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We present a definition for a pair of null coordinates that are naturally adapted to the horizons and future
null infinity of Kerr spacetime, and that are generated by the center-of-mass sections at future null infinity.
They are a smooth, round family of null hypersurfaces which foliate the Kerr spacetime in an outgoing and
an ingoing sense, respectively, and they have a regular extension across the horizons. Because of Kerr’s
peculiar geometry, the construction involves a nonlinear differential equation for a scalar function related to
Carter’s constant, whose solution cannot be expressed in terms of simple analytic functions. We present the
numerical solution of this scalar for a particular choice of the geometrical parameters. In this setting, there
naturally appears a two-dimensional spacelike family of round surfaces S, that are parametrized by r;,
which are the intersections of both null coordinates, where r, can be thought of as the tortoise coordinate
extension for the Kerr spacetime. The S, surfaces are axially symmetric, but they have an (r,0)
dependence in Boyer-Lindquist coordinates. They can also be characterized in a complete geometrical way
by their Gaussian and extrinsic curvature scalars, which we were able to compute by the use of Geroch-
Held-Penrose formalism. We compare our definition with other previous attempts in the literature, and we
show that all of them have divergent behavior at the axis of symmetry. Thus, our construction presents the
first double null coordinate system which makes possible computations over all of the Kerr spacetime.
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I. INTRODUCTION

The significance of null coordinates can be traced back
to the beginnings of general relativity. The first solution of
the Einstein-Hilbert equations was discovered for a vacuum
and spherical symmetric spacetime by Schwarzschild very
early in 1916 [1]. But it took several decades to understand
the true meaning of the coordinate singularity r = 2m in
terms of the original coordinate system. The issue was
clarified in the works of Kruskal [2] and Szekeres [3],
where the use of null coordinates was essential in the
process to remove the coordinate singularity. Moreover,
such definitions allowed a complete understanding of the
causal structure and the most important feature of a black
hole spacetime, the event horizon.

Null coordinates also opened a broad spectrum of studies,
including Vaydia spacetimes, Hawking radiation, and the
stability of black holes. Nevertheless, Schwarzschild space-
times are very restrictive and cannot model the final state of a
generic black hole.

This inevitably leads to the study of other vacuum
solutions that could account for a final angular momentum
content. This was achieved by the Kerr solution [4].
Although presented more than fifty years ago, it is still
the subject of interesting studies and discoveries. At
present, the Kerr geometry has acquired renewed relevance,
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since it is used to model the spacetime associated with the
first observed picture of a black hole, which corresponds to
a supermassive black hole in M87 [5-10] with a mass of
6.5 x 10° M, and a favored angular momentum parameter
of about a = 0.94M, although other astrophysical studies
[11] set this relation to a = 0.98M.

The general understanding [12] is that these metrics are
the general final stage for dynamically evolving isolated
black holes, so they are the natural candidates to model
black holes with angular momentum as they settle down to
a stationary state. It is for these reasons that the Kerr
spacetimes are continuously studied and new properties are
regularly presented in the literature.

The possibility to generalize the previous knowledge
gained for the Schwarzschild case to this axis-symmetric
spacetime makes the calculation of null coordinates for
Kerr geometry an interesting and necessary subject.
However, it has also been remarkably elusive.

It is an interesting question, since in its construction one
can grasp the details of the geometry encoded in the Kerr
metric. It is a necessary and useful construction for the
discussion and calculation of characteristic problems in the
Kerr geometry, from a theoretical and numerical point of
view. It is elusive, since before this work, there were no
presentations of complete, round, smooth null coordinates
that enfold the horizons in a regular way.

© 2021 American Physical Society
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For spacetimes with spherical symmetry, like
Schwarzschild or Reissner-Nordstrom, null coordinates
are well known. It is advantageous that in those cases,
principal null congruences do not have twist, so it is
possible to define null coordinates adapted to such con-
gruences, like Edington-Finkelstein and Kruskal-Skeres for
Schwarzschild. But in Kerr geometry, with less symmetry,
the ingredients to define null coordinates are not that easy
to find. In this case, principal null congruences have twist,
so it is not possible to define null coordinates adapted
to them.

The use of functions that are null at certain points in Kerr
spacetime can be traced to Carter’s work [13]. In this way,
he was able to study the causal structure of Kerr geometry
at the axis of symmetry. In many textbooks like Refs. [14]
or [15], inspired by principal null congruences, Carter’s
construction is reproduced. But it must be noted that such
constructions cannot be extended as null coordinates to
other spacetime regions, due to the presence of twist in the
principal null directions. Moreover, all compactified causal
diagrams related to this construction are incomplete, since
they are only valid at the axis of symmetry of Kerr
spacetime.

In the literature, there are several works which deal with
the construction of null coordinates in Kerr spacetime.
Some remarkable ones are Refs. [16—19], each of which
contributes from different approaches with a characteristic
point of view. But as we will discuss at the end of this
manuscript, in spite of all these remarkable contributions,
such definitions still have serious problems with the
presence of divergent behaviors. Therefore, they become
useless for application purposes, failing at the main task of
any coordinate system.

In this work, we solve this situation by presenting a
double null coordinate system for Kerr spacetime. These
null functions surround the black hole in a smooth manner
and fill the spacetime, and coincide at future null infinity
with the center-of-mass sections [20,21]. In the interior of
the black hole, they are also smooth and can be extended all
the way up to the interior horizons, and across them too, up
to the region containing Kerr’s ring singularity.

This article is organized as follows: In Sec. II, we define
the new double null coordinates for Kerr spacetime, starting
from the most general null geodesic congruence. We also
give the integral expressions of each null coordinate
function u and v, together with a plot that compares
Kerr’s and Schwarzschild’s outgoing null functions. In
Sec. III, we present the null tetrad adapted to the new
double null coordinates. To obtain a deeper geometric
perspective, we compute the spin coefficients and the Weyl
scalars that give geometric details of the null congruences
used in our definition. In Sec. IV, we present the surface
family S, as the intersection of both null coordinates u and
v; where r can be interpreted as the Kerr extension of the

Schwarzschild’s tortoise coordinate. We give a complete
geometric description of such two-dimensional spacelike
surfaces in terms of their Gaussian and extrinsic curvature
scalars. In Sec. V, we express the Kerr metric in terms of the
null coordinates # and v. We also define a new angular
coordinate and the extended versions of the null coordi-
nates, which we call U and V. These extensions allow the
crossing of the past and future event horizon in a regular
way. In Sec. VI, we compare our definition and results with
other previous attempts found in the literature. We show
that in all those works, there is divergent behavior over the
axis of symmetry, and we explain why such definitions fail
as candidates for coordinate systems and therefore are
unsuitable to be used in many studies of interest. Instead,
with our definition, one obtains a regular behavior, opening
a broad spectrum for possible applications. In Sec. VII, we
give final comments summarizing important aspects of our
contribution.

II. NULL COORDINATES DEFINITION

A. Basic construction

To make our notation explicit, let us begin by writing the
Kerr line element and its inverse using Boyer-Lindquist
[22] coordinates:

ds? = (1 — ®)di? + 2Dasin?(0)dtdg

b T
~ L dr’ = 2d0” — < sin’(0)dg). (1)

0 27 Y /O\2 damr /0O 0
(a) T3a (@) iy (a) (%)
AfON2 1/0\2 A-a?sin®(0) [ 02
_E<E> E(%) ~ SAsin?(6) (%) ’
(2)
with

T = r? + a*cos?(6), A=7r*+a®=2mr,

2mr
b =—
2 ’ (3)

T = (r? + a*)? — Aa’*sin*(0),
where the parameter m denotes the mass, and the angular
momentum of the black holes is given by J = am.

Since the principal null congruences have twist, they do
not help in the search for natural null hypersurfaces. We
have to start by considering all possible null geodesics. It is
well known [14,23] that the most general null geodesics
can be put in terms of first-order derivatives with respect to
an affine parameter A:

dr . 1
—=t=—|EY —2amrL 4
dl ! EA[ amrL:], (4)
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dr . N V(P +a*)E —aL. > — KA
_— = }" f— . s
di ot )

(5)

o . 1 . L, ]2

dg _
dr

¢

. [ZamrE (T - 2mr) Sinzza)] )

Then the most general null geodesic congruence for the
Kerr spacetime can be expressed in terms of its tangent
vector

NEA o\* .[/O0\* .[0)\¢
Vé =t = | = 0| — — . (8
(@) +(a) +1(aa) +4(ag) @
All the steps of our definition will be shorter and simpler if

we work with the one form V,, which in Boyer-Lindquist
coordinates is

Va = Yab VP

D) )
= Edi, — i dr, —02d0, ~ L.dgh,

+,iV/ (P + a®)E —aL,]* — KA

= Edt, — A dr,
L 2
- <j: K - [Ea sin(6) — sin(zé’)] )d@a
- de¢a9 (9)

where E, L., and K (the Carter constant) are conserved
quantities along each geodesic.

