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We study the quasi-periodic oscillations from the accretion disk around rotating traversable wormholes
by means of the resonance models. We investigate the linear stability of the circular geodesic orbits in the
equatorial plane for a general class of wormhole geometries deriving analytical expressions for the
epicyclic frequencies. Since wormholes can often mimic black holes in the astrophysical observations, we
analyze the properties of the quasi-circular oscillatory motion in comparison with the Kerr black hole. We
demonstrate that wormholes possess distinctive features, which can be observationally significant. It is
characteristic for the Kerr black hole that the orbital and the epicyclic frequencies obey a constant ordering
in the whole range of the spin parameter. In contrast, for wormhole spacetimes we can have various types of
orderings between the frequencies in the different regions of the parametric space. This enables the
excitation of much more diverse types of resonances including parametric and forced resonances of lower
order, which could lead to stronger observable signals. In addition, for corotating orbits the resonances can
be excited in a very close neighborhood of the wormhole throat for a wide range of values of the angular
momentum, making wormholes a valuable laboratory for testing strong gravity.
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I. INTRODUCTION

X-ray spectroscopy is a promising tool for testing gravity
in the strong-field regime by studying the electromagnetic
emission from the accretion disks around compact objects.
Various features of the x-ray flux will be measured with a
high precision by means of the next generation of x-ray
satellites like LOFT [1], eXTP [2], or STROBE-X [3], in
particular the quasi-periodic oscillations (QPOs) of the
accretion flow. The quasi-periodic oscillations were exper-
imentally detected in the x-ray flux from a number of low-
mass binaries including neutron stars or black holes, as well
as a few supermassive active galactic nuclei. They represent
a number of characteristic peaks appearing in the x-ray
spectrum from the compact object, including a low-
frequency (Hz) signal and a couple of high-frequency
(kHz) oscillations.
The precise physical mechanism for the formation of the

quasi-periodic oscillations is currently unknown but some
features suggest that they are a hydrodynamical phenome-
non, rather than a manifestation of kinematic effects in the
accretion disk like the Doppler modulation of fluxes from

isolated hot spots. Such an example is the discovery of the
correlation between the low-and high-frequency QPOs,
causing that their ratio remains stable among various x-ray
sources [4,5]. This motivated the development of disk
seismological models which explain the QPOs by means of
certain trapped modes of the disk oscillations [6–8]. It was
further observed that the high-frequency QPOs scale
inversely with the mass of the compact object and that
the twin peaks follow a constant 3∶2 ratio. Thus, we got
indications that the high-frequency QPOs are caused by
relativistic effects so that they represent a suitable probe of
the background spacetime. The characteristic frequency
ratio of two integers further suggests that the source of the
quasi-periodic oscillations can be some nonlinear reso-
nance process taking place in the inner disk.
Using the thin disk approximation resonance models

were developed which can give explanation for the
observed high-frequency QPOs [9–12]. Assuming that
the fluid lines in the accretion disk follow nearly circular
geodesic trajectories located in a single plane, we can
associate two epicyclic frequencies with their dynamics.
They describe the fluctuations from the perfectly circular
motion in radial and vertical directions, respectively. In
linear approximation the radial and vertical fluctuations
can be considered independent and represented as two
decoupled harmonic oscillations. However, nonlinear
effects cause interactions between the two oscillation
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modes and different types of resonances can be excited
when the epicyclic frequencies or linear combinations of
them scale as the ratio of two integer numbers. Depending
on the physical process taking place in the accretion disk,
resonances can be caused also by the coupling of the orbital
and one of the epicyclic motions.
The quasi-periodic oscillations were studied as a tool for

testing gravitational theories in a number of recent works
[13–22]. The properties of the epicyclic frequencies depend
strongly on the underlying spacetime and can lead to
observational effects, which can differentiate between the
alternative theories of gravity in the strong field regime. In
some cases the interaction of the compact object with the
astrophysical surroundings should be also taken into
account since it can lead to similar effects [23]. On the
other hand, if the observational data is modeled correctly,
the QPOs can provide evidence for the existence of more
exotic compact objects like wormholes and naked singu-
larities. Some investigations of broader classes of compact
objects were performed including studies of the Kerr naked
singularity [24], the Zipoy-Vorhees spacetime [25], and the
Tomimatsu-Sato solution [26]. The aim of our work is to
study the quasi-periodic oscillations for a class of rotating
traversable wormholes by applying the resonance models
and to estimate some of their signatures, which can be
important for the observations.
Wormholes are one of the significant predictions of the

gravitational theories, which is still not confirmed obser-
vationally. In classical general relativity the construction of
traversable wormholes is problematic since it requires the
violation of the null energy condition [27–29]. However, in
quantum gravity this issue would be solved since quantum
fields can provide in a natural way the necessary negative
energy density. Alternatively, traversable wormholes arise
in some modified theories of gravity like in the Gauss-
Bonnet theory or fðRÞ theories, where the energy con-
ditions are violated by the gravitational interaction itself
without the need of additional matter fields [30–37]. They
can also exist in a mixed system with another compact
object like a boson or neutron star [38,39]. Thus, the idea
that traversable wormholes can form in nature is reasonably
well supported by theoretical arguments, and one of the
goals of the next generation gravitational experiments is to
search for evidence for their existence.
Various works investigated the possible observational

