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We consider accelerated black hole horizons with and without defects. These horizons appear in the
C-metric solution to Einstein equations and in its generalization to the case where external fields are
present. These solutions realize a variety of physical processes, from the decay of a cosmic string by a black
hole pair nucleation to the creation of a black hole pair by an external electromagnetic field. Here, we show
that such geometries exhibit an infinite set of symmetries in their near horizon region, generalizing in this
way previous results for smooth isolated horizons. By considering the limit close to both the black hole and
the acceleration horizons, we show that a sensible set of asymptotic boundary conditions gets preserved by
supertranslation and superrotation transformations. By acting on the geometry with such transformations,
we derive the superrotated, supertranslated version of the C-metric and compute the associated conserved
charges. We also consider other physical scenarios, including accelerated black holes in anti–de Sitter and
binary black hole systems.
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I. INTRODUCTION

A pair of black holes with opposite, constant proper
accelerations is described by the so-called C-metric [1,2], a
gravitational instanton solution to the vacuum Einstein
equations [3,4]. This solution describes a pair of two
accelerated black holes pulled apart by the action of two
semi-infinite cosmic strings, each of them attached to one
black hole and extending all the way to infinity. This type of
configuration has very interesting applications: For exam-
ple, this can be used to describe the process through which
a cosmic string decays by nucleation of two black holes.
Also, it can be used to study processes that represent self-
gravitating analogs of the Schwinger effect: In fact, both
magnetically and electrically charged generalizations of the
C-metric in the presence of external fields are known [5],
these being given by axisymmetric electrovacuum solutions
to the Einstein-Maxwell equations. Then, it is possible to
resort to the Euclidean path integral method and compute
the production rate of charged black holes in an external
electromagnetic field [6], a kind of process that has been
extensively studied in the literature [7–10], especially in

relation to the microscopic description of black hole
thermodynamics [8,9].
The thermodynamics of C-metric type solutions has

recently been revisited from a modern perspective [11–14],
and asymptotically, locally AdS versions of these geom-
etries [15] have been studied in the context of holo-
graphy [16–18]; see also references therein and thereof.1

In a recent paper [28], Strominger and Zhiboedov consider
the C-metric as a working example to investigate the
action of the Bondi-Metzner-Sachs (BMS) superrotation
symmetry [29,30] that appears in the asymptotically flat
spacetimes at null infinity. Superrotations act on the
celestial sphere as local conformal transformations, and
this introduces singularities whose physical meaning
remained unclear. By analyzing the process of black
holes nucleation and cosmic string decay, Strominger
and Zhiboedov showed that the early and late time regimes
of such a process lead to two distinct vacua that differ from
each other by a finite superrotation, showing that the latter
transformations are necessary to describe physical mech-
anisms of this sort.
Here, taking the result of [28] as a motivation, we will

study superrotations and supertranslations symmetries of
the C-metric but from the near horizon perspective. As
shown in [31], the near horizon regions of many gravityPublished by the American Physical Society under the terms of
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1See also Refs. [19–27], where the C-metric and related
geometries are studied in different contexts.
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solutions also exhibit a BMS-type asymptotic symmetry
that includes superrotations. We will investigate how this
symmetry acts in the case of the C-metric, both at the black
hole horizon and at the acceleration horizon. We will show
that the C-metric solution can actually be accommodated in
the set of near horizon boundary conditions that are
preserved by an infinite-dimensional symmetry algebra.
The zero-modes of the Noether charges associated to such
infinite symmetry correctly reproduce the Wald entropy
of the C-metric horizons. Then, we will construct the
supertranslated and superrotated versions of the C-metric
explicitly.
The paper is organized as follows: In Sec. II, we will

review the main geometrical features of the C-metric
solution as well as its physical interpretation. In Sec. III,
we will consider the near horizon symmetries of the
C-metric and the corresponding charge algebra. In
Sec. IV, we will construct both superrotated and super-
translated versions of the C-metric solution. In Sec. V, we
discuss the case of accelerated black holes in anti–de Sitter
(AdS) spacetime, which exhibits features qualitatively
different from those of the asymptotically flat case. In
Sec. VI, with the intention of showing how the near horizon
analysis can be extended to gather physical scenarios of
different sorts, we address a case that describes a black
hole binary system in equilibrium. For this case as well,
we will find results compatible with the black hole
thermodynamics.

II. THE C-METRIC AND BLACK HOLE PAIRS

In a suitable system of coordinates, the C-metric takes
the following form [32]:

ds2 ¼ 1

α2ðxþ yÞ2
�
−fðyÞdτ2 þ dy2

fðyÞ þ
dx2

gðxÞ þ gðxÞdϕ2

�
;

ð1Þ

with

fðyÞ ¼ −ð1 − y2Þð1 − 2αMyÞ;
gðxÞ ¼ ð1 − x2Þð1þ 2αMxÞ; ð2Þ

where τ ∈ R, x ∈ R, y ∈ R, and where ϕ ∈ ½−Cπ; Cπ� is a
periodic coordinate. The value of C controls the angular
deficit of a conical singularity that the geometry exhibits at
x2 ¼ 1. This codimension-2 defect is ultimately interpreted
as two semi-infinite cosmic strings that pull the black holes
and take them apart, accelerating each of them in opposite
directions. Each string is attached to one black hole, and it
extends all the way to infinity, pinching off the null infinity
at antipodal points of the celestial sphere. C thus measures
the tension of the strings. In (1), α and M are two arbitrary
parameters that are ultimately associated to the acceleration
and the mass of the solution, respectively. The metric