The sign 4-,,; determines the character of the congruence.
We will use 7, (with &,; = +) to denote the most general
outgoing null congruence, and n, (with £,; = —) to denote
the ingoing null congruence. For the purpose of simpler
presentation, below we will present our definition consid-
ering the outgoing 7, but all the steps and main results can
also be obtained for the ingoing one n,.

In what follows, without loss of generality, we will take
E =1, in the outer region. At each point of the spacetime,
the choice of the constants L, and K singles out a point in
the sphere of directions.

This raises the question of how one can choose the
“constants” L_ and K so that locally they define a hyper-
suface orthogonal null congruence with the properties that
we want—that is, although they are constant along each
null geodesic, we are free to choose them with different
values for each geodesic. The guiding idea is that £, must
be an exact differential, but we also demand the congruence
to be orthogonal to a sphere at future null infinity, which
coincides with the center-of-mass section.

As a first step, let us consider a surface S,, defined by

(t = constant and r = constant), with tangent vectors (%)”

and (%)” . We are interested in the limiting case, where this
surface tends to a sphere at infinity, S, — S,. In our
approach, we select the congruence £ which is orthogonal
to S—that is, that

8 b
li i —] =0,
S0 Jab <ag>

. AN
rlif{)logabf'I(%) =0. (10)

From Egs. (9) and (10), we obtain for each geodesic L, = 0
and K = a”sin(6*)?, where 8* = 6|,__,. These conditions
fix the congruence completely, and since it started orthogo-
nal to a topological 2-sphere, it is hypersurface orthogonal.

It is convenient to mention that the center-of-mass
sections which motivate our definition can be obtained
as the limit of known coordinates as one approaches future
null infinity. The retarded version of the original Kerr
coordinate [4,14] can be defined by dit = dt—%dr,
although we note that this is not a null coordinate. Then,
one can check that the limit where &t = constant, r — oo
goes to the center-of-mass sections S, at future null
infinity [20].

At an interior point of the spacetime with coordinates
(r,0), the quantity K will pick the value from the corre-
sponding null geodesic passing through this point. Then, one
can think in terms of the functional relation K(r,8). This
allows one to change the logic and ask for the condition of
K(r,0),sothat £ is ahypersurface orthogonal outgoing null
congruence—that is, without twist—which also reaches
future null infinity with K = a?sin(6*)?. Let us note that
we are requesting L, = 0 and 7 > 0 for this congruence.

The sign for @ is chosen by thinking on the behavior of
spheroidal coordinates (close to a sphere) in the limit as one
approaches future null infinity following an outgoing null
geodesic, so that we take (+) for the northern hemisphere
and (—) for the southern hemisphere, and we will express
this by +|,. Therefore, we have

\/(r2 +a*)? - K(r,0)A

C, =dt, — A dr,
— +|,1/K(r.60) - asin(0)%do,. (11)
SRR AV
ny = diy 4 YOOV KO
A
+ |,/ K(r.0) - a?sin(0)*de,. (12)

The condition for Z, to be hypersurface orthogonal
(without twist) is equivalent to that for being the differential
of a null function u (outgoing)—that is,
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(du), =¢,. (13)

Therefore, the exterior derivative of #, must vanish—
namely,

dc,) d9/\ dr
( { 2/ (r* +a?) 59
d9/\dr =0, (14
2\/ (asin(@ a" (14)
which one can also express as
0K 0K
(r* + a*)? KAEi K — (asin(@))z%zo.
(15)

Thus, Eq. (15) constitutes the integrability condition for the
one form Z, to be the differential of a null function that we
call u.

The natural question arises: Are the solutions of Eq. (15)
consistent with the property that K must be constant along
each null geodesic? To answer this, let us just calculate the
derivative of K with respect to each affine parameter—
namely,

dK 0K . OK.

\/ r? +a — KAOK

o e or

VK — (asin(6 8[(

00

Itcan be seen, then, that by imposing Eq. (15), one guarantees
that K is constant along each null geodesic of the congruence.
The same result [Eq. (15)] is obtained when one
considers the ingoing null congruence n, [Eq. (12)]
together with both conditions of our definition: the asymp-
totic [Eq. (10)] and local [Eq. (14)] ones. In such case, the
null function is called v (ingoing), where (dv), = n,.

B. Solving for the function K(r, 6)

The structure of Eq. (15) suggests that we work with the
auxiliary function k defined from

K(r,0) = a*sin(0)* + k*(r, 0) (17)

so that the function K(r,8) can be expressed in terms of
k(r,6). We also use the variable

g=- (18)

for the computation. One can see then that the boundary
condition

limK = a?sin(6")? (19)
is equivalent to
limk = 0. 2
él_l;%k 0 (20)

In terms of these new variables, Eq. (15) becomes

—Zézk% _ (j:|h§2|k|)(2a2 sin(6) cos(0) + 2k %)
o V(1 +&a%)? - KA
2§2k‘?2§. Such an equation is invariant under
the exchange k — —k with the boundary condition
in Eq. (20).
Note that in the northern hemisphere, sin(@) cos(6) > 0,
so after we start at £ = 0 with k = 0, we can elect the sign
of k. If we assume k > 0, we have to solve

, (21)

where

ok a*sin(0) cos() + k%%
0 /(1 +8a) - EA(sin(0) + k)

Otherwise, if we assume & < 0 in the northern hemisphere,
we have to use Eq. (22) with opposite sign. Note that the

(22)

sign of k does not interfere with the sign of 6. For
simplicity, we assume k > 0 in the northern hemisphere,
in the vicinity of future null infinity. Let us note that with
this choice, we simply have

+|,\/K — (asin(0))* = k. (23)

It is important to remark that from an analytical point of
view, the differential equation (22), together with its
boundary condition [Eq. (20)], can be integrated over
the entire spacetime, since it is well behaved everywhere
for every value of the (r,6) coordinates where they make
sense. This means that one can integrate the equation even
at the horizon (where A = 0), at the interior horizons, and
across them, too, up to the region containing the Kerr ring
singularity.

Some important properties of k and K can be obtained
from the differential equation (22), together with its boun-
dary condition (20). We know that at infinity (k|§:0 =0);
therefore, from Eq. (22) (agk‘gzmzw = 0), we find that k

remains zero as one integrates over £ Then, at the axis of
symmetry, we have
k(r,0)|g—o. = 0. K(r,0)|p—. = 0. (24)

In the same way, we can see that at the equator
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0.6
0.4
0.2
0
-0.2
-0.4
-0.6

k(r6)

FIG. 1. Numerical solution k(r.6), with &€ [0,2]. Using
parameters m = 1, a = 0.8.

FIG. 2. Numerical solution k*(r,6), with &€ [0,2]. Using
parameters m = 1, a = 0.8.

FIG. 3. Numerical solution K(r,0), with & € [O,%]. Using
parameters m = 1, a = 0.8.

k(r,0)|p_= =0, K(r,0)|p_s = a*. (25)

1 1
=2 =2

To obtain a solution, we have to solve a nonlinear
differential equation. Unfortunately, the solution to Eq. (22)
cannot be expressed in terms of elementary functions, like
trigonometric functions mixed with powers of r or £. For
this reason, we have integrated this equation numerically,
which allows us to present the results by means of
computed graphs. This also has the advantage of showing
explicitly that our construction is well behaved for all

0.6~ 0.6
0.4 - 04
02 0.2

FIG. 4. Numerical solution k(r.6), with &€ [0,2]. Using
parameters m = 1, a = 0.4.

FIG. 5. Numerical solution k*(r.6), with &€ [0,-2]. Using
parameters m = 1, a = 0.4.