signatures of wormholes. They include studies of the
shadow [40–42], gravitational lensing [43,44], Lense-
Thirring precession [45], accretion disk radiation [46], iron
line profile [47], quasinormal modes [48], and perturba-
tions of stellar orbits in wormhole geometries [49,50]. It
was demonstrated that in some phenomena wormholes can
mimic closely the Kerr black hole, while in others they
possess distinctive features. Since it is hard to distinguish
wormholes from black holes in certain experiments, being

familiar with a broader set of characteristic effects will be
useful for their identification.
The aim of our work is to provide further observable

effects in the electromagnetic spectrum, which can distin-
guish wormholes from other compact objects, by studying
the high-frequency quasi-periodic oscillations in wormhole
spacetimes. For the purpose we consider the class of
geometries constructed by Teo which describes a general
stationary and axisymmetric traversable wormhole [29].
Teo’s rotating wormhole geometry is a generalization of the
Morris-Thorne static spherically symmetric wormhole [51]
following the same idea. Instead of searching for a solution
of the gravitational field equations with a particular stress-
energy tensor, the most general stationary and axisymmet-
ric geometry is derived which describes a regular spacetime
with wormhole topology. Any traversable wormhole sol-
ution within classical and semiclassical gravitational the-
ories would belong to this class, so although there is a lot of
generality in choosing the particular metric functions, the
geometry is useful for modeling some wormhole properties
which would be common irrespective of the gravitational
theory. We should further note that it is hard to obtain exact
solutions, which describe completely regular rotating
wormholes. Even when coupling the Einstein equations
to very simple matter fields like a phantom scalar field for
example, only perturbative or numerical wormhole solu-
tions are known [52–58]. Thus, while completely regular
exact solutions are typically unavailable when rotation is
included, the Teo’s geometry provides the opportunity to
investigate the properties of the rotating traversable worm-
holes in an analytical way, and gain some useful insights.
The paper is organized as follows. In Sec. II we briefly

describe the Teo’s geometry considering in particular a
class of metrics with integrable geodesic equations. In
Secs. III and IV we study the existence and the linear
stability of the circular geodesics in the equatorial plane and
derive general expressions for their kinematic character-
istics, and the radial and vertical epicyclic frequencies.
Some properties which are valid for the whole class of
traversable wormholes, which we consider, are also dis-
cussed. In Sec. V we apply our results to a particular
wormhole solution, which illustrates certain characteristic
effects for the wormhole geometries. In particular we
investigate the behavior of the epicyclic frequencies for
different angular momenta, and the possible types of
ordering between the orbital and the epicyclic frequencies
in the various regions of the parametric space. In Sec. VI we
analyse the quasi-periodic oscillations within the resonance
models in comparison with the Kerr black hole. We
demonstrate that in wormhole geometries resonances pos-
sess a richer structure, which leads to more diverse
possibilities for modeling the observational data from the
accretion disk spectroscopy. In the last section we give our
conclusions.
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II. ROTATING TRAVERSABLE WORMHOLES

The general class of geometries, which describes a
stationary axisymmetric traversable wormhole was
obtained by Teo in the form [29]

ds2 ¼ −N2dt2 þ
�
1 −

b
r

�
−1
dr2

þ r2K2½dθ2 þ sin2θðdϕ − ωdtÞ2�; ð1Þ

where all the metric functions depend only on the spherical
coordinates r and θ, and are regular on the symmetry axis
θ ¼ 0; π. The metric function N is connected to the
gravitational redshift, K is a measure of the radial distance
with respect to the coordinate origin, ω is associated with
the wormhole rotation, while b determines the shape of the
wormhole throat.
In order to ensure the geometrical characteristics of the

wormhole and its traversability the metric functions should
satisfy certain requirements. We can construct a geometry,
which contains a wormhole throat, if we consider the
coordinate range r ≥ b and require that the metric pos-
sesses an apparent singularity at b ¼ r, where the metric
function grr becomes divergent. In this way the wormhole
throat is located at a constant radius r ¼ r0. If the shape
function does not depend on θ on the wormhole throat, i.e.,
∂θbðr; θÞ ¼ 0, the scalar curvature would be regular, so
there would be no curvature singularity. In addition the
redshift function should be finite and nonzero in all the
coordinate range in order to avoid further curvature
singularities or event horizons, while the proper radial
distance should be a positive and nondecreasing function.
We can ensure the characteristic form of the wormhole by
considering the embedding of its constant t and θ cross-
sections in a three dimensional Euclidian space. In this way
the so called “flare-out” condition is derived, which reduces
to the requirement that db=dr < 1 at the wormhole throat.
The constructed geometry describes two identical

regions, in each of which the radial coordinate takes the
range r ∈ ½r0;∞Þ, joined together at the wormhole throat
r ¼ r0. We can further require that the regions are asymp-
totically flat. Then the metric functions should possess the
following expansions at the spacetime infinity

N ¼ 1 −
M
r
þO

�
1

r2

�
; K ¼ 1þO

�
1

r

�
;

b
r
¼ O

�
1

r

�
; ω ¼ 2J

r3
þO

�
1

r4

�
; ð2Þ

where M and J are constants representing the ADM mass
and the angular momentum of the wormhole, respectively.
There is a broad range of functions which can satisfy the

described conditions and lead to a regular wormhole
geometry. In our work we will consider the class of the
geometries, where the metric functions N, K, b and ω

depend only on the radial coordinate. This case is of
particular physical importance since the geodesic equa-
tions, which determine the particle and light propagation
become integrable. In order to illustrate some characteristic
effects for the wormhole geometries, we choose a particular
metric which is simple enough, but still representative for
the class. We set the shape function and radial distance
function to be equal to constants, while for the rest of the
metric functions we assume

