case of interior regions (r < rþ), one has
to adapt the null coordinates definitions in a similar way to
what we have done in Sec. II. The complete and detailed
description of interior regions in terms of double null
coordinates will be published elsewhere.

V. KERR METRIC IN DOUBLE NULL
COORDINATES

In what follows, we will start from Kerr’s metric in
Boyer-Lindquist coordinates [Eq. (1)], and then we will
make a coordinate transformation to the center-of-mass null
coordinates.

A. Coordinates fu; v; θ;ϕg
From Eqs. (26) and (27), we can write

dt ¼ dvþ du
2

; ð102Þ

dr ¼
�ðdv − duÞ

2
− kdθ

�
Δffiffiffiffiffi
R

p : ð103Þ

Then, we can substitute Eqs. (102) and (130) into Eq. (1) to
obtain

ds2 ¼ 1

4

�
1 −

2mr
Σ

−
ΣΔ
R

�
ðdu2 þ dv2Þ

þ 1

2

�
1 −

2mr
Σ

þ ΣΔ
R

�
dudv

þ dv

�
2amrsin2ðθÞ

Σ
dϕþ ΣΔ

R
kdθ

�

þ du

�
2amrsin2ðθÞ

Σ
dϕ −

ΣΔ
R

kdθ

�

−
ϒΣ
R

dθ2 −
ϒ
Σ
sin2ðθÞdϕ2: ð104Þ

Note that in the asymptotic limit r → ∞, we recover
Minkowski geometry, and when a → 0, one obtains the
Schwarzschild metric. In both limiting cases, the quadratic
terms in du and dv go to zero, as one could expect:

lim
r→∞

��
1 −

2mr
Σ

�
−
ΣΔ
R

�
¼ 0; ð105Þ

lim
a→0

��
1 −

2mr
Σ

�
−
ΣΔ
R

�
¼ 0: ð106Þ

We can also obtain the contravariant expression of
Eq. (104) if we start with the inverse metric line element
in Boyer-Lindquist coordinates [Eq. (2)]. Formally, we will
use a notation to distinguish old and new coordinates. We
will start from ft; r; θ;ϕg, and then transform to
fu; v; θ̃; ϕ̃g. Note that the angular coordinates θ;ϕ are still
unaltered, and we only introduce the new coordinates u, v.
To start, it will be useful to consider the differentials of the
new coordinates in terms of the old ones:

du ¼ dt −
ffiffiffiffiffi
R

p

Δ
dr − kdθ; ð107Þ

dv ¼ dtþ
ffiffiffiffiffi
R

p

Δ
drþ kdθ; ð108Þ

dθ̃ ¼ dθ; ð109Þ

dϕ̃ ¼ dϕ: ð110Þ

FIG. 12. Gaussian curvature of rs ¼ const:, → rðθÞ, using
parameters a ¼ 0.8, m ¼ 1.0. Case rðθÞ ≈ 0.85r−.

FIG. 11. Gaussian curvature of rs ¼ const:, → rðθÞ, using
parameters a ¼ 0.8, m ¼ 1.0. Case rðθÞ ≈ 0.5rþ.
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Then, each coordinate vector is

∂
∂t ¼

∂u
∂t

∂
∂uþ ∂v

∂t
∂
∂vþ

∂θ̃
∂t

∂
∂θ̃ þ

∂ϕ̃
∂t

∂
∂ϕ̃

¼ ∂
∂vþ

∂
∂u ; ð111Þ

∂
∂r ¼

∂u
∂r

∂
∂uþ ∂v

∂r
∂
∂vþ

∂θ̃
∂r

∂
∂θ̃ þ

∂ϕ̃
∂r

∂
∂ϕ̃

¼
ffiffiffiffiffi
R

p

Δ

� ∂
∂v −

∂
∂u

�
; ð112Þ

∂
∂θ ¼ ∂u

∂θ
∂
∂uþ ∂v

∂θ
∂
∂vþ

∂θ̃
∂θ

∂
∂θ̃ þ

∂ϕ̃
∂θ

∂
∂ϕ̃

¼ k

� ∂
∂v −

∂
∂u

�
þ ∂
∂θ̃ ; ð113Þ

∂
∂ϕ ¼ ∂u

∂ϕ
∂
∂uþ ∂v

∂ϕ
∂
∂vþ

∂θ̃
∂ϕ

∂
∂θ̃ þ

∂ϕ̃
∂ϕ

∂
∂ϕ̃

¼ ∂
∂ϕ̃ : ð114Þ

Finally, if we replace everything in Eq. (2) and we take out
accent marks on θ̃; φ̃, we have