0.6 - 0.6
05 05
Eg 0.4 0.4
< 03 0.3
0.2 0.2
0.1+ 0.1
0 0

0.15 ——

01 —

0.05 ——

FIG. 6. Numerical solution K(r.0), with &€ [0,2]. Using
parameters m = 1, a = 0.4.

regions of the spacetime, and all values of the angular
coordinate .

The numerical scheme was implemented with fourth-order
finite difference approximations for angular derivatives, and
a fourth-order Runge-Kutta method to integrate along &.
The residual error was computed with output values of order
1 x 107!# (close to double-precision rounding error).

The solution can be seen in Figs. 1-6 for different
quotient relations (a/m). One can clearly see how the
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functions k and K tend to zero as one reduces the angular
momentum parameter (a — 0).

C. Null functions u and v

From the knowledge of k, we can define the null
functions u (outgoing) and v (ingoing) as the hypersurfaces
generated by the outgoing £, and ingoing n, null geodesics
congruences, respectively; namely,

du=dr - Y+ dr—=|,\/0(r.0)ds,  (26)

A

) NI _KA
(" +a) dr £ |,\/0(r.0)d0., (27)

dv =dt
v + A

where K = K(r,0) is a solution of Eq. (15), and
O(r,0) = K(r,0) — a*sin*(0). (28)

To obtain integrated expressions of u and v, we need to
integrate Eqs. (26) and (27). Because they are very similar,
for simplicity we will work with u, but the same process
follows for v.

We can integrate du along any curve y(s’), which
connects an initial point (zy, ro, 6y, ¢y) to a final point
(t,r,0,¢). Given a curve y, with §" € [sy, s|, one can
express

u(t, r,0,¢) —uy(ty. ro. 0y, o) = t — 1y

/s V(7 +a*)? - AK(F,0") dr’d )
- —ds
5 A ds’'

s /
- / i|h\/®(r”,9’)%ds’. (29)

So

As we know, the difference u(t, r, 0, ¢) — ug(ty, ro, 0, Po)
only depends on the initial and final points. Nevertheless, to
proceed and find a final computable expression, it is useful
to consider an integration path. Because both integrands
depends only on two coordinates (r,60), we have two
natural paths to connect the initial and final points. One of
them is [(ro;0y) = (r;6y) — (r;0)]; in that case, Eq. (29)
becomes

u(t, r,0,¢) —uy(ty. ro. 0y, o) = t =t
/r V(% +a*)? — AK(r. 60)) J
)

r/

A

- / ’ 1, /B(ra)de. (30)

0o

The other one is [(ry;0y) — (rg;0) — (r;0)]; in that case,
Eq. (29) becomes

u(t, r,0,¢) —uy(ty, ro. 0y, o) = t — 1

_ / V(7 + az)i— AK(r.0) |,

0

- ﬁﬂh\/@(roﬂ)da'. 31)

In what follows, we work with both expressions. Because
they are very similar, for simplicity we show the complete
process only for Eq. (30), but the same final result follows
from Eq. (31). We start with the behavior analysis of the
second term’s integrand at (A ~0):

V(™ + @) — AK(7.6)
A
(r* +a*) K K*A s
= - - 0(a?). (32
A 2(r'* +a*)  8(r* +a?)? +0(A%. (32)

From Eq. (32), it is clear that Eq. (30) has a divergent term
at (A ~0). We can isolate such behavior in one simpler
term, by simply adding and subtracting (¥ 4 a®)/A, to
obtain

u(t, r,0,¢) = uy(ty. ro. 0y. dy)

_ (P ra)y
=1 to KO< A dr

_ / (WZ + Y B (7 a2>>d,,

_ / ! 1,/ d)de, (33)

0

where the divergent term can be integrated analytically:
/V(L/z + az))dr’ = [r + ri +a In (L — 1>
o A ry—r_ ry
2 2
_rmta 1n<i— 1)}
ry—r_ r_
where r, and r_ are the solutions of A = O—namely, r, =

m+vVm?—a%and r_ = m— vVm? - a>.

Then, we have an equivalent expression of Eq. (30):

. (34)

u(t, r,0,¢) —uy(ty, 19,60, )

2 2 2 2
— - (”“l ln(r—1> _r=ta ln<r—1>>
ry—r_ \ry ro—r_ \r-

_ [0’ <\/(r’2 +a’)? = AK(F.0,) _(r* JAr az)) ar

A

0
—/ £,/ O(r,0)dO + Cy(ty, ry), (35)
0o
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where C is a constant. The strategy is to elect

uo (o, 1o, 0, o) = —Co(to, o) (36)

in such a way that for any initial point (¢, rg, 0y, Po),

or0 ) =i-r- (L) Ry (1)) [ (YOG (),

ry—r_ ry ry—r_ r_ A A
0
- / +1,/0(r.0)de. (37)
0

The final step in obtaining the coordinate u(t, r, 6, ¢) is to elect the initial point (¢, ro, 0y, ¢y). We are interested in taking
its value at future null infinity—that is, at ry — o0, t;) — 00, 6y — O, Py = P, Where 0, and ¢, are finite. Note that in
Eq. (37), there is no dependence on ¢, so we are free to choose ¢, without any change in u. Also, it can be noted that C is
finite in this limit. Then, since we can still use Eq. (36), we have

u(t,r,0,¢) =t—r— (ri +a In (L— 1) — rta In <L— 1)) - /r <\/(rl2 +a?)? ~ AK(r. 6r) — (r”+ az))dr’

ry—r_ ry r A A

rp—r_

- / "2,k (r.0) = a?sin(0'2do. (38)

0&

In the same way, we can start with the second natural integration path [Eq. (31)] and repeat all the steps to obtain

r0.p === (B (L) (2 ) [ (YT (e,

L =T ry ry—r_ r A A

- A 6i|h\/K(roo,€’) — a?sin(60')2d6). (39)

0

Note that when a — 0, we have K — 0. Then the last two terms in Eq. (38) and (39) become zero, because each integrand
is zero. Also, from (34), when a — 0, we have r_ — 0, so we can simply take a = 0 and r_ = 0. In this way, we recover
Eddington’s outgoing null function for Schwarzschild spacetime:

m

limu(r, 7,0, ¢) = 1 - <r+2mln<2i— 1)) (40)

D. Shorter expressions for z and v

We have already mentioned that there are two natural integration paths [Eqgs. (30) and (31)]. In this part, we will show
how these paths allow us to find shorter expressions for u# and .

Remember that the first path is [(ry; 60) — (r;6y) — (r;0)], and that we locate the initial point at ry = r, 6y = 0. To
obtain a shorter expression, we can take advantage of the election freedom and choose (6y = 6, = 0). Then, we have to
consider the property [Eq. (24)]

K(r.6=0)=0 (41)

to obtain the shortest expression for u; by substituting Eq. (41) into Eq. (38) and using the properties (13 + a® = 2mr, ) and
(r2 + a*> = 2mr_), we find

0By 1 ( dmr, m(L_l) _mr 1n<L_1>> —/9:%:|,1\/K(r,6”)—a2 sin(@2d0’.  (42)
0

ry—r_ ry ry—r_ r_
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The second natural path is [(rg;6y) = (rg;0) — (r;6)], with the initial point at ry = r, 8, = 0. To obtain a shorter
expression, we can take advantage of the election freedom and choose (ry = r, = ). Then, we have to consider another
property that comes from the boundary condition [Eq. (19)]:

K(r = 0,0) = a’sin(0')? (43)

to obtain another short expression. By substituting Eq. (43) into Eq. (39), we find

2 2
u(t,r,9,¢):t—r—< ks 1n(i—1)— mr- ln<

ro—r_ \ry

A A

_ 1)) ~ / <\/(r’2 +a’)’ —AK(’,0) (" + “2))dr’.

o0

(44)

In an analogous way, we can start with Eq. (27) to obtain the corresponding expressions for v(z, r, 6, ¢). The expressions are

ry—r_

2 2
v(t,r,9,¢)=t+r+< My ln<r—1>— mr-

r.—r_

T+

and

ro—r_

1n<r':—1)) +Aaj:|h\/l((r,9’)—azsin(é”)zdé” (45)

A A

o(t,r0.4) =141+ < 2mry 1n(i— 1) _2mr 1n<L— 1)) +/r<\/(r/2+a2)2_AK(r/"9) —(r/2+a2)>dr’.

ry ry—r_

Then, we can compute u with Egs. (42) or (44) and v with
Egs. (45) or (46) to obtain the same result. This has to do
with the path-independent character of the difference
u(t, r,0,¢) — ug(ty, ro, 0y, o), which we integrate from
the beginning [Eq. (29)]. To see this in more detail, note
that the slightly longer expressions for u [Eq. (44)] and v
[Eq. (46)] have the same value for any initial angle
at the asymptotic two-dimensional sphere §,_,—that is,
VO, € 1[0,7], Voo € [0,2n]. Meanwhile, the shortest

12
10
8 = Case a=0.8, m=1 ——

A onNnbs O

FIG. 7. Center-of-mass null surface (# = 0) for Kerr and
Schwarzschild spacetimes.