N ¼ exp

�
−
r0
r

�
; ω ¼ 2J

r3
; b ¼ r0; K ¼ 1:

ð3Þ

Thus, the mass of the wormhole is equal to M ¼ r0. We
can further introduce a spin parameter a ¼ J=M2 and
represent the metric in a dimensionless form by making
the conformal transformation and the rescaling

dS2 ¼ r−20 ds2; t → r0t; r → r0r:

In this way we obtain a wormhole solution with a unit mass
and a throat located at r ¼ 1.
The metric given by Eq. (3) is a solution to the Einstein

equations Rμν − 1
2
Rgμν ¼ 8πTμν. Since we are interested in

macroscopic wormholes with astrophysical applications,
we will not consider quantum effects. Then, the wormhole
needs to be supported by some exotic matter. In this case
the stress-energy tensor Tμν necessarily violates the null
energy condition [27–29], so that Tμνkμkν < 0 is satisfied
for any null vector kμ at least in some region of the
spacetime. Similar to the spherically symmetric wormhole
solutions [51], rotating wormholes with metric functions
N, K, b and ω, which depend only on the radial coordinate,
would have the null energy condition violated at the throat
[29]. However, the need of exotic matter can be minimized
by confining its distribution only to the throat vicinity. As
suggested originally by Morris and Thorne [51], by using
the thin shell formalism the wormhole solution can be
extended to an exterior solution which contains only
normal matter satisfying all the energy conditions, thus
restricting the exotic matter only to a certain neighborhood
of the throat.

III. CIRCULAR ORBITS IN THE
EQUATORIAL PLANE

For any stationary and axisymmetric metric we can
derive some general expressions, which determine the
kinematic quantities on the circular orbits in the equatorial
plane. Let us consider the general form of the metric

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ grrdr2 þ gθθdθ2 þ gϕϕdϕ2;

ð4Þ
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and denote the specific energy and angular momentum of
the particles by E and L, respectively. Since we have two
Killing vectors with respect to time translations and
rotations around the symmetry axis, the energy and the
angular momentum are conserved on the geodesics. In
addition, on each geodesic trajectory we have the constraint
gμν _xμ _xν ¼ ϵ, where ϵ takes the value ϵ ¼ −1 for timelike
geodesics, and ϵ ¼ 0 for null geodesics. Choosing an affine
parameter τ we can express the timelike geodesic equations
in the equatorial plane as

dt
dτ

¼ Egϕϕ þ Lgtϕ
g2tϕ − gttgϕϕ

;

dϕ
dτ

¼ −
Egtϕ þ Lgtt
g2tϕ − gttgϕϕ

;

grr

�
dr
dτ

�
2

¼ −1þ E2gϕϕ þ 2ELgtϕ þ L2gtt
g2tϕ − gttgϕϕ

: ð5Þ

In the last equation we can introduce an effective
potential Veff given by

Veff ¼ −1þ E2gϕϕ þ 2ELgtϕ þ L2gtt
g2tϕ − gttgϕϕ

: ð6Þ

Then, the qualitative behavior of the radial motion is
determined completely by the properties of the effective
potential. In particular, circular orbits correspond to its
stationary points

VeffðrÞ ¼ 0; Veff;rðrÞ ¼ 0; ð7Þ

where the comma denotes the derivative with respect to the
radial coordinate. Solving this system of equations we can
obtain the specific energy and angular momentum on the
circular orbits in the form

E ¼ −
gtt þ gtϕω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtϕω0 − gϕϕω2
0

q ; ð8Þ

L ¼ gtϕ þ gϕϕω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕω0 − gϕϕω2

0

q ; ð9Þ

in terms of the angular velocity

ω0 ¼
dϕ
dt

¼
−gtϕ;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtϕ;rÞ2 − gtt;rgϕϕ;r

q
gϕϕ;r

; ð10Þ

where theþ=− sign refers to the corotating/counterrotating
orbits, respectively.
Timelike circular orbits exist in the region where the

energy and the angular momentum are well defined. The

curves where they diverge correspond to the location of the
null circular orbits, or the photon rings. They give the
boundary of the region of existence of the timelike circular
orbits. If only an unstable photon ring is present, the region
of existence of the timelike circular orbits is simply
connected, and for asymptotically flat spacetimes the
location of the photon ring gives its lower limit in radial
direction. If there are multiple photon rings, the region of
existence can consist of several disjoined pieces, i.e.,
circular orbits will be located in several annular regions
with gaps in between.
We calculate the kinematic quantities for the traversable

wormhole spacetime (1) obtaining the expressions

ω0 ¼ ωþ
r2K2ω;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

;rðr2K2Þ;r þ r4K4ðω;rÞ2
q

ðr2K2Þ;r
;

E ¼ N2 þ r2K2ωðω0 − ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − r2K2ðω0 − ωÞ2

p ;

L ¼ r2K2ðω0 − ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − r2K2ðω0 − ωÞ2

p ; ð11Þ

where we have the þ=− sign for corotating/counterrotating
orbits. Timelike circular orbits exist in the region where the
inequality N2 − r2K2ðω0 − ωÞ2 > 0 is satisfied.
In Fig. 1 we demonstrate the domain of existence of the

circular orbits for the particular wormhole solution given by
(3). The rotating wormhole solution exists for any values of
the spin parameter. However, since our aim is to make
comparison with the Kerr black hole, we constrain its range
to the limits a ∈ ½0; 1�. In order to illustrate the behavior of
the counterrotating circular orbits we include negative
values of the spin parameter a ∈ ½−1; 0Þ. Thus, the corotat-
ing geodesics are represented by the region with positive
values of a, while the region with the negative spin
describes the counterrotating ones. We see that the corotat-
ing circular orbits exist in the whole spacetime up to the
wormhole throat. On the other hand, counterrotating
particles are expelled by the spinning compact object
and can reach only to a certain radial distance, leaving a
region around the wormhole throat where the counter-
rotating circular orbits are not allowed.