functions in (2) satisfy gðxÞ ¼ −fð−xÞ, and the metric is
singular at the conformal infinity xþ y ¼ 0, where the
conformal factor diverges.
In order to make the interpretation of the parameters α

and M clear, it is convenient to consider the change of
coordinates,

x ¼ cos θ; y ¼ 1

αr
; τ ¼ αt; ð3Þ

which is well defined provided one restricts the analysis to
the region −1 ≤ x ≤ 1, y > 0. In fact, coordinates (t, r, ϕ,
θ) cover only part of the manifold, where one sees only one
black hole. In this coordinates, the metric reads

ds2 ¼ 1

ð1þ αr cos θÞ2

×

�
−FðrÞdt2 þ dr2

FðrÞ þ
r2dθ2

GðθÞ þGðθÞr2sin2θdϕ2

�
;

ð4Þ

with

FðrÞ ¼ ð1 − α2r2Þ
�
1 −

2M
r

�
; GðθÞ ¼ 1þ 2αM cos θ:

ð5Þ

Now, it becomes evident that the case α ¼ 0 corresponds to
Schwarzschild solution with a massM (here, we use natural
units G ¼ c ¼ 1). On the other hand, the case M ¼ 0 with
α arbitrary gives a solution that is diffeomorphic to
Minkowski; more precisely, it reduces to Rindler spacetime
as perceived by an observer at r ¼ 0 with proper constant
acceleration α. The metric with M ≠ 0 is singular at r ¼ 0,
and it exhibits two Killing horizons at rþ ¼ 2M and
ra ¼ 1=α; these correspond to the event horizon and the
acceleration horizon, respectively. In order to guarantee the
spatial character of the angular coordinates θ and ϕ, it is
necessary to impose 2M < 1=α, in such a way that GðθÞ >
0 for all values of θ. The latter condition is equivalent to
demanding the two horizons to be disjoint.
For the solution not to exhibit angular deficit at the poles

of the constant-r, constant-t surfaces, it is necessary to fix
the value of C to ensure the right periodicity in ϕ, either at
θ ¼ 0 or at θ ¼ π. Since for M ≠ 0 both poles have
different conicity, it is only possible to cure only one
conical singularity and not both. For instance, we could
take C ¼ Cθ¼0 ≡ ð1þ 2αMÞ−1 which suffices to make the
surface smooth at θ ¼ 0 at the price of fixing the angular
deficit at θ ¼ π to be δθ¼π ¼ 8παM

1þ2αM. This is precisely the
codimension-2 defect we mentioned above: The angular
deficit extends from the event horizon all the way to
infinity, describing the cosmic string that pulls the black
hole. In this scenario, it is the string what provides the black
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hole with its proper acceleration. However, we could also
think of other mechanism: For example, we could consider
the system in the presence of a uniform external magnetic
field and then think of a pair of magnetically charged black
holes being spontaneously created by tunneling, as if it was
a self-gravitating analog of the Schwinger effect. This
amounts to considering the magnetically charged version of
the C-metric in the background of an external magnetic
field B, which is given by [5]

ds2 ¼ λ2ðx; yÞ
α2ðxþ yÞ2

�
−fðyÞdτ2 þ dy2

fðyÞ þ
dx2

gðxÞ
�

þ gðxÞ
λ2ðx; yÞα2ðxþ yÞ2 dϕ

2; ð6Þ

with

λðx; yÞ ¼
�
1 −

Bp
2

x

�
2

þ B2

4α2ðxþ yÞ2 gðxÞ; ð7Þ

and with the new functions,

fðyÞ ¼ −ð1 − y2Þð1 − αrþyÞð1 − αr−yÞ;
gðxÞ ¼ ð1 − x2Þð1þ αrþxÞð1þ αr−xÞ; ð8Þ

which still obey fðxÞ ¼ −gð−xÞ. Here, r� ¼ M �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − p2

p
, where M is the mass and jpj is the absolute

value of the magnetic charges of the black holes. r� are
the inner and outer black hole horizons (see below). B is
the magnitude of the external magnetic field. The range
of variables is similar as before, with ϕ ∈ ½−Cπ; Cπ�
being periodic. The geometry (6) represents a pair of
black holes of mass M carrying opposite magnetic charges
�p immersed in an external magnetic field. Considering
again coordinates (3), the geometry can be written as

ds2 ¼ Λ2ðr; θÞ
ð1þ αr cos θÞ2

�
−FðrÞdt2 þ dr2

FðrÞ þ
r2dθ2

GðθÞ
�

þ GðθÞr2sin2θ
Λ2ðr; θÞð1þ αr cos θÞ2 dϕ

2; ð9Þ

with

Λðr; θÞ ¼
�
1 −

Bp
2

cos θ

�
2

þ B2r2sin2θ
4ð1þ αr cos θÞ2 GðθÞ;

ð10Þ

and

FðrÞ ¼ ð1 − α2r2Þ
�
1 −

rþ
r

��
1 −

r−
r

�
;

GðθÞ ¼ ð1þ αrþ cos θÞð1þ αr− cos θÞ; ð11Þ

where one sees that for p ¼ M ¼ 0 the Melvin solution
to Einstein-Maxwell equations is recovered, cf. [6]. When
B ¼ 0, the solution becomes the magnetically charged
analog of the C-metric (21), and it reduces to the Reissner-
Nordström solution when α ¼ 0. The case α ¼ 0 ≠ M, on
the other hand, is a particular case of the Ernst-Wild
solution [5], describing a black hole immersed in the
Melvin universe. The gauge field configuration is given by