(46)

expressions for u [Eq. (42)] and v [Eq. (45)] are obtained
by the election 8, = 6., = 0.

E. Plot of u

Figure 7 shows the Kerr center-of-mass null surface
when u = 0, with angular parameter values a = 0.8 and
a = 0, and so includes the Schwarzschild case for com-
parison. Note that this comparison is only about the
functional dependence of u(t,r,6) with respect to the
coordinates (z,r,8).

We have computed numerically both expressions (42)
and (44). We corroborate that they have the same value up
to machine rounding error, 1 x 10715,

III. ADAPTED NULL TETRAD
A. The tetrad

From Eqgs. (26) and (27), we have two null directions
(du), = ¢,, (dv), = n, to build a null tetrad. As usual, we
have to use a normalized direction to satisfy Eq. (58):

1ZA
=——n,. 47
na 2 T na ( )
Then, we can compute the spin coefficients in the Geroch-
Held-Penrose (GHP) [24] notation to make a complete
geometric analysis.

In what follows, from Egs. (23) and (28), we can

simplify our notation by taking
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+| h\/@ = k. (48) where /71 is obtained from m by the exchange of i for —i. We
have preserved the traditional notation for each null tetrad
Then, the center-of-mass null tetrad in its covariant form is ~ element, where m, and i, must not be confused with the
spacetime mass parameter m.
VR
Ca=dla— Tdr“ ~ kdb,, (49) B. The spin coefficients
For the spin coefficients, we use the GHP notation of
n 1ZA (d + ¥ \/ﬁ dr. + kdo ) (50) Ref. [24]. We will focus on those spin coefficients which
“T2T ¢ ¢ capture the most relevant congruence features. For exam-
ple, kgyp indicates if the congruence is geodesic (kgyp = 0),
\/_ 2amr sm( ) and p indicates if it is hypersurface orthogonal (p = p). The
Ma = dty +k T extra notation of GHP in the scalar function xqyp is used to
clearly distinguish it with respect to a parameter that will be
/= d9 / s1n 0)de,. 51 used later.
27 Jdd 51 The spin coefficient kgyp iS given by
and in its contravariant form, it is \/_ ok
KGsz‘gz ( VR - A ) (60)
T R., k. 2 A
f“:—8?+£6’;+—8§ “”"aa, (52)
ZA z z It can be seen that in our case kgyp = 0, because of
. Eq. (15). Such a result is consistent with our definition,
a_ 9; \/“A _ka aa 2amr (53) because we start with a geodesic null congruence.
2 27 ‘/ Then, we have p:
kA 1 /0 Ok  cos(0)
a_ _ a =——|=—VR+—=— k. 61
st T R\ Examermn zrsm (54) P="3 (ar\r+ 96 sin(0) (61)
where Clearly it is a real quantity. It means that the congruence is
hypersurface orthogonal, which is in total consistence with
_ (2 22 _ KA our definition; see Eq. (14). Note that in the poles
R=("+a) ’ (55) (@ =0, n), the function k(r,0) — 0; see Eq. (24). It can
be sh that
T =R+OA=TR+IA. (56) o oonm e
" : : cos(9), Ok
It can be verified that the null tetrad relations are satisfied: im — k=—, (62)
0—0.z sin(6) 00
£9¢, = nn, = m*m, = min, = 0, 7 here %9 has a smooth behavior at the poles.
fay — (58) Another important spin coefficient is 6. Remember that
a =5 the principal null congruences have ¢ = 0. But in the case
e of the center-of-mass null coordinates, its associated null
mim, = =1 (59) tetrad has
|
o= l“’”;;f;( >[\/_ Ra2rcos(6) sin(0) + k(2r* + 2a21* + (a*mr — a*r?)sin2(0))]
1 3 2 :
5 (27 + (r+ m)a® + (r = m)a*cos’ (6 0))VR — kAa? cos(6) sin(6)]
1
+ W (— Sln(G)ZagK + (ZKZ — 4azsin2(9)K —+ 4614Sin4(6)) COS(Q))
1 A0 K (r—m)K 5 3
+—22\/7_2 ) —rR+72 +rac—r’|. (63)
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In further discussions of this work, we will use two other
spin coefficients that in GHP notation [24] are

1ZA
/
= —_-— 4
1ZA
/—_77
o' =-50 (65)

All spin coefficients were computed with the tensorial
manipulation software GrTensorll.

C. Weyl scalars

In this section, we will obtain the expressions of all the
Weyl scalars {¥y, ¥, ¥,, ¥3, ¥4}, with particular focus on
¥,, which will be useful in the next section. To accomplish
such a task, we will make a tetrad rotation from the
principal null tetrad to the center-of-mass null tetrad
[Egs. (52), (53), (54)].

For the principal null congruence, it is well known that
the only nonzero Weyl scalar is

Yo =l acos(0) o0

which is written in Boyer-Lindquist coordinates. Then, if
we make the mentioned rotation, from general change rules
under rotations, we can obtain the expressions of all of
Weyl’s scalars in terms of ¥,,,.

1. Tetrad rotation

We start with the principal null congruence and then
rotate it to obtain the center-of-mass null tetrad. The
rotation is made up of a sequence of three different types
of rotations, called types I, II, and III; see the Appendix of
Ref. [25]. The sequence we follow is type II, type III, and
then type I:

nf = n4, (67)

mf = m* 4+ An“, (68)

24 =174+ Am? + Am® + AAn<; (69)
Afim = Z7' i, (70)

tf = e, (71)

i = Z2%; (72)

~d __ na ~a 5,a 2
Afym = Ay + Ty + Ty g + TT ¢, (73)

~d _ ~a a
Miym = Mim + T (74)

2 f.H.HI = ?:ﬂ ILII - (75)

All involved coefficients are determined by the condition
that after the last rotation, the center-of-mass null tetrad is
obtained. If we write down everything in terms of principal
null tetrad elements, following each conversion, we have

£ = 71 + ZAm® + ZAm“ + ZAAn?, (76)

m® =TZI* + TZAM® + (TZA + *)m“
+ A(TZT + e™)ne, (77)

n® =TTZI + (Te~’s + FTZA)ma

1 . _
+ (E +T'Ae™ +T'Ae” + FFZAA) n“.  (78)

Finally, each coefficient Z, A, T', e’ is calculated using the
contraction properties of the principal null congruence
elements (the only nonzero ones are |“n, =1 and
m“m, = —1). In this way, we obtain

2, 2
Znge-YREZ+a
2%
m,£* 1 (k—iasin(0))
VA Z\/2(r + iacos(6))’

A=-—

n,m¢ 1 V2 (iasin(0) + k)A
r= =" (81)
Z Z 4 VA

e’ =m,m* —n,m*A
_aAlksin(0)(ir — acos(6))]
B VYIZ(VR + r* + a?)
al[—arsin(0) + ik* cos(6)]
VYZ(VR + 1 + d?)

(82)

In the work of Ref. [26] similar computations were
performed to obtain a rotated arbitrary null tetrad, but it
differs from our results, because in our work rotations are
taken to reach the center-of-mass null tetrad.