IV. STABILITY OF THE CIRCULAR ORBITS IN
THE EQUATORIAL PLANE

We consider the geodesic equations in the equatorial
plane

ẍα þ Γα
βγ

_xβ _xγ ¼ 0; ð12Þ

and perform a small perturbation from the circular motion
x̃μðsÞ ¼ xμðsÞ þ ξμðsÞ, where xμðsÞ denotes the circular
orbit and s is an affine parameter on the geodesic. Working
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in the linear approximation we can obtain the following
system for the deviation ξμðsÞ [59,60]

d2ξμ

dt2
þ 2γμα

dξα

dt
þ ξb∂bVμ ¼ 0; b ¼ r; θ

γμα ¼ ½Γμ
αβu

βðu0Þ−1�
θ¼π=2

;

Vμ ¼ ½γμαuαðu0Þ−1�θ¼π=2; ð13Þ

where ω0 is the orbital frequency, and uμ ¼ _xμ ¼
u0ð1; 0; 0;ω0Þ is the 4-velocity vector. For convenience
we further introduce a separate notation for the cyclic
coordinates t and ϕ denoting them with capital Latin
indices, while small Latin indices refer to the r and θ
coordinates. We can integrate directly the equations for the
t and ϕ perturbations obtaining

dξA

dt
þ 2γAαξ

α ¼ 0; A ¼ t;ϕ; ð14Þ

and substitute these expressions in the remaining part of the
system. Considering the class of traversable wormholes
with metric functions N, K, b and ω depending only on the
radial coordinate, we can show that the equations for
the radial and vertical perturbations decouple and reduce
to the form

d2ξr

dt2
þ ω2

rξ
r ¼ 0;

d2ξθ

dt2
þ ω2

θξ
θ ¼ 0; ð15Þ

where we have introduced the quantities

ω2
r ¼ ∂rVr − 4γrAγ

A
r ;

ω2
θ ¼ ∂θVθ: ð16Þ

This representation allows us to make conclusions about
the linear stability of the circular motion in the equatorial
plane. It is determined by the sign of the functions ω2

r and
ω2
θ, which depend on the radial coordinate and the spin of

the wormhole. When they are positive, the system (15)
describes two harmonic oscillations around the circular
orbit in radial and vertical directions with frequencies ωr
and ωθ, which are called epicyclic frequencies. Then, the
circular motion is stable in linear approximation. If one of
functions ω2

r and ω2
θ becomes negative, a small perturbation

from the circular orbit in the corresponding direction will
deviate exponentially from it, and the circular motion gets
unstable.
We apply the derived expressions to obtain the epicyclic

frequencies for the rotating traversable wormholes

ω2
θ ¼ ðω0 − ωÞ2; ð17Þ

ω2
r ¼

ðb − rÞ
rN2

½ω2
θr

4K4ω2
;r þ rK2ðω0 − ωÞð2rðN2ω;rÞ;r

− 3N2ðrω;rÞ;rÞ�

þ ω2
θðb − rÞ

�
K
r
ðr2K;rÞ;r − 3K;rðrKÞ;r

�

−
ðb − rÞ

r2
½3NN;r þ rNN;rr − 3rðN;rÞ2�; ð18Þ

where we restrict ourselves to the class of solutions with
metric functions N, K, b and ω depending only on r, and
the orbital frequency ω0 is given by Eq. (11).
From these expressions we can deduce some general

properties of the considered wormhole geometries. We see
that for all the wormhole solutions the vertical epicyclic
frequency is always positive so the circular orbits are
always stable with respect to vertical perturbations. Thus,
the linear stability is determined only by the radial epicyclic
frequency similar to the case of the Kerr black hole. In the
static limit we obtain that the vertical epicyclic frequency
coincides with the orbital frequency similar to the
Schwarzschild black hole. In this way the circular motion
is characterized by only two independent quantities.
In order to get further intuition about the behavior of the

circular orbits, we investigate the region of stability for the
particular wormhole solution given by Eq. (3). In fig. 1 we
present the curve on which the radial epicyclic frequency
vanishes, thus delimiting the region of stability of the
circular orbits. In the region above the curve and on its
righthand side the inequality ω2

r > 0 is satisfied, so this part
of the spacetime represents the region of stability of the
timelike circular orbits in the equatorial plane.
We see that for most of the spin parameters in the range

a ∈ ½0; 1� the corotating orbits are stable in the whole
spacetime. For small angular momenta of the wormhole
however, we get a qualitatively different situation. The
curve ω2

r ¼ 0 possesses a maximum at a ¼ 0.0167 and
intersects the wormhole throat at a ¼ 0.0144. Thus, in the
range a ∈ ð0.0144; 0.0167Þ the region of stability consists
of two disconnected parts separated by a region, where the
circular orbits become unstable. For every spin parameter
a ∈ ð0.0144; 0.0167Þ the region of instability is delimited
by two marginally stable circular orbits located at radii,
which correspond to the solutions of the equation ω2