A ¼ −
2

BΛðr; θÞ
�
1 −

1

2
Bp cos θ

�
dϕ; ð12Þ

which tends to the Dirac monopole configuration A ¼
ðconstþ p cos θÞdϕ for small B.
By looking at the geometry near the poles θ ¼ 0 and

θ ¼ π, one finds that the values of C that make the
geometry regular are, respectively,

Cθ¼0 ¼
Λ2ðθ ¼ 0Þ
Gðθ ¼ 0Þ and Cθ¼π ¼

Λ2ðθ ¼ πÞ
Gðθ ¼ πÞ : ð13Þ

This means that, in order to cure the conical singularities at
both poles, one has to fix the parameter α in terms of the
product pB as follows:

�
1 −

1

2
pB

�
4

ð1 − αrþÞð1 − αr−Þ

¼
�
1þ 1

2
pB

�
4

ð1þ αrþÞð1þ αr−Þ; ð14Þ

which in particular implies Cθ¼0 ¼ Cθ¼π . The latter con-
dition was impossible in the absence of the external
magnetic field, but it is possible now provided B takes
the appropriate value. The physical interpretation of this is
that, when (14) is satisfied, the proper acceleration of the
black holes is precisely that of a magnetic monopole with
charge p in an external magnetic field B, with no extra
force needed. This explains why the cosmic string exactly
cancels. Notice that, in the limit of small α condition (14)
yields the correct Newtonian limit,

Mα ≃ pB; ð15Þ

where we have used that r−rþ ¼ p2 and rþ þ r− ¼ 2M.
Notice also that, as expected, condition (14) is invariant
under the transformation pB; α → −pB;−α.
From the solution above, having imposed the smooth-

ness condition (14), one can compute the production rate
of black hole pairs in a magnetic field background. As
said, this is the self-gravitating version of the magnetic
Schwinger effect, for which the leading contribution to
the creation rate is given by the standard instanton
calculation,
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Γ ≃ e−2ðIC−IMÞ; ð16Þ

where IC is the value of the on shell Einstein-Hilbert
action—with the appropriate Gibbons-Hawking-York
boundary term—evaluated on the C-metric solution
(9)–(14) and regularized with respect to the action
evaluated on the background geometry, IM, the latter
geometry being the Melvin solution [6] describing a
uniform magnetic field B in an otherwise empty space-
time. In the small charge limit, (16) reduces to the leading
contribution of the standard Schwinger effect; see
[7,8,10]. In addition, it yields next-to-leading contribu-
tions that give an area-law term A=4 in the series
expansion of logΓ, cf. [8,9].
Another interesting case occurs when there is no accel-

eration; that is, the case in which the magnetically charged
black hole is kept at fixed position despite the presence of
the external magnetic field B. The presence of the cosmic
string is unavoidable in that case, as it is precisely the string
what makes the static configuration possible. Such a
situation is described by the metric,

ds2 ¼Λ2ðr;θÞ
�
−FðrÞdt2þ dr2

FðrÞþ r2dθ2
�
þ r2sin2θ
Λ2ðr;θÞdϕ

2;

ð17Þ

with

Λðr; θÞ ¼ 1þ B2

4
ðr2sin2θ þ p2cos2θÞ − Bp cos θ

and FðrÞ ¼ 1 −
2M
r

þ p2

r2
: ð18Þ

As before, p is the magnetic charge of the monopole,
B is the external magnetic field, and M is the mass;
acceleration is zero in this case (α ¼ 0). The gauge field
configuration is

A ¼
B
2
ðr2sin2θ þ p2cos2θÞ − p cos θ

Λðr; θÞ dϕ; ð19Þ

from what we observe that the particular case B ¼ 0
corresponds to the magnetically charged Reissner-
Nordström solution. As in the previous cases, the parameter
C enters in the periodicity of the angular coordinate:
ϕ ∈ ½−Cπ; Cπ�. The conditions for the absence of conical
singularity at θ ¼ 0 and θ ¼ π are now Cθ¼0 ¼ Λ2ð0Þ and
Cθ¼π ¼ Λ2ðπÞ, respectively, and we see that, provided
B ≠ 0, the condition Cθ¼0 ¼ Cθ¼π cannot be satisfied
simultaneously. This is understood as the unavoidable
presence of the cosmic string in the poles for the black
hole to remain static. Notice that the pole at which the string
is attached gets inverted if we perform the change

pB → −pB, as it can be easily seen from the explicit form
of Λðr; θÞ.
Solution (17) can be thought of as a static, magneti-

cally charged black hole in the Melvin universe [5].
Here, however, we are interested in solutions with
nonvanishing acceleration, and so we will leave the
study of stationary solutions of the Melvin type for a
future work. So, let us go back to the accelerated black
hole case: let us consider the electromagnetic dual to the
configurations considered above. That is, consider the
electrically charged black hole with constant proper
acceleration. The solution takes a form quite similar
to the C-metric; namely,

ds2 ¼ 1

α2ðxþ yÞ2
�
−fðyÞdτ2 þ dy2

fðyÞ þ
dx2

gðxÞ þ gðxÞdϕ2

�
;

ð20Þ

with fðyÞ ¼ −ð1 − y2Þð1 − αrþyÞð1 − αr−yÞ and gðxÞ ¼
−fð−xÞ. Now, r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
with q being the

electric charge: the electric potential reads A ¼ qydτ. A
change of coordinate similar to the one considered
above yields the following form for the metric:

ds2 ¼ 1

ð1þ αr cos θÞ2

×

�
−FðrÞdt2 þ dr2

FðrÞ þ
r2dθ2

GðθÞ þGðθÞr2sin2θdϕ2

�
;