2. Final expressions of Weyl scalars

From previous results, we can compute all Weyl scalars
related to the center-of-mass null tetrad. Under such a
sequence of rotations, we have
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‘PO == 6Z2€2iSA2\I‘2p,

lpl = [328”1\ + 61:‘Z2€2iSA2PPzp,

le = [1 + 6(fZ6iSA + I_‘QZZeZiSAZ)]lep’

Wy = 30 + 92 Ze™ A + 6f‘3ZzeZisA2]‘I’2p,

W, = [6I2 + 123 Ze A + 61_“42262i5A2]‘P21,. (83)
For our main purpose, we focus on

¥y = [1 4+ 6(FZe"A +T2Z2*S A?)|W,,,. (84)

We can work out and conveniently express

lIsz = (\PZp)Re + i(lP2p)Im
3mra*cos*(0) — mr? L ma cos(0)(3r* — a*cos?(6))
= i

23 23 (85)
and

1 +6(TZe*A+T2Z%e*A%) =1 + 6(a + a?), (86)

where the real and imaginary parts of o are

—Ka*A?(kcos(0) + rsin(0))?
aRe = 2 2\2 (87)
2YE(VR + 12 + ad?)
—Ka?A*(k*rcos(0) + ksin(0)(r* — a® cos(0)?))  Ka*A?(a’rcos(0)? — a*rcos(0)) (88)
Om = -

2YE(VR + 12 + a?)? 2YE(VR + 1 + a?)?

Finally, we can write a short version for each component of ¥,. In terms of the real and imaginary parts of ¥,, and a,

1
(e = (14 60t + 603, = 665, (P = 12(%3,) (3 + . ). (59)
1
(P2 = (1 6+ 603, = 605, (P + 120t 5.+ e ). (90)
|
IV. SURFACE FAMILY S, The intersection of both null coordinate families u

and v—that is, (du = dv = 0)—define a family of two-
dimensional spacelike surfaces S, , where the function r; =
(v —u)/2 is constant. In terms of Boyer-Lindquist coordi-

Note that Egs. (26) and (27) can be written as

du = dt —dr;, (o1) nates, such a surface (dr; = 0) is given by r(6), which
satisfies
dv = dt + dry, (92)
dr kA
— = 94
where do VR 54
Note that r, can be interpreted as the Kerr extension of the
dry = ?d;’ + kdo. (93) Schwarzschild’s tortoise coordinate. In particular, we can

express the function r, in the exterior region as
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2 2
ro(r,0) =r+ ik ln<i—1> _ A ln<L—1)

ry r,—r

ry—r_

0
+ / k(r,0)deo'. (95)
0
It is easy to show that the induced metric over the two-
dimensional spacelike surface family S, is given by

TS T
ds? =~ d6” — < sin?(0)dgp’,

R (96)

which can be obtained directly from Eq. (104) below, by
simply taking (du = dv = 0). Note that in Boyer-Lindquist
coordinates at each surface S, , Eq. (94) is satisfied, which
also implies that at the horizons the surface S, is given by
r = r,,r_,as one could expect. But it should be remarked
that Eq. (94) still makes sense even at the horizons where 7,
diverges—that is, the family S, has a smooth extension at
the horizons, even though the behavior of r;.

A convenient geometric description of such a surface
family can be made in terms of their Gaussian and extrinsic
curvatures, as described in the GHP [24] formalism. Then,
one has
(Qcrp + Qahp)-

CGaussian = (97)

Cexuinsic = 1(Qanp — Qanp) (98)
which are given in terms of the complex curvature scalar
Ocnp, given by
Ogup = 00’ —pp' =¥, + A+ @y, (99)

where o,0',p,p’ are the spin coefficients in the GHP
formalism [see Egs. (61), (63), (64), and (65)], and in
the Kerr spacetime one has A = ®;; = 0.

Figures 8 and 9 show the numerical calculation of these
quantities, where their smooth nature can be inferred.

It is important to mention that in the limit case where
a = 0 (Schwarzschild), one has

r cos(0)
Extrinsic

Z
o 4N WA OO

X=(r2+a2)!"2 cos(q) sin(6) 2 % 6

FIG. 8. Extrinsic curvature of S, , using parameters a = 0.8,
m = 1.0. Case r(8) =~ 3r,.

0.043

0.0425
0.042
0.0415

r cos(6)

Cqauss

z
o 4N WA OO
I

0.041
0.0405
0.04

-2

4

X=(r2+a2)'2 cos(g) sin(6) 46  Y=(r?+a®)2sin(g) sin(6)

FIG. 9. Gaussian curvature of S, , using parameters a = 0.8,
m = 1.0. Case r(0) ~3r,.

. 1
(II%CGauss = 2 (100)

tllii%CExtrinsic =0, (101)
where the two-dimensional spacelike surfaces (dr; = 0) in
Schwarzschild’s case are given by (dr = 0). But in Kerr,
without spherical symmetry, these curvatures are not
constant (see Figs. 8 and 9). In particular, Gaussian
curvature gives information about the intrinsic geometry
of §,.

It is even more interesting what happens in the interior
regions, close to the horizon and the ring’s singularity. In
Figs. 10, 11, and 12, we plot the Gaussian curvature of S,
in those regions.

The intrinsic character of Gaussian curvature allows us to
establish an analogy with two-dimensional spacelike sur-
faces embedded in R3. Far away from the horizon, r > r_,
the Gaussian curvature is almost constant (see Fig. 9), so
the analogous embedded surface is almost a sphere. As one
goes closer to the horizon, Gaussian curvature has lower
values at the poles (6 = 0, z) and bigger ones at the equator
(0 = m/2), so the analogous embedded surface is an oblate
spheroid (see Fig. 10). In Fig. 11, we have negative values
of Gaussian curvature at the poles, so the analogous

r cos(8)

Z=
o
(6]

I

0.5
’ -0. 1
X=(r+a2)2 cos() sin(®) 1 15 3 2 1OY=(r2+a2)"2 sin(g) sin(6)

FIG. 10. Gaussian curvature of S, , using parameters a = 0.8,
m = 1.0. Case r(0) = r,.
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1.2

0.8
0.6
0.4
0.2

r cos(0)

Z=

0.5
X=(r2+a?)1"2 cos(¢) sin(6) 0. q 1 Y=(r2+a?) 12 sin(g) sin(6)

FIG. 11. Gaussian curvature of r; = const.,, — r(6), using
parameters a = 0.8, m = 1.0. Case r(6) ~0.5r,.

100
x n
== 80
__ o8
o 60
g 0.6 8
o [
v 0.4 40 S
N 20
02
ok 0

0
X=(r2+a?)"2 cos(g) sin(8) - 1

0.5
Y=(r2+a2)!2 sin(g) sin(6)

FIG. 12. Gaussian curvature of r; = const.,, — r(6), using
parameters a = 0.8, m = 1.0. Case r(0) ~ 0.85r_.

embedded surface should have a pothole at the poles.
Finally, in Fig. 12 (the closer region to the ring’s singu-
larity), the Gaussian curvature is very close to zero at the
poles, negative as one approaches the equator, and positive
with high values at the equator, so the analogous embedded
surface in this case can be constructed as a torus with a disk
at the center instead of a hole.

Let us note that for each surface Srs, we have computed
the Gaussian and extrinsic curvature scalars at different
spacetime regions using the presented expressions,
although in the case of interior regions (r < r), one has
to adapt the null coordinates definitions in a similar way to
what we have done in Sec. II. The complete and detailed
description of interior regions in terms of double null
coordinates will be published elsewhere.

V. KERR METRIC IN DOUBLE NULL
COORDINATES

In what follows, we will start from Kerr’s metric in
Boyer-Lindquist coordinates [Eq. (1)], and then we will
make a coordinate transformation to the center-of-mass null
coordinates.

A. Coordinates {u,v,0,¢}
From Eqgs. (26) and (27), we can write

7dv+du

= TR

dr = {M_kdg} A
2 VR

Then, we can substitute Eqs. (102) and (130) into Eq. (1) to
obtain

dt

(102)

(103)

4 > R
1 2mr XA
+§ <1 —T#—%)dudv
2amrsin®(0) A
dv| ———=d —kdb
+ v( 5 ¢+ R >
i d 2amrsin®(0) i A Lo
" 5 R

TS T
~ oy dO? — S sin’ (0)dgp.