r ¼ 0.
Increasing the angular momentum the region of instab
ility becomes smaller while at a ¼ 0.0167 it vanishes
completely.
These configurations have astrophysical implications

since they lead for example to a discontinuity in the
accretion disk within the thin disk model. In this case
the accretion disk consists of two annular regions separated
by a gap. Such behavior is not uncommon among the
various compact objects, and it arises for example in some
naked singularity spacetimes like the Janis-Newman-
Winicour solution.
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For the counterrotating orbits as well as for the static
wormhole solution the region of stability resembles the
case of the Kerr black hole. There is an innermost stable
circular orbit (ISCO) located at the radial distance rISCO,
where the radial epicyclic frequency vanishes, and all the
orbits at higher values of the radial coordinate are stable.
The ISCO takes its closest position to the wormhole throat
at the static limit located at r=r0 ¼ 2. When the angular
momentum of the wormhole increases, it moves away to
larger radii.

V. PROPERTIES OF THE EPICYCLIC
FREQUENCIES

The epicyclic and orbital frequencies are the main
quantities, which are used in developing geodesic models
for the quasi-periodic oscillations from the accretion disk
such as the orbital precession and resonant models. Hence,
their properties determine important characteristics of the
model like the possible types of resonances, which can be
excited, the radial distance from the compact object, where
the resonance process takes place, and the values of the
observable peak frequencies.
In this section we will examine the wormhole epicyclic

frequencies making comparison with the Kerr black hole.
For the Kerr black hole we observe only a slight variation in
the behavior of the characteristic frequencies in the whole
range of the spin parameter a ∈ ½0; 1�. The orbital fre-
quency is a monotonically decreasing function for any
value of the spin parameter and the radial coordinate above

the photon orbit. The radial epicyclic frequency always
possesses a single maximum, while the vertical one is a
monotonically decreasing function for slow rotation and
gets a single maximum for rapidly rotating black holes. In
addition, for any value of the spin parameter the orbital
frequency is always larger than the vertical epicyclic
frequency, which on the other hand is larger than the radial
one. Thus, we have the ordering ω2

0 > ω2
θ > ω2

r for the
whole range of the radial coordinate above the photon
orbit.1 The behavior of the frequencies for the Kerr black
hole is demonstrated in Fig. 2 for some characteristic values
of the spin parameter for the two qualitatively differ-
ent cases.
While sharing some similarities with the Kerr black hole,

the epicyclic frequencies for the wormholes show also
major distinctions. One of the important differences is that
various orderings of the orbital and epicyclic frequencies
can be realized. This enables much more diverse scenarios
of resonance excitation, some of which leading to stronger
observable signals. In Fig. 3 we illustrate the possible cases
for the particular wormhole solution (3) by plotting the
curves ω2

r ¼ ω2
θ and ω2

r ¼ ω2
0. In the region above and

bounded by each of the curves the inequalitiesω2
r > ω2

θ and
ω2
r > ω2

0 are satisfied, respectively. From the expressions
for the epicyclic frequencies (17) we can see that for

(a) (b)

FIG. 1. Existence and stability of the circular orbits in the equatorial plane for rotating traversable wormholes. The grey curve denotes
the location of the null circular orbits, while on the blue curve the relation ω2

r ¼ 0 is satisfied. Timelike circular orbits exist in the grey
region, and they are stable in the light grey one bounded by the blue curve. The positive values of the spin parameter represent the co-
rotating circular orbits, while the negative ones correspond to the counterrotating ones.

1We should note that violating the Kerr limit for the spin
parameter a ≤ 1 changes the properties of the epicyclic frequen-
cies, and for naked singularities different situations can exist [24].
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co-rotating orbits we have ω2
θ < ω2

0, while for counter-
rotating orbits the opposite case ω2

θ > ω2
0 is realized. This

result is rather general for the traversable wormholes, since
it applies for the whole class of wormhole solutions with
metric function N, ω, b and K depending only on r.
The analysis performed in Fig. 3 shows that the case of

counter-rotating orbits resembles the Kerr black hole since

it possesses a uniform frequency ordering ω2
θ > ω2

0 > ω2
r

for the whole range of the radial coordinate r ∈ ðrISCO;∞Þ.
For corotating orbits we have various scenarios. In the
region above the curve ω2

r ¼ ω2
0 we have ω2

r > ω2
0 > ω2

θ,
below the curve ω2

r ¼ ω2
θ the inequality ω2

0 > ω2
θ > ω2

r is
satisfied, while between the two curves we have
ω2
0 > ω2

r > ω2
θ. In the static limit we get the degenerate

case ω2
θ ¼ ω2

0 > ω2
r similar to the Schwarzschild black

hole. In the next section we will examine the implications
of these types of frequency ordering on the possibilities for
formation of different resonances.
Next we study the behavior of the orbital and epicyclic

frequencies as a function of the radial coordinate r for
various spin parameters a. For counterrotating orbits we
observe again a consistent behavior for the whole range of
a ∈ ð0; 1�, while for corotating orbits we have different
possibilities depending on the speed of rotation of the
wormhole. In the counterrotating case the radial epicyclic
frequency always has a single maximum, while the vertical
one is a monotonically decreasing function of r. Thus, for
counterrotating orbits the wormhole spacetime resembles
the slowly rotating Kerr black hole. In the corotating case
we can classify the wormhole solution with respect to the
behavior of the epicyclic frequencies in the following
categories:

(I) a ∈ ½0; 0.0144Þ: The region of stability of the
circular orbits is simply connected. The radial
epicyclic frequency ωr has a single maximum, while
ωθ is a monotonically decreasing function.