ð21Þ

where now

FðrÞ ¼ ð1 − α2r2Þ
�
1 −

rþ
r

��
1 −

r−
r

�
;

GðθÞ ¼ ð1þ αrþ cos θÞð1þ αr− cos θÞ; ð22Þ

the electric potential reads

A ¼ q
r
dt: ð23Þ

This solution represents an accelerated version of the
Reissner-Nordström black hole with a Rindler apparent
horizon at ra ¼ 1=α, an outer black hole event horizon
at rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
, and an inner Killing horizon at

r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
≤ rþ ≤ ra. As mentioned in the

Introduction, this electric C-metric solution has recently
been considered in the context of the infinite-dimensional
symmetries that the asymptotically locally flat spacetimes
exhibit at null infinity. In [28], the authors studied the
action of the local BMS transformations on the C-metric.
Here, we are interested in performing the near horizon
analog of that analysis. That is, we are going to study how
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the infinite-dimensional symmetries that emerge in the
near horizon region act on both the black hole horizons
and the acceleration horizon of the C-metric. In particular,
it will lead us to obtain the explicit form of the super-
translated, superrotated C-metric in the near horizon
approximation.

III. THE NEAR HORIZON SYMMETRIES
OF THE C-METRIC

Let us start by briefly reviewing the near horizon
symmetries as studied in [31] and in references thereof;
see for example [33–36]. To study the C-metric, unlike
other cases, we find convenient to consider the set of
boundary conditions proposed in [34]. This amounts to
consider that the set of metrics that, close to the horizon,
behaves as follows:

gtt ¼ −κ2ρ2 þOðρ4Þ; gtρ ¼ Oðρ3Þ
gρρ ¼ 1þOðρ2Þ; gAB ¼ ΩABðϕCÞ þOðρ2Þ
gρA ¼ Oðρ3Þ; gtA ¼ κNAðϕBÞρ2 þOðρ4Þ; ð24Þ

where ϕA represent the angular variables, A; B ¼ 1, 2 (say
ϕ1 ¼ ϕ, ϕ2 ¼ θ). ρ ∈ R≥0 is a radial coordinate that
measures the separation from the horizon, the latter being
located at ρ ¼ 0. The value of κ gives the surface gravity at
the horizon, and the functions NAðϕBÞ and ΩABðϕCÞ are
arbitrary functions of the angular variables ϕ1 and ϕ2.
OðρnÞ stand for functions of the angles ϕA that damp off as
fast as ρn, or faster, as ρ tends to zero.
The set of metrics (24) is preserved by Killing vectors

that respect the asymptotic conditions,

Lξgtt ¼ Oðρ4Þ; Lξgρρ ¼ Oðρ2Þ; LξgAB ¼ δΩABðϕCÞ þOðρ2Þ
LξgρA ¼ Oðρ3Þ; Lξgρt ¼ Oðρ3Þ; LξgtA ¼ κδNAðϕBÞρ2 þOðρ4Þ; ð25Þ

with δΩAB and δNA being arbitrary functions of ϕA; here,
Lξ stands for the Lie derivative with respect to the vector ξ.
The asymptotic Killing vectors ξ ¼ ξμ∂μ obeying (25) are
those given by

ξt ¼ TðϕAÞ þOðρ4Þ
ξρ ¼ Oðρ4Þ
ξA ¼ YAðϕBÞ þOðρ4Þ; ð26Þ

where TðϕAÞ, Y1ðϕAÞ and Y2ðϕAÞ are three arbitrary
functions of the angles. These vectors form an infinite-
dimensional algebra, which is the asymptotic isometry
algebra at the horizon. The transformations defined by
functions TðϕAÞ yield an Abelian ideal of the algebra; these
are the so-called supertranslations, as they come to general-
ize the rigid v-translations ξ ¼ ∂v, the latter corresponding
to T ¼ const. The other transformations, the ones defined

by the functions YAðϕBÞ, form a non-Abelian subalgebra
that can be taken to be the Witt algebra, and so they are
interpreted as superrotations. In order to realize the full
diffeomorphism algebra, it is convenient to choose complex
coordinates Z, Z̄ on the constant-v sections of the horizon.
These complex coordinates replace the angular variables
ϕA. Expanding functions T, YZ and YZ̄ in powers of Z and
Z̄, one gets the vector basis,

Ym ¼ YZ
mZmþ1∂Z; Ȳm ¼ YZ̄

mZ̄mþ1∂Z̄; ð27Þ

and

T mn ¼ Tðm;nÞZmþ1Z̄nþ1∂t; ð28Þ

where YA
m (A ¼ Z; Z̄) and Tðm;nÞ are Fourier coefficients.