� ∂
∂s

�
2

¼ 4
ϒ
ΣΔ

� ∂
∂u

�� ∂
∂v

�
−
1

Σ

� ∂
∂θ

�
2

þ 2

� ∂
∂u

��
2amr
ΣΔ

� ∂
∂ϕ

�
þ k
Σ

� ∂
∂θ

��

þ 2

� ∂
∂v

��
2amr
ΣΔ

� ∂
∂ϕ

�
−
k
Σ

� ∂
∂θ

��

−
Δ − a2sin2ðθÞ
ΣΔsin2ðθÞ

� ∂
∂ϕ

�
2

: ð115Þ

It is easy to verify that la ¼ ðduÞa and na ¼ ðdvÞa are null
covectors, which is consistent with our definition.

B. New angular coordinate φ

Let us start analyzing the most general null geodesic,
where the angular coordinate ϕ changes as in Eq. (7). It is
clear that

lim
Δ→0

dϕ
dλ

→ ∞; ð116Þ

where Δ¼ðr− rþÞðr− r−Þ—that is, Δ → 0, when r → rþ
or r → r−.

We want to define a new angular coordinate without that
bad behavior at Δ ¼ 0. We will consider two ways to
accomplish the task.
One way is to define a coordinate φ̃ which remains

constant along the center-of-mass null congruence, for
which we have (with δ ¼ 0, L ¼ 0, E ¼ 1)

dr
dλ

¼ −�oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − Kðr; θÞΔ

p
Σ

; ð117Þ

dϕ
dλ

¼ 2amr
ΣΔ

: ð118Þ

This suggests that we define

φ̃�oi
¼ ϕ −�oi

Z
2amr0

Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02 þ a2Þ2 − KΔ

p dr ð119Þ

such that with the correct election of�oi, for both outgoing
and ingoing center-of-mass null congruences we have

dφ̃�oi

dλ
¼ 0: ð120Þ

Depending on the election of �oi, is well behaved for the
outgoing null congruence (�oi ¼ þ) and for the ingoing
one (�oi ¼ −). Such a coordinate also depends on θ, where
∂φ̃�oi∂θ ≠ 0. This possible new definition also has been
suggested in Ref. [19]; nevertheless, we have decided
not to use it, because the metric expressions get more
complicated.
The other way, the one we elected in this work, is the

usual definition [15]

dφ�oi
¼ dϕ −�oi

a
Δ
dr; ð121Þ

which has an integral expression given by

φ�oi
¼ ϕ −�oi

a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p ln

���� r − rþ
r − r−

����: ð122Þ

Note that this construction gives two possible angular
coordinates which are well behaved across both horizons
rþ; r−. We have φþ, which is well behaved as one
approaches the past horizon following an outgoing null
congruence (�oi ¼ þ), and φ−, which is well behaved as
one approaches the future horizon following an ingoing one
(�oi ¼ −). In this case,

dφ�oi

dλ
≠ 0; ð123Þ

which indicates that the coordinate φ changes along the
center-of-mass null congruences.
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In the next section, it will be useful to express the
differential of Eq. (121) in terms of center-of-mass null
coordinates u, v; which from Eq. (103) can be expressed as

dφ�oi
¼ dϕ −�oi

affiffiffiffiffi
R

p
�ðdv − duÞ

2
− kdθ

�
: ð124Þ

C. Extended null functions U, V

A natural geometric way to study the behavior of a
function (U) across a hypersurface is to study its behavior
along geodesics that cross this hypersurface, since its
dependence on the affine parameters is geometric and
independent of coordinate choices. Therefore, we begin
by studying the asymptotic behavior of the null coordinate
u along null geodesics that reach the future horizon Hf.
Since it is immaterial which geodesics they are, we choose
null geodesics that are contained in the congruence
v ¼ const:—that is, ingoing geodesics for which one has
to take (�oi ¼ −) and (_θ ¼ −�h

ffiffiffiffi
Θ

p ¼ −k); see Eq. (12).
From the first-order expressions of the geodesic equations

and dv ¼ 0, which allows to express _t ¼ −
ffiffiffi
R

p
Δ _r − k_θ, one

obtains

_ujv¼const: ¼ −2
ffiffiffiffiffi
R

p

Δ
_r − 2k_θ ¼ 2

�
R
ΣΔ

þ k2

Σ

�
: ð125Þ

Defining the null function U by

U ¼ − expð−κuÞ; ð126Þ

one finds the behavior

_U ¼ −κU _u ¼ −2κU
�
R
ΣΔ

þ k2

Σ

�
; ð127Þ

which indicates a divergent behavior of the first term. Let us
study this in more detail. To see the behavior of the first
term as a function of the affine parameter λ, let us recall
from Eq. (5) that at the outer horizon one has