(II) a ∈ ½0.0144; 0.0167�: The region of stability of the
circular orbits consists of two disconnected parts. In
each of the regions of stable orbits the radial
epicyclic frequency ωr possesses a single maximum.
The vertical epicyclic frequency ωθ is a monoton-
ically decreasing function.

(III) a ∈ ½0.0167; 0.025�: The region of stability of the
circular orbits is simply connected. The radial

(a) (b)

FIG. 2. Examples of the qualitatively different types of behavior of the epicyclic frequencies for the Kerr black hole. For slow rotation
the vertical epicyclic frequency is a monotonically decreasing function, while for higher spins it possesses a single maximum. The radial
coordinate takes values larger than the photon orbit, and we represent the location of the ISCO with a dashed line.

FIG. 3. Ordering of the orbital and the epicyclic frequencies for
rotating traversable wormholes. The curve ω2

r ¼ ω2
θ is plotted in

orange, while the curve ω2
r ¼ ω2

0 is represented in green. In the
region above the orange curve we have ω2

r > ω2
θ, and above and

bounded by the green curve ω2
r > ω2

0 is satisfied. For counter-
rotating orbits with a < 0 it is fulfilled that ω2

θ > ω2
0, while in the

corotating case a > 0 we have the opposite inequality. The grey
and the blue curves are the boundaries of the regions of existence
and stability of the timelike circular orbits, respectively.

QUASIPERIODIC OSCILLATIONS AROUND ROTATING … PHYS. REV. D 104, 024048 (2021)

024048-7



epicyclic frequency ωr has two maxima and a
minimum, while ωθ is a monotonically decreasing
function.

(IV) a ∈ ½0.025; 0.029Þ: The region of stability of the
circular orbits is simply connected. The radial
epicyclic frequency ωr has two maxima and a
minimum, while ωθ possesses a single maximum.

(V) a ∈ ½0.029; 1�: The region of stability of the circular
orbits is simply connected. Both the radial and the
vertical epicyclic frequencies possess a single
maximum.

We see that the epicyclic frequencies for the counter-
rotating case and the very slowly corotating case I. behave
like the slowly rotating Kerr black hole, as the static limit
resembles the Schwarzschild black hole. Then, we have
some exotic regions in the parametric space II., III. and IV.
with a multiconnected region of stability of the circular
orbits or multiple extrema of the radial epicyclic frequency,
which don’t exist for the Kerr black hole. Increasing further
the spin parameter in region V. the epicyclic frequencies
start to behave like for the rapidly rotating Kerr black hole.
The orbital frequency is always a monotonically decreasing
function of the radial coordinate both for co- and counter-
rotating orbits.
In Fig. 4 we present the analysis of the behavior of the

epicyclic frequencies as a function of r for different values
of the spin parameter by plotting the curves ∂rωr ¼ 0 and
∂rωθ ¼ 0, as well as the second derivatives ∂2

rωr ¼ 0, and
∂2
rωθ ¼ 0. The regions of the qualitatively different types

of behavior are limited by horizontal lines corresponding to
the characteristic values of the spin parameter, where the
transitions occur. We further demonstrate examples of each
of the classes I.–IV. in Fig. 5, where we plot the frequencies
νr ¼ ωr=2π, νθ ¼ ωθ=2π and ν0 ¼ ω0=2π for some par-
ticular values of the spin parameter.

VI. NONLINEAR RESONANCES

In linear approximation the small deviations from
circular geodesic motion are described by two independent
harmonic oscillations with eigenfrequencies called radial
and vertical epicyclic frequencies. However, a more real-
istic description of the processes in the accretion disk
requires to include further nonlinear terms in the perturba-
tion equations. They give account for different forces
exerted in the accreting fluid such as pressure, viscosity,
magnetic fields etc., and lead to the coupling of the two
epicyclic modes. Typically such interaction between the
eigenfrequencies is a prerequisite for the excitation of
resonances in dynamical systems, which are realized when
the system reaches suitable conditions. Indeed, analytical
and numerical investigations of different models of accre-
tion show that resonances are frequently present in the
accretion disks and seem to be their intrinsic feature
[61–63].

Currently the physical processes which take part in the
accretion disk are not understood sufficiently well.
Therefore, it is difficult to derive rigorous expressions
for the nonlinear terms governing the behavior of the small
perturbations. A reasonable approach is to consider some
basic types of interactions, which are generic enough to
arise in many physical situations for a wide range of
particular processes. For example, we can consider non-
linear corrections to the perturbation equations describing
the small deviation from geodesic circular motion in the
form

d2ξr

dt2
þ ω2

rξ
r ¼ ω2

rfr

�
ξr; ξθ;

dξr

dt
;
dξθ

dt

�
;

d2ξθ

dt2
þ ω2

θξ
θ ¼ ω2

θfθ

�
ξr; ξθ;

dξr

dt
;
dξθ

dt

�
; ð19Þ

where fr and fθ are nonlinear functions. The specific form
of these functions should be determined by the properties of
the physical model of the accretion flow. However, without
resorting to a particular model, we can suggest some simple
cases, which are likely to arise in many scenarios and
investigate their behavior. One of the simplest situations is
to assume that fr ¼ 0 and fθ ¼ hξrξθ, where h is a
coupling constant. Then, the equation for the vertical
oscillations takes the form

d2ξθ

dt2
þ ω2

θξ
θ ¼ −ω2

θh cosðωrtÞξθ: ð20Þ

In this way we obtain the Mathieu equation, which is
known to describe parametric resonances for ratios of the
frequencies