This yields the infinite-dimensional Lie algebra,

½Ym;Yn� ¼ ðn −mÞYmþn; ½Ȳm; Ȳn� ¼ ðn −mÞȲmþn; ½Ym; Ȳn� ¼ 0

½Yp; T mn� ¼ mT mþpn; ½Ȳp; T mn� ¼ nT mnþp; ½T pq; T mn� ¼ 0; ð29Þ

with m; n; p; q ∈ Z. This algebra consists of the semidirect
sum of two commuting copies of Witt algebra and an
Abelian current algebra.
The Noether charges [30] associated to these symmetries

are given by

Q½T; YA� ¼ 1

16π

Z
d2ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΩABÞ

p
ð2κT − YANAÞ; ð30Þ

that can be decomposed in the charges Q½Tðm;nÞ; 0�,
Q½0; YA

m�, the latter satisfying the same algebra as in (29).
Now, let us show explicitly that the C-metric discussed

above can be accommodated in the set of asymptotic
horizon conditions (24). This would imply that such
solutions also exhibit the infinite-dimensional asymptotic
symmetry generated by (29). In fact, by defining the radial
coordinate,
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ρ2 ¼ 4ðr − r0ÞΛ2ðr0; θÞ
F0ðr0Þð1þ αr0 cos θÞ2

; ð31Þ

where r0 represents the location of a given horizon, we obtain

dρ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðr0Þ

p
�

Λðr0; θÞ
ð1þ αr0 cos θÞ

drffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p ∂
∂θ

�
Λðr0; θÞ

1þ αr0 cos θ

�
dθ

�
; ð32Þ

and, with it, metric (9) takes the form,

ds2 ¼
�
−
F0ðr0Þ2

4
ρ2 þOðρ4Þ

�
dt2 þ ½1þOðρ2Þ�dρ2 þOðρ3Þdρdθ

þ
�
r20G

−1ðθÞΛ2ðr0; θÞ
ð1þ αr0 cos θÞ2

þOðρ2Þ
�
dθ2 þ

�
r20GðθÞsin2θ

ð1þ αr0 cos θÞ2Λ2ðr0; θÞ
þOðρ2Þ

�
dϕ2; ð33Þ

from which we identify the form (24) with the particular functions,

κ ¼ 1

2
F0ðr0Þ; NA ¼ 0; Ωθθ ¼

r20G
−1ðθÞΛ2ðr0; θÞ

ð1þ αr0 cos θÞ2
; Ωϕϕ ¼ r20GðθÞΛ−2ðr0; θÞsin2θ

ð1þ αr0 cos θÞ2
; Ωϕθ ¼ 0; ð34Þ

with A ¼ ϕ; θ. Then, the near-horizon charges associated to
theC-metric can be computed by evaluating (30). While the
angular contributions vanish, namely, Q½0; YA� ¼ 0, the
zero-mode of the supertranslation charge yields

Q½1; 0� ¼ C
4

F0ðr0Þr20
1 − α2r20

¼ κ

2π

A
4
; ð35Þ

where we have used that the area of the constant-t,
constant-r section of the geometry (with r ¼ r0) is given by

A ¼
Z

πC

−πC

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

p
jr¼r0

dθdϕ ¼ 4πCr20
1 − α2r20

: ð36Þ

Charge (35) can actually be rewritten as Q½1; 0� ¼ TS,
where T ¼ κ=2π is the Hawking temperature of the horizon
located at r0 ¼ ra; r� (here, ℏ ¼ kB ¼ 1), and S ¼ A=4 is
the Bekenstein-Hawking entropy associated to it. That is to
say, the zero mode of the translation symmetry is actually
computing the Wald entropy of the C-metric horizons.
Evaluating (35) explicitly for the black hole Killing
horizons r0 ¼ r�, we get

Q½1; 0�jrþ ¼ −Q½1; 0�jr− ¼ C
4
ðrþ − r−Þ

¼ ðrþ − r−Þ
4ð1þ αrþÞð1þ αr−Þ

; ð37Þ

which coincides with the result for the Reissner-Nordström
black hole in the limit of small acceleration, α → 0. In (37),
we have used that κ for the horizon at rþ is given by
κ ¼ ðrþ − r−Þð1 − α2r2þÞ=ð2r2þÞ, and that C can be taken to
be Cθ¼0 ¼ G−1ð0Þ ¼ ð1þ αrþÞ−1ð1þ αr−Þ−1. Notice that

the expressions for the charges above are valid for all the
metrics considered here, provided one identifies the param-
eters accordingly.
Next, we can consider the third horizon; namely, the

apparent Rindler horizon located at r0 ¼ ra. Of course, the
result for the charge Q½1; 0� at r0 ¼ 1=α diverges, as it is
easily seen from (36); and this is easily understood as due to
the fact that the Rindler wedge is noncompact. However,
the charge per unit of area turns out to be finite and can be
computed, yielding

jQ½1; 0�jjra=A ¼ α

8π
ð1 − αrþÞð1 − αr−Þ: ð38Þ

Notice that, in the limit r� → 0, this result tends to the
correct result for the entropy per area of an acceleration
horizon. In fact, (38) can be regarded as a self-gravitating
generalization of the Laflamme result for the entropy per
area for the Rindler horizon, cf. [37], giving corrections to
the Unruh temperature TU ¼ α=ð2πÞ þOðα2r�Þ. This also
generalizes the near horizon computation of the Rindler
density entropy done in [33].
Apart from the charges associated to superrotations

and supertranslations, in the case of the electrically charged
C-metric, one can also consider a new set of infinite charges
associated to gauge transformations that preserve the near
horizon configuration [35]. By evaluating the zero modes
of those charges for the solution (20)–(23), one finds that
the electric charge as computed near the event horizon is
given by

QUð1Þ ¼
q

1þ 2αM þ α2q2
; ð39Þ
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which coincides with qC, C being the periodicity of ϕ for
the solution to be regular at θ ¼ 0.