= (104)

Note that in the asymptotic limit r — oo, we recover
Minkowski geometry, and when a — 0, one obtains the
Schwarzschild metric. In both limiting cases, the quadratic
terms in du and dv go to zero, as one could expect:

2mr A
li l-——)—-——| =0 105
m|(1-3) %] -0 oo
. 2mr A

We can also obtain the contravariant expression of
Eq. (104) if we start with the inverse metric line element
in Boyer-Lindquist coordinates [Eq. (2)]. Formally, we will
use a notation to distinguish old and new coordinates. We
will start from {z,r,6,¢}, and then transform to
{u, .0, $}. Note that the angular coordinates 6, ¢ are still
unaltered, and we only introduce the new coordinates u, v.
To start, it will be useful to consider the differentials of the
new coordinates in terms of the old ones:

VR

du = dt == =dr - kdo), (107)
dv = dt + \/Tﬁdr + kd®, (108)
do = de, (109)
dd = dep. (110)
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Then, each coordinate vector is

O Oud Ovd 900 00

0 orou orov 1o orod
o 8
=t (111)
9 _9ud ma+%a+wa
or 0r8u drdv  0rod Or o
VR (D 8
= G%—Eﬁ (112)
d  Oud ma+wa+wa
90 900u o000 0007 96 0¢
o 0 d
k(=) +— 11
k(@v 8u>+89’ (113)
O _ o v 900 0p0
Op  Opou  Opdv  Opod O O
_ 92 (114)
o

Finally, if we replace everything in Eq. (2) and we take out
accent marks on 9, @, we have

B -+ ()6)4(6)
()43
) () -4(3)

A —a*sin’(0) [ 0\2
SAsin?(6) (5&) '

(115)

It is easy to verify that £, = (du), and n, = (dv), are null
covectors, which is consistent with our definition.

B. New angular coordinate ¢

Let us start analyzing the most general null geodesic,
where the angular coordinate ¢ changes as in Eq. (7). It is
clear that

dg

il_r}’(l)a — 00, (116)
where A= (r—r,)(r—r_)—thatis, A - 0, when r — r
orr—r_.

We want to define a new angular coordinate without that
bad behavior at A =0. We will consider two ways to
accomplish the task.

One way is to define a coordinate ¢ which remains
constant along the center-of-mass null congruence, for
which we have (with 6 =0, L =0, E=1)

2 22 _
ﬂ:—im¢0+a) KrOA (119
di py
d¢  2amr
— = . 11
dA >A (118)
This suggests that we define
2amr’
P = ¢ —=E, / dr 119
beu =9 AP+ )P - KA (1)

such that with the correct election of +,;, for both outgoing
and ingoing center-of-mass null congruences we have

d§0i,,, —0.

= (120)

Depending on the election of +,;, is well behaved for the
outgoing null congruence (4,; = +) and for the ingoing

one (+,; = —). Such a coordinate also depends on €, where

a(/}i L # (0. This possible new definition also has been

suggested in Ref. [19]; nevertheless, we have decided
not to use it, because the metric expressions get more
complicated.

The other way, the one we elected in this work, is the
usual definition [15]

= dp — £, > dr,

121
ol A ( )

do.

ol

which has an integral expression given by

a r—r
=¢—+, 1 1. 122
{p:tm- ¢ Olzmnr_r_ ( )

Note that this construction gives two possible angular
coordinates which are well behaved across both horizons
ro,r_. We have ¢, which is well behaved as one
approaches the past horizon following an outgoing null
congruence (+,; = +), and ¢_, which is well behaved as
one approaches the future horizon following an ingoing one
(£,; = —). In this case,

d¢ioi

T #0. (123)

which indicates that the coordinate ¢ changes along the
center-of-mass null congruences.
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In the next section, it will be useful to express the
differential of Eq. (121) in terms of center-of-mass null
coordinates u, v; which from Eq. (103) can be expressed as

dp. = dp -+, a [M

A —kd@} (124)

C. Extended null functions U, V

A natural geometric way to study the behavior of a
function (U) across a hypersurface is to study its behavior
along geodesics that cross this hypersurface, since its
dependence on the affine parameters is geometric and
independent of coordinate choices. Therefore, we begin
by studying the asymptotic behavior of the null coordinate
u along null geodesics that reach the future horizon H.
Since it is immaterial which geodesics they are, we choose
null geodesics that are contained in the congruence
v = const.—that is, ingoing geodesics for which one has
to take (+,; = —) and (8 = — 4, VO = —k); see Eq. (12).
From the first-order expressions of the geodesic equations

VR

and dv = 0, which allows to express t = — R r— ké, one
obtains

. VR . . R K

Ul y—const. — —ZT r—2k6 =2 [ﬂ + E:| . (125)

Defining the null function U by

U = —exp(—«u), (126)
one finds the behavior
U Uit = —2cU| 2 +k2 (127)
g u = — _ —_
o lea Tz

which indicates a divergent behavior of the first term. Let us
study this in more detail. To see the behavior of the first
term as a function of the affine parameter 4, let us recall
from Eq. (5) that at the outer horizon one has

_Er0)dr (128)
R(ry)
so that to first order, one has
A=(r—ry)(r—=r_)
VR G =r )+ 0=, (129)

T 3(r.0)

where A, is the value of the affine parameter at the
horizon. Then, the divergent behavior in Eq. (127) can
be expressed as

au R(ry) 0
= 2k G=a(r = 1) dA+ O((A=2,.)")dA,  (130)
and noting that
(ry—r)  (ry—r.) _\/m2—a2_ (131)
2/R(ry) 2(A+d*) 2mr, e

where «, is customarily referred to as the surface gravity of
the black hole, one has the leading behavior

du «x di
— = (132)
Uk (A=4y)
so that one must take x = x, in order to have a smooth
behavior of U as a function of the affine parameter A.

Note that we have just shown that at the future horizon,
one has

Ux(A-1,) xA, (133)

where the proportionality factors are smooth functions on
the horizon. In order to have a double null system that is
smooth across the outer past event horizon, we also define
the null function V in a similar way, so that we have

U = —exp(—k u) (134)

and

V = exp(k,v). (135)
Thus, using this general geometric approach, we have
determined the correct functional form of the new null
function U to be regular at both sides of the future event
horizon, and that of the null function V to be regular at both
sides of the past event horizon.

Let us remark that we have been studying the asymptotic
behavior approaching the horizon from the outside region
where A < A,. In the inner region, U > 0, and one would
use the relation

U= exp(K+uinner)v (136)
where u;,,.. 1S the analogous inner version of the null
coordinate u in the outer region. The complete and detailed
description of interior regions in terms of double null
coordinates, will be published elsewhere.

D. Coordinates {U, V.0, ¢}
From Egs. (134) and (135), we have

1 dU
du=-—",

137
. (137)
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i

av

dv = 138
=19 (138)
Then, we substitute Eqs. (124), (137), and (138) into Eq. (104) to obtain
4 1 | 2mr  Ya’sin?(0) + XA+, 4mra’sin®(0)\ 1 a2
S = — —_ _ -
4 z SR SVR 202
+l - 2mr  Ya’sin*(6) + A ; 4mra®sin’(0) 21 _av? 1 . 2mr+ Ya?sin?(0) + X2 A 21 JUdV
4 > SR SVR )2V 2 s SR UV
(Ya’sin®(0) + AX?) ; 2mra’*sin®(0) idUdG—F (Ta’sin®(0) +AX?)  +,.2mra’sin®(6) idVdG
SR SVR | «U SR SVR KV
_ (2amrsin*(6) ; Yasin?(0) idUdgo—F 2amrsin®(6) ; Yasin?(0) idqu)
by VR kU X VR KV
K*(Ya?sin?(0) + £2A) 2Yasin?(0) T
-2 do* &+, —————kdOdgp — —sin®(0)d¢?, 13
=y R OIS e, R O kv S o) (139

where one has to consider k = x,. Alternatively, using the explicit appearance of ®, one can express each of the metric

components for the ingoing case as follows:

1 ( AY  a*sin(0)? :
Juy = 1-®——=————" (2 +a®+ ®a?sin(0)2 - 20VR) ). (140)
41<3U2 R R
1 . ¢+A2+a2 sin(9)2( 2 | @ 4+ ®a? sin(0)?) (141)
R —— - —t—(r
oV =Ty R R @ ’
k 2 o 20,2 2 2 o 2
v = 575 U(AZ+ a?sin(0)*(r* + a* + ®a’sin(9)* — dVR)), (142)
+
__asin(9) o r? + a* 4+ ®a’*sin(0)? (143)
e =" U VR ’
1 < AY  a*sin(0)? , :
gvy —® - (P2 44+ Da?sin(0): 4+ 20VR) ), (144)
42V R~ R
Wo =55 — (AZ 4 a®sin(0)2(2 + a + ®a?sin(0)2 + dVR)), (145)
+
|
asin(6)? r? + a* + ®a?sin(6)? Gpp = —sin(0)*(r? + a® + @a’sin(0)?). (149
vy = 2k, V <(D+ \/ﬁ ’ (146) 7 ()( ()) ( )
+

k2
Gop = =2 — = (AX + a?sin(0)*(r* + a* + ®a’sin(6)?)),

(147)

r? + a* + ®a’sin(0)?