ωr

ωθ
¼ 2

n
; ð21Þ

where n is a positive integer (see e.g., [64]). When the
coupling is weak, or h ≪ 1, the smallest possible value of
n corresponds to the strongest resonance. Despite that
parametric resonances were obtained by adopting an
ansatz for the frequencies coupling it was demonstrated
that they are a mathematical property of thin, nearly
Keplerian disks [10,61,63].
Another common dynamical system which exhibits

resonant behavior is the forced nonlinear oscillator. In this
respect it was suggested that the nonlinear effects in the
perturbations of the circular orbits can be described by
including a periodic radial force in the equation for the
vertical oscillations with frequency equal to the radial
epicyclic frequency. Then, the equation for the vertical
oscillations takes the form
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d2ξθ

dt2
þ ω2

θξ
θ þ ½non linear terms in ξθ� ¼ hðrÞ cosðωrtÞ:

ð22Þ

Resonances are excited when the epicyclic frequencies
take integer ratios ωθ ¼ nωr. Since the equation is non-
linear, the resonant solution can contain also linear

combinations of the epicyclic frequencies, which gives
further possibilities for fitting the frequencies of the
quasiperiodic oscillations.
In the previous models for the nonlinear effects in the

oscillations of the circular orbits resonances occurred due
to the coupling of the two epicycylic frequencies. In general
it is also possible to consider interactions of one of the
epicyclic frequencies and the orbital frequency leading to

(a) (b)

(c)

FIG. 4. Behavior of the radial epicyclic frequency (a) and (b), and the vertical epicyclic frequency (c) as a function of the radial
coordinate. The curves ∂rωr ¼ 0 and ∂rωθ ¼ 0 are represented in orange, while the second derivatives ∂2

rωr ¼ 0 and ∂2
rωθ ¼ 0 are

represented in green. The functions ∂2
rωr and ∂2

rωθ are positive above and on the righthand side of the green curves. In the zoomed plot
(b) we illustrate the regions with different types of behavior of the radial epicyclic frequency for slow rotation, where we denote the
transition values of the spin parameter with horizontal lines. We further show the boundaries of the domain of existence and stability of
the circular geodesics with grey and blue lines, respectively.
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the so called Keplerian resonances. The Keplerian reso-
nances are less motivated from a theoretical point of view
since it is difficult to imagine realistic physical processes in
the accretion disk which may cause their excitation.
Nevertheless, there is no physical reason either, which
prevents their existence, and they can be studied as a
possible source for the quasi-periodic oscillations.
In the following discussion we will study how the

described resonance phenomena can explain the observed
twin-peak frequencies in the x-ray flux from accreting
compact objects provided that the compact object is
modelled by a rotating traversable wormhole. In the

resonance models the twin-peak frequencies are explained
by identifying them with suitable combinations of resonant
frequencies so that the observational ratio between the
lower (νL) and the upper (νU) frequencies is satisfied, i.e.,
νU∶νL ¼ 3∶2. In general, identifications with frequencies
corresponding to lower order resonances are preferred,
since they lead to larger amplitudes of the observed signal.
For the parametric resonance this can be done directly by
making the identifications νU ¼ νθ ¼ ωθ=2π and
νL ¼ νr ¼ ωr=2π. In the case of the Kerr black hole this
is the lowest order parametric resonance since n ¼ 1; 2
parametric resonances do not exist. If we consider the

(a) (b)

(c)

(e)

(d)

FIG. 5. Examples of the qualitatively different types of behavior of the epicyclic frequencies for rotating traversable wormholes.
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forced resonances, we need to identify the observed
frequencies with linear combinations of the epicyclic
frequencies in order to achieve the 3∶2 ratio. For the
Kerr black hole the lowest order possible forced resonances
are n ¼ 2 and n ¼ 3 when the epicyclic frequencies are
related as ωθ∶ωr ¼ 2∶1 and ωθ∶ωr ¼ 3∶1. Then, the
observational ratio can be obtained by making the identi-
fications νU ¼ νθ þ νr ¼ ðωθ þ ωrÞ=2π and νL ¼ νθ, and
νU ¼ νθ and νL ¼ νθ − νr ¼ ðωθ − ωrÞ=2π, respectively.
The simplest cases of the Keplerian resonances, which are
possible in the spacetime of the Kerr black hole are

ω0∶ωr ¼ 3∶2, ω0∶ωr ¼ 2∶1, or ω0∶ωr ¼ 3∶1, and sim-
ilarly if we consider coupling between the vertical epicyclic
and the orbital frequencies.
In wormhole spacetimes we obtain a much richer picture

of possible resonant phenomena. One of the most distinc-
tive features compared to the Kerr black hole is that various
types of ordering of the orbital and epicyclic frequencies
occur in the different regions of the parametric space. This
allows for the excitation of more diverse types of reso-
nances which do not exist in the Kerr spacetime. For the
Kerr black hole we always have the inequality ωθ > ωr.