IV. SUPERROTATED, SUPERTRANSLATED
C-METRIC

In summary, we have shown here that the C-metrics can
be accommodated in the near horizon boundary conditions
(24) introduced in [34]. This means that the infinite set of
symmetries generated by (29) emerges in the vicinity of
the horizons of such a solution. This is interesting as the
C-metric exhibits features that were not present in the other
configurations considered so far in similar contexts, the
most salient one being the presence of the cosmic string that
introduces a conical singularity at the horizon. Besides, the
neutral and charged C-metric solutions exhibit isolated
horizons of different types, so that having achieved a
unified method to treat all such surfaces in an equal footing

is interesting. We have seen that the horizon charges
associated to the C-metric are nontrivial, with the zero-
mode of the supertranslation correctly reproducing the
Wald entropy of both Killing horizons and the Rindler
horizon.
Since we have proven that infinite-dimensional sym-

metries of the type considered in (26) act on the C-metric
preserving the near horizon structure (24), we can in
principle compute the supertranslated and superrotated
version of the C-metric. From (26), one can see that, under
an asymptotic diffeomorphism of the form (26), the metric
functions of the near horizon metric transform as follows:

δΩAB ¼ LYΩAB; δNA ¼ LYNA − κ∂AT; ð40Þ

therefore, by acting with Killing vector ξ ¼ hAðϕBÞ∂A þ
fðϕBÞ∂v on the C-metric, we get the following geometry:

ds2 ¼ ½−κ2ρ2 þOðρ2Þ�dt2 þ dρ2 − ½2κ2ρ2∂Af þOðρ4Þ�dϕAdt

þ ½ΩAB þ hC∂CΩAB þ ∂AhCΩCB þ ∂BhCΩAC þOðρ2Þ�dϕAdϕB; ð41Þ

with

ΩAB ¼ r2þ
ð1þ αrþ cos θÞ2 ½δAϕδBϕΛ

−2ðr0; θÞGðθÞsin2θ þ δAθδBθΛ2ðr0; θÞG−1ðθÞ�; ð42Þ

where ϕ1 ¼ ϕ, ϕ2 ¼ θ. Such is the near horizon form of the supertranslated, superrotated C-metric, which has superrotation
and superrotation charges,

Q½T; YA� ¼ κ

8π

Z
d2ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΩ̂ABÞ

q �
Tfðϕ; θÞ − 1

2
YA∂Afðϕ; θÞ

�
; ð43Þ

with Ω̂AB ¼ ΩAB þ LhΩAB. Here, only the function fðϕ; θÞ
appears as hAðϕ; θÞ enters in the charge only when the
original metric, the one before applying the superrotation
and supertranslation, has nonvanshing NA. This is clear
from (40). Still, a nonvanishing superrotation charge
appears in (43) due to the supertranslation generated by
hðϕ; θÞ. This expresses at the level of the charges the fact
that supertranslations and superrotations do not commute in
the charge algebra (29). Notice that hAðϕ; θÞ and fðϕ; θÞ
represent here what YAðϕ; θÞ and Tðϕ; θÞ were in (40).
Here, it was necessary to introduce a new notation for not to
mistake the functions hAðϕ; θÞ, fðϕ; θÞ that parametrize the
superrotation and supertranslation for the functions
YAðϕ; θÞ, Tðϕ; θÞ that define the Killing vector with respect
to which the charge (43) is computed.
The set of suitable functions fðϕ; θÞ is defined by taking

into account the points where the horizon surface is smooth
and the points where it presents singularities. While, in
virtue of the generality of the results of [31], we expected
the horizon of accelerated black holes to exhibit the infinite

symmetries (27)–(28) locally, globally the problem which
we deal with herein is different. In the case of the C-metric,
there exists a global obstruction due to the presence of a
conical singularity at the point where the cosmic string
pinches the horizon. This introduces two differences with
respect to the case of smooth horizons. On the one hand, the
functions YAðϕ; θÞ, Tðϕ; θÞ with respect to which the
charges (43) are defined are in principle allowed to admit
singularities at the point where the cosmic string is located.
On the other hand, the functions hAðϕ; θÞ, fðϕ; θÞ consid-
ered to superrotate and supertranslate the original C-metric
are now to be restricted to the set of functions that preserve
the location of the conical singularity, θ ¼ π. This means
that, even though local properties will be shared with the
smooth horizons, as the fact that the algebras agree
manifestly shows, the global transformations will be differ-
ent. A direct way to see this is to look at the expression (31),
which gives the change of coordinates that suffices to put
the C-metric in its near horizon form. Such change of
coordinates is in general well defined except at θ ¼ π,
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meaning that the analysis will be such that the trans-
formations to be considered have to preserve the location of
the conical singularity.
Our result of the infinite-dimensional symmetries of the

accelerated horizons acquires particular interest when
considered in relation to the analysis done in [28]. In the
latter work, the BMS symmetries of the C-metric at null
infinity were studied, while here we have presented the
horizon version of the story. This suggests to perform a
comparative analysis similar to the one done in [35]: In
[35], the memory effect produced at a black hole horizon by
a transient gravitational shockwave was computed. It had
already been shown in [38] that such a gravitational wave
produces a deformation of the black hole geometry which
from future null infinity is seen as a BMS supertranslation
and [35] gives the complementary description of such a
physical process as seen from the horizon perspective. This
showed that, for an observer hovering just outside the event
horizon, in addition to a supertranslation the shockwave
also induces a superrotation. Considering our results herein
in combination with the analysis of [28] would make
possible, in principle, to extend the comparison between
the asymptotic region and the near horizon region to the
case of C-metric type solutions. However, this is more
involved than in the cases of static black holes considered
in [35]. We plan to address this in future work.
Now, with the intention of showing that the analysis

performed here is general enough and can actually be
extended to other cases of interest, we will dedicate the next
sections to show how the local change of coordinates (31)
can be applied to other solutions. First, we will consider the
case of accelerated black holes in AdS space, which exhibits
features that are qualitatively different [15,19,39]. Second,
we will consider a system describing binary black holes at
equilibrium [40].