−
Σðrþ; θÞdrffiffiffiffiffiffiffiffiffiffiffiffiffi

RðrþÞ
p ¼ dλ; ð128Þ

so that to first order, one has

Δ¼ðr−rþÞðr−r−Þ

¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðrþÞ

p
Σðrþ;θÞ

ðλ−λþÞðrþ−r−ÞþOððλ−λþÞ2Þ; ð129Þ

where λþ is the value of the affine parameter at the
horizon. Then, the divergent behavior in Eq. (127) can
be expressed as

dU
U

¼ 2κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðrþÞ

p
ðλ − λþÞðrþ − r−Þ

dλþOððλ − λþÞ0Þdλ; ð130Þ

and noting that

ðrþ − r−Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðrþÞ

p ¼ ðrþ − r−Þ
2ðr2þ þ a2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p

2mrþ
¼ κþ; ð131Þ

where κþ is customarily referred to as the surface gravity of
the black hole, one has the leading behavior

dU
U

¼ κ

κþ

dλ
ðλ − λþÞ

ð132Þ

so that one must take κ ¼ κþ in order to have a smooth
behavior of U as a function of the affine parameter λ.
Note that we have just shown that at the future horizon,

one has

U ∝ ðλ − λþÞ ∝ Δ; ð133Þ

where the proportionality factors are smooth functions on
the horizon. In order to have a double null system that is
smooth across the outer past event horizon, we also define
the null function V in a similar way, so that we have

U ¼ − expð−κþuÞ ð134Þ

and

V ¼ expðκþvÞ: ð135Þ

Thus, using this general geometric approach, we have
determined the correct functional form of the new null
function U to be regular at both sides of the future event
horizon, and that of the null function V to be regular at both
sides of the past event horizon.
Let us remark that we have been studying the asymptotic

behavior approaching the horizon from the outside region
where λ < λþ. In the inner region, U > 0, and one would
use the relation

U ¼ expðκþuinnerÞ; ð136Þ

where uinner is the analogous inner version of the null
coordinate u in the outer region. The complete and detailed
description of interior regions in terms of double null
coordinates, will be published elsewhere.

D. Coordinates fU;V; θ;φg
From Eqs. (134) and (135), we have

du ¼ −
1

κþ

dU
U

; ð137Þ
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dv ¼ 1

κþ

dV
V

: ð138Þ

Then, we substitute Eqs. (124), (137), and (138) into Eq. (104) to obtain

ds2 ¼ 1

4

�
1−

2mr
Σ

−
ϒa2sin2ðθÞ þΣ2Δ

ΣR
−
�oi4mra2sin2ðθÞ

Σ
ffiffiffiffiffi
R

p
�

1

κ2U2
dU2

þ 1

4

�
1−

2mr
Σ

−
ϒa2sin2ðθÞ þΣ2Δ

ΣR
�oi

4mra2sin2ðθÞ
Σ

ffiffiffiffiffi
R

p
�

1

κ2V2
dV2 −

1

2

�
1−

2mr
Σ

þϒa2sin2ðθÞ þΣ2Δ
ΣR

�
1

κ2UV
dUdV

þ
�ðϒa2sin2ðθÞ þΔΣ2Þ

ΣR
�oi

2mra2sin2ðθÞ
Σ

ffiffiffiffiffi
R

p
�

k
κU

dUdθþ
�ðϒa2sin2ðθÞ þΔΣ2Þ

ΣR
−
�oi2mra2sin2ðθÞ

Σ
ffiffiffiffiffi
R

p
�
k
κV

dVdθ

−
�
2amrsin2ðθÞ

Σ
�oi

ϒasin2ðθÞ
Σ

ffiffiffiffiffi
R

p
�

1

κU
dUdφþ

�
2amrsin2ðθÞ

Σ
−�oi

ϒasin2ðθÞ
Σ

ffiffiffiffiffi
R

p
�

1

κV
dVdφ

−
�
Σþ k2ðϒa2sin2ðθÞ þΣ2ΔÞ

ΣR

�
dθ2 �oi

2ϒasin2ðθÞ
Σ

ffiffiffiffiffi
R

p kdθdφ−
ϒ
Σ
sin2ðθÞdφ2; ð139Þ

where one has to consider κ ¼ κþ. Alternatively, using the explicit appearance of Φ, one can express each of the metric
components for the ingoing case as follows:

gUU ¼ 1

4κ2þU2

�
1 −Φ −

ΔΣ
R

−
a2 sinðθÞ2

R
ðr2 þ a2 þΦa2 sinðθÞ2 − 2Φ

ffiffiffiffiffi
R

p
Þ
�
; ð140Þ

gUV ¼ −
1

4κ2þUV

�
1 −Φþ ΔΣ

R
þ a2 sinðθÞ2

R
ðr2 þ a2 þΦa2 sinðθÞ2Þ

�
; ð141Þ

gUθ ¼
k

2RκþU
ðΔΣþ a2 sinðθÞ2ðr2 þ a2 þΦa2 sinðθÞ2 −Φ

ffiffiffiffiffi
R

p
ÞÞ; ð142Þ

gUφ ¼ −
a sinðθÞ2
2κþU

�
Φ −

r2 þ a2 þΦa2 sinðθÞ2ffiffiffiffiffi
R

p
�
; ð143Þ

gVV ¼ 1

4κ2þV2

�
1 −Φ −

ΔΣ
R

−
a2 sinðθÞ2

R
ðr2 þ a2 þΦa2 sinðθÞ2 þ 2Φ

ffiffiffiffiffi
R

p
Þ
�
; ð144Þ

gVθ ¼
k

2RκþV
ðΔΣþ a2 sinðθÞ2ðr2 þ a2 þΦa2 sinðθÞ2 þΦ

ffiffiffiffiffi
R

p
ÞÞ; ð145Þ

gVφ ¼ a sinðθÞ2
2κþV

�
Φþ r2 þ a2 þΦa2 sinðθÞ2ffiffiffiffiffi

R
p

�
; ð146Þ

gθθ ¼ −Σ −
k2

R
ðΔΣþ a2 sinðθÞ2ðr2 þ a2 þΦa2 sinðθÞ2ÞÞ;

ð147Þ

gθφ ¼ −ka sinðθÞ2
�
r2 þ a2 þΦa2 sinðθÞ2ffiffiffiffiffi

R
p

�
; ð148Þ

gφφ ¼ − sinðθÞ2ðr2 þ a2 þΦa2 sinðθÞ2Þ: ð149Þ

To compute the contravariant expression, we can start
from Eq. (115) to make a coordinate transformation.
Formally, we will use a notation to distinguish old and
new coordinates. We will start from fu; v; θ;ϕg, and then
transform to fU;V; θ̃;φg. Note that the angular coordinate
θ is still unaltered, and we only introduce the new
coordinates U;V;φ. It is useful to consider the differentials
of the new coordinates in terms of the old ones:
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dU ¼ −κUdu; ð150Þ

dV ¼ κVdv; ð151Þ

dθ̃ ¼ dθ; ð152Þ

dφ ¼ dϕ −
�oiaffiffiffiffiffi
R

p
�ðdv − duÞ

2
− kdθ

�
: ð153Þ

Then, each coordinate vector is

∂
∂u ¼ ∂U

∂u
∂
∂U þ ∂V

∂u
∂
∂V þ ∂θ̃

∂u
∂
∂θ̃ þ

∂φ
∂u

∂
∂φ

¼ −κU
∂
∂U �oi

a

2
ffiffiffiffiffi
R

p ∂
∂φ ; ð154Þ

∂
∂v ¼ ∂U

∂v
∂
∂U þ ∂V

∂v
∂
∂V þ ∂θ̃

∂v
∂
∂θ̃ þ

∂φ
∂v

∂
∂φ

¼ κV
∂
∂V −�oi

a

2
ffiffiffiffiffi
R

p ∂
∂φ ; ð155Þ

∂
∂θ ¼ ∂U

∂θ
∂
∂U þ ∂V

∂θ
∂
∂V þ ∂θ̃

∂θ
∂
∂θ̃ þ

∂φ
∂θ

∂
∂φ

¼ ∂
∂θ̃ �oi

akffiffiffiffiffi
R

p ∂
∂φ ; ð156Þ

∂
∂ϕ ¼ ∂U

∂ϕ
∂
∂U þ ∂V

∂ϕ
∂
∂V þ ∂θ̃

∂ϕ
∂
∂θ̃ þ

∂φ
∂ϕ

∂
∂φ

¼ ∂
∂φ : ð157Þ

Finally, if we replace everything in Eq. (115) and we take
out tilde mark on θ̃, we have