VR

9o, = —ka sin(9)2< ) (148)

To compute the contravariant expression, we can start
from Eq. (115) to make a coordinate transformation.
Formally, we will use a notation to distinguish old and
new coordinates. We will start from {u, v, 0, ¢}, and then
transform to {U, V, 0, @}. Note that the angular coordinate
6 is still unaltered, and we only introduce the new
coordinates U, V, . It is useful to consider the differentials
of the new coordinates in terms of the old ones:
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dU = —«Udu, (150) Finally, if we repla~ce everything in Eq. (115) and we take
out tilde mark on 6, we have
dV = «Vdv, (151)
B T
~ (3) =+ (3w) v)
do = dH, (152) Os ZA oUu ov
2xk 0 0 0
-~ Ul == |+ V= —
T “ ) (ov)] o)
dp = dip— ma[( v u)—kde}. (153) Y oU ov 00
VR 2 2xkalU (2mr - +,VR) AYE
_ ) TA o U ) \ g
Then, each coordinate vector is 2eaV 9 9
Ka
2mr £ —
t5a @mrEavR) <av> (6(/;)
g ou o 8V8 260 0 Ip O
= +—=+ 1/0\2 1 A
ou_ ou BU oudV ' udd 3u8(p _— =) ——(=, (158)
z \ 90 Tsin?(0) \O¢
vl a9 (154)
= KU F Toi 7= >
ou 2VR 99 where one has to consider k = « .
We have already checked that Eqgs. (139) and (158)
~ satisfy g,,g*> = 1. Moreover, its determinant is given b
0 _0UD VD BI D g i
Ov OJvoU 0OvdV 0vdod Ovdgp o A?5? sin(0)? (159)
zkvaﬁ—i -\j_aa (155) ARUPV?
V ol 2 R (0 ’
9 oUO ovVo 000 0pd E. Metric near the outer horizons
20 000U "aoav %%"’ 20 9 Since the metric components in the new double null
5 Lo coordinate system are rather complicated, it is interesting to
— _~:|:m,a__’ (156) see explicitly that each of the components is a regular
00 VR O function in a neighborhood of the outer horizon, although
we know that this should be so, since the coordinates are
O U O VO 800 0pd well behaved at the event horizon.
T A e T A ao Tt a2 T A Therefore, here we will present the expansion
O 09oU 9pOV9po6 Iy of each metric component around (A = 0). These calcu-
= 3 (157)  lations were performed with algebraic manipulation
O programs:
|
K[(K — 8mr)a*sin*(0) — 16m>r?]
2U? R A%+ O(A%), 160
(900" U%) =) 256m*r* (2mr + a®sin(9)) +0(a7) (160)
K[(K — 8mr)a*sin®(0) — 16m>r?]
V)| i~ A%+ 0O(A%), 161
(V)= 256m*r*(2mr + a*sin(0)) +0(a%) (161)
a2 in2 9)
202)] S o), 162
G000~ g a7y + OO (162
12 in2 9)
. ) NSO 163
(gVVK >|(i0i7—) 2mr + a2 sin2(9) + ( ) ( )
dmr — K)a? sin?(0) + 8m?*r?
2UV) = 2UV) » ( A+ O(A?). 164
(guvk ) = (gvuk ) 16m>7 (2mr + a® sin(6)) +0(A%) (164)

The null-angular components are
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OO0 o
Ve —3<“'"";ii;miais;zfnizz;‘“ P ow) se)
(@000 e oy e s O, (169)
@00V 5 S O) (170)
(000 ey == S OL), a7)
900V 1 = e S+ O, (172)
and the angular-angular components are
Yop ~ ~oi m:glm’; isc;nzsffzé;)) +0(4), (173)
=) 17
Gow zﬂja—%ju O(A). (175)

From the discussions in Sec. V, V C, it is deduced that all
the components of the metric are smooth across the future
event horizon, and it can easily be seen that the same
observation is true for the past outer horizon.

With respect to the contravariant metric components
[Eq. (158)], the A dependence is explicit, so there is no
need to take any expansion around (A = 0).

F. Other algebraic study of metric components through
the outer horizon H

Since the expressions involving the coordinates U and V
are rather complicated, and the subject of the smoothness of
the metric across the horizon is a delicate one, we will next
show another algebraic study of the well-behaved-ness of
metric components at the outer horizon.

One can distinguish two exterior horizons where r = r:
the future exterior horizon, Hy, and the past one, H e To
cross both of them, it has to be taken that k = x, as given
by Eq. (131). To show that the Kerr metric in extended
center-of-mass null coordinates is well behaved through r, ,
one can choose a path to cross Hy.

The first step is to note that the product between U
[Eq. (134)] and V [Eq. (135)] is

_pelrt i k(r.0)ae) (r_);‘—;

It

UV|K:K+ =
(ro)(r=ro)

A (176)

We will study its behavior as one crosses Hy and H .
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1. Crossing future horizon Hy

The next step is to choose the path to cross H. For
example, we can approach H ; maintaining V' as constant—
thatis, V = V (following a future-directed ingoing center-
of-mass null geodesic). Then we have

_62K+<r+'f(‘)€ k(r.0)de) (r_):f
U|K+.V=V0 = Tt A.
=) Ve

We can start with the covariant metric expression (139). If
one follows such a path where dV = 0, the only covariant
metric components to analyze are gyy, gy, and gy,,.
Because such a path follows an ingoing center-of-mass null
geodesic, the correct angular coordinate ¢ = ¢_ has to be
considered—that is, +,; = —. Then, from Egs. (160),
(165), and (170), it is straightforward to show that the
metric components gy, gyg, and gy, are well behaved and
different from zero at r = r, and nearby regions. One can
see that every factor which involves A gets simplified. The

(177)

rptr

remaining factors, including (r — r_)"= , are well behaved
atr=r,.

To analyze the contravariant metric expression (158), we
only have to look at the components g¥V, ¢V, and ¢"?,
which seems to be problematic because of A in the
denominator. From Egs. (176), (177), and this path election
where 4,; = —, it is clear that g"V and ¢Y? are well
behaved and different from zero at r = r,. In the case of
g"?, we have that (2mr — VR)|,., ~—A, so the prob-
lematic factor gets simplified while V = V); therefore such
a metric component is also well behaved and different from
zero at r =r.

If one considers the behavior of the metric determinant
(159) at H; and H , it is easy to show from Eq. (176) that
the factor A? gets simplified, so that the determinant is well
behaved and different from zero at r = r.

Therefore, we have shown that the metric components, in
both covariant [Eq. (139)] and contravariant [Eq. (158)]
expressions, are well behaved across the future horizon H .

2. Crossing past horizon H,

We have to choose the path to cross H ,. For example, we
can approach H, maintaining U as constant—that is, U =
U, (following a past-directed center-of-mass null geo-
desic). Then we have

_€2K+(r+f0” k(r.0)de) (r_):_;

V| ,U=U, = rytro
B O L

We can start with the covariant metric expression (139). If
one follows such a path where dU = 0, the only covariant
metric components to analyze are gyy, gyg, and gy,
Because such a path follows an outgoing center-of-mass

A (178)

null geodesic, the correct angular coordinate ¢ = ¢ has to
be considered—that is, £,; = 4. Then, from Egs. (161),
(166), and (168), it is straightforward to show that the
metric components gyy, gyg, and gy, are well behaved and
different from zero at r = r,_. One can see how every factor
that involves A gets simplified. The remaining factors,

including (r — r_)%, are well behaved at r = r,.

To analyze the contravariant metric expression (158), we
only have to look at the components gVV, ¢V, and ¢"?,
which seems to be problematic because of A in the
denominator. From Egs. (176), (178), and this path election
where +,; = +, it is clear that gV and ¢"¥ are well
behaved and different from zero at r = r,. In the case of
g7, we have that (2mr — VR)|,., ~—A, so the prob-
lematic factor gets simplified while U = U; therefore such
a metric component is also well behaved and different from
zero at r = r,.