V. ACCELERATED BLACK HOLES IN AdS

Let us consider black holes accelerating in AdS space-
time [15]. This is given by the AdS C-metric,

ds2 ¼ 1

Ω2ðθÞ
�
−FðrÞdt2 þ dr2

FðrÞ þ
r2

GðθÞ dθ
2

þ GðθÞ
K2

r2sin2θdϕ2

�
; ð44Þ

with

ΩðθÞ ¼ 1þ αr cos θ; K ¼ 1þ 2mα; ð45Þ

and

FðrÞ ¼ ð1 − α2r2Þ
�
1 −

2m
r

�
þ r2

l2
;

GðθÞ ¼ 1þ 2mα cos θ; ð46Þ

where l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−3=Λ

p
is the radius of AdS, Λ < 0 is the

cosmological constant, α is the black hole acceleration, and
m is related to the black hole mass. When α ¼ 0 solution
(44)–(46) reduces to the AdS-Schwarzschild black hole
geometry. The value of K is chosen for the metric to be
regular everywhere except at the point θ ¼ 0.
In contrast to accelerated black holes in flat space or in

de Sitter space, the case with negative cosmological
constant exhibits peculiar features and a richer causal
structure that depends on the value of the acceleration
relative to the inverse of the AdS radius [19]. For α2 >
1=l2 there is more than one horizon, corresponding to the
black hole (rþ) and the acceleration horizon (ra); in
contrast, for α2 < 1=l2 only the black hole horizon exists.
In other words, while for acceleration values α2 > 1=l2 the
C-metric in AdS represents a pair of black holes accelerated
in opposite directions, for α2 < 1=l2 the solution describes
a single accelerated black hole in AdS. That is, only if α is
above certain threshold the solution in AdS space exhibits
the features of an actual acceleration, and an effective
acceleration

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − l−2

p
appears. This can be easily under-

stood by interpreting AdS as a decelerating universe with a
cosmic acceleration Λ=3. Another way of interpreting this
is by noticing that the Unruh temperature of an accelerated
observed in AdS only exists provided α > 1=l2, its
expression being [41,42]

TU ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − l−2

p
: ð47Þ

The fact that the C-metric with α2 < 1=l2 describes a
single accelerated black hole makes it simpler to address
this case. This is because in the case α2 > 1=l2, due to the
presence of the Rindler type horizon that separates the two
black holes, the asymptotic region at infinity changes, and
this requires a special care when computing conserved
charges resorting to standard methods. The conserved
charges in the case α2 < 1=l2 were computed in [16]. It
was observed there that, due to the nonvanishing accel-
eration of the frame in which the black hole is at
equilibrium with respect to the AdS boundary, it is
necessary to correctly identify the normalization of the
asymptotic timelike Killing vector with respect to which the
mass is computed. The result thus differs from the naive
calculation by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2l2

p
; see [16] for details.

Here, we can extend that calculation and address the case
α2 > 1=l2 in a unified framework. Our method enables to
do that because it relies on the near horizon region rather
than in the near boundary asymptotic.
We considering the change of coordinates,

ρ2 ¼ 4ðr − r0Þ
F0ðr0Þð1þ αr0 cos θÞ2

; ð48Þ

which leads to the near horizon form,
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ds2 ¼
�
−
F0ðr0Þ2

4
ρ2 þOðρ4Þ

�
dt2 þ ½1þOðρ2Þ�dρ2 þOðρ3Þdρdθ

þ
�

r20G
−1ðθÞ

ð1þ αr0 cos θÞ2
þOðρ2Þ

�
dθ2 þ K−2

�
r20GðθÞsin2θ

ð1þ αr0 cos θÞ2
þOðρ2Þ

�
dϕ2: ð49Þ

This yields the metric functions,

κ ¼ 1

2
F0ðr0Þ; Nθ ¼ 0; Nϕ ¼ 0; Ωϕθ ¼ 0

Ωθθ ¼
r20G

−1ðθÞ
ð1þ αr0 cos θÞ2

; Ωϕϕ ¼ r20GðθÞsin2θ
K2ð1þ αr0 cos θÞ2

: ð50Þ

Next, considering asymptotic Killing vectors ξ ¼ ξμ∂μ

that preserve the near horizon form, namely with ξt ¼
TðϕAÞ þOðρ4Þ, ξρ ¼ Oðρ4Þ, ξA ¼ YAðϕBÞ þOðρ4Þ, and
evaluating the charges (30), we find

Q½T ¼ t0; 0� ¼
t0
4K

F0ðr0Þr20
ð1 − A2r20Þ

¼ t0κ
2π

A
4
¼ TS; ð51Þ

where we have taken YA ¼ 0, T ¼ t0, with t0 being a
constant that controls the normalization of the null Killing
vector ∼∂t at the horizon. We also used that

F0ðr0Þ ¼
2m
r20

þ 2α2ðm − r0Þ þ
2r0
l2

: ð52Þ

For the choice t0 ¼ 1 one obtains the result,

Q½1; 0� ¼ TS ¼ m
2ð1þ 2αmÞ þ

r30
2l2ð1þ 2αmÞð1 − α2r20Þ2

;

ð53Þ

which, when evaluated on the black hole event horizon
r0 ¼ rþ, exactly agrees with the result for the product
of the entropy and the temperature obtained in [11].
However, as mentioned above, it was noticed in [16] that
in the case α2 < 1=l2 a more convenient normalization is
t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2l2

p
. With this choice, our result agrees with

that of [16]. It is worth emphasizing that the computation
we presented here, being done near the horizon and so
dispense with the near boundary region, is valid also for the
range α2 > 1=l2 provided one normalizes as t0 ¼ 1, i.e.,
computing the charge with respect to the Killing vector ∂t
at the horizon.