� ∂
∂s

�
2

¼ −4κ2
ϒ
ΣΔ

UV

� ∂
∂U

�� ∂
∂V

�

−
2κk
Σ

�
U

� ∂
∂U

�
þ V

� ∂
∂V

��� ∂
∂θ

�

−
2κaU
ΣΔ

ð2mr −�oi

ffiffiffiffi
R

p
Þ
� ∂
∂U

�� ∂
∂φ

�

þ 2κaV
ΣΔ

ð2mr�oi

ffiffiffiffi
R

p
Þ
� ∂
∂V

�� ∂
∂φ

�

−
1

Σ

� ∂
∂θ

�
2

−
1

Σsin2ðθÞ
� ∂
∂φ

�
2

; ð158Þ

where one has to consider κ ¼ κþ.
We have already checked that Eqs. (139) and (158)

satisfy gabgab ¼ I. Moreover, its determinant is given by

g ¼ −
Δ2Σ2 sinðθÞ2
4κ4RU2V2

: ð159Þ

E. Metric near the outer horizons

Since the metric components in the new double null
coordinate system are rather complicated, it is interesting to
see explicitly that each of the components is a regular
function in a neighborhood of the outer horizon, although
we know that this should be so, since the coordinates are
well behaved at the event horizon.
Therefore, here we will present the expansion

of each metric component around ðΔ ¼ 0Þ. These calcu-
lations were performed with algebraic manipulation
programs:

ðgUUκ
2U2Þjð�oi¼−Þ ≈

K½ðK − 8mrÞa2sin2ðθÞ − 16m2r2�
256m4r4ð2mrþ a2sin2ðθÞÞ Δ2 þOðΔ3Þ; ð160Þ

ðgVVκ2V2Þjð�oi¼þÞ ≈
K½ðK − 8mrÞa2sin2ðθÞ − 16m2r2�

256m4r4ð2mrþ a2sin2ðθÞÞ Δ2 þOðΔ3Þ; ð161Þ

ðgUUκ
2U2Þjð�oi¼þÞ ≈

−a2 sin2ðθÞ
2mrþ a2 sin2ðθÞ þOðΔÞ; ð162Þ

ðgVVκ2V2Þjð�oi¼−Þ ≈
−a2 sin2ðθÞ

2mrþ a2 sin2ðθÞ þOðΔÞ; ð163Þ

ðgUVκ2UVÞ ¼ ðgVUκ2UVÞ ≈ ð4mr − KÞa2 sin2ðθÞ þ 8m2r2

16m2r2ð2mrþ a2 sin2ðθÞÞ ΔþOðΔ2Þ: ð164Þ

The null-angular components are
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ðgUθκUÞjð�oi¼−Þ ≈ −
1

8

kðð4mr − KÞa2sin2ðθÞ − 8m2r2Þ
r2m2ð2mr − a2sin2ðθÞÞ ΔþOðΔ2Þ; ð165Þ

ðgVθκVÞjð�oi¼þÞ ≈ −
1

8

kðð4mr − KÞa2sin2ðθÞ − 8m2r2Þ
r2m2ð2mr − a2sin2ðθÞÞ ΔþOðΔ2Þ; ð166Þ

ðgUφκUÞjð�oi¼−Þ ≈
1

4

ð4mrþ K − 2a2sin2ðθÞÞa2sin2ðθÞ
mrð2mr − a2sin2ðθÞÞ ΔþOðΔ2Þ; ð167Þ

ðgVφκVÞjð�oi¼þÞ ≈ −
1

4

ð4mrþ K − 2a2sin2ðθÞÞa2sin2ðθÞ
mrð2mr − a2sin2ðθÞÞ ΔþOðΔ2Þ; ð168Þ

ðgUθκUÞjð�oi¼þÞ ≈
2ka2sin2ðθÞ

2mr − a2sin2ðθÞ þOðΔÞ; ð169Þ

ðgVθκVÞjð�oi¼−Þ ≈
2ka2 sin2ðθÞ

2mr − a2 sin2ðθÞ þOðΔÞ; ð170Þ

ðgUφκUÞjð�oi¼þÞ ≈ −
4amr sin2ðθÞ

2mr − a2 sin2ðθÞ þOðΔÞ; ð171Þ

ðgVφκVÞjð�oi¼−Þ ≈
4amr sin2ðθÞ

2mr − a2 sin2ðθÞ þOðΔÞ; ð172Þ

and the angular-angular components are

gθφ ≈�oi
4m2r2a sin2ðθÞk

mrð2mr − a2 sin2ðθÞÞ þOðΔÞ; ð173Þ

gθθ ≈ −
4m2r2 − ð4mr − KÞ
2mr − a2 sin2ðθÞ þOðΔÞ; ð174Þ

gφφ ≈
4m2r2 sinðθÞ2

2mr − a2 sinðθÞ2 þOðΔÞ: ð175Þ

From the discussions in Sec. V, V C, it is deduced that all
the components of the metric are smooth across the future
event horizon, and it can easily be seen that the same
observation is true for the past outer horizon.
With respect to the contravariant metric components

[Eq. (158)], the Δ dependence is explicit, so there is no
need to take any expansion around (Δ ¼ 0).