(a)

(c)

(b)

FIG. 6. Location of the parametric and forced resonances depending on the wormhole spin. In (a) and (b) we represent the case when
the epicyclic frequencies satisfy the inequality ωr < ωθ, while in (c) we have the ordering ωr > ωθ. In the zoomed plot (b) we can see
the location of the resonances for the static wormhole.
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This prevents the excitation of the lower order parametric
resonances n ¼ 1 and n ¼ 2, i.e., ωr ¼ 2ωθ and ωr ¼ ωθ,
which would also possess the highest amplitudes. In
contrast, for the rotating wormhole given by Eq. (3) the
n ¼ 1 and n ¼ 2 parametric resonances are possible for any
value of the spin parameter a ∈ ½0; 1�. The observed 3∶2
ratio between the twin-peak frequencies can be explained
by identifying the lower and upper observable frequencies
νL and νU as νU ¼ νθ þ νr and νL ¼ νr in the n ¼ 1 case,
and νU ¼ 3νθ ¼ 3νr and νL ¼ 2νr ¼ 2νθ in the n ¼ 2 case.

For the excitation of the lowest order forced resonances
we obtain new possibilities when the epicyclic frequencies
take the ratios ωθ∶ωr ¼ 1∶2 and ωθ∶ωr ¼ 1∶3. They result
in the observable frequencies νU ¼ νθ þ νr, νL ¼ νr, and
νU ¼ νr, νL ¼ νr − νθ, respectively. The Keplerian reso-
nances can be excited for combinations like ω0∶ωr ¼ 3∶2
(νU ¼ ν0, νL ¼ νr), ω0∶ωr ¼ 2∶1 (νU ¼ 3νr, νL ¼ ν0), or
ω0∶ωr ¼ 3∶1 (νU ¼ ν0, νL ¼ 2νr) in the regions where the
ordering ω0 > ωr is valid, and the corresponding cases
with coupling between the vertical epicyclic and the orbital

(a)

(c)

(b)

FIG. 7. Location of the Keplerian resonances depending on the wormhole spin. In (a) and (b) (zoomed plot) we study the resonances
due to the coupling between the radial epicyclic and the orbital frequencies, while in (c) the coupling is between the vertical epicyclic
and the orbital frequencies. The lowest order Keplerian resonances do not exist in the regions in the parametric space, where ω0 < ωr or
ω0 < ωθ is satisfied.
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frequencies when ω0 > ωθ. Our investigations show that
the lowest order Keplerian resonances with ratios between
the orbital frequency and one of the epicyclic frequencies
m∶n, where m, n ¼ 1, 2, 3 don’t exist when we have the
ordering ω0 < ωr or ω0 < ωθ.
The location of the described resonances as a function of

the spin parameter is illustrated in Figs. 6-7. For the
corotating orbits the resonances are excited in the close
vicinity of the wormhole throat, i.e., in the region with a
very strong gravitational field. Moreover, this behavior is
observed not only for rapidly rotating wormholes, but for a
wide range of values of the wormhole spin. Thus, the
quasiperiodic oscillations in wormhole spacetimes can be a
valuable probe for the strong gravity regime. Another
characteristic feature is that for a fixed value of the spin
parameter the same type of resonance occurs for several
different radii. In the case of the Kerr black hole the
resonant curves are monotonic and such behavior is
excluded. This phenomenon is particularly interesting since
the radius where the resonance is excited is connected with
the properties of the physical process causing it. Thus, for
wormhole spacetimes we can have the same type of
resonance excited simultaneously at different regions in
the accretion disk probably caused by different physical
processes.

VII. CONCLUSION

Wormholes are one of the major predictions of the
gravitational theories, which is still awaiting experimental
confirmation. Therefore, it is important to be familiar with
their characteristics in different observable phenomena. In
this work we study how we can interpret the high-
frequency quasi-periodic oscillations from the accretion
disk within the resonance models if we assume that the
central compact object represents a wormhole instead of the
Kerr black hole. For the purpose we consider the travers-
able wormhole geometry derived by Teo, which describes
any stationary and axisymmetric completely regular worm-
hole solution within classical or semi-classical gravity. We

perform a systematic study of the existence and stability of
the timelike circular geodesics in the equatorial plane. As a
result we derive analytical expressions for the epicyclic
frequencies, which govern the evolution of small deviations
from the circular motion, which are valid for a general class
of traversable wormholes with integrable geodesic equa-
tions. We see that for large classes of wormholes the
vertical epicyclic frequency is always positive, ensuring
that circular orbits are always stable with respect to small
perturbations in vertical direction. In this respect worm-
holes are similar to the Kerr black hole since the stability is
determined only by the radial epicyclic frequency.
In other aspects the quasi-circular equatorial motion in

wormhole spacetimes shows significant differences. A
major distinction is that the epicyclic and orbital frequen-
cies can obey different types of ordering in the various
regions of the parametric space. In contrast, for the Kerr
black hole they maintain a constant relation for any radius
and spin parameter. This property enables the manifestation
of a richer class of resonant phenomena in wormhole
spacetimes opening new possibilities for the explanation of
the observed quasi-periodic oscillations from the accretion
disk. In particular, lower order parametric and forced
resonances are possible, which will lead to stronger
observable signals. For a wide range of spin parameters
resonances can be excited in the close neighborhood of the
wormhole throat, probing the region of strong gravitational
interaction. In addition, the same type of resonance can take
place simultaneously at several different radial distances,
which can put some restrictions on the physical processes
in the accretion disk giving origin to the resonant
phenomena.
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