VI. BLACK HOLE BINARY SYSTEM

Another case that can be explicitly solved with our near
horizon analysis is the solution recently found in [40],
which describes a binary black hole system at equilibrium.
This is an exact solution to four-dimensional Einstein
equations in vacuum that represents a symmetric or
asymmetric pair of static black holes at equilibrium. The
metric is completely regular at the event horizons, implying
that the balance between the two Schwarzschild-like
sources is achieved by the presence of an external gravi-
tational field, without additional external fields, nor strings
or struts. This can be regarded as a purely gravitational
analog of the magnetically charged Ernst-Wild black hole
in the Melvin universe, cf. [43].
Although analytically tractable, the metric of [40] takes a

cumbersome form, so we will not write it down here;
instead, we refer the reader to the original paper; see also
[44]. For us, it will be sufficient to consider the form the
metric takes near the horizon of one of the two black holes;
that is

ds2 ≃ hðθÞ
�
−fðrÞeF1ðθÞdt2 þD2eF2ðθÞ dr

2

fðrÞ þ r20D
2hðθÞeF2ðθÞdθ2 þ r20e

−F1ðθÞ sin
2θ

hðθÞ dϕ
2

�
; ð54Þ

with

hðθÞ ¼ m1 cos θ þm2 þ z1 − z2
m1 cos θ −m2 þ z1 − z2

; fðrÞ ¼ 1 −
2m1

r
; D ¼ m1 þm2 − z1 þ z2

m1 −m2 − z1 þ z2
;

and
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F1ðθÞ ¼ 2ðb1 þ b2z2 þ b2m1 cos θÞðz1 þm1 cos θÞ
F2ðθÞ ¼ 2b1ðm1 cos θ − 2m1 − 4m2 − z1Þ þ 2b2ðm2

1cos
2θ

þ 2m1z1 cos θ − 2m2
1 − z21 − 4m1z1 − 8m2z2Þ;

b1, b2, m1, m2, z1, z2 being parameters of the solution, whose physical meaning are discussed in [44]. In particular, the
location of the horizon of one of the two black holes described by the solution above is given by r0 ¼ 2m1. Considering the
change of coordinates,

ρ2 ¼ 4ðr − r0Þ
f0ðr0Þ

hðθÞD2eF2ðθÞ; ð55Þ

for r0 ¼ 2m1, so that ρ ¼ 0 at the event horizon of one of the black holes, we arrive to the near horizon form,

ds2 ¼
�
−
f0ðr0Þ2

4

eF1ðθÞ−F2ðθÞ

D2
ρ2 þOðρ4Þ

�
dt2 þ ½1þOðρ2Þ�dρ2 þOðρ3Þdρdθ

þ ½r20D2hðθÞeF2ðθÞ þOðρ2Þ�dθ2 þ
�
r20e

−F1ðθÞ sin
2θ

hðθÞ þOðρ2Þ
�
dϕ2

K2
; ð56Þ

which actually satisfies the near horizon boundary conditions discussed above, with the metric functions being

κ ¼ f0ðr0Þ
2D

e
F1ðθÞ−F2ðθÞ

2 ; Nθ ¼ 0; Nϕ ¼ 0; Ωϕθ ¼ 0;

Ωθθ ¼ r20D
2hðθÞeF2ðθÞ; Ωϕϕ ¼ r20e

−F1ðθÞ sin
2θ

hðθÞ :

The fact of having achieved to put the metric of [40] in
the convenient boundary conditions to perform the near
horizon analysis is remarkable, as that solution takes a very
complicated form. Having achieved so enables us to work
out the thermodynamics of the solution from a near horizon
perspective. From the surface gravity κ obtained above we
can get the temperature—up to a normalization t0 of the
null Killing vector at the horizon—yielding

T1 ¼
κ

2π
¼ t0

8πm1

ðm1 −m2 − z1 þ z2Þ
ðm1 þm2 − z1 þ z2Þ

× e2b1ð2m2þm1þz1Þþ2b2ððm1þz1Þ2þ4m2z2Þ; ð57Þ

which agrees with the analysis in [40]—there, t0 is denoted
α. By considering the asymptotic Killing vectors that
preserve the form at the horizon, we can compute the
charge for a black hole of the pair, and we obtain

Q½T ¼ t0; YA ¼ 0� ¼ t0κ
2π

A
4
; ð58Þ

which, consistently, yields

Q½T ¼ t0; YA ¼ 0� ¼ T1S1 ¼
t0m1

2
: ð59Þ

Considering the mass of the black hole to be M1 ¼ t0m1,
this is found to satisfy the Smarr formula 1

2
M1 ¼ T1S1.

Therefore, our near horizon analysis is completely
consistent with the results of [40,44] and proves to
be powerful enough to be applied to physical scenarios
described by quite different solutions. Other solutions
can also be analyzed in this framework, like the one
considered in [45]; see also [43]. In particular, we
expect to come back soon to the problem of analyzing
the family of solutions studied in [40,44,46], which
comprises many different cases, including binary sys-
tems of rotating black holes.
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