F. Other algebraic study of metric components through
the outer horizon H

Since the expressions involving the coordinates U and V
are rather complicated, and the subject of the smoothness of
the metric across the horizon is a delicate one, we will next
show another algebraic study of the well-behaved-ness of
metric components at the outer horizon.

One can distinguish two exterior horizons where r ¼ rþ:
the future exterior horizon, Hf, and the past one, Hp. To
cross both of them, it has to be taken that κ ¼ κþ as given
by Eq. (131). To show that the Kerr metric in extended
center-of-mass null coordinates is well behaved through rþ,
one can choose a path to cross Hf.
The first step is to note that the product between U

[Eq. (134)] and V [Eq. (135)] is

UVjκ¼κþ ¼ −e2κþðrþ
R

θ

0
kðr;θ0Þdθ0Þðr−Þ

r−
rþ

ðrþÞðr − r−Þ
rþþr−
rþ

Δ: ð176Þ

We will study its behavior as one crosses Hf and Hp.
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1. Crossing future horizon Hf

The next step is to choose the path to cross Hf. For
example, we can approachHf maintaining V as constant—
that is, V ¼ V0 (following a future-directed ingoing center-
of-mass null geodesic). Then we have

Ujκþ;V¼V0
¼ −e2κþðrþ

R
θ

0
kðr;θ0Þdθ0Þðr−Þ

r−
rþ

ðrþÞðr − r−Þ
rþþr−
rþ V0

Δ: ð177Þ

We can start with the covariant metric expression (139). If
one follows such a path where dV ¼ 0, the only covariant
metric components to analyze are gUU, gUθ, and gUφ.
Because such a path follows an ingoing center-of-mass null
geodesic, the correct angular coordinate φ ¼ φ− has to be
considered—that is, �oi ¼ −. Then, from Eqs. (160),
(165), and (170), it is straightforward to show that the
metric components gUU, gUθ, and gUφ are well behaved and
different from zero at r ¼ rþ and nearby regions. One can
see that every factor which involves Δ gets simplified. The

remaining factors, including ðr − r−Þ
rþþr−
rþ , are well behaved

at r ¼ rþ.
To analyze the contravariant metric expression (158), we

only have to look at the components gUV, gUφ, and gVφ,
which seems to be problematic because of Δ in the
denominator. From Eqs. (176), (177), and this path election
where �oi ¼ −, it is clear that gUV and gUφ are well
behaved and different from zero at r ¼ rþ. In the case of
gVφ, we have that ð2mr −

ffiffiffiffiffi
R

p Þjr≈rþ ≈ −Δ, so the prob-
lematic factor gets simplified while V ¼ V0; therefore such
a metric component is also well behaved and different from
zero at r ¼ rþ.
If one considers the behavior of the metric determinant

(159) at Hf and Hp, it is easy to show from Eq. (176) that
the factor Δ2 gets simplified, so that the determinant is well
behaved and different from zero at r ¼ rþ.
Therefore, we have shown that the metric components, in

both covariant [Eq. (139)] and contravariant [Eq. (158)]
expressions, are well behaved across the future horizonHf.

2. Crossing past horizon Hp

We have to choose the path to crossHp. For example, we
can approach Hp maintaining U as constant—that is, U ¼
U0 (following a past-directed center-of-mass null geo-
desic). Then we have

Vjκþ;U¼U0
¼ −e2κþðrþ

R
θ

0
kðr;θ0Þdθ0Þðr−Þ

r−
rþ

ðrþÞðr − r−Þ
rþþr−
rþ U0

Δ: ð178Þ

We can start with the covariant metric expression (139). If
one follows such a path where dU ¼ 0, the only covariant
metric components to analyze are gVV , gVθ, and gVφ.
Because such a path follows an outgoing center-of-mass

null geodesic, the correct angular coordinate φ ¼ φþ has to
be considered—that is, �oi ¼ þ. Then, from Eqs. (161),
(166), and (168), it is straightforward to show that the
metric components gVV , gVθ, and gVφ are well behaved and
different from zero at r ¼ rþ. One can see how every factor
that involves Δ gets simplified. The remaining factors,

including ðr − r−Þ
rþþr−
rþ , are well behaved at r ¼ rþ.