In this way, we have shown that the metric components,
in both covariant [Eq. (139)] and contravariant [Eq. (158)]
expressions, are well behaved across both the future and
past horizons Hy and H,, (r =r,).

VI. COMPARISON WITH RELATED WORKS

Our work improves upon several attempts that can be
found in the literature. We compare previous works in
detail in the rest of this section.

A remarkable one is developed in Ref. [16], where the
null hypersurfaces they construct unfortunately have a
conical singularity all along the axis of symmetry and
do not include the null geodesic along the axis of
symmetry. In order to compare it with our coordinates,
we consider from Ref. [16] the null function

u* =r"—r"=r—asin(0) — r(r), (179)
which they call {7, and where the analog to our natural
spheres is the intersection of u#* with the Boyer-Lindquist
coordinate ¢, which can be parametrized by r,y, and that we
call S, . Just by looking at Eq. (179), one can forecast
some kind of problem, since the derivative of the null
coordinate is direction dependent at the axis of symmetry,
but one can also see this graphically. In Fig. 13, it can be
seen that their surface, S, ., has a discontinuity in the
derivatives at (6 = 0, z), while our S, is clearly smooth.
Such discontinuity is not a scale effect. The Gaussian
curvature of S, ~ diverges at the poles, while it is well
behaved for §,. The intrinsic character of Gaussian
curvature clears any doubt about the presence of such a
problematic cusp in S, .

As a test case for the use of coordinate systems, one can
consider the massless scalar field equation for Kerr space-
time. To study the scalar wave equation, one can start from
the expressions of Ref. [27] and make the appropriate

024049-19



MARCOS A. ARGANARAZ and OSVALDO M. MORESCHI

PHYS. REV. D 104, 024049 (2021)

r sin(0)

0.4

0.2 —

0.1 [ |

r sin(0)

-0.2 -

-0.3 -

-0.4
-0.3 -0.2 -01 0 0.1 0.2 0.3

r cos(0)

FIG. 13. Comparison between two-dimensional spacelike sur-
faces S, (of center-of-mass null coordinates) and S, (of
Hayward’s definition [16]). It can be seen that S, is completely
smooth, while S, = has a cusp or peak with a dlscontmulty at the
poles (0 =0, ;r) Wthh is not a scale effect. The Gaussian
curvature and spin coefficient pyaywarg have divergent behavior
on the surface S, , indicating the presence of caustics along the
axis of symmetry. Two cases are shown, one at (r ~ 3r, ) and the
other at the interior (r~0.85r_), using the parameters
m=1,a=0.28.

coordinate transformations. If one does so, in such an
equation, the expansion spin coefficient p of the corre-
sponding null geodesic congruence appears explicitly
contained in the null hypersurfaces, which for the
center-of-mass null coordinates is regular and well
behaved. But if one uses Hayward’s definition [16], which
can be obtained from our expressions by simply taking

K = a?, one will get a divergent coefficient at the poles. Let
us look at the third term of p [see Eq. (61)], namely

cos (9) \/
K(r,0) -
s1n (0) (r,

003(9)
sin(6)

a*sin?(0).  (180)

Note that in Hayward’s case, it has a divergent behavior at
the poles, since

cos(0)

acos?(6)
m —
0.z sin(0)

e sin(0) -

(181)

‘Hayward

Therefore, the cusp that one can see in Fig. 13 points out a
serious geometric problem in Hayward’s definition. The
divergent behavior in both geometric quantities, Gaussian
curvature and the expansion spin coefficient prywards
indicates that the null coordinates they have constructed
are adapted to null congruences which have caustics along
the axis of symmetry. Therefore, it is impossible to solve the
wave equation by any analytic or numeric treatment if one
uses Hayward’s coordinates. It is intriguing to note that the
Kerr metric in Hayward’s null coordinates has no divergen-
ces or bad behavior in its components (with the exception of
typical problems of spherical coordinates). The problem
instead is related to its derivatives. The spin coefficient
PHayward 18 One of the connection components, which
involves metric derivatives. Since the curvature is deter-
mined from its connection, we can foretell the presence of
divergent behaviors in many other studies of interest. We
have already studied the scalar wave equation with our
setting, and our results will be published elsewhere.

Another approach is the work of Ref. [17], where they
also consider the possibility of a constant K = a?E?. They
call this condition X2 = 1, where X? = 2122 Then, such a
definition also has the same pathology as Ref. [16].

Our approach is more related to the work of Ref. [19],
although their treatment only covers the northern hemi-
sphere, but their expressions also fail to deal with the north
pole and are very difficult to compute, even numerically
[18]. More concretely, for example, it will be impossible to
treat the scalar wave equation numerically with the coor-
dinate system of Ref. [19], since their expressions are
divergent at the poles.

Finally, after all these comparisons with related works, we
can conclude that the center-of-mass null coordinates form
the first complete double null coordinate system in the sense
that they allow us to treat and solve fundamental applications
problems where previous definitions have failed.

VII. FINAL COMMENTS

The condition for the construction of our null coordinate
system can be readily recapitulated in the following main
points: (i) We base our construction on the existence of a
particular null geodesic congruence. (ii) The condition for
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the congruence to be hypersurface orthogonal is equivalent
to considering a space-dependent Carter “constant” K.
(iii) The congruence is fixed by conditions at future null
infinity, which is equivalent to a boundary condition for the
differential equation for K. (iv) This equation cannot be
solved in terms of elementary functions, and therefore is
solved numerically. (v) As a consequence of the previous
requirements, our congruence does not have caustics.

The construction of one such null congruence guarantees
the existence of its dual congruence, since for each out-
going one there exists the corresponding incoming one.

It is worthwhile to notice that the geometrical construc-
tion of the null coordinate u, based on the center-of-mass
sections, can be extended to nonstationary, radiating,
asymptotically flat spacetimes at future null infinity [28].

As one could expect, the new double null coordinates for
Kerr spacetime have an explicit dependence with the
function K(r,#). Nevertheless, in this construction, one
can proceed analytically to compute any geometric quantity
of interest, as we did when we computed the spin
coefficients and Weyl scalars. For other cases, where the
complete solution K(r,60) is needed, it can be easily
obtained from the presented numeric scheme. We have
used it to compute all the plots of this manuscript.

We have also studied the surface family S, , defined by
the intersection of both null coordinates u and v, where r,
can be interpreted as the Kerr extension of Schwarzschild’s
tortoise coordinate. We give a complete geometric descrip-
tion of such two-dimensional spacelike surfaces in terms of
their Gaussian and extrinsic curvature scalars. One can
clearly appreciate their roundness far away from the event
horizon, and how their geometry changes as one
approaches the interior regions (r < r,).

Since our family of null surfaces surround the black hole
in a smooth manner, we were also able to define Kruskal-
like extensions U and V for the outgoing u and ingoing v
null functions. Those extensions, together with the defi-
nition of a new axial angular coordinate, allow us to
overcome the Boyer-Lindquist coordinate singularities.

This makes it possible to extend the metric across the
event horizon in a regular way. A detailed discussion for the
construction of Kruskal-like coordinates in the vicinity of
the interior horizons will be carried out in a separate article.

We have also compared our definition and results with
other previous attempts in literature. We show that in all
those works, there is divergent behavior over the axis of
symmetry; with our definition, one instead obtains regular
behavior. We have considered all those definitions with an
application problem: the computation of a massless scalar
field in Kerr spacetime. The definitions of Refs. [16,17]
have divergent behavior in one of the terms of the wave
equation and in the Gaussian curvature over their related
two-dimensional spacelike surface family. In the case of
Ref. [19], their expressions for null coordinates are directly
divergent at the axis of symmetry. For these reasons, all the
previous definitions cannot be taken as candidates for
coordinate systems and are therefore unsuitable to be used
in many problems of interest.

We expect that this double null foliation that we are
presenting will be useful for several studies of the Kerr
geometry, including electromagnetic radiation powered by
rotating black holes or black hole evaporation. Many lines
of studies have been affected due to the lack of these null
coordinates—for example, the Vaydia extension for space-
times without spherical symmetry, where previous attempts
[29] did not have a complete null coordinate system to work
with. Also, the stability studies of the interior of Kerr
spacetime have a huge dependence on the null coordinate
system [30].

We plan to study perturbations of the Kerr geometry
calculated from data on these characteristic surfaces in the
near future.
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