To analyze the contravariant metric expression (158), we
only have to look at the components gUV , gUφ, and gVφ,
which seems to be problematic because of Δ in the
denominator. From Eqs. (176), (178), and this path election
where �oi ¼ þ, it is clear that gUV and gVφ are well
behaved and different from zero at r ¼ rþ. In the case of
gUφ, we have that ð2mr −

ffiffiffiffiffi
R

p Þjr≈rþ ≈ −Δ, so the prob-
lematic factor gets simplified whileU ¼ U0; therefore such
a metric component is also well behaved and different from
zero at r ¼ rþ.
In this way, we have shown that the metric components,

in both covariant [Eq. (139)] and contravariant [Eq. (158)]
expressions, are well behaved across both the future and
past horizons Hf and Hp (r ¼ rþ).

VI. COMPARISON WITH RELATED WORKS

Our work improves upon several attempts that can be
found in the literature. We compare previous works in
detail in the rest of this section.
A remarkable one is developed in Ref. [16], where the

null hypersurfaces they construct unfortunately have a
conical singularity all along the axis of symmetry and
do not include the null geodesic along the axis of
symmetry. In order to compare it with our coordinates,
we consider from Ref. [16] the null function

u� ¼ t� − r� ¼ t − a sinðθÞ − r�ðrÞ; ð179Þ

which they call ξ−, and where the analog to our natural
spheres is the intersection of u� with the Boyer-Lindquist
coordinate t, which can be parametrized by rsH, and that we
call SrsH . Just by looking at Eq. (179), one can forecast
some kind of problem, since the derivative of the null
coordinate is direction dependent at the axis of symmetry,
but one can also see this graphically. In Fig. 13, it can be
seen that their surface, SrsH , has a discontinuity in the
derivatives at (θ ¼ 0; π), while our Srs is clearly smooth.
Such discontinuity is not a scale effect. The Gaussian
curvature of SrsH diverges at the poles, while it is well
behaved for Srs. The intrinsic character of Gaussian
curvature clears any doubt about the presence of such a
problematic cusp in SrsH .
As a test case for the use of coordinate systems, one can

consider the massless scalar field equation for Kerr space-
time. To study the scalar wave equation, one can start from
the expressions of Ref. [27] and make the appropriate
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coordinate transformations. If one does so, in such an
equation, the expansion spin coefficient ρ of the corre-
sponding null geodesic congruence appears explicitly
contained in the null hypersurfaces, which for the
center-of-mass null coordinates is regular and well
behaved. But if one uses Hayward’s definition [16], which
can be obtained from our expressions by simply taking

K ¼ a2, one will get a divergent coefficient at the poles. Let
us look at the third term of ρ [see Eq. (61)], namely

cosðθÞ
sinðθÞ

ffiffiffiffi
Θ

p
¼ cosðθÞ

sinðθÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðr; θÞ − a2sin2ðθÞ

q
: ð180Þ

Note that in Hayward’s case, it has a divergent behavior at
the poles, since

lim
θ→0;π

cosðθÞ
sinðθÞ

ffiffiffiffi
Θ

p
jHayward ¼ lim

θ→0;π

acos2ðθÞ
sinðθÞ ¼ ∞: ð181Þ

Therefore, the cusp that one can see in Fig. 13 points out a
serious geometric problem in Hayward’s definition. The
divergent behavior in both geometric quantities, Gaussian
curvature and the expansion spin coefficient ρHayward,
indicates that the null coordinates they have constructed
are adapted to null congruences which have caustics along
the axis of symmetry. Therefore, it is impossible to solve the
wave equation by any analytic or numeric treatment if one
uses Hayward’s coordinates. It is intriguing to note that the
Kerr metric in Hayward’s null coordinates has no divergen-
ces or bad behavior in its components (with the exception of
typical problems of spherical coordinates). The problem
instead is related to its derivatives. The spin coefficient
ρHayward is one of the connection components, which
involves metric derivatives. Since the curvature is deter-
mined from its connection, we can foretell the presence of
divergent behaviors in many other studies of interest. We
have already studied the scalar wave equation with our
setting, and our results will be published elsewhere.
Another approach is the work of Ref. [17], where they

also consider the possibility of a constant K ¼ a2E2. They
call this condition X2 ¼ 1, where X2 ¼ K

a2E2. Then, such a
definition also has the same pathology as Ref. [16].
Our approach is more related to the work of Ref. [19],

although their treatment only covers the northern hemi-
sphere, but their expressions also fail to deal with the north
pole and are very difficult to compute, even numerically
[18]. More concretely, for example, it will be impossible to
treat the scalar wave equation numerically with the coor-
dinate system of Ref. [19], since their expressions are
divergent at the poles.
Finally, after all these comparisons with related works, we

can conclude that the center-of-mass null coordinates form
the first complete double null coordinate system in the sense
that they allow us to treat and solve fundamental applications
problems where previous definitions have failed.

VII. FINAL COMMENTS

The condition for the construction of our null coordinate
system can be readily recapitulated in the following main
points: (i) We base our construction on the existence of a
particular null geodesic congruence. (ii) The condition for

FIG. 13. Comparison between two-dimensional spacelike sur-
faces Srs (of center-of-mass null coordinates) and SrsH (of
Hayward’s definition [16]). It can be seen that Srs is completely
smooth, while SrsH has a cusp or peak with a discontinuity at the
poles (θ ¼ 0; π), which is not a scale effect. The Gaussian
curvature and spin coefficient ρHayward have divergent behavior
on the surface SrsH , indicating the presence of caustics along the
axis of symmetry. Two cases are shown, one at (r ≈ 3rþ) and the
other at the interior (r ≈ 0.85r−), using the parameters
m ¼ 1, a ¼ 0.8.
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the congruence to be hypersurface orthogonal is equivalent
to considering a space-dependent Carter “constant” K.
(iii) The congruence is fixed by conditions at future null
infinity, which is equivalent to a boundary condition for the
differential equation for K. (iv) This equation cannot be
solved in terms of elementary functions, and therefore is
solved numerically. (v) As a consequence of the previous
requirements, our congruence does not have caustics.
The construction of one such null congruence guarantees

the existence of its dual congruence, since for each out-
going one there exists the corresponding incoming one.
It is worthwhile to notice that the geometrical construc-

tion of the null coordinate u, based on the center-of-mass
sections, can be extended to nonstationary, radiating,
asymptotically flat spacetimes at future null infinity [28].
As one could expect, the new double null coordinates for

Kerr spacetime have an explicit dependence with the
function Kðr; θÞ. Nevertheless, in this construction, one
can proceed analytically to compute any geometric quantity
of interest, as we did when we computed the spin
coefficients and Weyl scalars. For other cases, where the
complete solution Kðr; θÞ is needed, it can be easily
obtained from the presented numeric scheme. We have
used it to compute all the plots of this manuscript.
We have also studied the surface family Srs, defined by

the intersection of both null coordinates u and v, where rs
can be interpreted as the Kerr extension of Schwarzschild’s
tortoise coordinate. We give a complete geometric descrip-
tion of such two-dimensional spacelike surfaces in terms of
their Gaussian and extrinsic curvature scalars. One can
clearly appreciate their roundness far away from the event
horizon, and how their geometry changes as one
approaches the interior regions (r < rþ).
Since our family of null surfaces surround the black hole

in a smooth manner, we were also able to define Kruskal-
like extensions U and V for the outgoing u and ingoing v
null functions. Those extensions, together with the defi-
nition of a new axial angular coordinate, allow us to
overcome the Boyer-Lindquist coordinate singularities.

This makes it possible to extend the metric across the
event horizon in a regular way. A detailed discussion for the
construction of Kruskal-like coordinates in the vicinity of
the interior horizons will be carried out in a separate article.
We have also compared our definition and results with

other previous attempts in literature. We show that in all
those works, there is divergent behavior over the axis of
symmetry; with our definition, one instead obtains regular
behavior. We have considered all those definitions with an
application problem: the computation of a massless scalar
field in Kerr spacetime. The definitions of Refs. [16,17]
have divergent behavior in one of the terms of the wave
equation and in the Gaussian curvature over their related
two-dimensional spacelike surface family. In the case of
Ref. [19], their expressions for null coordinates are directly
divergent at the axis of symmetry. For these reasons, all the
previous definitions cannot be taken as candidates for
coordinate systems and are therefore unsuitable to be used
in many problems of interest.
We expect that this double null foliation that we are

presenting will be useful for several studies of the Kerr
geometry, including electromagnetic radiation powered by
rotating black holes or black hole evaporation. Many lines
of studies have been affected due to the lack of these null
coordinates—for example, the Vaydia extension for space-
times without spherical symmetry, where previous attempts
[29] did not have a complete null coordinate system to work
with. Also, the stability studies of the interior of Kerr
spacetime have a huge dependence on the null coordinate
system [30].
We plan to study perturbations of the Kerr geometry

calculated from data on these characteristic surfaces in the
near future.
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